JP2019138524A - Cooler - Google Patents

Cooler Download PDF

Info

Publication number
JP2019138524A
JP2019138524A JP2018021243A JP2018021243A JP2019138524A JP 2019138524 A JP2019138524 A JP 2019138524A JP 2018021243 A JP2018021243 A JP 2018021243A JP 2018021243 A JP2018021243 A JP 2018021243A JP 2019138524 A JP2019138524 A JP 2019138524A
Authority
JP
Japan
Prior art keywords
heat
cooling
heat source
temperature
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018021243A
Other languages
Japanese (ja)
Other versions
JP7000189B2 (en
Inventor
吉田 拓也
Takuya Yoshida
拓也 吉田
雅裕 古川
Masahiro Furukawa
雅裕 古川
吉徳 二瓶
Yoshinori Nihei
吉徳 二瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Tokyo Gas Engineering Solutions Corp
Original Assignee
Tokyo Gas Co Ltd
Tokyo Gas Engineering Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Tokyo Gas Engineering Solutions Corp filed Critical Tokyo Gas Co Ltd
Priority to JP2018021243A priority Critical patent/JP7000189B2/en
Publication of JP2019138524A publication Critical patent/JP2019138524A/en
Application granted granted Critical
Publication of JP7000189B2 publication Critical patent/JP7000189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

To save energy.SOLUTION: A cooler 1 includes: a cooling tower 14 that cools cooling water W1 to be supplied to a heat source machine 12 by using a cooling fan 34; and a control section 104 for controlling rotating speed of the cooling fan in accordance with an operating state of the heat source machine and thus controlling a temperature of the cooling water. The heat source machine cools a heating medium (cooling water W2) to be supplied to a heat load device 26 by using waste heat supplied at least from a waste heat supply source. The control section sets the temperature of the cooling water to a first target temperature on the basis of a wet-bulb temperature when the operating state of the heat source machine is a heat source machine efficiency priority state, and sets the temperature of the cooling water to a second target temperature higher than the first target temperature when the operating state of the heat source machine is an energy saving priority state.SELECTED DRAWING: Figure 1

Description

本発明は、冷却装置に関する。   The present invention relates to a cooling device.

特許文献1には、熱源機に供給する冷却水を冷却ファンにより冷却する冷却塔と、湿球温度に基づいて冷却ファンの回転数を連続的に制御することで、冷却水の温度を制御する制御部とを有する冷却装置について開示がある。   In Patent Document 1, the temperature of the cooling water is controlled by continuously controlling the cooling tower that cools the cooling water supplied to the heat source device by the cooling fan and the rotational speed of the cooling fan based on the wet bulb temperature. There is a disclosure about a cooling device having a control unit.

特開2009−250578号公報JP 2009-250578 A

しかし、熱源機の運転状態によっては、冷却水温度を、湿球温度に基づく目標温度(以下、第1目標温度という)に設定しても、第1目標温度より高い目標温度(以下、第2目標温度という)に設定しても、熱源機の効率がほとんど変わらない場合がある。その場合、制御部が冷却水の温度を第1目標温度に制御してしまうと、第2目標温度に制御する場合よりも、冷却ファンの消費電力が増大する。したがって、熱源機の運転状態によっては、冷却水温度を第1目標温度に設定すると、冷却装置を省エネルギー化することができない場合があった。   However, depending on the operating state of the heat source machine, even if the cooling water temperature is set to a target temperature based on the wet bulb temperature (hereinafter referred to as the first target temperature), a target temperature higher than the first target temperature (hereinafter referred to as the second target temperature). Even if the target temperature is set), the efficiency of the heat source device may not change. In that case, if the control unit controls the temperature of the cooling water to the first target temperature, the power consumption of the cooling fan increases as compared to the case of controlling to the second target temperature. Therefore, depending on the operating state of the heat source machine, if the cooling water temperature is set to the first target temperature, the cooling device may not be able to save energy.

そこで、本発明は、省エネルギー化を実現可能な冷却装置を提供することを目的としている。   Then, this invention aims at providing the cooling device which can implement | achieve energy saving.

上記課題を解決するために、本発明の冷却装置は、熱源機に供給する冷却水を冷却ファンにより冷却する冷却塔と、前記熱源機の運転状態に応じて、前記冷却ファンの回転速度を制御し、前記冷却水の温度を制御する制御部と、を備え、前記熱源機は、少なくとも廃熱供給源から供給される廃熱を用いて、熱負荷装置に供給する熱媒体を冷却し、前記制御部は、前記熱源機の運転状態が、前記廃熱供給源から供給される廃熱量が所定の廃熱回収量より大きく、かつ、前記熱負荷装置の負荷が前記所定の廃熱回収量に冷熱変換効率を乗算した値より大きくなる熱源機効率優先状態である場合、前記冷却水の温度を、湿球温度に基づく第1目標温度に設定し、前記熱源機の運転状態が、前記廃熱供給源から供給される廃熱量が前記所定の廃熱回収量以下となる、または、前記熱負荷装置の負荷が前記所定の廃熱回収量に冷熱変換効率を乗算した値以下となる省エネ優先状態である場合、前記冷却水の温度を、前記第1目標温度よりも高い第2目標温度に設定する。   In order to solve the above problems, a cooling device of the present invention controls a cooling tower that cools cooling water supplied to a heat source unit by a cooling fan, and controls a rotation speed of the cooling fan according to an operating state of the heat source unit. And a controller that controls the temperature of the cooling water, and the heat source machine cools the heat medium supplied to the heat load device using at least waste heat supplied from the waste heat supply source, The control unit is configured such that the operating state of the heat source unit is such that the amount of waste heat supplied from the waste heat supply source is greater than a predetermined amount of waste heat recovery, and the load of the heat load device is equal to the predetermined amount of waste heat recovery. When the heat source unit efficiency priority state is greater than the value obtained by multiplying the cooling heat conversion efficiency, the temperature of the cooling water is set to a first target temperature based on the wet bulb temperature, and the operating state of the heat source unit is the waste heat. The amount of waste heat supplied from the supply source is the predetermined waste heat recovery Or the temperature of the cooling water is set to the first target temperature when the load of the heat load device is in an energy saving priority state that is equal to or less than a value obtained by multiplying the predetermined waste heat recovery amount by the cooling conversion efficiency. Higher than the second target temperature.

前記熱源機は、前記廃熱供給源から供給される廃熱、および、燃料を燃焼して生成される燃焼熱を用いて、前記熱負荷装置に供給する前記熱媒体を冷却し、前記制御部は、前記熱源機が前記燃焼熱を用いて前記熱媒体を冷却している状態である場合、および、前記熱源機が前記燃焼熱を用いて前記熱媒体を冷却しておらず、かつ、前記熱源機の運転状態が前記熱源機効率優先状態である場合、前記冷却水の温度を前記第1目標温度に設定し、前記熱源機が前記燃焼熱を用いて前記熱媒体を冷却しておらず、かつ、前記熱源機の運転状態が前記省エネ優先状態である場合、前記冷却水の温度を前記第2目標温度に設定してもよい。   The heat source machine cools the heat medium supplied to the heat load device using waste heat supplied from the waste heat supply source and combustion heat generated by burning fuel, and the control unit Is in a state where the heat source machine is cooling the heat medium using the combustion heat, and the heat source machine is not cooling the heat medium using the combustion heat, and When the operating state of the heat source unit is the heat source unit efficiency priority state, the temperature of the cooling water is set to the first target temperature, and the heat source unit has not cooled the heat medium using the combustion heat. And when the driving | running state of the said heat-source equipment is the said energy saving priority state, you may set the temperature of the said cooling water to a said 2nd target temperature.

上記課題を解決するために、本発明の冷却装置は、熱源機に供給する冷却水を冷却ファンにより冷却する冷却塔と、前記熱源機の運転状態に応じて、前記冷却ファンの回転速度を制御し、前記冷却水の温度を制御する制御部と、を備え、前記熱源機は、廃熱供給源から供給される廃熱、および、燃料を燃焼して生成される燃焼熱を用いて、熱負荷装置に供給する熱媒体を冷却し、前記制御部は、前記熱源機が前記燃焼熱を用いて前記熱媒体を冷却している状態である場合、前記冷却水の温度を、湿球温度に基づく第1目標温度に設定し、前記熱源機が前記燃焼熱を用いて前記熱媒体を冷却している状態でない場合、前記冷却水の温度を、前記第1目標温度よりも高い第2目標温度に設定してもよい。   In order to solve the above problems, a cooling device of the present invention controls a cooling tower that cools cooling water supplied to a heat source unit by a cooling fan, and controls a rotation speed of the cooling fan according to an operating state of the heat source unit. And a control unit that controls the temperature of the cooling water, and the heat source unit uses the waste heat supplied from the waste heat supply source and the combustion heat generated by burning the fuel to generate heat. The heat medium supplied to the load device is cooled, and the control unit changes the temperature of the cooling water to a wet bulb temperature when the heat source unit is cooling the heat medium using the combustion heat. If the heat source device is not in a state of cooling the heat medium using the combustion heat, the temperature of the cooling water is set to a second target temperature higher than the first target temperature. May be set.

本発明によれば、冷却装置の省エネルギー化を実現することができる。   According to the present invention, energy saving of the cooling device can be realized.

冷却装置を説明する図である。It is a figure explaining a cooling device. 本実施形態の熱源機(廃熱投入型吸収冷温水機)の基本構成を示す図である。It is a figure which shows the basic composition of the heat source machine (waste heat input type absorption cold / hot water machine) of this embodiment. 熱源機に与えられる入熱(廃熱や燃焼熱)と、熱源機の冷却能力との関係を表す図である。It is a figure showing the relationship between the heat input (waste heat and combustion heat) given to a heat source machine, and the cooling capacity of a heat source machine. 制御部による冷却水の温度制御処理のフローチャートを示す図である。It is a figure which shows the flowchart of the temperature control process of the cooling water by a control part.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

図1は、冷却装置1を説明する図である。図1に示すように、冷却装置1は、熱源機12、冷却塔14、冷却水循環路16、冷却水ポンプ18、冷水循環路20、冷水ポンプ22、負荷バルブ24、熱負荷装置26を含んで構成されている。   FIG. 1 is a diagram illustrating the cooling device 1. As shown in FIG. 1, the cooling device 1 includes a heat source device 12, a cooling tower 14, a cooling water circulation path 16, a cooling water pump 18, a cold water circulation path 20, a cold water pump 22, a load valve 24, and a heat load device 26. It is configured.

冷却装置1では、熱源機12と冷却塔14とが冷却水循環路16を介して接続されている。冷却水循環路16内には、冷却水(冷媒)W1が導入され、冷却水W1は、冷却水ポンプ18により圧送され冷却水循環路16内を循環する。冷却水循環路16は、熱源機12から冷却塔14に向かって冷却水W1が排出される冷却水排出路16aと、冷却塔14から熱源機12に向かって冷却水W1が供給される冷却水供給路16bとを含んで構成される。   In the cooling device 1, the heat source device 12 and the cooling tower 14 are connected via a cooling water circulation path 16. Cooling water (refrigerant) W <b> 1 is introduced into the cooling water circulation path 16, and the cooling water W <b> 1 is pumped by the cooling water pump 18 and circulates in the cooling water circulation path 16. The cooling water circulation path 16 includes a cooling water discharge path 16a through which the cooling water W1 is discharged from the heat source unit 12 toward the cooling tower 14, and a cooling water supply through which the cooling water W1 is supplied from the cooling tower 14 toward the heat source unit 12. And a path 16b.

また、冷却装置1では、熱源機12と熱負荷装置26とが冷水循環路20を介して接続されている。冷水循環路20内には、冷水(熱媒体)W2が導入され、冷水W2は、冷水ポンプ22により圧送され冷水循環路20内を循環する。冷水循環路20は、熱源機12から熱負荷装置26に向かって冷水W2が供給される冷水供給路20aと、熱負荷装置26から熱源機12に向かって冷水W2が排出される冷水排出路20bとを含んで構成される。   In the cooling device 1, the heat source device 12 and the heat load device 26 are connected via the cold water circulation path 20. Cold water (heat medium) W <b> 2 is introduced into the cold water circulation path 20, and the cold water W <b> 2 is pumped by the cold water pump 22 and circulates in the cold water circulation path 20. The cold water circulation path 20 includes a cold water supply path 20a through which the cold water W2 is supplied from the heat source apparatus 12 toward the heat load apparatus 26, and a cold water discharge path 20b through which the cold water W2 is discharged from the heat load apparatus 26 toward the heat source apparatus 12. It is comprised including.

熱源機12は、本実施形態では、廃熱投入型吸収冷温水機である。図2は、本実施形態の熱源機(廃熱投入型吸収冷温水機)12の基本構成を示す図である。熱源機12は、再生器12aと、凝縮器12bと、蒸発器12cと、吸収器12dを備えて構成される。   In this embodiment, the heat source device 12 is a waste heat input type absorption chiller / heater. FIG. 2 is a diagram showing a basic configuration of the heat source device (waste heat input type absorption chiller / heater) 12 of the present embodiment. The heat source unit 12 includes a regenerator 12a, a condenser 12b, an evaporator 12c, and an absorber 12d.

再生器12aでは、水(水蒸気)W3を吸収して希釈された吸収液(例えば、臭化リチウム溶液)Lを加熱することで、水W3を蒸発させて、吸収液Lを高濃度にして再生させる。再生器12aは、コージェネレーションシステムなどの廃熱供給源から供給される廃熱(例えば、廃温水)、および、燃料(例えば、ガス)を燃焼して生成される燃焼熱のうち少なくとも一方の熱を用いて、吸収液Lを加熱する。   In the regenerator 12a, the absorption liquid (for example, lithium bromide solution) L that has been diluted by absorbing the water (water vapor) W3 is heated to evaporate the water W3 to regenerate the absorption liquid L to a high concentration. Let The regenerator 12a has at least one heat of waste heat (for example, waste hot water) supplied from a waste heat supply source such as a cogeneration system and combustion heat generated by burning fuel (for example, gas). Is used to heat the absorbent L.

本実施形態では、廃熱および燃焼熱の両方を用いて吸収液Lを加熱することができる。例えば、再生器12aは、燃料を燃焼させずに、廃熱のみを用いて吸収液Lを加熱する(以下、廃熱単独運転ともいう)。そして、廃熱のみでは、熱負荷装置26の負荷(例えば、空調負荷)に対して冷却能力が不足する場合に、燃料を燃焼させ、廃熱および燃焼熱の両方を用いて吸収液Lを加熱する。再生された吸収液Lは、吸収器12dに送られ、吸収液Lから分離された水蒸気W3は、凝縮器12bに送られる。   In the present embodiment, the absorbing liquid L can be heated using both waste heat and combustion heat. For example, the regenerator 12a heats the absorbent L using only waste heat without burning the fuel (hereinafter also referred to as waste heat single operation). Then, when only the waste heat is used, if the cooling capacity is insufficient with respect to the load of the heat load device 26 (for example, the air conditioning load), the fuel is burned and the absorption liquid L is heated using both the waste heat and the combustion heat. To do. The regenerated absorption liquid L is sent to the absorber 12d, and the water vapor W3 separated from the absorption liquid L is sent to the condenser 12b.

凝縮器12bでは、再生器12aにおいて発生した水蒸気W3を、冷却水循環路16内を循環する冷却水W1との熱交換で凝縮液化させる。   In the condenser 12b, the water vapor W3 generated in the regenerator 12a is condensed and liquefied by heat exchange with the cooling water W1 circulating in the cooling water circulation path 16.

蒸発器12cでは、凝縮器12bで液化した水W3を低圧下で蒸発させる。蒸発器12cでは、水W3が蒸発した際の気化熱を利用して冷水循環路20内を循環する冷水W2の熱を奪い、冷水W2を冷却する。   In the evaporator 12c, the water W3 liquefied by the condenser 12b is evaporated under a low pressure. In the evaporator 12c, the heat of the cold water W2 circulating in the cold water circulation path 20 is removed using the heat of vaporization when the water W3 is evaporated, and the cold water W2 is cooled.

吸収器12dでは、蒸発器12cで蒸発した水(水蒸気)W3を再生器12aで再生された吸収液Lに吸収させる。また、吸収器12dでは、吸収液Lが水蒸気W3を吸収した際の吸収熱を、冷却水循環路16内を循環する冷却水W1との熱交換で放熱する。水蒸気W3を吸収して希釈された吸収液Lは、再生器12aに送られる。   In the absorber 12d, the water (water vapor) W3 evaporated by the evaporator 12c is absorbed by the absorbing liquid L regenerated by the regenerator 12a. Further, in the absorber 12d, the absorption heat when the absorbing liquid L absorbs the water vapor W3 is radiated by heat exchange with the cooling water W1 circulating in the cooling water circulation path 16. The absorbent L diluted by absorbing the water vapor W3 is sent to the regenerator 12a.

図1に戻り、冷却塔14は、筐体30、ノズル群32、冷却ファン34、貯水槽36、モータ38を含んで構成され、ノズル群32、冷却ファン34、貯水槽36、モータ38が筐体30内に収容されている。   Returning to FIG. 1, the cooling tower 14 includes a housing 30, a nozzle group 32, a cooling fan 34, a water storage tank 36, and a motor 38. The nozzle group 32, the cooling fan 34, the water storage tank 36, and the motor 38 are included in the housing. Housed in the body 30.

ノズル群32は、冷却水排出路16aに接続され、筐体30内に冷却水W1を散布する。   The nozzle group 32 is connected to the cooling water discharge path 16 a and sprays the cooling water W <b> 1 into the housing 30.

冷却ファン34は、筐体30内におけるノズル群32よりも上方に設けられ、モータ38によって回転駆動される。また、モータ38には、インバータ102が接続されており、後述する制御部104により回転数(回転速度)が制御される。冷却ファン34は、回転駆動することにより、ノズル群32から散布された冷却水W1を外空気(外気)に晒して、冷却水W1を冷却する。そして、ノズル群32から散布され、冷却ファン34によって外空気に晒されて冷却された冷却水W1は、筐体30の下部に設けられた貯水槽36内に貯留される。   The cooling fan 34 is provided above the nozzle group 32 in the housing 30 and is driven to rotate by a motor 38. In addition, an inverter 102 is connected to the motor 38, and the rotation speed (rotation speed) is controlled by a control unit 104 described later. The cooling fan 34 rotates to expose the cooling water W1 sprayed from the nozzle group 32 to the outside air (outside air), thereby cooling the cooling water W1. Then, the cooling water W <b> 1 sprayed from the nozzle group 32 and cooled by being exposed to the outside air by the cooling fan 34 is stored in a water storage tank 36 provided at the lower part of the housing 30.

貯水槽36には、冷却水供給路16bが接続される。冷却水供給路16bには、冷却水ポンプ18が設けられ、冷却水ポンプ18によって、貯水槽36内に貯留された冷却水W1が、熱源機12内に供給される。また、冷却水供給路16bには、冷却塔14から熱源機12に供給される冷却水W1の温度を計測する供給側冷却水温度計112が設けられている。   A cooling water supply path 16 b is connected to the water storage tank 36. A cooling water pump 18 is provided in the cooling water supply path 16 b, and the cooling water W 1 stored in the water storage tank 36 is supplied into the heat source unit 12 by the cooling water pump 18. The cooling water supply passage 16b is provided with a supply-side cooling water thermometer 112 that measures the temperature of the cooling water W1 supplied from the cooling tower 14 to the heat source unit 12.

熱負荷装置26は、発熱機器や物品を冷却するための熱交換器、または、空気を冷却するための冷房機器等であり、1つまたは複数設けられる。図1では、熱負荷装置26は、冷水循環路20に3つ設けられる。熱負荷装置26は、負荷バルブ24を介して冷水供給路20aに接続されているとともに、冷水排出路20bに接続されている。冷水供給路20aには、冷水ポンプ22が設けられ、冷水ポンプ22によって、熱源機12から熱負荷装置26に向けて冷水W2が供給される。また、冷水供給路20aには、熱源機12から熱負荷装置26に供給される冷水W2の温度を計測する供給側冷水温度計108が設けられている。   The heat load device 26 is a heat exchanger for cooling a heat generating device or an article, a cooling device for cooling air, or the like, and one or a plurality of heat load devices 26 are provided. In FIG. 1, three heat load devices 26 are provided in the cold water circulation path 20. The thermal load device 26 is connected to the chilled water supply path 20a via the load valve 24, and is connected to the chilled water discharge path 20b. The cold water supply path 20 a is provided with a cold water pump 22, and the cold water W 2 is supplied from the heat source device 12 toward the heat load device 26 by the cold water pump 22. The cold water supply path 20a is provided with a supply-side cold water thermometer 108 that measures the temperature of the cold water W2 supplied from the heat source device 12 to the heat load device 26.

熱負荷装置26は、冷水供給路20aから供給された冷水W2と、発熱機器や物品、または、空気等の冷却対象物との間で熱交換を行い、冷却対象物を冷却する。冷却対象物を冷却することで温められた冷水W2は、冷水排出路20bを介して熱源機12に排出される。なお、負荷バルブ24は、熱負荷装置26ごとに設けられ、熱負荷装置26に対して冷水W2の供給および非供給を切り替える。冷水排出路20bには、熱負荷装置26から熱源機12に排出される冷水W2の温度を計測する排出側冷水温度計110、および、冷水循環路20内を循環する冷水W2の流量を計測する冷水流量計114が設けられている。   The heat load device 26 performs heat exchange between the cold water W2 supplied from the cold water supply path 20a and a cooling object such as a heating device, an article, or air, and cools the cooling object. The cold water W2 warmed by cooling the object to be cooled is discharged to the heat source unit 12 through the cold water discharge path 20b. The load valve 24 is provided for each heat load device 26, and switches between supply and non-supply of the cold water W2 to the heat load device 26. In the chilled water discharge path 20b, the discharge-side chilled water thermometer 110 that measures the temperature of the chilled water W2 discharged from the heat load device 26 to the heat source unit 12 and the flow rate of the chilled water W2 that circulates in the chilled water circulation path 20 are measured. A cold water flow meter 114 is provided.

本実施形態では、供給側冷水温度計108は、熱源機12外部の冷水供給路20aに設けられているが、これに限定されず、熱源機12内部の冷水供給路20aに設けられてもよい。また、排出側冷水温度計110および冷水流量計114は、熱源機12外部の冷水排出路20bに設けられているが、これに限定されず、熱源機12内部の冷水排出路20bに設けられてもよい。また、供給側冷却水温度計112は、熱源機12外部の冷却水供給路16bに設けられているが、これに限定されず、熱源機12内部の冷却水供給路16bに設けられてもよい。   In the present embodiment, the supply-side cold water thermometer 108 is provided in the cold water supply path 20a outside the heat source apparatus 12, but is not limited thereto, and may be provided in the cold water supply path 20a inside the heat source apparatus 12. . Moreover, although the discharge side cold water thermometer 110 and the cold water flow meter 114 are provided in the cold water discharge path 20b outside the heat source apparatus 12, they are not limited to this, and are provided in the cold water discharge path 20b inside the heat source apparatus 12. Also good. Further, the supply-side cooling water thermometer 112 is provided in the cooling water supply path 16b outside the heat source apparatus 12, but is not limited thereto, and may be provided in the cooling water supply path 16b inside the heat source apparatus 12. .

制御部104は、中央処理装置(CPU)、プログラム等が格納されたROM、ワークエリアとしてのRAM等を含むマイクロコンピュータでなり、冷却装置1全体を統括制御する。具体的に、制御部104は、熱源機12、冷却塔14、冷却水ポンプ18、および、冷水ポンプ22の駆動を制御する。   The control unit 104 is a microcomputer including a central processing unit (CPU), a ROM that stores programs, a RAM as a work area, and the like, and performs overall control of the entire cooling device 1. Specifically, the control unit 104 controls driving of the heat source unit 12, the cooling tower 14, the cooling water pump 18, and the cooling water pump 22.

制御部104には、冷却塔14のモータ38の回転速度を制御するインバータ102、外気湿球温度(以下、単に湿球温度ともいう)を計測する湿球温度計106が接続されている。また、制御部104には、供給側冷水温度計108、排出側冷水温度計110、供給側冷却水温度計112、冷水流量計114が接続されている。   Connected to the control unit 104 are an inverter 102 that controls the rotational speed of the motor 38 of the cooling tower 14 and a wet bulb thermometer 106 that measures the outdoor wet bulb temperature (hereinafter also simply referred to as wet bulb temperature). In addition, a supply-side cold water thermometer 108, a discharge-side cold water thermometer 110, a supply-side cooling water thermometer 112, and a cold water flow meter 114 are connected to the control unit 104.

また、制御部104は、熱源機12と接続(通信)し、熱源機12から熱源機12の運転状態に関する情報を受信する。例えば、制御部104は、熱源機12が再生器12aにおいて吸収液Lを燃焼熱により加熱している場合、熱源機12から吸収液Lを燃焼熱により加熱している状態であることを示す信号(以下、燃焼接点信号という)を受信する。なお、制御部104は、熱源機12が再生器12aにおいて吸収液Lを廃熱により加熱している場合、熱源機12から燃焼接点信号を受信しない。また、制御部104は、熱源機12から冷却塔14の運転状態に関する情報を受信する。例えば、制御部104は、不図示の動力盤から出力される冷却塔14が運転(稼働)していることを示す信号(以下、冷却塔運転信号という)を、熱源機12を介して受信する。   Further, the control unit 104 is connected (communication) with the heat source device 12 and receives information related to the operation state of the heat source device 12 from the heat source device 12. For example, when the heat source device 12 is heating the absorption liquid L with combustion heat in the regenerator 12a, the control unit 104 indicates that the absorption liquid L is being heated from the heat source device 12 with combustion heat. (Hereinafter referred to as a combustion contact signal). The control unit 104 does not receive the combustion contact signal from the heat source unit 12 when the heat source unit 12 heats the absorbing liquid L by waste heat in the regenerator 12a. Further, the control unit 104 receives information related to the operation state of the cooling tower 14 from the heat source device 12. For example, the control unit 104 receives a signal (hereinafter referred to as a cooling tower operation signal) indicating that the cooling tower 14 that is output from a power panel (not shown) is operating (operating) via the heat source unit 12. .

制御部104は、インバータ102を制御し、インバータ102にインバータ周波数を出力(指示)することで、モータ38の回転速度を制御する。インバータ周波数は、冷却水W1の目標温度に基づいて導出される。制御部104は、冷却水W1の目標温度を、例えば湿球温度に基づいて設定する。制御部104は、インバータ102を介してモータ38を制御することで、モータ38(冷却ファン34)の回転数(回転速度)を連続的に制御することができる。モータ38の回転数を連続的に制御することで、冷却水温度のハンチングを抑制し、冷却水温度を安定化させることができる。   The control unit 104 controls the rotation speed of the motor 38 by controlling the inverter 102 and outputting (instructing) the inverter frequency to the inverter 102. The inverter frequency is derived based on the target temperature of the cooling water W1. The control unit 104 sets the target temperature of the cooling water W1 based on, for example, the wet bulb temperature. The control unit 104 can continuously control the rotational speed (rotational speed) of the motor 38 (cooling fan 34) by controlling the motor 38 via the inverter 102. By continuously controlling the rotation speed of the motor 38, hunting of the cooling water temperature can be suppressed and the cooling water temperature can be stabilized.

しかし、熱源機12の運転状態によっては、冷却水温度を、湿球温度に基づく目標温度(以下、第1目標温度という)に設定しても、第1目標温度より高い目標温度(以下、第2目標温度という)に設定しても、熱源機12の効率がほとんど変わらない場合がある。その場合、制御部104が冷却水W1の温度を第1目標温度に制御してしまうと、第2目標温度に制御する場合よりも、冷却ファン34の消費電力が増大する。したがって、熱源機12の運転状態によっては、冷却水温度を第1目標温度に設定すると、冷却装置1を省エネルギー化することができない場合がある。   However, depending on the operating state of the heat source device 12, even if the cooling water temperature is set to a target temperature based on the wet bulb temperature (hereinafter referred to as the first target temperature), a target temperature (hereinafter referred to as the first temperature) higher than the first target temperature. Even if it is set to (2 target temperature), the efficiency of the heat source unit 12 may be hardly changed. In that case, if the control part 104 controls the temperature of the cooling water W1 to 1st target temperature, the power consumption of the cooling fan 34 will increase rather than the case where it controls to 2nd target temperature. Therefore, depending on the operating state of the heat source device 12, if the cooling water temperature is set to the first target temperature, the cooling device 1 may not be able to save energy.

例えば、熱源機12が燃焼熱を用いずに、廃熱のみを用いて吸収液Lを加熱している場合(すなわち、廃熱単独運転時)、冷却水温度を下げる制御を行っても、熱源機12の効率がほとんど変わらない。そこで、本実施形態の制御部104は、熱源機12の廃熱単独運転時において、冷却水W1の目標温度を、第1目標温度から第2目標温度に変更することで、冷却装置1の省エネルギー化を図る。   For example, when the heat source 12 is heating the absorption liquid L using only waste heat without using combustion heat (that is, during waste heat single operation), the heat source can be controlled even if control is performed to lower the cooling water temperature. The efficiency of the machine 12 is almost unchanged. Therefore, the control unit 104 of the present embodiment changes the target temperature of the cooling water W1 from the first target temperature to the second target temperature during the waste heat independent operation of the heat source unit 12, thereby saving energy of the cooling device 1. Plan

制御部104は、冷却水W1の目標温度(第1目標温度および第2目標温度)を、熱源機12の許容温度範囲内において設定する。熱源機12の許容温度範囲は、熱源機許容最低温度(例えば、18℃)から熱源機許容最高温度(例えば、32℃)までの範囲である。制御部104は、第1目標温度として、湿球温度に所定値(例えば、5℃)を加算した値を設定する。制御部104は、冷却水W1の目標温度を、第1目標温度=湿球温度+所定値(アプローチ)と可変にすることで、冷却塔14の能力に応じた適切な目標温度を設定することができる。また、制御部104は、第2目標温度として、標準定格条件(例えば、32℃)を設定する。制御部104は、現在の冷却水W1の温度が設定した目標温度になるように、インバータ102(すなわち、モータ38)を制御する。すなわち、制御部104は、冷却塔14から熱源機12に供給される冷却水W1の温度(供給側冷却水温度計112で計測される冷却水W1の温度)が目標温度となるように、インバータ102を制御する。   The control part 104 sets the target temperature (1st target temperature and 2nd target temperature) of the cooling water W1 within the allowable temperature range of the heat source unit 12. The allowable temperature range of the heat source unit 12 is a range from a minimum heat source unit allowable temperature (for example, 18 ° C.) to a maximum heat source unit allowable temperature (for example, 32 ° C.). The control unit 104 sets a value obtained by adding a predetermined value (for example, 5 ° C.) to the wet bulb temperature as the first target temperature. The control unit 104 sets an appropriate target temperature according to the capacity of the cooling tower 14 by making the target temperature of the cooling water W1 variable as the first target temperature = the wet bulb temperature + the predetermined value (approach). Can do. Moreover, the control part 104 sets standard rating conditions (for example, 32 degreeC) as 2nd target temperature. The control unit 104 controls the inverter 102 (that is, the motor 38) so that the current temperature of the cooling water W1 becomes the set target temperature. That is, the control unit 104 controls the inverter so that the temperature of the cooling water W1 supplied from the cooling tower 14 to the heat source unit 12 (the temperature of the cooling water W1 measured by the supply-side cooling water thermometer 112) becomes the target temperature. 102 is controlled.

制御部104は、熱源機12の廃熱単独運転時において、第2目標温度を設定することにより、第1目標温度を設定した場合よりも冷却水W1の目標温度を高く設定することができる。したがって、制御部104は、冷却水W1の目標温度を高く設定することで、冷却ファン34の回転速度を低下させることができる。冷却ファン34の回転速度を低下させることにより、熱源機12の効率をほとんど落とさずに、冷却ファン34の消費電力を下げることができる。その結果、制御部104は、冷却装置1の省エネルギー化を実現することができる。一方、制御部104は、熱源機12の運転状態が廃熱単独運転以外(すなわち、廃熱と燃焼熱の併用運転)である場合、冷却水W1の目標温度を第1目標温度に設定する。第1目標温度に設定することにより、第2目標温度に設定する場合よりも、冷却水W1の温度を低下させ、熱源機12の冷却量を増加させることにより、熱源機12での廃熱回収量を大きくすることができる。   The control part 104 can set the target temperature of the cooling water W1 higher than the case where the 1st target temperature is set by setting the 2nd target temperature at the time of waste heat independent operation of the heat source machine 12. FIG. Therefore, the control part 104 can reduce the rotational speed of the cooling fan 34 by setting the target temperature of the cooling water W1 high. By reducing the rotation speed of the cooling fan 34, the power consumption of the cooling fan 34 can be reduced without substantially reducing the efficiency of the heat source unit 12. As a result, the control unit 104 can realize energy saving of the cooling device 1. On the other hand, the control part 104 sets the target temperature of the cooling water W1 to the 1st target temperature, when the driving | running state of the heat source machine 12 is other than a waste heat independent operation (namely, combined use operation of waste heat and combustion heat). By setting the first target temperature, the temperature of the cooling water W1 is lowered and the amount of cooling of the heat source unit 12 is increased, so that the waste heat recovery at the heat source unit 12 is achieved. The amount can be increased.

ここでは、制御部104は、熱源機12の廃熱単独運転時において冷却水W1の目標温度を第2目標温度に設定することについて説明した。しかし、制御部104は、熱源機12の廃熱単独運転時において、廃熱供給源から熱源機12に供給される廃熱の熱量(以下、廃熱量という)および熱負荷装置26の負荷に応じて、冷却水W1の目標温度を変更するようにしてもよい。   Here, the control part 104 demonstrated setting the target temperature of the cooling water W1 to 2nd target temperature at the time of the waste-heat independent operation | movement of the heat-source equipment 12. FIG. However, the control unit 104 responds to the amount of heat of waste heat (hereinafter referred to as waste heat amount) supplied from the waste heat supply source to the heat source device 12 and the load of the heat load device 26 when the heat source device 12 is operating alone in the waste heat. Thus, the target temperature of the cooling water W1 may be changed.

この場合、まず、制御部104は、不図示の廃熱供給源から供給される廃熱(廃温水)の出入口の温度差である第1廃温水温度差を取得する。ここで、第1廃温水温度差とは、廃熱供給源から廃温水が流出する出口の温度と、廃熱供給源に廃温水が流入する入口の温度との差である。また、制御部104は、廃熱供給源と熱源機12とを接続する循環路を流れる廃温水の流量(廃温水流量)を取得する。制御部104は、第1廃温水温度差および廃温水流量を、廃熱供給源から直接取得してもよいし、熱源機12を介して熱源機12から取得してもよい。そして、制御部104は、第1廃温水温度差と、廃温水流量と、廃温水の比熱とに基づいて、廃熱量(廃熱量=第1廃温水温度差×比熱×廃温水流量)を導出する。   In this case, first, the control unit 104 acquires a first waste warm water temperature difference, which is a temperature difference at the entrance and exit of waste heat (waste warm water) supplied from a waste heat supply source (not shown). Here, the first waste warm water temperature difference is the difference between the temperature of the outlet from which the waste warm water flows out from the waste heat supply source and the temperature of the inlet from which the waste warm water flows into the waste heat supply source. Moreover, the control part 104 acquires the flow volume (waste warm water flow volume) of the waste warm water which flows through the circulation path which connects a waste heat supply source and the heat source machine 12. FIG. The control unit 104 may acquire the first waste warm water temperature difference and the waste warm water flow rate directly from the waste heat supply source, or may acquire from the heat source device 12 via the heat source device 12. Then, the control unit 104 derives the amount of waste heat (waste heat amount = first waste warm water temperature difference × specific heat × waste warm water flow rate) based on the first waste warm water temperature difference, the waste warm water flow rate, and the specific heat of the waste warm water. To do.

また、制御部104は、熱源機12に供給される廃熱(廃温水)の出入口の温度差である第2廃温水温度差を取得する。ここで、第2廃温水温度差とは、熱源機12から廃温水が流出する出口の温度と、熱源機12に廃温水が流入する入口の温度との差である。制御部104は、第2廃温水温度差を熱源機12から取得する。そして、制御部104は、第2廃温水温度差と、上記の廃温水流量と、上記の廃温水の比熱とに基づいて、廃熱回収量(廃熱回収量=第2廃温水温度差×比熱×廃温水流量)を導出する。   Moreover, the control part 104 acquires the 2nd waste warm water temperature difference which is a temperature difference of the entrance / exit of the waste heat (waste warm water) supplied to the heat source machine 12. FIG. Here, the second waste warm water temperature difference is a difference between the temperature of the outlet from which the waste warm water flows out from the heat source unit 12 and the temperature of the inlet from which the waste warm water flows into the heat source unit 12. The control unit 104 acquires the second waste warm water temperature difference from the heat source unit 12. And the control part 104 is based on the 2nd waste warm water temperature difference, said waste warm water flow volume, and the specific heat of said waste warm water, waste heat recovery amount (waste heat recovery amount = 2nd waste warm water temperature difference x (Specific heat x waste warm water flow rate).

ここで、廃熱回収量は、熱負荷装置26の負荷、および、冷却水W1の温度に応じて変化する。例えば、廃熱供給源から供給される廃熱量が一定であっても、熱負荷装置26の負荷が小さくなるほど廃熱回収量は小さくなり、また、冷却水W1の温度が高くなるほど廃熱回収量は小さくなる。したがって、廃熱回収量は、熱負荷装置26の負荷、あるいは、冷却水W1の温度に応じて、廃熱量と異なる(すなわち、廃熱量未満となる)場合がある。廃熱回収量が廃熱量と異なる場合、廃熱量と廃熱回収量との差(廃熱量−廃熱回収量)である余剰廃熱は、別途大気へ放熱される。   Here, the amount of waste heat recovered varies depending on the load of the heat load device 26 and the temperature of the cooling water W1. For example, even if the amount of waste heat supplied from the waste heat supply source is constant, the amount of waste heat recovered decreases as the load of the heat load device 26 decreases, and the amount of waste heat recovered increases as the temperature of the cooling water W1 increases. Becomes smaller. Therefore, the amount of waste heat recovered may differ from the amount of waste heat (that is, less than the amount of waste heat) depending on the load of the heat load device 26 or the temperature of the cooling water W1. When the amount of waste heat recovered is different from the amount of waste heat, excess waste heat, which is the difference between the amount of waste heat and the amount of waste heat recovered (waste heat amount−waste heat recovery amount), is separately radiated to the atmosphere.

また、制御部104は、供給側冷水温度計108から取得される信号に基づいて、供給側冷水温度を導出し、排出側冷水温度計110から取得される信号に基づいて、排出側冷水温度を導出し、これらの差である冷水温度差を導出する。また、制御部104は、冷水流量計114から取得される信号に基づいて、冷水循環路20内を流れる冷水の流量(冷水流量)を導出する。そして、制御部104は、冷水温度差と、冷水流量と、冷水の比熱とに基づいて、熱負荷装置26の負荷(負荷=冷水温度差×比熱×冷水流量)を導出する。   Further, the control unit 104 derives the supply-side chilled water temperature based on the signal acquired from the supply-side chilled water thermometer 108, and determines the discharge-side chilled water temperature based on the signal acquired from the discharge-side chilled water thermometer 110. To derive the difference between the chilled water temperatures. Further, the control unit 104 derives a flow rate of cold water (cold water flow rate) flowing through the cold water circulation path 20 based on a signal acquired from the cold water flow meter 114. Then, the control unit 104 derives the load of the heat load device 26 (load = cold water temperature difference × specific heat × cold water flow rate) based on the cold water temperature difference, the cold water flow rate, and the specific heat of the cold water.

つぎに、制御部104は、標準定格条件(32℃)時の冷却水W1が供給された際に熱源機12で回収可能な最大熱量(以下、標準定格条件時の廃熱回収量という)より大きな廃熱量が供給されているか否か判定する。   Next, the control unit 104 determines the maximum amount of heat that can be recovered by the heat source unit 12 when the cooling water W1 at the standard rated condition (32 ° C.) is supplied (hereinafter referred to as waste heat recovery amount at the standard rated condition). It is determined whether or not a large amount of waste heat is supplied.

そして、制御部104は、熱負荷装置26の負荷が、標準定格条件時の廃熱回収量(所定の廃熱回収量)に冷熱変換効率を乗じた値よりも大きいか(負荷>標準定格条件時の廃熱回収量×冷熱変換効率)否か判定する。なお、標準定格条件時の廃熱回収量×冷熱変換効率は、標準定格条件時の冷却水温度(32℃)において処理できる最大負荷(最大空調負荷)を表す。また、標準定格条件時の廃熱回収量(所定の廃熱回収量)は、制御部104の不図示のROMに予め記憶されている。   Then, the control unit 104 determines whether the load of the heat load device 26 is larger than a value obtained by multiplying the amount of waste heat recovery (predetermined waste heat recovery amount) at the time of the standard rating condition by the cooling conversion efficiency (load> standard rating condition). Whether or not the amount of waste heat recovered at the time x cooling conversion efficiency). The amount of waste heat recovered under the standard rated condition × the cooling conversion efficiency represents the maximum load (maximum air conditioning load) that can be processed at the cooling water temperature (32 ° C.) under the standard rated condition. In addition, a waste heat recovery amount (predetermined waste heat recovery amount) at the standard rated condition is stored in advance in a ROM (not shown) of the control unit 104.

ここで、廃熱供給源から供給される廃熱量が標準定格条件時の廃熱回収量より大きい場合、冷却水W1の温度を低下させると、熱源機12での廃熱回収量を増大させることができる。したがって、標準定格条件時の廃熱回収量より大きな廃熱量が供給されている場合、冷却水W1の目標温度を第1目標温度に設定し、熱源機12で廃熱をより回収することが好ましい。しかし、熱負荷装置26の負荷が標準定格条件時の廃熱回収量に冷熱変換効率を乗じた値以下である(負荷≦標準定格条件時の廃熱回収量×冷熱変換効率)場合、熱負荷装置26の負荷は、標準定格条件時の廃熱回収量で処理できる最大負荷以下となる。この場合、目標温度を低下させても、冷却ファン34の消費電力が増大するだけである。そのため、供給される廃熱量が標準定格条件時の廃熱回収量より大きく、かつ、熱負荷装置26の負荷が標準定格条件時の廃熱回収量に冷熱変換効率を乗じた値よりも大きい場合に、冷却水W1の目標温度を第1目標温度に設定し、熱源機12の冷却量を増加させ、廃熱をより回収する。したがって、制御部104は、標準定格条件時の廃熱回収量より大きな廃熱量が供給され、かつ、熱負荷装置26の負荷が標準定格条件時の廃熱回収量に冷熱変換効率を乗じた値よりも大きくなるとき(以下、熱源機効率優先状態という)、第1目標温度に設定する。   Here, when the amount of waste heat supplied from the waste heat supply source is larger than the amount of waste heat recovered under the standard rated conditions, the amount of waste heat recovered in the heat source unit 12 is increased by reducing the temperature of the cooling water W1. Can do. Therefore, when a waste heat amount larger than the waste heat recovery amount at the standard rated condition is supplied, it is preferable to set the target temperature of the cooling water W1 to the first target temperature and recover the waste heat more by the heat source unit 12. . However, when the load of the heat load device 26 is equal to or less than the value obtained by multiplying the waste heat recovery amount at the standard rated condition by the cooling conversion efficiency (load ≦ the waste heat recovery amount at the standard rating condition × the cold conversion efficiency), the heat load The load of the device 26 is equal to or less than the maximum load that can be processed with the amount of waste heat recovered under the standard rated conditions. In this case, even if the target temperature is lowered, only the power consumption of the cooling fan 34 is increased. Therefore, when the amount of waste heat supplied is greater than the amount of waste heat recovered under the standard rated conditions, and the load of the heat load device 26 is greater than the value obtained by multiplying the amount of waste heat recovered under the standard rated conditions by the cooling conversion efficiency. In addition, the target temperature of the cooling water W1 is set to the first target temperature, the cooling amount of the heat source unit 12 is increased, and the waste heat is further recovered. Therefore, the controller 104 is supplied with a larger amount of waste heat than the amount of waste heat recovered under the standard rated conditions, and the load of the heat load device 26 is a value obtained by multiplying the amount of waste heat recovered under the standard rated conditions by the cooling conversion efficiency. Is set to the first target temperature (hereinafter referred to as heat source machine efficiency priority state).

逆に、廃熱供給源から供給される廃熱量が標準定格条件時の廃熱回収量以下である場合、冷却水W1の温度を低下させても、熱源機12での廃熱回収量は変わらない。したがって、標準定格条件時の廃熱回収量以下の廃熱量が供給されている場合、冷却水W1の目標温度を第2目標温度に設定し、冷却ファン34の消費電力を低下させる。また、熱負荷装置26の負荷が標準定格条件時の廃熱回収量に冷熱変換効率を乗じた値以下である(負荷≦標準定格条件時の廃熱回収量×冷熱変換効率)場合、熱負荷装置26の負荷は、標準定格条件時の廃熱回収量で処理できる最大負荷以下となる。この場合、目標温度を低下させても、冷却ファン34の消費電力が増大するだけである。そのため、熱負荷装置26の負荷が標準定格条件時の廃熱回収量に冷熱変換効率を乗じた値以下である(負荷≦標準定格条件時の廃熱回収量×冷熱変換効率)場合、冷却水W1の目標温度を第2目標温度に設定し、冷却ファン34の消費電力を低下させる。したがって、制御部104は、標準定格条件時の廃熱回収量以下の廃熱量が供給されるとき、または、熱負荷装置26の負荷が標準定格条件時の廃熱回収量に冷熱変換効率を乗じた値以下となるとき(以下、省エネ優先状態という)、第2目標温度に設定する。   Conversely, if the amount of waste heat supplied from the waste heat supply source is equal to or less than the amount of waste heat recovered under the standard rated conditions, the amount of waste heat recovered in the heat source unit 12 will change even if the temperature of the cooling water W1 is lowered. Absent. Therefore, when the amount of waste heat less than the amount of waste heat recovered under the standard rated conditions is supplied, the target temperature of the cooling water W1 is set to the second target temperature, and the power consumption of the cooling fan 34 is reduced. Further, when the load of the heat load device 26 is equal to or less than the value obtained by multiplying the amount of waste heat recovered at the standard rated condition by the cooling conversion efficiency (load ≦ the amount of waste heat recovered at the standard rated condition × the cooling conversion efficiency), the heat load The load of the device 26 is equal to or less than the maximum load that can be processed with the amount of waste heat recovered under the standard rated conditions. In this case, even if the target temperature is lowered, only the power consumption of the cooling fan 34 is increased. Therefore, when the load of the heat load device 26 is equal to or less than the value obtained by multiplying the waste heat recovery amount at the standard rated condition by the cooling conversion efficiency (load ≦ the waste heat recovery amount at the standard rating condition × the cooling conversion efficiency), the cooling water The target temperature of W1 is set to the second target temperature, and the power consumption of the cooling fan 34 is reduced. Therefore, the control unit 104 multiplies the waste heat recovery amount when the waste heat recovery amount is less than or equal to the waste heat recovery amount at the standard rated condition or the heat load device 26 is at the standard rated condition by the cooling conversion efficiency. Is set to the second target temperature (hereinafter referred to as energy saving priority state).

このように、制御部104は、熱源機12の運転状態が廃熱単独運転時、かつ、熱源機効率優先時において、冷却水W1の温度を低下させることで、熱源機12での廃熱回収量を大きくする。具体的に、制御部104は、冷却水W1の目標温度を第1目標温度に設定し、第2目標温度を設定した場合よりも冷却水W1の温度を低くする。冷却水W1の温度を低くすることで、熱源機12の冷却量を増加させ、熱源機12での廃熱回収量を大きくすることができる。   As described above, the control unit 104 reduces the temperature of the cooling water W1 when the operation state of the heat source unit 12 is the waste heat single operation and when the heat source unit efficiency is prioritized, thereby recovering the waste heat in the heat source unit 12. Increase the amount. Specifically, the control unit 104 sets the target temperature of the cooling water W1 to the first target temperature, and makes the temperature of the cooling water W1 lower than when the second target temperature is set. By reducing the temperature of the cooling water W1, the amount of cooling of the heat source unit 12 can be increased, and the amount of waste heat recovered in the heat source unit 12 can be increased.

一方、熱源機12の運転状態が廃熱単独運転時、かつ、省エネ優先時である場合、冷却水W1の温度を低下させ、熱源機12での廃熱回収量を大きくしても熱源機12の効率はほとんど変わらない。そのため、制御部104は、冷却水W1の目標温度を第2目標温度に設定し、第1目標温度を設定した場合よりも冷却水W1の温度を高くする。冷却水W1の目標温度を高く設定することで、冷却ファン34の回転速度を下げることができ、熱源機12の効率をほとんど落とさずに、冷却ファン34の消費電力を低下させることができる。これにより、制御部104は、冷却装置1の省エネルギー化を実現することができる。   On the other hand, if the operating state of the heat source unit 12 is the waste heat single operation and the energy saving priority time, the heat source unit 12 can be used even if the temperature of the cooling water W1 is lowered and the amount of waste heat recovered in the heat source unit 12 is increased. The efficiency of is almost unchanged. Therefore, the control part 104 sets the target temperature of the cooling water W1 to the 2nd target temperature, and makes the temperature of the cooling water W1 higher than the case where the 1st target temperature is set. By setting the target temperature of the cooling water W1 high, the rotation speed of the cooling fan 34 can be reduced, and the power consumption of the cooling fan 34 can be reduced without substantially reducing the efficiency of the heat source unit 12. Thereby, the control part 104 can implement | achieve energy saving of the cooling device 1. FIG.

図3は、熱源機12に供給される入熱(廃熱や燃焼熱)と、熱源機12の冷却能力との関係を表す図である。熱源機12は、冷却能力が閾値Th以上の範囲Aにおいて、廃熱に加え燃焼熱を用いて吸収液Lを加熱する。また、熱源機12は、冷却能力が閾値Th未満の範囲Bにおいて、廃熱のみを用いて吸収液Lを加熱する(すなわち、廃熱単独運転を行う)。   FIG. 3 is a diagram illustrating the relationship between the heat input (waste heat and combustion heat) supplied to the heat source unit 12 and the cooling capacity of the heat source unit 12. In the range A where the cooling capacity is equal to or greater than the threshold Th, the heat source unit 12 heats the absorbent L using combustion heat in addition to waste heat. Further, the heat source unit 12 heats the absorbing liquid L using only waste heat in the range B in which the cooling capacity is less than the threshold Th (that is, the waste heat single operation is performed).

制御部104は、範囲Aにおいて熱源機12から燃焼接点信号を受信し、冷却水W1の目標温度を第1目標温度に設定する。また、制御部104は、範囲Bにおいて熱源機12の運転状態が熱源機効率優先状態であるか省エネ優先状態であるか判定する。制御部104は、熱源機12の運転状態が熱源機効率優先状態であると判定した場合(範囲Bb)において、冷却水W1の目標温度を第1目標温度に設定する。また、制御部104は、熱源機12の運転状態が省エネ優先状態であると判定した場合(範囲Ba)において、冷却水W1の目標温度を第2目標温度に設定する。   The control unit 104 receives the combustion contact signal from the heat source unit 12 in the range A, and sets the target temperature of the cooling water W1 to the first target temperature. Further, the control unit 104 determines whether the operation state of the heat source unit 12 in the range B is the heat source unit efficiency priority state or the energy saving priority state. When it is determined that the operation state of the heat source unit 12 is the heat source unit efficiency priority state (range Bb), the control unit 104 sets the target temperature of the cooling water W1 to the first target temperature. Moreover, the control part 104 sets the target temperature of the cooling water W1 to 2nd target temperature, when it determines with the driving | running state of the heat source machine 12 being an energy saving priority state (range Ba).

図4は、制御部104による冷却水W1の温度制御処理のフローチャートを示す図である。   FIG. 4 is a flowchart of the temperature control process for the cooling water W1 performed by the control unit 104.

制御部104は、熱源機12から冷却塔14が運転状態であることを示す冷却塔運転信号を受信しているか否か判定する(ステップS102)。制御部104は、冷却塔運転信号を受信している場合(ステップS102においてYES)、ステップS104に進む。一方、制御部104は、冷却塔運転信号を受信していない場合(ステップS102においてNO)、冷却水W1の温度制御処理を終了する。   The control part 104 determines whether the cooling tower operation signal which shows that the cooling tower 14 is an operation state is received from the heat source machine 12 (step S102). Control unit 104 proceeds to step S104 when receiving the cooling tower operation signal (YES in step S102). On the other hand, when control unit 104 has not received the cooling tower operation signal (NO in step S102), control unit 104 ends the temperature control process for cooling water W1.

ステップS102においてYESである場合、制御部104は、熱源機12から吸収液Lを燃焼熱により加熱している状態であることを示す燃焼接点信号を受信しているか否か判定する(ステップS104)。制御部104は、燃焼接点信号を受信している場合(ステップS104においてYES)、ステップS108に進む。一方、制御部104は、燃焼接点信号を受信していない、すなわち、熱源機12が吸収液Lを燃焼熱により加熱していない場合(ステップS104においてNO)、ステップS106に進む。   If YES in step S102, the control unit 104 determines whether or not it has received a combustion contact signal indicating that the absorption liquid L is being heated by the combustion heat from the heat source unit 12 (step S104). . If control unit 104 has received a combustion contact signal (YES in step S104), control proceeds to step S108. On the other hand, when the control unit 104 has not received the combustion contact signal, that is, when the heat source unit 12 is not heating the absorption liquid L by the combustion heat (NO in step S104), the control unit 104 proceeds to step S106.

ステップS104においてNOである場合、制御部104は、廃熱供給源から熱源機12に供給される廃熱量および熱負荷装置26の負荷に基づいて、熱源機12の運転状態が熱源機効率優先状態であるか否か判定する(ステップS106)。制御部104は、熱源機12の運転状態が熱源機効率優先状態であると判定した場合(ステップS106においてYES)、ステップS108に進む。一方、制御部104は、熱源機12の運転状態が熱源機効率優先状態でない(すなわち、省エネ優先状態である)と判定した場合(ステップS106においてNO)、ステップS110に進む。   In the case of NO in step S104, the control unit 104 determines that the operating state of the heat source unit 12 is the heat source unit efficiency priority state based on the amount of waste heat supplied from the waste heat supply source to the heat source unit 12 and the load of the heat load device 26. It is determined whether or not (step S106). When it is determined that the operation state of the heat source unit 12 is the heat source unit efficiency priority state (YES in step S106), the control unit 104 proceeds to step S108. On the other hand, when it is determined that the operation state of the heat source unit 12 is not the heat source unit efficiency priority state (that is, the energy saving priority state) (NO in step S106), the control unit 104 proceeds to step S110.

ステップS104またはステップS106においてYESである場合、制御部104は、冷却水W1の目標温度を第1目標温度に設定する(ステップS108)。一方、ステップS106においてNOである場合、制御部104は、冷却水W1の目標温度を第2目標温度に設定する(ステップS110)。   If YES in step S104 or step S106, control unit 104 sets the target temperature of cooling water W1 to the first target temperature (step S108). On the other hand, if NO in step S106, control unit 104 sets the target temperature of cooling water W1 to the second target temperature (step S110).

ステップS108またはステップS110の後、制御部104は、現在の冷却水W1の温度がステップS108またはステップS110で設定した目標温度になるように、モータ38(インバータ102)を制御し(ステップS112)、冷却水W1の温度制御処理を終了する。   After step S108 or step S110, the control unit 104 controls the motor 38 (inverter 102) so that the current temperature of the cooling water W1 becomes the target temperature set in step S108 or step S110 (step S112). The temperature control process for the cooling water W1 is terminated.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

上記実施形態では、熱源機12は、蒸発器12cにおいて熱媒体(冷水)を冷却する例を示した。しかし、これに限定されず、熱源機12は、蒸発器12cにおいて熱媒体(温水)を加熱してもよい。例えば、制御部104は、冷却塔14から熱源機12への冷却水W1の供給を停止させ、熱源機12において再生器12aから凝縮器12bに供給される高温の水蒸気の一部を蒸発器12cに供給させるようにしてもよい。   In the embodiment described above, the heat source device 12 has shown an example in which the heat medium (cold water) is cooled in the evaporator 12c. However, the present invention is not limited to this, and the heat source device 12 may heat the heat medium (warm water) in the evaporator 12c. For example, the control unit 104 stops the supply of the cooling water W1 from the cooling tower 14 to the heat source unit 12, and in the heat source unit 12, a part of the high-temperature steam supplied from the regenerator 12a to the condenser 12b is removed from the evaporator 12c. You may make it supply to.

本発明は、冷却装置に利用することができる。   The present invention can be used for a cooling device.

W1 冷却水
W2 冷水(熱媒体)
1 冷却装置
12 熱源機
14 冷却塔
26 熱負荷装置
34 冷却ファン
104 制御部
W1 Cooling water W2 Cold water (heat medium)
DESCRIPTION OF SYMBOLS 1 Cooling device 12 Heat source machine 14 Cooling tower 26 Thermal load device 34 Cooling fan 104 Control part

Claims (3)

熱源機に供給する冷却水を冷却ファンにより冷却する冷却塔と、
前記熱源機の運転状態に応じて、前記冷却ファンの回転速度を制御し、前記冷却水の温度を制御する制御部と、
を備え、
前記熱源機は、少なくとも廃熱供給源から供給される廃熱を用いて、熱負荷装置に供給する熱媒体を冷却し、
前記制御部は、
前記熱源機の運転状態が、前記廃熱供給源から供給される廃熱量が所定の廃熱回収量より大きく、かつ、前記熱負荷装置の負荷が前記所定の廃熱回収量に冷熱変換効率を乗算した値より大きくなる熱源機効率優先状態である場合、前記冷却水の温度を、湿球温度に基づく第1目標温度に設定し、
前記熱源機の運転状態が、前記廃熱供給源から供給される廃熱量が前記所定の廃熱回収量以下となる、または、前記熱負荷装置の負荷が前記所定の廃熱回収量に冷熱変換効率を乗算した値以下となる省エネ優先状態である場合、前記冷却水の温度を、前記第1目標温度よりも高い第2目標温度に設定する
冷却装置。
A cooling tower for cooling the cooling water supplied to the heat source machine by a cooling fan;
In accordance with the operating state of the heat source unit, the controller that controls the rotation speed of the cooling fan and the temperature of the cooling water;
With
The heat source machine cools a heat medium supplied to the heat load device using at least waste heat supplied from a waste heat supply source,
The controller is
The operating state of the heat source unit is such that the amount of waste heat supplied from the waste heat supply source is larger than a predetermined amount of waste heat recovery, and the load of the heat load device reduces the heat conversion efficiency to the predetermined amount of waste heat recovery. If the heat source machine efficiency priority state is greater than the multiplied value, the temperature of the cooling water is set to a first target temperature based on the wet bulb temperature,
The operating state of the heat source unit is such that the amount of waste heat supplied from the waste heat supply source is equal to or less than the predetermined waste heat recovery amount, or the load of the heat load device is converted into cold to the predetermined waste heat recovery amount A cooling device that sets the temperature of the cooling water to a second target temperature that is higher than the first target temperature when the energy saving priority state is equal to or lower than a value obtained by multiplying the efficiency.
前記熱源機は、前記廃熱供給源から供給される廃熱、および、燃料を燃焼して生成される燃焼熱を用いて、前記熱負荷装置に供給する前記熱媒体を冷却し、
前記制御部は、
前記熱源機が前記燃焼熱を用いて前記熱媒体を冷却している状態である場合、および、前記熱源機が前記燃焼熱を用いて前記熱媒体を冷却しておらず、かつ、前記熱源機の運転状態が前記熱源機効率優先状態である場合、前記冷却水の温度を前記第1目標温度に設定し、
前記熱源機が前記燃焼熱を用いて前記熱媒体を冷却しておらず、かつ、前記熱源機の運転状態が前記省エネ優先状態である場合、前記冷却水の温度を前記第2目標温度に設定する
請求項1に記載の冷却装置。
The heat source machine cools the heat medium supplied to the heat load device using waste heat supplied from the waste heat supply source and combustion heat generated by burning fuel,
The controller is
When the heat source machine is in a state of cooling the heat medium using the combustion heat, and the heat source machine is not cooling the heat medium using the combustion heat, and the heat source machine When the operation state is the heat source machine efficiency priority state, the temperature of the cooling water is set to the first target temperature,
When the heat source device does not cool the heat medium using the combustion heat and the operation state of the heat source device is the energy saving priority state, the temperature of the cooling water is set to the second target temperature. The cooling device according to claim 1.
熱源機に供給する冷却水を冷却ファンにより冷却する冷却塔と、
前記熱源機の運転状態に応じて、前記冷却ファンの回転速度を制御し、前記冷却水の温度を制御する制御部と、
を備え、
前記熱源機は、廃熱供給源から供給される廃熱、および、燃料を燃焼して生成される燃焼熱を用いて、熱負荷装置に供給する熱媒体を冷却し、
前記制御部は、
前記熱源機が前記燃焼熱を用いて前記熱媒体を冷却している状態である場合、前記冷却水の温度を、湿球温度に基づく第1目標温度に設定し、
前記熱源機が前記燃焼熱を用いて前記熱媒体を冷却している状態でない場合、前記冷却水の温度を、前記第1目標温度よりも高い第2目標温度に設定する
冷却装置。
A cooling tower for cooling the cooling water supplied to the heat source machine by a cooling fan;
In accordance with the operating state of the heat source unit, the controller that controls the rotation speed of the cooling fan and the temperature of the cooling water;
With
The heat source machine cools the heat medium supplied to the heat load device using the waste heat supplied from the waste heat supply source and the combustion heat generated by burning the fuel,
The controller is
When the heat source device is in a state of cooling the heat medium using the combustion heat, the temperature of the cooling water is set to a first target temperature based on a wet bulb temperature,
A cooling device that sets the temperature of the cooling water to a second target temperature higher than the first target temperature when the heat source device is not in a state of cooling the heat medium using the combustion heat.
JP2018021243A 2018-02-08 2018-02-08 Cooling system Active JP7000189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018021243A JP7000189B2 (en) 2018-02-08 2018-02-08 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018021243A JP7000189B2 (en) 2018-02-08 2018-02-08 Cooling system

Publications (2)

Publication Number Publication Date
JP2019138524A true JP2019138524A (en) 2019-08-22
JP7000189B2 JP7000189B2 (en) 2022-01-19

Family

ID=67693612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018021243A Active JP7000189B2 (en) 2018-02-08 2018-02-08 Cooling system

Country Status (1)

Country Link
JP (1) JP7000189B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328694A (en) * 1989-06-26 1991-02-06 Mitsui Petrochem Ind Ltd Regulating method for temperature of cooling tower
JPH09229588A (en) * 1996-02-26 1997-09-05 Tokyo Gas Co Ltd Method and device for supplying cooling water
JPH1030858A (en) * 1996-07-17 1998-02-03 N T T Facilities:Kk Method and apparatus for generating hot and chilled water without necessity of power supply from outside
US5722246A (en) * 1996-08-20 1998-03-03 Sanyo Electric Co. Ltd. Absorption refrigerating apparatus control method
JP2009250578A (en) * 2008-04-10 2009-10-29 Kawasaki Thermal Engineering Co Ltd Energy saving control operation method by stabilization of refrigerating machine cooling water temperature
JP2010048439A (en) * 2008-08-19 2010-03-04 Yazaki Corp Cooling tower and heat source machine system
JP2010060204A (en) * 2008-09-03 2010-03-18 Yazaki Corp Cooling tower and heat source machine system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328694A (en) * 1989-06-26 1991-02-06 Mitsui Petrochem Ind Ltd Regulating method for temperature of cooling tower
JPH09229588A (en) * 1996-02-26 1997-09-05 Tokyo Gas Co Ltd Method and device for supplying cooling water
JPH1030858A (en) * 1996-07-17 1998-02-03 N T T Facilities:Kk Method and apparatus for generating hot and chilled water without necessity of power supply from outside
US5722246A (en) * 1996-08-20 1998-03-03 Sanyo Electric Co. Ltd. Absorption refrigerating apparatus control method
JP2009250578A (en) * 2008-04-10 2009-10-29 Kawasaki Thermal Engineering Co Ltd Energy saving control operation method by stabilization of refrigerating machine cooling water temperature
JP2010048439A (en) * 2008-08-19 2010-03-04 Yazaki Corp Cooling tower and heat source machine system
JP2010060204A (en) * 2008-09-03 2010-03-18 Yazaki Corp Cooling tower and heat source machine system

Also Published As

Publication number Publication date
JP7000189B2 (en) 2022-01-19

Similar Documents

Publication Publication Date Title
JP5495526B2 (en) Heat source system and control method thereof
JP6385044B2 (en) Absorption refrigeration system
JP4398360B2 (en) Cooling water temperature control method for absorption chiller / heater
JP4901655B2 (en) Absorption chiller / heater
JP5182561B2 (en) Heat utilization device
JP7000189B2 (en) Cooling system
JP5902955B2 (en) Absorption type hot and cold water system
JP4321318B2 (en) Triple effect absorption refrigerator
WO2015060369A1 (en) Absorption-type hot and cold water system
JP3851764B2 (en) Absorption refrigerator
JPH0854156A (en) Cooling and heating device utilizing exhaust heat of engine and operating method thereof
JP4315855B2 (en) Absorption refrigerator
JP6132821B2 (en) Absorption refrigeration system
JP4308076B2 (en) Absorption refrigerator
JP2002181405A (en) Air-conditioning method and air conditioner
JP5342759B2 (en) Absorption chiller / heater
JPH04251170A (en) Refrigerating device and operation method thereof in cogeneration system
JP4315697B2 (en) Absorption chiller / heater
JPS5944498B2 (en) Exhaust heat utilization equipment
JP2003222429A (en) Refrigeration unit used in cogeneration system
JP2020046128A (en) Absorption refrigerator
JP4149653B2 (en) Operation method of absorption chiller using exhaust heat
JP6347427B2 (en) Refrigeration system
KR0136205Y1 (en) Absorptive type airconditioner
JP2022044138A (en) Absorption type refrigeration system and absorption type refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211223

R150 Certificate of patent or registration of utility model

Ref document number: 7000189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150