JP2009250578A - Energy saving control operation method by stabilization of refrigerating machine cooling water temperature - Google Patents

Energy saving control operation method by stabilization of refrigerating machine cooling water temperature Download PDF

Info

Publication number
JP2009250578A
JP2009250578A JP2008102212A JP2008102212A JP2009250578A JP 2009250578 A JP2009250578 A JP 2009250578A JP 2008102212 A JP2008102212 A JP 2008102212A JP 2008102212 A JP2008102212 A JP 2008102212A JP 2009250578 A JP2009250578 A JP 2009250578A
Authority
JP
Japan
Prior art keywords
temperature
cooling water
cooling
cooling tower
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008102212A
Other languages
Japanese (ja)
Other versions
JP5500615B2 (en
Inventor
Kenichi Saito
健一 斉藤
Makoto Uchida
真 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Thermal Engineering Co Ltd
Original Assignee
Kawasaki Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Thermal Engineering Co Ltd filed Critical Kawasaki Thermal Engineering Co Ltd
Priority to JP2008102212A priority Critical patent/JP5500615B2/en
Publication of JP2009250578A publication Critical patent/JP2009250578A/en
Application granted granted Critical
Publication of JP5500615B2 publication Critical patent/JP5500615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To save energy by stabilizing cooling water temperature when operating a refrigerating machine. <P>SOLUTION: When the refrigerating machine 10 is operated, measurement results determined by measuring dry-bulb temperature and relative humidity and computing wet-bulb temperature, a maximum capacity of a cooling tower 14, a capacity of the cooling tower during partial load operation and coolable temperature determined by using the respective capacity data are determined. When the refrigerating machine requiring cooling water is operated, rotational frequency of a cooling fan motor 26 of the cooling tower is continuously controlled, and the operation of the refrigerating machine is stabilized to reduce a range of fluctuation of the control by stabilizing the temperature of the circulating cooling water, so as to contribute to energy saving operation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、冷房用の冷水を供給する熱源システムにおける、吸収式冷凍機、電動式冷凍機(以下、単に冷凍機と称す)の冷却水温度安定化による省エネルギー制御運転方法に関するものである。   The present invention relates to an energy saving control operation method by stabilizing a cooling water temperature of an absorption chiller and an electric chiller (hereinafter simply referred to as a chiller) in a heat source system for supplying cooling water for cooling.

吸収式冷凍機、電動式冷凍機、及び周辺機器で構成され、冷房用の冷水を供給する熱源システムにおいて、吸収式冷凍機又は電動式冷凍機で発生する熱を冷却し、熱を回収した冷却水は、冷却塔にて冷却水の一部を蒸発させることで冷却水温度を下げ、再び冷凍機に流入する。一般的に使用されている冷却塔は、冷却水の蒸発潜熱を利用した冷却であるため、冷却可能温度はその周辺の湿球温度に影響される。冷却塔で冷却する冷却水の目標温度は、吸収式冷凍機又は電動式冷凍機入口での要求仕様である、冷却水入口温度32℃又は31℃であり、この要求仕様温度は、日本国内では1年を通した最大湿球温度時(例えば28℃)でも冷却塔で冷却可能な冷却水温度としている。いい換えると、日本国内においては1年のほとんどの期間で、湿球温度がこの最大湿球温度以下であるため、冷却水温度を32℃又は31℃より低い温度に低下させることが可能なのである。   A cooling system that consists of an absorption chiller, an electric chiller, and peripheral equipment that cools the heat generated by the absorption chiller or electric chiller and recovers the heat in a heat source system that supplies chilled water for cooling. Water evaporates a part of the cooling water in the cooling tower to lower the cooling water temperature and flows into the refrigerator again. Since the cooling tower generally used is cooling using the latent heat of vaporization of cooling water, the coolable temperature is affected by the temperature of the wet bulb around the cooling tower. The target temperature of the cooling water to be cooled by the cooling tower is the cooling water inlet temperature 32 ° C. or 31 ° C., which is a required specification at the absorption chiller or electric chiller inlet. The cooling water temperature can be cooled by the cooling tower even at the maximum wet bulb temperature throughout the year (for example, 28 ° C.). In other words, in most of the year in Japan, the wet bulb temperature is below this maximum wet bulb temperature, so the cooling water temperature can be lowered to 32 ° C or lower than 31 ° C. .

一方で吸収式冷凍機、電動式冷凍機は、冷却水温度を低下させることで、機内を循環する冷媒又は熱媒体の温度が下がり、動力負荷の減少(電動式)又は熱負荷の減少(吸収式)を行っても、冷房に使用する冷水を冷やす能力が変わらない。いい換えると同じ冷房能力を得るにも、少ない動力負荷又は熱負荷で運転可能となり、効率が改善される。
これらのことから、冷却塔周辺の湿球温度に応じて、冷却水温度を制御して、冷却水温度の低下が可能な場合には冷却水温度を低下させて(吸収式冷凍機、又は電動式冷凍機の安全運転に支障を来たさない範囲で低下させて)、吸収式冷凍機又は電動式冷凍機の運転効率を改善させることが可能で、吸収式冷凍機、電動式冷凍機の運転動力となるエネルギー消費量(電気、ガス、蒸気、油など)の削減が可能となるため、冷房用の冷水を供給する熱源システムにおいて、従来の制御システムより大幅な省エネルギー運転が可能となる。
On the other hand, absorption refrigerators and electric refrigerators reduce the coolant temperature to lower the temperature of the refrigerant or heat medium circulating in the machine, reducing the power load (electric) or the heat load (absorption). The ability to cool the chilled water used for cooling does not change even if the formula is performed. In other words, even if the same cooling capacity is obtained, it is possible to operate with a small power load or heat load, and the efficiency is improved.
From these, the cooling water temperature is controlled according to the wet bulb temperature around the cooling tower, and when the cooling water temperature can be lowered, the cooling water temperature is lowered (absorption type refrigerator or electric motor). It is possible to improve the operating efficiency of absorption refrigerators or electric refrigerators by reducing the range of safe operation of refrigerators). Since energy consumption (electricity, gas, steam, oil, etc.) serving as driving power can be reduced, the heat source system that supplies cooling water for cooling can perform energy-saving operation significantly more than conventional control systems.

従来から、多機能湿度調節器として、目標とする湿度値と乾球・湿球温度から算出した相対湿度を比較しながら湿度制御を行うことにより、湿度の急激な変化を制御するようにしたものが知られている(例えば、特許文献1参照)。また、冷却塔の運転方法とこの冷却塔として、乾球温度を計測する温度計と、その相対湿度を測定する乾式の湿度計を設けて、冷却塔の送風機の回転方向を正逆制御するようにしたものが知られている(例えば、特許文献2参照)。また、恒温恒湿装置として、乾球温度、湿球温度、相対湿度、露点温度の4つの指標の少なくとも2つの入力により、残りの少なくとも1つを演算する演算装置を備えたものが知られている(例えば、特許文献3参照)。   Conventionally, as a multifunctional humidity controller, a rapid change in humidity is controlled by performing humidity control while comparing the target humidity value with the relative humidity calculated from the dry bulb / wet bulb temperature. Is known (see, for example, Patent Document 1). In addition, a cooling tower operating method and a thermometer for measuring the dry bulb temperature and a dry hygrometer for measuring the relative humidity are provided as the cooling tower, so that the rotation direction of the cooling tower fan is controlled forward and backward. What was made into is known (for example, refer patent document 2). In addition, as a constant temperature and humidity device, a device equipped with a calculation device that calculates at least one of the remaining by inputting at least two indicators of dry bulb temperature, wet bulb temperature, relative humidity, and dew point temperature is known. (For example, see Patent Document 3).

また、恒温恒湿装置として、目標乾球温度、目標湿球温度及び目標相対湿度の雰囲気指標のうち少なくとも2つの値の入力に基づき冷却装置の冷却能力を制御するようにしたものが知られている(例えば、特許文献4参照)。また、湿潤温度制御優先式温湿度統合コントローラとして、乾球温度センサーのみならず湿潤温度センサーを備える空気調和システム用コントローラとする構成のものが知られている(例えば、特許文献5参照)。さらに、屋内温度調節器として、室内に湿度センサーと温度センサーとを設け、湿潤温度値を乾球温度と共に用いて、温度値と湿度値の両方の関数である単一の誤差信号を生成し、これによって、温度調節システムの異常サイクルなしで室内温度と室内湿度の両方を制御するようにしたものが知られている(例えば、特許文献6参照)。また、冷凍機の冷却水制御方法として、合計消費電力が最小となるように、冷却水の変温度、変流量、冷却塔の変風量制御を行う制御システムが知られている(例えば、特許文献7参照)。
特開2002−364883号公報(第1頁、図2) 特開2002−213898号公報(第1頁、図1) 特開2001−33079号公報(第1頁、図3) 特開2001−33078号公報(第1頁、図1) 特表2004−524495号公報(第1頁、図1) 特表平8−510348号公報(第1頁、図1) 特開2005−257221号公報(第2頁、図3)
A constant temperature and humidity device is known that controls the cooling capacity of the cooling device based on the input of at least two values of the target dry bulb temperature, the target wet bulb temperature, and the target relative humidity. (For example, see Patent Document 4). As a wet temperature control priority type temperature / humidity integrated controller, an air conditioning system controller having a wet temperature sensor as well as a dry bulb temperature sensor is known (see, for example, Patent Document 5). Furthermore, as an indoor temperature controller, a humidity sensor and a temperature sensor are provided in the room, and the wet temperature value is used together with the dry bulb temperature to generate a single error signal that is a function of both the temperature value and the humidity value. Thus, there is known one that controls both the room temperature and the room humidity without an abnormal cycle of the temperature control system (see, for example, Patent Document 6). Further, as a cooling water control method for a refrigerator, a control system is known that performs variable temperature control, variable flow rate, and variable cooling air amount control of a cooling tower so that total power consumption is minimized (for example, Patent Documents). 7).
JP 2002-364883 A (first page, FIG. 2) JP 2002-213898 A (first page, FIG. 1) Japanese Patent Laying-Open No. 2001-33079 (first page, FIG. 3) JP 2001-33078 A (first page, FIG. 1) Japanese translation of PCT publication No. 2004-524495 (first page, FIG. 1) JP-T-8-510348 (1st page, FIG. 1) Japanese Patent Laying-Open No. 2005-257221 (second page, FIG. 3)

解決しようとする問題点は、冷凍機のまわりの温度、湿度に応じて、省エネルギーに最適の冷却水温度に安定化させることができない点である。すなわち、不安定なファン回転が冷却水温度ハンチングを発生させる点である。   The problem to be solved is that the temperature cannot be stabilized to the optimum cooling water temperature for energy saving according to the temperature and humidity around the refrigerator. In other words, unstable fan rotation causes cooling water temperature hunting.

本発明は、吸収式冷凍機、電動式冷凍機の運転効率改善のために、湿球温度を逐次計測して、その時の湿球温度と冷却塔の能力に応じた冷却水温度となるように、冷却塔の冷却可能温度を求め、この値により冷却塔ファンモータの回転数を制御して、所定の冷却水温度で安定して変動が少なく、冷凍機が安定して運転できるように制御することを最も主要な特徴としている。   In the present invention, in order to improve the operation efficiency of the absorption refrigerator and the electric refrigerator, the wet bulb temperature is sequentially measured so that the wet bulb temperature at that time and the cooling water temperature according to the capacity of the cooling tower are obtained. The cooling tower cooling temperature is obtained, and the rotation speed of the cooling tower fan motor is controlled based on this value, so that the refrigerator can be stably operated at a predetermined cooling water temperature and can be stably operated. This is the main feature.

本発明の方法においては、外気温度(乾球温度)及び相対湿度を計測するセンサーを設け、センサーによる計測データから湿球温度を算出し、算出結果を利用して計測地域周辺の湿球温度を推定し、推定した湿球温度、冷却塔の冷却能力、冷却塔に掛かる負荷状況から、冷却可能な冷却水温度を算出して、その算出温度を下限値として、循環する冷却水温度の設定値を自動的に変更し、冷却塔ファンモータの回転数を制御して、吸収式冷凍機、電動式冷凍機などの冷却水を必要とする冷凍機の運転時に、所定の冷却水温度に制御した冷却水を循環するようにし、冷房運転時の冷却水温度の変動を押さえて、冷却水を必要とする冷凍機に掛かる外乱要素(冷却水温度の変動)を軽減して、冷凍機の運転に影響を与える冷却水温度の変動を押さえ、冷却水による冷却を必要とする冷凍機の制御の安定性を増して、省エネルギー運転に寄与することを目的として構成されている。   In the method of the present invention, a sensor for measuring the outside air temperature (dry bulb temperature) and relative humidity is provided, the wet bulb temperature is calculated from the measurement data obtained by the sensor, and the wet bulb temperature around the measurement area is calculated using the calculation result. Estimate and calculate the cooling water temperature that can be cooled from the estimated wet bulb temperature, the cooling capacity of the cooling tower, and the load condition applied to the cooling tower, and use the calculated temperature as the lower limit value to set the circulating cooling water temperature. Was automatically changed, and the number of rotations of the cooling tower fan motor was controlled to control the cooling water temperature to a predetermined level when operating refrigerators that require cooling water, such as absorption refrigerators and electric refrigerators. Circulating cooling water, suppressing fluctuations in cooling water temperature during cooling operation, reducing disturbance factors (fluctuation in cooling water temperature) on refrigerators that require cooling water, and operating the refrigerator Reduces fluctuations in cooling water temperature Increasing the stability of the control of the refrigerator that need cooling with cooling water, and is configured for the purpose of contributing to energy-saving operation.

本発明の冷凍機冷却水温度安定化による省エネルギー制御運転方法は、冷凍機を運転するに際し、乾球温度と相対湿度を計測して湿球温度を演算により求めた計測結果、冷却塔の最大能力、冷却塔の部分負荷運転時の能力、及びそれぞれの能力データを用いて求められる冷却塔の冷却可能温度を求め、冷却水を必要とする冷凍機を運転している時に、冷却塔の冷却ファンモータの回転数を連続的に制御して、循環する冷却水の温度が安定するようにして、冷凍機の運転を安定させて制御の変動幅を減らし、省エネルギー運転に寄与することを特徴としている。   The energy saving control operation method by stabilizing the cooling water temperature of the refrigerator of the present invention is the measurement result obtained by calculating the wet bulb temperature by measuring the dry bulb temperature and the relative humidity when operating the refrigerator, and the maximum capacity of the cooling tower. The cooling tower cooling fan is used when the cooling tower temperature is calculated by using the capacity data of the cooling tower at the partial load operation and the cooling temperature of the cooling tower obtained by using the respective capacity data. It is characterized by contributing to energy-saving operation by continuously controlling the number of rotations of the motor so that the temperature of the circulating cooling water is stabilized, stabilizing the operation of the refrigerator and reducing the fluctuation range of the control. .

上記の方法において、演算により求めた湿球温度及び冷却塔の能力データから算出した、部分負荷運転時の冷却可能温度を求め、冷却水温度が安定するように冷却塔ファンモータの回転数を連続的に制御することがある。また、演算結果により求めた冷却水温度を下限として、自動設定した冷却水温度になるように、冷却塔ファンモータの回転数を変化させることがある。また、冷凍機出入口の冷水温度差の変化に併せて冷房負荷割合を算出し、その割合に応じて冷却水流量を変化させ、予め設定した冷却塔の最大能力、冷却塔の部分負荷運転時の能力から、その時に冷却可能な冷却水温度を算出し、冷却塔ファンモータの回転数を連続的に変化させ、算出した冷却水温度に近づけ、冷却水温度を安定させることがある。   In the above method, the coolable temperature during partial load operation calculated from the wet bulb temperature obtained by calculation and the cooling tower capacity data is obtained, and the rotation speed of the cooling tower fan motor is continuously adjusted so that the cooling water temperature is stabilized. May be controlled. Further, the rotation speed of the cooling tower fan motor may be changed so that the cooling water temperature obtained from the calculation result is set as a lower limit and the cooling water temperature is automatically set. In addition, the cooling load ratio is calculated in accordance with the change in the chiller temperature difference between the refrigerator inlet and outlet, the cooling water flow rate is changed according to the ratio, and the preset maximum capacity of the cooling tower and the partial load operation of the cooling tower are The cooling water temperature that can be cooled at that time is calculated from the capacity, and the number of rotations of the cooling tower fan motor is continuously changed to approach the calculated cooling water temperature to stabilize the cooling water temperature.

本発明は上記のように構成されているので、つぎのような効果を奏する。
(1)冷却塔ファンの回転数を、最大回転数から最小回転数までの範囲で連続して制御して、冷却塔ファンモータのON−OFF動作を減らすことにより、冷却水温度が安定して変動幅が小さくなる。このように、冷却水温度が安定することにより、冷却水温度ハンチングが防止され、冷却水で冷却されている冷凍機の運転が安定して、冷水出口温度が安定するために、エネルギー使用量の変動も小さくなり、オーバーインプットやオーバーシュートによる無駄なエネルギー消費が押えられる。
(2)湿球温度から導き出された、設定可能な温度範囲内で、運転状況に合わせて自動的に循環する冷却水の温度を設定することにより、冷却水を必要とする冷凍機(吸収式冷凍機又は電動式冷凍機(回転式、往復動式、スクリュー式))を運転する際の冷却水温度を安定させることが可能となり、冷凍機で冷却された負荷側に供給される冷水の温度を安定させることが可能となる。冷水供給温度が安定するため、冷凍機の駆動に必要となるエネルギー(電気、ガス、蒸気、油)の供給も安定し、エネルギーロスが防止できるので、熱源システム全体の効率アップに寄与する。
Since this invention is comprised as mentioned above, there exist the following effects.
(1) The cooling tower temperature is stabilized by continuously controlling the number of revolutions of the cooling tower fan in the range from the maximum number of revolutions to the minimum number of revolutions to reduce the ON-OFF operation of the cooling tower fan motor. The fluctuation range becomes smaller. Thus, the cooling water temperature is stabilized, so that the cooling water temperature hunting is prevented, the operation of the refrigerator cooled by the cooling water is stabilized, and the cooling water outlet temperature is stabilized. Fluctuations are also reduced, and wasteful energy consumption due to overinput and overshoot is suppressed.
(2) Refrigerators that require cooling water (absorption type) by setting the temperature of the cooling water that circulates automatically according to the operating conditions within the settable temperature range derived from the wet bulb temperature It is possible to stabilize the cooling water temperature when operating a refrigerator or electric refrigerator (rotary, reciprocating, screw type), and the temperature of the cold water supplied to the load side cooled by the refrigerator Can be stabilized. Since the chilled water supply temperature is stabilized, the supply of energy (electricity, gas, steam, oil) necessary for driving the refrigerator is also stabilized, and energy loss can be prevented, contributing to an increase in the efficiency of the entire heat source system.

冷凍機の冷却水温度を安定させるという目的を乾球温度と相対湿度を計測して湿球温度を演算により求めた計測結果、冷却塔の最大能力、冷却塔の部分負荷運転時の能力、及びそれぞれの能力データを用いて求められる冷却塔の冷却可能温度を求め、冷却水を必要とする冷凍機を運転している時に、冷却塔の冷却ファンモータの回転数を連続的に制御することにより実現した。   The measurement result of measuring the wet bulb temperature by measuring the dry bulb temperature and relative humidity for the purpose of stabilizing the cooling water temperature of the refrigerator, the maximum capacity of the cooling tower, the capacity during partial load operation of the cooling tower, and By determining the cooling tower temperature that can be obtained using each capacity data, and operating the cooling fan motor of the cooling tower continuously while operating a refrigerator that requires cooling water. It was realized.

以下、本発明の実施の形態について説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施することができるものである。
図1は、本発明の実施の第1形態による冷凍機冷却水温度安定化による省エネルギー制御運転装置を示し、図2はその制御フローを示し、図3は図2に示す制御フローの装置構成例を示している。
Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications.
FIG. 1 shows an energy-saving control operation device by stabilizing the temperature of a refrigerator cooling water according to a first embodiment of the present invention, FIG. 2 shows its control flow, and FIG. 3 shows an example of the device configuration of the control flow shown in FIG. Is shown.

図1に示すように、冷房用の冷水を供給するための熱源システムは、冷凍機10と、この冷凍機10に冷却水を供給するための冷却水ポンプ12と、前記冷凍機10からの冷却水を冷却するための冷却塔14とを少なくとも備えている。18は冷水ポンプ、22はファンモータの駆動信号接続用端子、24は冷却ファン、26は冷却塔ファンモータである。なお、冷却塔ファンモータ26の制御器は制御盤34内に搭載されている。   As shown in FIG. 1, a heat source system for supplying cooling water for cooling includes a refrigerator 10, a cooling water pump 12 for supplying cooling water to the refrigerator 10, and cooling from the refrigerator 10. And at least a cooling tower 14 for cooling water. 18 is a cold water pump, 22 is a fan motor drive signal connection terminal, 24 is a cooling fan, and 26 is a cooling tower fan motor. The controller for the cooling tower fan motor 26 is mounted in the control panel 34.

このように構成された熱源システムにおいて、乾球温度センサー28及び相対湿度センサー30が接続された湿球温度演算器32と、この演算器32に接続された制御盤34と、演算器32と制御盤との間に設けられた冷却可能温度演算器36と、冷凍機10の冷却水入口ライン38に設けられた冷却水温度センサー40とを備え、制御盤34と冷却塔ファンモータ26が接続されている。冷却可能温度演算器36では、冷却塔能力、冷却塔の部分負荷特性データから冷却可能温度が算出され、冷却水設定温度Tcw℃が決められる。   In the heat source system configured as described above, the wet bulb temperature calculator 32 to which the dry bulb temperature sensor 28 and the relative humidity sensor 30 are connected, the control panel 34 connected to the calculator 32, the calculator 32, and the control. A coolable temperature calculator 36 provided between the control panel 34 and a cooling water temperature sensor 40 provided in the cooling water inlet line 38 of the refrigerator 10 is connected to the control panel 34 and the cooling tower fan motor 26. ing. In the coolable temperature calculator 36, the coolable temperature is calculated from the cooling tower capacity and the partial load characteristic data of the cooling tower, and the cooling water set temperature Tcw ° C. is determined.

このように構成された装置において、図1〜図3に示すように、吸収式冷凍機又は電動式冷凍機のいずれかの冷凍機10を運転するに際し、乾球温度と相対湿度を入力して湿球温度を演算器32により求めた計測結果、冷却塔14の最大能力、冷却塔14の部分負荷運転時の能力、及びそれぞれの能力データを用いて演算器36により求められる冷却塔の冷却可能温度を演算し、冷却水を必要とする冷凍機を運転している時に、冷却塔の冷却ファンモータ26の回転数を連続的に制御して、循環する冷却水の温度が安定するようにして、冷凍機の運転を安定させて制御の変動幅を減らし、省エネルギー運転を行う。また、演算により求めた湿球温度及び冷却塔の能力データから算出した、部分負荷運転時の冷却可能温度を求め、冷却水温度が安定するように冷却塔ファンモータ26の回転数を連続的に制御するようにしてもよい。また、演算結果により求めた冷却水温度を下限として、自動設定した冷却水温度になるように、冷却塔ファンモータ26の回転数を変化させるようにしてもよい。さらに、冷凍機出入口の冷水温度差の変化に併せて冷房負荷割合を算出し、その割合に応じて冷却水流量を変化させ、予め設定した冷却塔の最大能力、冷却塔の部分負荷運転時の能力から、その時に冷却可能な冷却水温度を算出し、冷却塔ファンモータ26の回転数を連続的に変化させ、算出した冷却水温度に近づけ、冷却水温度を安定させるようにしてもよい。   In the apparatus configured as described above, as shown in FIGS. 1 to 3, when operating the refrigerator 10 of either the absorption refrigerator or the electric refrigerator, the dry bulb temperature and the relative humidity are input. The cooling tower can be cooled by the calculator 36 using the measurement result obtained by the calculator 32, the maximum capacity of the cooling tower 14, the capacity of the cooling tower 14 during partial load operation, and the respective capacity data. When calculating the temperature and operating a refrigerator that requires cooling water, the rotation speed of the cooling fan motor 26 of the cooling tower is continuously controlled so that the temperature of the circulating cooling water is stabilized. , Stabilize the operation of the refrigerator, reduce the fluctuation range of control, and perform energy saving operation. In addition, the coolable temperature at the partial load operation calculated from the wet bulb temperature and the cooling tower capacity data obtained by the calculation is obtained, and the rotation speed of the cooling tower fan motor 26 is continuously set so that the cooling water temperature is stabilized. You may make it control. Moreover, you may make it change the rotation speed of the cooling tower fan motor 26 so that it may become the automatically set cooling water temperature by making the cooling water temperature calculated | required by the calculation result into a minimum. Furthermore, the cooling load ratio is calculated in accordance with the change in the chiller temperature difference between the refrigerator inlet and outlet, the cooling water flow rate is changed according to the ratio, and the preset maximum capacity of the cooling tower, the partial load operation of the cooling tower From the capacity, the cooling water temperature that can be cooled at that time may be calculated, the rotation speed of the cooling tower fan motor 26 may be continuously changed, and the cooling water temperature may be stabilized by approaching the calculated cooling water temperature.

つぎに、湿球温度による冷却水温度設定が温度安定に寄与することを示す実験例について記す。冷凍機として、クロスフロー100RTの吸収式冷凍機を用い、つぎの条件で実験を行った。結果を図4に示す。
(1)外気湿球温度:約3℃(約3℃WB)(外気温度センサー(乾球温度センサー28)、相対湿度センサー30からの算出される温度)
(2)熱源負荷40% (冷凍機を循環する冷水の出入口温度差から算出される負荷信号から求める負荷率)
(3)冷却水流量50% (負荷信号と同じ信号を用いて制御する冷却水の循環水量。下限値を50%に設定)
(4)冷却可能温度16℃(冷却塔14の最大能力及び冷却塔の運転特性データから求める)
Next, an experimental example showing that the cooling water temperature setting by the wet bulb temperature contributes to temperature stability will be described. An experiment was conducted under the following conditions using a cross flow 100RT absorption refrigerator as the refrigerator. The results are shown in FIG.
(1) Outside air wet bulb temperature: about 3 ° C. (about 3 ° C. WB) (temperature calculated from outside temperature sensor (dry bulb temperature sensor 28) and relative humidity sensor 30)
(2) Heat source load 40% (Load factor calculated from load signal calculated from temperature difference between inlet and outlet of cold water circulating through refrigerator)
(3) Cooling water flow rate 50% (Cooling water flow rate controlled using the same signal as the load signal. Lower limit set to 50%)
(4) Coolable temperature 16 ° C. (determined from the maximum capacity of the cooling tower 14 and the operation characteristic data of the cooling tower)

上記の条件において、16℃まで冷却水温度を下げることが可能な冷却塔と判断(算出)されれば、冷却塔のファンモータ26の回転数を制御して、循環する冷却水の設定温度を17℃(冷却可能温度より若干上回る温度)にすることにより、ファンの回転数が安定し、結果として循環する冷却水温度が安定する。   Under the above conditions, if it is determined (calculated) that the cooling water temperature can be lowered to 16 ° C., the number of rotations of the cooling motor fan motor 26 is controlled to set the circulating cooling water set temperature. By setting it to 17 ° C. (a temperature slightly higher than the coolable temperature), the rotational speed of the fan is stabilized, and as a result, the circulating cooling water temperature is stabilized.

仮に、同じ条件の時に、循環する冷却水の設定温度を32℃とすると、冷却塔14の冷却能力に余裕(アプローチが広がる)が生じて、冷却水温度が下がりすぎるため、冷却塔のファンモータ26の回転数(速度)を、定格値の約20%程度まで下げ、なおかつ、冷えすぎを防止するためにファンモータ26の発停制御を繰り返すことになる。このとき、循環する冷却水の温度を安定させることが困難になる。
逆に、設定温度を下げてアプローチを狭くすると、冷却塔の能力と冷却水設定温度とのバランスがよくなり、冷却塔のファンモータ26の回転数が定格値の約40%になって、インバータ(INV)制御ファンモータの回転は安定して運転できる範囲に入り、この時、循環する冷却水の温度は安定する。冷却塔ファンモータの回転数(速度)は、定格値の23%以下では回転が不安定になる例を確認しており、不安定なファンの回転が、冷却水温度をハンチングさせることを確認している。
If the set temperature of the circulating cooling water is 32 ° C. under the same conditions, the cooling capacity of the cooling tower 14 has a margin (approach is widened), and the cooling water temperature is too low. The rotational speed (speed) of the motor 26 is reduced to about 20% of the rated value, and the start / stop control of the fan motor 26 is repeated in order to prevent overcooling. At this time, it becomes difficult to stabilize the temperature of the circulating cooling water.
On the contrary, if the set temperature is lowered and the approach is narrowed, the balance between the cooling tower capacity and the cooling water set temperature is improved, and the rotation speed of the fan motor 26 of the cooling tower is about 40% of the rated value. (INV) The rotation of the control fan motor enters a range where it can be stably operated. At this time, the temperature of the circulating cooling water is stabilized. We have confirmed that the rotation speed (speed) of the cooling tower fan motor is unstable at 23% or less of the rated value, and confirmed that the unstable fan rotation hunts the coolant temperature. ing.

冷却塔ファンモータ26の回転数制御のみで所定の温度(設定値17℃)に近づき、設定温度と冷却塔で冷却される冷却水温度との差が近くなって、冷却塔出口の冷却水温度が安定する。冷却塔ファンモータの回転数制御で、冷却水温度を所定の温度(設定値32℃)に近づけようとすると、冷却塔が持つ冷却能力から冷却される冷却水温度と、冷却水の設定温度との差が大きくなって、冷却塔ファンモータの回転数制御だけでは制御てきなくなり、ファンモータの発停制御も同時に行う必要がある。ファンモータの発停制御を行うと、冷却塔で冷却される冷却水の温度が大きく変動することになり、冷凍機を安定させて運転しようとする場合には好ましくない外乱となる。   Only by controlling the number of revolutions of the cooling tower fan motor 26, the temperature approaches a predetermined temperature (set value 17 ° C.), and the difference between the set temperature and the temperature of the cooling water cooled by the cooling tower becomes closer. Is stable. When the cooling water temperature is brought closer to a predetermined temperature (set value 32 ° C.) by controlling the rotation speed of the cooling tower fan motor, the cooling water temperature cooled from the cooling capacity of the cooling tower, the set temperature of the cooling water, Therefore, the control cannot be performed only by controlling the number of rotations of the cooling tower fan motor, and the start / stop control of the fan motor must be performed at the same time. When the start / stop control of the fan motor is performed, the temperature of the cooling water cooled by the cooling tower greatly fluctuates, which is an undesirable disturbance when trying to operate the refrigerator stably.

本発明の実施の第1形態による冷凍機の冷却水温度安定化による省エネルギー制御運転方法を実施する装置の系統的概略構成図である。It is a systematic schematic block diagram of the apparatus which implements the energy-saving control operation method by cooling water temperature stabilization of the refrigerator by 1st Embodiment of this invention. 図1に示す装置の制御フロー図である。It is a control flow figure of the apparatus shown in FIG. 図2に示す制御フローの装置構成例を示す説明図である。It is explanatory drawing which shows the apparatus structural example of the control flow shown in FIG. 実験結果を示し、湿球温度による冷却水温度設定が温度設定に寄与することを示す線図である。It is a diagram which shows an experimental result and shows that the cooling water temperature setting by wet-bulb temperature contributes to temperature setting.

符号の説明Explanation of symbols

10 冷凍機
12 冷却水ポンプ
14 冷却塔
18 冷水ポンプ
22 ファンモータの駆動信号接続用端子
24 冷却ファン
26 冷却塔ファンモータ
28 乾球温度センサー
30 相対湿度センサー
32 湿球温度演算器
34 制御盤
36 冷却可能温度演算器
38 冷却水入口ライン
40 冷却水温度センサー
DESCRIPTION OF SYMBOLS 10 Refrigerator 12 Cooling water pump 14 Cooling tower 18 Cooling water pump 22 Fan motor drive signal connection terminal 24 Cooling fan 26 Cooling tower fan motor 28 Dry bulb temperature sensor 30 Relative humidity sensor 32 Wet bulb temperature calculator 34 Control panel 36 Cooling Possible temperature calculator 38 Cooling water inlet line 40 Cooling water temperature sensor

Claims (4)

冷凍機を運転するに際し、乾球温度と相対湿度を計測して湿球温度を演算により求めた計測結果、冷却塔の最大能力、冷却塔の部分負荷運転時の能力、及びそれぞれの能力データを用いて求められる冷却塔の冷却可能温度を求め、冷却水を必要とする冷凍機を運転している時に、冷却塔の冷却ファンモータの回転数を連続的に制御して、循環する冷却水の温度が安定するようにして、冷凍機の運転を安定させて制御の変動幅を減らし、省エネルギー運転に寄与することを特徴とする冷凍機冷却水温度安定化による省エネルギー制御運転方法。   When operating the refrigerator, measure the dry bulb temperature and relative humidity and calculate the wet bulb temperature, calculate the maximum capacity of the cooling tower, the capacity of the cooling tower during partial load operation, and the respective capacity data. The cooling temperature of the cooling tower obtained by using the cooling tower is obtained, and when the refrigerator requiring the cooling water is operated, the cooling fan motor of the cooling tower is continuously controlled to circulate the cooling water. An energy-saving control operation method by stabilizing the cooling water temperature of a refrigerator, characterized in that the temperature is stabilized, the operation of the refrigerator is stabilized, the fluctuation range of the control is reduced, and the energy-saving operation is contributed. 演算により求めた湿球温度及び冷却塔の能力データから算出した、部分負荷運転時の冷却可能温度を求め、冷却水温度が安定するように冷却塔ファンモータの回転数を連続的に制御する請求項1記載の冷凍機冷却水温度安定化による省エネルギー制御運転方法。   Claims to calculate the coolable temperature during partial load operation calculated from the wet bulb temperature obtained by calculation and the cooling tower capacity data, and to continuously control the rotation speed of the cooling tower fan motor so that the cooling water temperature becomes stable Item 2. An energy saving control operation method by stabilizing the cooling water temperature of the refrigerator according to Item 1. 演算結果により求めた冷却水温度を下限として、自動設定した冷却水温度になるように、冷却塔ファンモータの回転数を変化させる請求項1記載の冷凍機冷却水温度安定化による省エネルギー制御運転方法。   The energy-saving control operation method by stabilizing the cooling water temperature of the refrigerator according to claim 1, wherein the number of rotations of the cooling tower fan motor is changed so that the cooling water temperature obtained from the calculation result is set as a lower limit and the cooling water temperature is automatically set. . 冷凍機出入口の冷水温度差の変化に併せて冷房負荷割合を算出し、その割合に応じて冷却水流量を変化させ、予め設定した冷却塔の最大能力、冷却塔の部分負荷運転時の能力から、その時に冷却可能な冷却水温度を算出し、冷却塔ファンモータの回転数を連続的に変化させ、算出した冷却水温度に近づけ、冷却水温度を安定させる請求項1記載の冷凍機冷却水温度安定化による省エネルギー制御運転方法。   Calculate the cooling load ratio according to the change in the chiller temperature difference at the refrigerator inlet and outlet, change the cooling water flow rate according to the ratio, and use the preset maximum capacity of the cooling tower and the capacity during partial load operation of the cooling tower. 2. The refrigerator cooling water according to claim 1, wherein the cooling water temperature that can be cooled at that time is calculated, the rotation speed of the cooling tower fan motor is continuously changed, and the cooling water temperature is stabilized by approaching the calculated cooling water temperature. Energy saving control operation method by temperature stabilization.
JP2008102212A 2008-04-10 2008-04-10 Energy-saving control operation method by stabilizing the cooling water temperature of the refrigerator Active JP5500615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008102212A JP5500615B2 (en) 2008-04-10 2008-04-10 Energy-saving control operation method by stabilizing the cooling water temperature of the refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008102212A JP5500615B2 (en) 2008-04-10 2008-04-10 Energy-saving control operation method by stabilizing the cooling water temperature of the refrigerator

Publications (2)

Publication Number Publication Date
JP2009250578A true JP2009250578A (en) 2009-10-29
JP5500615B2 JP5500615B2 (en) 2014-05-21

Family

ID=41311475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008102212A Active JP5500615B2 (en) 2008-04-10 2008-04-10 Energy-saving control operation method by stabilizing the cooling water temperature of the refrigerator

Country Status (1)

Country Link
JP (1) JP5500615B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015502513A (en) * 2011-10-21 2015-01-22 プライム デイタム、インコーポレーテッド Direct drive fan system with variable processing control
CN105157177A (en) * 2015-09-18 2015-12-16 广州市设计院 Method for controlling cooling tower outlet water temperature according to outdoor air state
CN105953602A (en) * 2016-04-25 2016-09-21 珠海格力电器股份有限公司 Energy-saving control method and device used for cooling tower and air-conditioning system
CN106440853A (en) * 2016-10-31 2017-02-22 新菱空调(佛冈)有限公司 Cooling tower outlet air anti-fogging energy consumption optimization method based on firefly algorithm
JP2017072269A (en) * 2015-10-05 2017-04-13 日本エア・リキード株式会社 Cooling tower control system and cooling tower control method
JP2019138524A (en) * 2018-02-08 2019-08-22 東京瓦斯株式会社 Cooler
KR20190110734A (en) * 2018-03-21 2019-10-01 한국전력공사 Closed expansion tank and auto pressure control type water cooling system for transformer
JP2020115054A (en) * 2019-01-17 2020-07-30 東京ガスエンジニアリングソリューションズ株式会社 Control device of cooling tower and control method of cooling tower
CN111838737A (en) * 2020-06-23 2020-10-30 河南中烟工业有限责任公司 Control method of cooling water circulation system of flexible energy-saving vacuum damping machine
CN113587714A (en) * 2021-07-02 2021-11-02 大连斯频德环境设备有限公司 Energy-saving optimization method of cooling tower
CN117490481A (en) * 2023-11-02 2024-02-02 汕头市源鑫电子有限公司 Cooling tower control method, device, equipment and storage medium of cooling system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2736348B2 (en) * 1984-01-28 1998-04-02 高砂熱学工業 株式会社 Power saving operation control method for cooling tower
JP2006183959A (en) * 2004-12-28 2006-07-13 Kawasaki Thermal Engineering Co Ltd Method for controlling temperature of cooling water in absorption type water cooler/heater and absorption type water cooler/heater
JP2007127321A (en) * 2005-11-02 2007-05-24 Toshiba Mitsubishi-Electric Industrial System Corp Cold water load factor controller for refrigerator
JP2007240131A (en) * 2006-03-03 2007-09-20 Es Systems Kk Optimization control of heat source unit and accessory

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2736348B2 (en) * 1984-01-28 1998-04-02 高砂熱学工業 株式会社 Power saving operation control method for cooling tower
JP2006183959A (en) * 2004-12-28 2006-07-13 Kawasaki Thermal Engineering Co Ltd Method for controlling temperature of cooling water in absorption type water cooler/heater and absorption type water cooler/heater
JP2007127321A (en) * 2005-11-02 2007-05-24 Toshiba Mitsubishi-Electric Industrial System Corp Cold water load factor controller for refrigerator
JP2007240131A (en) * 2006-03-03 2007-09-20 Es Systems Kk Optimization control of heat source unit and accessory

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018084407A (en) * 2011-10-21 2018-05-31 プライム デイタム、インコーポレーテッド Variable process control system for cooling tower system
JP2015502513A (en) * 2011-10-21 2015-01-22 プライム デイタム、インコーポレーテッド Direct drive fan system with variable processing control
CN105157177B (en) * 2015-09-18 2021-12-31 广州市设计院 Method for controlling outlet water temperature of cooling tower according to outdoor air state
CN105157177A (en) * 2015-09-18 2015-12-16 广州市设计院 Method for controlling cooling tower outlet water temperature according to outdoor air state
JP2017072269A (en) * 2015-10-05 2017-04-13 日本エア・リキード株式会社 Cooling tower control system and cooling tower control method
CN105953602A (en) * 2016-04-25 2016-09-21 珠海格力电器股份有限公司 Energy-saving control method and device used for cooling tower and air-conditioning system
CN106440853A (en) * 2016-10-31 2017-02-22 新菱空调(佛冈)有限公司 Cooling tower outlet air anti-fogging energy consumption optimization method based on firefly algorithm
JP7000189B2 (en) 2018-02-08 2022-01-19 東京瓦斯株式会社 Cooling system
JP2019138524A (en) * 2018-02-08 2019-08-22 東京瓦斯株式会社 Cooler
KR20230069070A (en) * 2018-03-21 2023-05-18 한국전력공사 Closed expansion tank and auto pressure control type water cooling system for transformer
KR20230067594A (en) * 2018-03-21 2023-05-16 한국전력공사 Closed expansion tank and auto pressure control type water cooling system for transformer
KR20190110734A (en) * 2018-03-21 2019-10-01 한국전력공사 Closed expansion tank and auto pressure control type water cooling system for transformer
KR102537971B1 (en) 2018-03-21 2023-05-31 한국전력공사 Closed expansion tank and auto pressure control type water cooling system for transformer
KR20230070184A (en) * 2018-03-21 2023-05-22 한국전력공사 Closed expansion tank and auto pressure control type water cooling system for transformer
KR102531478B1 (en) 2018-03-21 2023-05-12 한국전력공사 Closed expansion tank and auto pressure control type water cooling system for transformer
KR102537970B1 (en) 2018-03-21 2023-05-31 한국전력공사 Closed expansion tank and auto pressure control type water cooling system for transformer
KR102535447B1 (en) 2018-03-21 2023-05-26 한국전력공사 Closed expansion tank and auto pressure control type water cooling system for transformer
KR102534986B1 (en) 2018-03-21 2023-05-26 한국전력공사 Closed expansion tank and auto pressure control type water cooling system for transformer
KR20230070419A (en) * 2018-03-21 2023-05-23 한국전력공사 Closed expansion tank and auto pressure control type water cooling system for transformer
JP2020115054A (en) * 2019-01-17 2020-07-30 東京ガスエンジニアリングソリューションズ株式会社 Control device of cooling tower and control method of cooling tower
JP7285080B2 (en) 2019-01-17 2023-06-01 東京ガスエンジニアリングソリューションズ株式会社 Cooling tower control device and cooling tower control method
CN111838737B (en) * 2020-06-23 2022-04-19 河南中烟工业有限责任公司 Control method of cooling water circulation system of flexible energy-saving vacuum damping machine
CN111838737A (en) * 2020-06-23 2020-10-30 河南中烟工业有限责任公司 Control method of cooling water circulation system of flexible energy-saving vacuum damping machine
CN113587714A (en) * 2021-07-02 2021-11-02 大连斯频德环境设备有限公司 Energy-saving optimization method of cooling tower
CN117490481A (en) * 2023-11-02 2024-02-02 汕头市源鑫电子有限公司 Cooling tower control method, device, equipment and storage medium of cooling system

Also Published As

Publication number Publication date
JP5500615B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5500615B2 (en) Energy-saving control operation method by stabilizing the cooling water temperature of the refrigerator
US11035357B2 (en) System and method for controlling a system that includes variable speed compressor
US9957970B2 (en) Device and method of controlling cooling towers, and heat source system
JP6334230B2 (en) Refrigerator system
WO2013125650A1 (en) Integrated type air conditioning system, control device therefor
JP5234435B2 (en) Cold cooling source device, cooling system and cooling method for free cooling
JP2007240131A (en) Optimization control of heat source unit and accessory
US10098264B2 (en) Air-conditioning apparatus
JP2007315695A (en) Cold and hot water control method for cold and heat source machine, and air conditioning system using it
JP6413713B2 (en) Snow and ice air conditioning system
JP2008151481A (en) Energy-saving control operation method and device for refrigerating machine
JP2016125771A (en) Power force optimization system
WO2014157347A1 (en) Cold water circulation system
CN113038807B (en) Control method of liquid-cooled electric energy system, liquid-cooled electric energy system and storage medium
JP5088783B2 (en) Energy-saving control operation method and apparatus for vapor absorption refrigerator
JP4287113B2 (en) Refrigerator control method and refrigeration apparatus
JP2011226680A (en) Cooling water producing facility
KR100826926B1 (en) Water Cooling Type Air Conditioner and Control Method thereof
JP6982146B2 (en) Air conditioning system controls, control methods, control programs and air conditioning systems
JP2011163665A (en) Method of operating air conditioning system
JP2009008356A (en) System for controlling number of machines, and method of controlling number of machines
JP2010060166A (en) Cooling tower and heat source machine system
JP6586182B2 (en) CONTROL DEVICE USED FOR HEAT SOURCE SYSTEM AND HEAT SOURCE SYSTEM HAVING THE CONTROL DEVICE
JP4897439B2 (en) Energy saving control operation method and apparatus for absorption chiller / heater
JP2009198123A (en) Heat source system and method of operating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121015

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140306

R150 Certificate of patent or registration of utility model

Ref document number: 5500615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250