JP4321318B2 - Triple effect absorption refrigerator - Google Patents

Triple effect absorption refrigerator Download PDF

Info

Publication number
JP4321318B2
JP4321318B2 JP2004075502A JP2004075502A JP4321318B2 JP 4321318 B2 JP4321318 B2 JP 4321318B2 JP 2004075502 A JP2004075502 A JP 2004075502A JP 2004075502 A JP2004075502 A JP 2004075502A JP 4321318 B2 JP4321318 B2 JP 4321318B2
Authority
JP
Japan
Prior art keywords
pump
temperature regenerator
temperature
refrigerant vapor
pumps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004075502A
Other languages
Japanese (ja)
Other versions
JP2005265231A (en
Inventor
正彦 大島
智春 久土
健二 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2004075502A priority Critical patent/JP4321318B2/en
Publication of JP2005265231A publication Critical patent/JP2005265231A/en
Application granted granted Critical
Publication of JP4321318B2 publication Critical patent/JP4321318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、冷房運転の立ち上がり時に安定した運転を行うとともに、運転効率を向上させるのに好適な三重効用吸収式冷凍機に関する。   The present invention relates to a triple effect absorption refrigerator suitable for performing stable operation at the start of cooling operation and improving operating efficiency.

高温再生器、中温再生器および低温再生器を備えた三重効用吸収式冷凍機(ときに三重効用機という)は、高温再生器および低温再生器を備えた二重効用収式冷凍機(ときに二重効用機)より、高温再生器で希溶液を加熱した熱を後流の再生器で有効利用する点で優れている。しかしながら、冷房運転時に三重効用機の高温再生器内の圧力は二重効用機の高温再生器内の圧力よりもかなり高くなる一方、三重効用機内で作動する稀溶液の流量は二重効用機と同等であるために、三重効用機では吸収器から高温再生器に希溶液を戻すポンプとして二重効用機に比べて高揚程のものが必要となる。   Triple-effect absorption refrigerators (sometimes called triple-effect machines) equipped with high-temperature regenerators, medium-temperature regenerators, and low-temperature regenerators (sometimes referred to as triple-effect regenerators) This is superior to the double effect machine in that the heat generated by heating the dilute solution in the high temperature regenerator is effectively used in the regenerator in the downstream. However, during cooling operation, the pressure in the high-temperature regenerator of the triple effect machine is considerably higher than the pressure in the high-temperature regenerator of the double effect machine, while the flow rate of the rare solution operating in the triple effect machine is the same as that of the double effect machine. In order to be equivalent, the triple effect machine requires a pump with a higher lift than the double effect machine as a pump for returning the dilute solution from the absorber to the high temperature regenerator.

従来の三重効用機を、本発明の三重効用機を説明する図1、2、3を借用して説明する。従来の三重効用機は、図1で示す機器構成において吸収器7から高温再生器2に希溶液を戻す送給手段(図1ではSP1およびSP2の部分)として1台の高揚程ポンプを採用していた。しかし高揚程型ポンプは二重効用機で用いる低揚程のポンプよりも効率が悪くなる。高揚程型ポンプは図2で「従来技術のポンプ」として表示され、二重効用機で用いる低揚程のポンプは同図で「本発明1台単独」と表示されたものに相当する。図2から吸収式冷凍機の定格流量において高揚程のポンプの効率は低揚程のポンプのそれより低いものであることが分かる。
また吸収式冷凍機においては、ポンプは高温再生器の圧力を基にインバータ制御されるが、図3に示すように、高揚程型ポンプの特性は、ある周波数の変動幅に対して揚程の変動幅が低揚程型ポンプより大きくなる。この特性が溶液流量の変動幅を大きくする原因となる。
A conventional triple effect machine will be described by borrowing FIGS. 1, 2 and 3 illustrating the triple effect machine of the present invention. The conventional triple effect machine employs one high-lift pump as a feeding means (SP1 and SP2 in FIG. 1) for returning the diluted solution from the absorber 7 to the high-temperature regenerator 2 in the equipment configuration shown in FIG. It was. However, high head pumps are less efficient than low head pumps used in double effect machines. The high-lift pump is shown as “Prior art pump” in FIG. 2, and the low-lift pump used in the dual effect machine is equivalent to the one shown as “One of the present invention alone” in the figure. It can be seen from FIG. 2 that the efficiency of the high head pump is lower than that of the low head pump at the rated flow rate of the absorption chiller.
In the absorption chiller, the pump is inverter controlled based on the pressure of the high temperature regenerator. As shown in FIG. 3, the characteristics of the high head type pump are the fluctuation of the head with respect to the fluctuation range of a certain frequency. The width is larger than the low head type pump. This characteristic causes an increase in the fluctuation range of the solution flow rate.

したがって、上記従来の三重効用機では、運転立ち上がり時のように高温再生器の圧力変動が大きな状態では、ポンプの周波数が頻繁に変動し安定した溶液流量が得られないため、不安定な運転立ち上がりとなって、結果的に冷房開始までの時間が長くなっていた。また、高揚程ポンプの仕様は高出力なため、その消費電力も二重効用機に比べはるかに高くなっていた。   Therefore, in the conventional triple effect machine, when the pressure fluctuation of the high temperature regenerator is large as at the start of operation, the pump frequency frequently changes and a stable solution flow rate cannot be obtained. As a result, it took a long time to start cooling. In addition, because the specifications of the high-lift pump have high output, its power consumption is much higher than that of the double-effect machine.

従来の二重効用吸収式冷凍機の一例として、高温再生器で生成した高温冷媒蒸気と中間濃溶液のうち、中間濃溶液を吸収器に送ってここで冷却し該中間濃溶液に、蒸発器で蒸発させた冷媒蒸気を吸収させ、吸収器内の希溶液を、配管を通じて一ポンプにより低温再生器に送るとともに、その途中で分岐した配管を通じて別のポンプにより高温再生器に戻すように構成したものがある。
(例えば、特許文献1参照)。
As an example of a conventional double-effect absorption refrigerator, among the high-temperature refrigerant vapor and the intermediate concentrated solution generated in the high-temperature regenerator, the intermediate concentrated solution is sent to the absorber and cooled here, and the intermediate concentrated solution is converted into the evaporator. The refrigerant vapor evaporated in step 1 is absorbed, and the dilute solution in the absorber is sent to the low temperature regenerator by one pump through the pipe, and returned to the high temperature regenerator by another pump through the pipe branched in the middle. There is something.
(For example, see Patent Document 1).

特開平7−269978号公報JP-A-7-269978

上記のように、従来の三重効用吸収式冷凍機では、吸収器から高温再生器に希溶液を戻すために高揚程型ポンプが用いられていた。三重効用機の運転立ち上がり時には高温再生器の大きな圧力変動が起き、高揚程型ポンプに印加される周波数が頻繁に変動し、安定した流量が得られないため、不安定な運転となり、冷房開始まで長い時間がかかるという問題があった。また高揚程型ポンプは高出力を有するために、その消費電力も二重効用機に比べはるかに高いという問題があった。   As described above, in the conventional triple effect absorption refrigerator, a high head type pump is used to return the diluted solution from the absorber to the high temperature regenerator. When the triple effector starts up, a large pressure fluctuation occurs in the high-temperature regenerator, the frequency applied to the high-lift pump frequently fluctuates, and a stable flow rate cannot be obtained. There was a problem that it took a long time. In addition, since the high head type pump has a high output, its power consumption is much higher than that of the double effect machine.

本発明の課題は、冷房運転の立ち上がりを円滑に行うと共に効率の良い運転を実現する三重効用吸収式冷凍機を提供することである。   The subject of this invention is providing the triple effect absorption refrigerating machine which implement | achieves efficient operation | movement while performing the start-up of cooling operation | movement smoothly.

上記課題を解決するために、本発明の三重効用吸収式冷凍機は、冷房運転のために高温再生器、中温再生器、低温再生器、凝縮器、蒸発器、吸収器および吸収器から希溶液を高温再生器にもどす送給手段を備えた三重効用吸収式冷凍機であり、希溶液の送給手段は、高温再生器内の圧力を基にインバータ制御される2台のポンプを直列接続して構成し、これら2台のポンプはそれぞれの全揚程の合計が冷房の定格能力運転時における高温再生器内の発生圧力に対応する全揚程を有し、かつ冷房運転立ち上げ時にまず2台のポンプのうち上流側に配置した第1ポンプを作動させ、第1ポンプの揚程がその第1ポンプの全揚程近くの所定値に達したときに、第1ポンプの下流側に配置した渦巻き式の第2ポンプを作動させることを特徴とする。 In order to solve the above problems, the triple effect absorption refrigerator of the present invention is a dilute solution from a high temperature regenerator, a medium temperature regenerator, a low temperature regenerator, a condenser, an evaporator, an absorber and an absorber for cooling operation. This is a triple effect absorption refrigerator equipped with a feeding means for returning the water to the high temperature regenerator. The dilute solution feeding means is a series connection of two pumps controlled by an inverter based on the pressure in the high temperature regenerator. These two pumps have a total head corresponding to the generated pressure in the high-temperature regenerator during the rated capacity operation of the cooling unit, and at the start of the cooling operation, The first pump disposed upstream of the pump is operated, and when the head of the first pump reaches a predetermined value near the total head of the first pump, the spiral type disposed downstream of the first pump The second pump is operated.

また本発明の別の三重効用吸収式冷凍機は、希溶液を加熱して高温冷媒蒸気および中間濃溶液を生成する高温再生器と、この高温再生器からの高温冷媒蒸気により高温再生器からの中間濃溶液を加熱して高温冷媒蒸気を生成する中温再生器と、この中温再生器からの高温冷媒蒸気により中温再生器からの中間濃溶液を加熱して高温冷媒蒸気を生成しこの中間濃溶液を濃溶液とする低温再生器と、この低温再生器からの高温冷媒蒸気を冷却して冷媒液とする凝縮器と、この凝縮器からの冷媒液を蒸発させて低温冷媒蒸気としその際に冷房用第2次冷媒を冷却する蒸発器と、低温再生器からの濃溶液を冷却し、この濃溶液に蒸発器からの低温冷媒蒸気を吸収させて希溶液を生成する吸収器と、この吸収器中の希溶液を高温再生器にもどす送給手段を備えた三重効用吸収式冷凍機であり、希溶液の送給手段は、高温再生器内の圧力を基にインバータ制御される2台のポンプを直列接続して構成し、これら2台のポンプはそれぞれの全揚程の合計が冷房の定格能力運転時における高温再生器内の発生圧力に対応する全揚程を有し、かつ冷房の運転立ち上げ時にまず2台のポンプのうち上流側に配置した第1ポンプを作動させ、この第1ポンプがその第1ポンプの全揚程近くの所定値に達したときに、第1ポンプの下流側に配置した渦巻き式の第2ポンプを作動させることを特徴とする。そして本発明の三重効用吸収式冷凍機および別の三重効用吸収式冷凍機において、第1ポンプおよび第2ポンプは同一機種の渦巻き式のポンプであることが好ましい。 Further, another triple effect absorption refrigerator of the present invention includes a high temperature regenerator that heats a dilute solution to generate a high-temperature refrigerant vapor and an intermediate concentrated solution, and a high-temperature refrigerant vapor from the high-temperature regenerator from the high-temperature regenerator. The intermediate temperature regenerator that heats the intermediate concentrated solution to generate the high temperature refrigerant vapor, and the intermediate concentrated solution from the intermediate temperature regenerator is heated by the high temperature refrigerant vapor from the intermediate temperature regenerator to generate the high temperature refrigerant vapor. A low-temperature regenerator with a concentrated solution, a condenser that cools the high-temperature refrigerant vapor from the low-temperature regenerator to form a refrigerant liquid, and evaporates the refrigerant liquid from the condenser to form a low-temperature refrigerant vapor. An evaporator that cools the secondary refrigerant for cooling, an absorber that cools the concentrated solution from the low-temperature regenerator, and absorbs the low-temperature refrigerant vapor from the evaporator into the concentrated solution to form a diluted solution, and the absorber Means to return the dilute solution inside to the high temperature regenerator It is a triple effect absorption refrigerating machine, and the dilute solution feeding means comprises two pumps connected in series with inverters based on the pressure in the high-temperature regenerator, and these two pumps are The total of the total heads has a total head corresponding to the pressure generated in the high-temperature regenerator during the cooling rated capacity operation, and is first arranged upstream of the two pumps when the cooling operation is started. One pump is operated, and when the first pump reaches a predetermined value near the total head of the first pump, a spiral second pump disposed downstream of the first pump is operated. To do. In the triple effect absorption refrigerator and another triple effect absorption refrigerator of the present invention, it is preferable that the first pump and the second pump are spiral pumps of the same model.

上記のように、希溶液の送給手段として直列接続する第1ポンプおよび第2ポンプの2台のポンプを用いることにより、冷房運転立ち上げ時に高温再生器で発生する圧力変動に対応して、送給手段の揚程を細かく制御できるので、立ち上げ運転の安定化を図ることができる。すなわち、高温再生器内の圧力が初期圧力から上昇するにつれて、第1ポンプはその揚程が所定値に達するまで最低周波数からほぼ最高周波数の範囲で制御し、所定値以後は第2ポンプが最低周波数から最高周波数の範囲で制御して、最終的に2台のポンプの揚程で三重効用吸収式冷凍機の定格出力時における高温再生器内の最高圧力に対応する。一方、希溶液の送給手段として従来のように高揚程型ポンプ1台を用いた場合、高揚程型ポンプは高温再生器内の圧力が初期圧力から最高圧力にまで上昇する間に、第1または第2ポンプと同じ最低周波数から最高周波数で制御される。大雑把にいえば、第1ポンプおよび第2ポンプの2台は高揚程型ポンプの倍の精度で揚程を制御できることになり、これが高温再生器内の圧力変動により生じる希溶液の流量変動を抑制し、立ち上がり運転を安定化させる。また冷運転立ち上げ時に第1ポンプ1を作動させ、高温再生器内の圧力が所定値に上昇したときに第2ポンプを作動させるので、従来の高揚程型ポンプ1台に比べて、消費電力を少なくすることができる。   As described above, by using the two pumps of the first pump and the second pump connected in series as the dilute solution feeding means, in response to the pressure fluctuation generated in the high temperature regenerator when starting the cooling operation, Since the head of the feeding means can be finely controlled, the start-up operation can be stabilized. That is, as the pressure in the high-temperature regenerator rises from the initial pressure, the first pump controls from the lowest frequency to almost the highest frequency until the head reaches a predetermined value, and after that, the second pump To the highest frequency within the range of the maximum frequency in the high-temperature regenerator at the rated output of the triple effect absorption refrigerator at the head of the two pumps. On the other hand, when a single high-lift pump is used as the dilute solution feeding means as in the prior art, the high-lift pump is operated while the pressure in the high-temperature regenerator rises from the initial pressure to the maximum pressure. Or it is controlled from the same lowest frequency as the second pump to the highest frequency. Roughly speaking, the two pumps, the first pump and the second pump, can control the head with twice the accuracy of the high head pump, which suppresses the flow fluctuation of the dilute solution caused by the pressure fluctuation in the high temperature regenerator. , Stabilize the start-up operation. In addition, since the first pump 1 is activated when the cold operation is started and the second pump is activated when the pressure in the high-temperature regenerator rises to a predetermined value, the power consumption is higher than that of a conventional high head pump. Can be reduced.

本発明によれば、希溶液を吸収器から高温再生器に戻すために2台のポンプを用い高温再生器の圧力に対応して2台のポンプを順次作動させることによって、
冷房運転の立ち上がりを円滑に行うと共に効率の良い運転を実現する三重効用吸収式冷凍機を提供することができる。
According to the present invention, two pumps are used to return the dilute solution from the absorber to the high temperature regenerator, and the two pumps are sequentially operated in response to the pressure of the high temperature regenerator,
It is possible to provide a triple effect absorption refrigerator that smoothly starts cooling operation and realizes efficient operation.

以下、本発明を適用してなる三重効用吸収式冷凍機の実施形態について図面を参照して説明する。図1は本発明の実施形態の三重効用吸収式冷凍機の構成図、図2は実施形態の三重効用吸収式冷凍機で用いる低揚程型ポンプのH(揚程)−Q(流量)特性を従来の高揚程型ポンプと比較して示す線図、図3は低揚程型ポンプの周波数特性を従来の高揚程型ポンプと比較して示す線図、図4は2台直列接続の低揚程型ポンプの制御線図、図5は実施形態の三重効用吸収式冷凍機で用いる2台直列接続の低揚程型ポンプの制御フローチャートである。   Hereinafter, embodiments of a triple effect absorption refrigerator to which the present invention is applied will be described with reference to the drawings. FIG. 1 is a configuration diagram of a triple effect absorption refrigerator according to an embodiment of the present invention, and FIG. 2 shows conventional H (lift) -Q (flow rate) characteristics of a low head pump used in the triple effect absorption refrigerator of the embodiment. FIG. 3 is a diagram showing the frequency characteristics of a low-lift pump in comparison with a conventional high-lift pump, and FIG. 4 is a low-head pump with two units connected in series. FIG. 5 is a control flow chart of two low-head pumps connected in series in the triple effect absorption refrigerator of the embodiment.

図1に示すように、本実施の形態の三重効用吸収式冷凍機1(ときに冷凍機1と称する)は、冷房運転を行うために、概略、冷媒を吸収剤に吸収した希溶液を順次加熱し高温冷媒蒸気をそれぞれ生成する三重効用の高温再生器2、中温再生器3および低温再生器4と、低温再生器4から送給される高温の冷媒蒸気を冷却して冷媒液とする凝縮器5と、凝縮器5からの冷媒液を蒸発させて低温冷媒蒸気とし、その際に空調用に循環する二次冷媒から吸熱して二次冷媒を低温とする蒸発器6と、低温再生器4で冷媒蒸気が発生した残りの濃溶液を導入し該濃溶液に蒸発器6からの低温冷媒蒸気を吸収させて希溶液を生成する吸収器7と、送給手段として吸収器7内の希溶液を高温再生器2に戻す直列接続の第1ポンプSP1および第2ポンプSP2と、希溶液が吸収器7から高温再生器2に戻る間に、該希溶液を順次予熱する低温溶液熱交換器10、排ガス熱交換器13、中温溶液熱交換器11および高温溶液熱交換器12と、第1、2ポンプSP1、2から送り出された希溶液の一部を導入してこれにより、低温生器4から凝縮器5に送られる高温冷媒蒸気をその途中で冷却する冷媒ドレン熱交換器14と、高温再生器2の内圧Pを基に第1、2ポンプSP1、2をインバータ制御する制御装置16と、を備えている。なお、第2ポンプSP2は第1ポンプSP1の出口(下流)側に配置されている。また暖房運転時にのみ作動する機器としては、高温再生器2で生成した高温蒸気を直接に蒸発器6に送給する配管に設けた暖房切り替え弁23と、中温再生器3からの中間濃溶液を吸収器7に送給する配管に設けた暖房切り替え弁24とを備えている。これら暖房切り替え弁23、24は暖房運転時に開き、冷房運転時には閉じている。   As shown in FIG. 1, the triple effect absorption refrigerator 1 (sometimes referred to as refrigerator 1) of the present embodiment, in order to perform a cooling operation, roughly performs a dilute solution in which a refrigerant is absorbed in an absorbent. Triple effect high-temperature regenerator 2, medium-temperature regenerator 3 and low-temperature regenerator 4 that generate high-temperature refrigerant vapor by heating, respectively, and condensation of the high-temperature refrigerant vapor supplied from the low-temperature regenerator 4 to form a refrigerant liquid 5, an evaporator 6 that evaporates the refrigerant liquid from the condenser 5 into low-temperature refrigerant vapor, absorbs heat from the secondary refrigerant that is circulated for air conditioning, and lowers the temperature of the secondary refrigerant, and a low-temperature regenerator 4, an absorber 7 that introduces the remaining concentrated solution in which refrigerant vapor is generated and absorbs the low-temperature refrigerant vapor from the evaporator 6 into the concentrated solution to generate a diluted solution, and a diluted solution in the absorber 7 as a feeding means. A first pump SP1 and a second pump SP2 connected in series for returning the solution to the high temperature regenerator 2; While the dilute solution returns from the absorber 7 to the high temperature regenerator 2, a low temperature solution heat exchanger 10, an exhaust gas heat exchanger 13, an intermediate temperature solution heat exchanger 11, and a high temperature solution heat exchanger 12 that preheat the dilute solution sequentially A refrigerant drain heat exchanger that introduces a part of the dilute solution sent from the first and second pumps SP1 and SP2 and cools the high-temperature refrigerant vapor sent from the low-temperature generator 4 to the condenser 5 in the middle thereof. 14 and a control device 16 that performs inverter control of the first and second pumps SP1 and SP2 based on the internal pressure P of the high-temperature regenerator 2. The second pump SP2 is disposed on the outlet (downstream) side of the first pump SP1. In addition, as a device that operates only during the heating operation, a heating switching valve 23 provided in a pipe for supplying the high-temperature steam generated in the high-temperature regenerator 2 directly to the evaporator 6 and an intermediate concentrated solution from the intermediate-temperature regenerator 3 are used. And a heating switching valve 24 provided in a pipe to be fed to the absorber 7. These heating switching valves 23 and 24 are opened during heating operation and closed during cooling operation.

次に三重効用吸収式冷凍機1について、さらに詳細な構成と冷房運転時の作用について説明する。高温再生器2には内部に貯留した希溶液に漬かるようにバーナ(図示しない)が設置されており、該バーナは燃料を燃焼させて希溶液を加熱する。高温再生器2で加熱されて希溶液から蒸発した高温冷媒蒸気は高温再生器2から配管25を通じて中温再生器3内に設置された伝熱管18に送られ、そして冷媒蒸気を蒸発させた残りの中間濃溶液は配管30を通じ該配管30に設けた高温溶液熱交換器12を経て中温再生器3内に送られる。   Next, the triple effect absorption refrigerator 1 will be described in further detail with respect to the configuration and the operation during cooling operation. The high temperature regenerator 2 is provided with a burner (not shown) so as to be immersed in a dilute solution stored therein, and the burner burns fuel to heat the dilute solution. The high-temperature refrigerant vapor heated by the high-temperature regenerator 2 and evaporated from the dilute solution is sent from the high-temperature regenerator 2 through the pipe 25 to the heat transfer pipe 18 installed in the intermediate-temperature regenerator 3, and the remaining refrigerant vapor is evaporated. The intermediate concentrated solution is sent into the intermediate temperature regenerator 3 through the pipe 30 and the high temperature solution heat exchanger 12 provided in the pipe 30.

中温再生器3では、高温再生器2からの中間濃溶液は、高温再生器2からの高温冷媒蒸気を通流する伝熱管18により加熱されて冷媒蒸気を発生する。該冷媒蒸気は配管27を通じて伝熱管18から流出する高温冷媒蒸気と合流し、配管26を通じて低温再生器4内に設置された伝熱管19に送られ、一方、中温再生器3内の中間濃溶液は配管31を通じ、該配管31に設けた中温溶液熱交換器11を経て低温再生器4内に送られる。   In the intermediate temperature regenerator 3, the intermediate concentrated solution from the high temperature regenerator 2 is heated by the heat transfer pipe 18 that flows the high temperature refrigerant vapor from the high temperature regenerator 2 to generate refrigerant vapor. The refrigerant vapor merges with the high-temperature refrigerant vapor flowing out from the heat transfer pipe 18 through the pipe 27, and is sent to the heat transfer pipe 19 installed in the low-temperature regenerator 4 through the pipe 26, while the intermediate concentrated solution in the intermediate temperature regenerator 3. Is sent to the low temperature regenerator 4 through the pipe 31 and the intermediate temperature solution heat exchanger 11 provided in the pipe 31.

低温再生器4では、中温再生器3からの中間濃溶液が、同じく中温再生器3からの冷媒蒸気を通流する伝熱管19により加熱されて冷媒蒸気を発生し、濃溶液となる。ここで発生した冷媒蒸気は、低温再生器4と凝縮器5とを画する隔壁40上方の開口部から凝縮器5へ流入し、また伝熱管19内の高温冷媒蒸気は配管28を通じて送られ、その途中で、冷媒ドレン熱交換器14(後述する)で冷却されて凝縮器5に供給される。一方、低温再生器4内の濃溶液は配管32を通じ該配管40に設けた低温溶液熱交換器10を経て吸収器7内に送られる。   In the low temperature regenerator 4, the intermediate concentrated solution from the intermediate temperature regenerator 3 is heated by the heat transfer pipe 19 through which the refrigerant vapor from the intermediate temperature regenerator 3 flows, generating a refrigerant vapor to become a concentrated solution. The refrigerant vapor generated here flows into the condenser 5 from the opening above the partition wall 40 that defines the low temperature regenerator 4 and the condenser 5, and the high temperature refrigerant vapor in the heat transfer pipe 19 is sent through the pipe 28. On the way, the refrigerant is cooled by a refrigerant drain heat exchanger 14 (described later) and supplied to the condenser 5. On the other hand, the concentrated solution in the low temperature regenerator 4 is sent into the absorber 7 through the pipe 32 and the low temperature solution heat exchanger 10 provided in the pipe 40.

凝縮器5内には冷却水を通流させる伝熱管20が設置されている。凝縮器5では、低温再生器4から冷媒ドレン熱交換器14を介して供給された冷媒蒸気および低温再生器4と凝縮器5間の隔壁40を越えて流入した冷媒蒸気は冷却水を通流する伝熱管20により冷却されて冷媒液となり、該冷媒液は凝縮器5から配管29を通じて蒸発器6に供給される。ここで伝熱管20を通流する冷却水は冷却塔(図示しない)へ流出する。   A heat transfer tube 20 through which cooling water flows is installed in the condenser 5. In the condenser 5, the refrigerant vapor supplied from the low-temperature regenerator 4 through the refrigerant drain heat exchanger 14 and the refrigerant vapor flowing in through the partition wall 40 between the low-temperature regenerator 4 and the condenser 5 flow through the cooling water. The refrigerant is cooled by the heat transfer tube 20 to become a refrigerant liquid, and the refrigerant liquid is supplied from the condenser 5 to the evaporator 6 through the pipe 29. Here, the cooling water flowing through the heat transfer tube 20 flows out to a cooling tower (not shown).

蒸発器6内には、冷房に用いられる二次冷媒を通流する伝熱管21が設置されている。凝縮器5からの冷媒液は伝熱管21上に散布され、蒸発して低温冷媒蒸気となり、その際、伝熱管21中の二次冷媒から潜熱を奪って、低温の二次冷媒をつくり出す。該二次冷媒は蒸発器6と冷房を行う空気調和機との間を循環して冷房に供せられる。蒸発器6は低温冷媒蒸気が通流できるように吸収器7に連通している。   A heat transfer tube 21 through which a secondary refrigerant used for cooling is installed is installed in the evaporator 6. The refrigerant liquid from the condenser 5 is dispersed on the heat transfer pipe 21 and evaporated to become low-temperature refrigerant vapor. At that time, latent heat is taken away from the secondary refrigerant in the heat transfer pipe 21 to produce a low-temperature secondary refrigerant. The secondary refrigerant circulates between the evaporator 6 and the air conditioner for cooling, and is provided for cooling. The evaporator 6 communicates with the absorber 7 so that the low-temperature refrigerant vapor can flow therethrough.

吸収器7内には、冷却水を通流させる伝熱管22が設置されている。低温再生器4から送られた濃溶液は、伝熱管22上に散布され、該伝熱管22中の冷却水により冷却される。この冷却された濃溶液は、蒸発器6から移動してきた低温冷媒蒸気を吸収して希溶液となり吸収器7内に溜まる。なお、吸収器7内の伝熱管22を通流する冷却水は、前述の冷却塔から供給され、該伝熱管22から配管33を通じて凝縮器5内の伝熱管21を経て冷却塔に戻るように循環している。   A heat transfer tube 22 through which cooling water flows is installed in the absorber 7. The concentrated solution sent from the low temperature regenerator 4 is sprayed on the heat transfer tube 22 and cooled by the cooling water in the heat transfer tube 22. The cooled concentrated solution absorbs the low-temperature refrigerant vapor transferred from the evaporator 6 to become a diluted solution and accumulates in the absorber 7. The cooling water flowing through the heat transfer tube 22 in the absorber 7 is supplied from the above-described cooling tower so as to return to the cooling tower from the heat transfer tube 22 through the pipe 33 and the heat transfer tube 21 in the condenser 5. It is circulating.

吸収器7内に溜まった希溶液は、戻り配管35を通じて、該配管35に直列に設けられた2台のポンプSP1、2により、高温再生器2に戻される。この戻りの過程で、希溶液は低温溶液熱交換器10で凝縮器5から吸収器7へ送られる濃溶液により加熱されて昇温し、次いで順次高温再生器2に設置されたバーナの排気を放出する排ガス配管37に設けられた排ガス熱交換器13で排ガスにより、次いで中温溶液熱交換器11で中温再生器3から低温再生器4に送られる中間濃溶液により、さらに高温溶液熱交換器12で高温再生器2から中温再生器3に送られる中間濃溶液により、それぞれ加熱されて昇温して高温再生器2に戻る。また吸収器7から出た希溶液は下流側の第2ポンプSP2出口側で分流して配管36を通じて冷媒ドレン熱交換器14に一部送られ、熱交換器14で低温再生器4から凝縮器5へ送られる濃溶液と熱交換して濃溶液を降温させ、それから低温再生器4内に流入する。さらに、戻り配管35の希溶液は、低温溶液熱交換器10と排ガス熱交換器13の間で分流して配管37を通じて低温再生器4に一部送られ、また中温溶液熱交換器11と高温溶液熱交換器12との間で分流して配管38を通じて中温再生器3に送られる。   The dilute solution accumulated in the absorber 7 is returned to the high temperature regenerator 2 through the return pipe 35 by the two pumps SP1 and SP2 provided in series with the pipe 35. In this returning process, the dilute solution is heated by the concentrated solution sent from the condenser 5 to the absorber 7 in the low-temperature solution heat exchanger 10, and then the exhaust of the burner installed in the high-temperature regenerator 2 is sequentially discharged. The high temperature solution heat exchanger 12 is further heated by the exhaust gas heat exchanger 13 provided in the exhaust gas pipe 37 to be discharged, and then by the intermediate concentrated solution sent from the intermediate temperature regenerator 3 to the low temperature regenerator 4 by the intermediate temperature solution heat exchanger 11. The intermediate concentrated solution sent from the high-temperature regenerator 2 to the intermediate-temperature regenerator 3 is heated and heated to return to the high-temperature regenerator 2. Further, the dilute solution exiting from the absorber 7 is diverted at the outlet side of the second pump SP2 on the downstream side and is partially sent to the refrigerant drain heat exchanger 14 through the pipe 36. The heat exchanger 14 passes the condenser from the low temperature regenerator 4 to the condenser. The concentrated solution sent to 5 is heat-exchanged to cool the concentrated solution, and then flows into the low temperature regenerator 4. Further, the dilute solution in the return pipe 35 is diverted between the low temperature solution heat exchanger 10 and the exhaust gas heat exchanger 13 and is partially sent to the low temperature regenerator 4 through the pipe 37, and also in the medium temperature solution heat exchanger 11 and the high temperature. The flow is divided between the solution heat exchanger 12 and sent to the intermediate temperature regenerator 3 through the pipe 38.

本発明の特徴である直列接続された第1、第2ポンプについて説明する。第1ポンプSP1および第2ポンプSP2は、インバータ制御のキャンドモータ式渦巻きポンプで、それぞれ冷凍機1の定格出力運転時に必要な溶液吐出し量(定格流量)を有し、また。第1ポンプSP1および第2ポンプSP2の各全揚程の合計は冷凍機1の定格出力運転時の高温再生器2の内圧に対応する。ここでは2台のポンプは同一仕様、すなわち同一周波数では同一の揚程および同一の流量で運転される。なお2台のポンプは必ずしも同一の仕様である必要はなく、互いに仕様の近いものを組み合わせてもよい。   The first and second pumps connected in series, which is a feature of the present invention, will be described. The first pump SP1 and the second pump SP2 are inverter-controlled canned motor type centrifugal pumps, each having a solution discharge amount (rated flow rate) necessary for the rated output operation of the refrigerator 1. The total of the total heads of the first pump SP1 and the second pump SP2 corresponds to the internal pressure of the high-temperature regenerator 2 during the rated output operation of the refrigerator 1. Here, the two pumps are operated with the same specifications, ie, the same head and the same flow rate at the same frequency. Note that the two pumps do not necessarily have the same specifications, and those having similar specifications may be combined.

図2に示すように、第1ポンプSP1および第2ポンプSP2のそれぞれ(図2で「SP1台単独」と表示)は、冷凍機1の定格出力時の定格流量において、従来の高揚程ポンプよりも、ポンプ効率が高いことが分かる。   As shown in FIG. 2, each of the first pump SP1 and the second pump SP2 (indicated as “single SP1” in FIG. 2) is higher than the conventional high head pump at the rated flow rate at the rated output of the refrigerator 1. It can be seen that the pump efficiency is high.

また図3に示すように、第1ポンプSP1および第2ポンプSP2(図3でSP(1台)と表示)は、それぞれ設定最低周波数、設定最高周波数で制御される。高温再生器2の内圧が設定最低周波数のポンプ揚程以上に上昇したときから、高温再生器2の内圧の上昇にしたがい制御第1装置16からポンプSP1に印加される周波数が高くなり、そしてポンプ揚程は高くなる。比較のために示す従来の高揚程型ポンプは低揚程型ポンプと同様に設定最低周波数〜設定最高周波数で制御される。この高揚程型ポンプは、高温再生器の内圧が高揚程型ポンプの設定最低周波数での揚程に達したとき、すでに設定最高周波数で運転された低揚程型の第1ポンプSP1よりも高い揚程で運転される。さらに周波数が一定範囲(たとえば10Hz)だけ変化した場合、高揚程型ポンプの揚程の変化は大きく、低揚程型のポンプSP1、SP2の揚程の変化は小さい。この制御の粗さが1台の高揚程型ポンプを用いていた従来の三重効用吸収式冷凍における立ち上がり時の不安定を招いていた原因である。   Further, as shown in FIG. 3, the first pump SP1 and the second pump SP2 (shown as SP (1 unit) in FIG. 3) are controlled at the set minimum frequency and the set maximum frequency, respectively. Since the internal pressure of the high-temperature regenerator 2 has risen above the pump head of the set minimum frequency, the frequency applied to the pump SP1 from the control first device 16 increases as the internal pressure of the high-temperature regenerator 2 increases, and the pump head Becomes higher. The conventional high head pump shown for comparison is controlled at the set minimum frequency to the set maximum frequency in the same manner as the low head pump. When the internal pressure of the high-temperature regenerator reaches the lift at the set minimum frequency of the high-lift pump, the high-lift pump has a higher lift than the low-lift first pump SP1 already operated at the set maximum frequency. Driven. Further, when the frequency changes by a certain range (for example, 10 Hz), the change in the head of the high head type pump is large, and the change in the head of the low head type pumps SP1 and SP2 is small. The roughness of this control is the cause of instability at the start-up in the conventional triple effect absorption refrigeration using one high head type pump.

次に図4により、本発明の実施の形態の三重効用吸収式冷凍における直列接続の2台の低揚程型ポンプすなわちSP1およびSP2の制御について説明する。
第1ポンプSP1および第2ポンプSP2は、高温再生器の圧力Pを検出する圧力計15の信号を基に制御装置16により個々にインバータ制御される。先ず冷凍機の運転立ち上がりの初期においては、高温再生器2の圧力は大気圧以下であるため、第1ポンプSP1のみを設定最低周波数で運転する。高温再生器2の圧力が第1ポンプSP1の設定最低周波数での揚程以上になると、高温再生器2の圧力上昇につれて、制御装置16は周波数を上げて第1ポンプSP1を運転して第1ポンプSP1の揚程を高温再生器2の圧力に対応させる。高温再生器2の圧力が第1ポンプSP1の全揚程に見合う圧力近くの所定値に達したとき、第2ポンプSP2の運転を設定最低周波数で開始する。そして高温再生器2の圧力が第1ポンプSP1の設定最高周波数での全揚程以上になったとき、第1ポンプSP1はその状態で運転を続けるとともに第2ポンプSP2への周波数は、その設定最低周波数から高温再生器2の圧力の上昇に対応して増加する。このとき第1ポンプSP1と第2ポンプSP2の揚程の合計は第1ポンプSP1の全揚程と第2ポンプSP2への周波数に見合う揚程を加算したものとなる。冷凍機の定格時の運転時には両ポンプによる揚程は両ポンプの全揚程を加算した値まで上昇する。かくして冷凍機は立ち上がり運転から定常運転に移行する。
Next, with reference to FIG. 4, the control of two low-head pumps connected in series, that is, SP1 and SP2 in the triple effect absorption refrigeration according to the embodiment of the present invention will be described.
The first pump SP1 and the second pump SP2 are individually inverter-controlled by the control device 16 based on the signal from the pressure gauge 15 that detects the pressure P of the high-temperature regenerator. First, since the pressure of the high-temperature regenerator 2 is equal to or lower than the atmospheric pressure at the beginning of the start-up of the refrigerator, only the first pump SP1 is operated at the set minimum frequency. When the pressure of the high-temperature regenerator 2 becomes equal to or higher than the head at the set minimum frequency of the first pump SP1, the control device 16 increases the frequency to operate the first pump SP1 as the pressure of the high-temperature regenerator 2 increases, thereby operating the first pump The head of SP1 is made to correspond to the pressure of the high temperature regenerator 2. When the pressure of the high-temperature regenerator 2 reaches a predetermined value close to the pressure corresponding to the total head of the first pump SP1, the operation of the second pump SP2 is started at the set minimum frequency. When the pressure of the high-temperature regenerator 2 becomes equal to or higher than the total head at the set maximum frequency of the first pump SP1, the first pump SP1 continues operating in that state and the frequency to the second pump SP2 is set to the minimum set The frequency increases corresponding to an increase in the pressure of the high temperature regenerator 2. At this time, the total lift of the first pump SP1 and the second pump SP2 is the sum of the total lift of the first pump SP1 and the lift corresponding to the frequency to the second pump SP2. When operating the refrigerator at the rated time, the heads of both pumps rise to the sum of the total heads of both pumps. Thus, the refrigerator shifts from the start-up operation to the steady operation.

冷凍機1の出力が定格出力以下の部分負荷運転時、冷房負荷変動により蒸発器6で作られる二次冷媒の流量が変動する、あるいは吸収器7に供給される冷却水の温度が変動することにより、高温再生器2内の圧力が大きく変動する場合がある。このような場合、その都度、燃焼量の変動に伴う高温再生器2の圧力変化を検出して、上記のように第2ポンプSP2へ印加する周波数を制御し、揚程を細かく調節することにより、部分負荷運転を安定化できる。   During partial load operation where the output of the refrigerator 1 is less than the rated output, the flow rate of the secondary refrigerant produced by the evaporator 6 fluctuates due to cooling load fluctuations, or the temperature of the cooling water supplied to the absorber 7 fluctuates. Therefore, the pressure in the high temperature regenerator 2 may fluctuate greatly. In such a case, by detecting the pressure change of the high temperature regenerator 2 accompanying the fluctuation of the combustion amount each time, controlling the frequency applied to the second pump SP2 as described above, and finely adjusting the head, Partial load operation can be stabilized.

冷凍機の運転停止時は、第1ポンプSP1、第2ポンプSP2を運転立ち上がり時と逆のインバータ制御を行う。すなわち第2ポンプSP2への周波数を次第に降下させその周数数が設定最低値に達した後に、第1ポンプSP1の周波数を次第に降下させ、高温再生器をはじめ他の構成機器およびそれらを接続する配管内の溶液を希溶液で置換する希釈運転を行う。   When the operation of the refrigerator is stopped, inverter control opposite to that at the start of operation of the first pump SP1 and the second pump SP2 is performed. That is, after the frequency to the second pump SP2 is gradually lowered and the frequency reaches the set minimum value, the frequency of the first pump SP1 is gradually lowered to connect other components such as a high-temperature regenerator and them. A dilution operation is performed in which the solution in the pipe is replaced with a dilute solution.

図5により冷凍機の冷房運転時の制御について説明する。冷房運転(ステップ1)は高温再生器2に設置されたバーナに供給された燃料の燃焼により開始される(ステップ2)。運転開始当初は燃料の供給は低量で供給され(ステップ4)、このとき第1ポンプSP1は制御装置16により設定最低周波数で運転される(ステップ5)。高温再生器2の温度が順次に上昇し設定温度に達する(ステップ3)まで、燃料供給量は上昇する温度に比例して供給される(ステップ6)。設定温度以上になると、制御装置16から第1ポンプSP1に印加する周波数は高温再生器2内の圧力を基に制御され、該圧力の上昇につれて増加する(ステップ7)。高温再生器2内の圧力が設定圧力に達する(ステップ8)と第2ポンプSP2は制御装置により設定最低周波数で始動する(ステップ9)。以後、第1、2ポンプ両方が作動する。そして第1ポンプSP1に印加される周波数が高温再生器2内の圧力上昇に従って設定最高周波数に達した時(ステップ10)、第2ポンプSP2に印加される周波数が増大し始める(ステップ11)。冷凍機が定格出力であるときには高温再生器2内の圧力が最大値となり、第2ポンプSP2の周波数は設定最高周波数となる。冷凍機の定格出力時に第1、2ポンプは設定最高周波数で駆動され、両ポンプの揚程のトータルは、高温再生器2内の圧力に対応することになる。   Control during cooling operation of the refrigerator will be described with reference to FIG. The cooling operation (step 1) is started by combustion of fuel supplied to a burner installed in the high temperature regenerator 2 (step 2). At the beginning of operation, fuel is supplied at a low amount (step 4), and at this time, the first pump SP1 is operated at the set minimum frequency by the control device 16 (step 5). Until the temperature of the high-temperature regenerator 2 increases and reaches the set temperature (step 3), the fuel supply amount is supplied in proportion to the increasing temperature (step 6). When the set temperature is exceeded, the frequency applied from the control device 16 to the first pump SP1 is controlled based on the pressure in the high temperature regenerator 2, and increases as the pressure increases (step 7). When the pressure in the high temperature regenerator 2 reaches the set pressure (step 8), the second pump SP2 is started at the set minimum frequency by the control device (step 9). Thereafter, both the first and second pumps operate. When the frequency applied to the first pump SP1 reaches the set maximum frequency as the pressure in the high temperature regenerator 2 increases (step 10), the frequency applied to the second pump SP2 starts to increase (step 11). When the refrigerator has a rated output, the pressure in the high temperature regenerator 2 becomes the maximum value, and the frequency of the second pump SP2 becomes the set maximum frequency. The first and second pumps are driven at the set maximum frequency at the rated output of the refrigerator, and the total head of both pumps corresponds to the pressure in the high-temperature regenerator 2.

以下、冷凍機1の暖房運転について図1を用いて説明する。冷凍機1は高温再生器2で生成された高温冷媒蒸気を蒸発器6に送給する配管42および該配管42に設けた暖房切替弁23と、高温再生器2内の中間濃溶液を吸収器7に送給する配管43および該配管43に設けた暖房切替弁24とを備えている。暖房運転のために、先ず制御装置14は暖房切替弁23、24を開く。高温再生器2内の高温冷媒蒸気は高温再生器2から配管42を通じ、暖房切替弁23を通過して蒸発器6に供給され、蒸発器6で伝熱管21内を通流する二次冷媒を加熱して冷媒液となる。一方、高温再生器2内の中間濃溶液は、配管30を通じ高温溶液熱交換器12を経て中温再生器3に流入し、次いで該中温再生器3から配管31を通じ、中温熱交換器11を経て、さらに配管31から分岐する配管43を通じ暖房切替弁24を通過して吸収器7に送られる。吸収器7に流入した中間濃溶液は、蒸発器6から流入する冷媒液と混合して希溶液となる。該稀溶液は蒸発器と連通する吸収器7に溜まり、そこから第1ポンプSP1により戻り配管35を通じ低温溶液熱交換器10、排ガス熱交換器13、中温熱交換器11および高温溶液熱交換器12を順に経て高温再生器2に戻される。そして希溶液は戻る途中で排ガス熱交換器13、中温熱交換器11および高温溶液熱交換器12で加熱される。蒸発器6で高温冷媒蒸気により加熱された二次冷媒は暖房に用いるために、蒸発器6と空調機との間で循環する。上記のように冷凍機を暖房運転する場合、高温再生器2内の圧力は冷房運転に比べて低いので、第1ポンプSP1の1台のみインバータ制御により運転する。   Hereinafter, the heating operation of the refrigerator 1 will be described with reference to FIG. The refrigerator 1 has a pipe 42 for supplying the high-temperature refrigerant vapor generated in the high-temperature regenerator 2 to the evaporator 6, a heating switching valve 23 provided in the pipe 42, and an intermediate concentrated solution in the high-temperature regenerator 2 as an absorber. 7 and a heating switching valve 24 provided in the pipe 43. For the heating operation, the control device 14 first opens the heating switching valves 23 and 24. The high-temperature refrigerant vapor in the high-temperature regenerator 2 is supplied to the evaporator 6 from the high-temperature regenerator 2 through the pipe 42 through the heating switching valve 23, and the secondary refrigerant flowing through the heat transfer pipe 21 in the evaporator 6 is supplied. Heats to become a refrigerant liquid. On the other hand, the intermediate concentrated solution in the high temperature regenerator 2 flows into the intermediate temperature regenerator 3 through the pipe 30 through the high temperature solution heat exchanger 12, and then passes from the intermediate temperature regenerator 3 through the pipe 31 through the intermediate temperature heat exchanger 11. Further, it passes through the heating switching valve 24 through the pipe 43 branched from the pipe 31 and is sent to the absorber 7. The intermediate concentrated solution flowing into the absorber 7 is mixed with the refrigerant liquid flowing in from the evaporator 6 to become a diluted solution. The dilute solution is accumulated in the absorber 7 that communicates with the evaporator, and from there the low temperature solution heat exchanger 10, the exhaust gas heat exchanger 13, the intermediate temperature heat exchanger 11, and the high temperature solution heat exchanger through the return pipe 35 by the first pump SP1. 12 is returned to the high temperature regenerator 2 in order. The dilute solution is heated by the exhaust gas heat exchanger 13, the intermediate temperature heat exchanger 11, and the high temperature solution heat exchanger 12 on the way back. The secondary refrigerant heated by the high-temperature refrigerant vapor in the evaporator 6 is circulated between the evaporator 6 and the air conditioner for use in heating. When the refrigerator is operated for heating as described above, since the pressure in the high-temperature regenerator 2 is lower than that in the cooling operation, only one of the first pumps SP1 is operated by inverter control.

本発明を適用してなる三重効用吸収式冷凍機の一実施形態の構成図である。It is a block diagram of one Embodiment of the triple effect absorption refrigerator which applies this invention. 実施形態の三重効用吸収式冷凍機で用いる低揚程型ポンプのH−Q特性を従来の高揚程型ポンプと比較して示す線図である。It is a diagram which shows the HQ characteristic of the low head type pump used with the triple effect absorption refrigerator of embodiment compared with the conventional high head type pump. 実施形態の三重効用吸収式冷凍機で用いる低揚程型ポンプの周波数特性を従来の高揚程型ポンプと比較して示す線図である。It is a diagram which shows the frequency characteristic of the low head type pump used with the triple effect absorption refrigerator of embodiment compared with the conventional high head type pump. 実施形態の三重効用吸収式冷凍機で用いる2台直列接続の低揚程型ポンプの制御線図である。It is a control diagram of the low head pump of 2 units | sets connected in series used with the triple effect absorption refrigerating machine of embodiment. 実施形態の三重効用吸収式冷凍機で用いる2台直列接続の低揚程型ポンプの制御フローチャートである。It is a control flowchart of the low head pump of 2 units | sets connected in series used with the triple effect absorption refrigerating machine of embodiment.

符号の説明Explanation of symbols

1 三重効用吸収式冷凍機
2 高温再生器
3 中温再生器
4 低温再生器
5 凝縮器
6 蒸発器
7 吸収器
10 低温溶液熱交換器
11 中温溶液熱交換器
12 高温溶液熱交換器
13 排ガス熱交換器
14 冷却ドレン熱交換器
15 圧力検出器
16 制御装置
18 伝熱管(中温再生器)
19 伝熱管(低温再生器)
20 伝熱管(凝縮器)
21 伝熱管(蒸発器)
22 伝熱管(吸収器)
23 暖房切替弁
24 暖房切替弁
SP1 第1ポンプ(上流側)
SP2 第2ポンプ(下流側)
DESCRIPTION OF SYMBOLS 1 Triple effect absorption refrigerator 2 High temperature regenerator 3 Medium temperature regenerator 4 Low temperature regenerator 5 Condenser 6 Evaporator 7 Absorber 10 Low temperature solution heat exchanger 11 Medium temperature solution heat exchanger 12 High temperature solution heat exchanger 13 Exhaust gas heat exchange 14 Cooling drain heat exchanger 15 Pressure detector 16 Control device 18 Heat transfer tube (medium temperature regenerator)
19 Heat transfer tube (low temperature regenerator)
20 Heat transfer tube (condenser)
21 Heat transfer tube (evaporator)
22 Heat transfer tube (absorber)
23 Heating switching valve 24 Heating switching valve SP1 First pump (upstream side)
SP2 Second pump (downstream)

Claims (3)

冷房運転のために高温再生器、中温再生器、低温再生器、凝縮器、蒸発器、吸収器および該吸収器から希溶液を前記高温再生器にもどす送給手段を備えた三重効用吸収式冷凍機であり、前記送給手段は、前記高温再生器内の圧力を基にインバータ制御される2台のポンプを直列接続して構成し、該2台のポンプはそれぞれの全揚程の合計が前記冷房の定格能力運転時における前記高温再生器内の発生圧力に対応する全揚程を有し、かつ前記冷房の運転立ち上げ時にまず前記2台のポンプのうち上流側に配置した第1ポンプを作動させ、該第1ポンプの揚程が該第1ポンプの全揚程近くの所定値に達したときに、該第1ポンプの下流側に配置した渦巻き式の第2ポンプを作動させることを特徴とする三重効用吸収式冷凍機。 Triple effect absorption refrigeration equipped with a high temperature regenerator, a medium temperature regenerator, a low temperature regenerator, a condenser, an evaporator, an absorber and a feeding means for returning a dilute solution from the absorber to the high temperature regenerator for cooling operation. And the feeding means comprises two pumps that are inverter-controlled based on the pressure in the high-temperature regenerator, connected in series, and the two pumps have a total sum of their heads. The first pump, which has a total head corresponding to the generated pressure in the high-temperature regenerator during the cooling rated capacity operation and is arranged upstream of the two pumps when the cooling operation is started, is activated. And when the head of the first pump reaches a predetermined value near the total head of the first pump, the spiral second pump disposed downstream of the first pump is operated. Triple effect absorption refrigerator. 希溶液を加熱して高温冷媒蒸気および中間濃溶液を生成する高温再生器と、該高温再生器からの高温冷媒蒸気により前記高温再生器からの中間濃溶液を加熱して高温冷媒蒸気を生成する中温再生器と、該中温再生器からの高温冷媒蒸気により前記中温再生器からの中間濃溶液を加熱して高温冷媒蒸気を生成し該中間濃溶液を濃溶液とする低温再生器と、該低温再生器からの高温冷媒蒸気を冷却して冷媒液とする凝縮器と、該凝縮器からの冷媒液を蒸発させて低温冷媒蒸気としその際に冷房用第2次冷媒を冷却する蒸発器と、前記低温再生器からの前記濃溶液を冷却し、該濃溶液に前記蒸発器からの低温冷媒蒸気を吸収させて希溶液を生成する吸収器と、該吸収器中の希溶液を前記高温再生器に戻す送給手段を備えた三重効用吸収式冷凍機であり、前記送給手段は、前記高温再生器内の圧力を基にインバータ制御される2台のポンプを直列接続して構成し、該2台のポンプはそれぞれの全揚程の合計が前記冷房の定格能力運転時での前記高温再生器内の発生圧力に対応する全揚程を有し、かつ前記冷房の運転立ち上げ時にまず前記2台のポンプのうち上流側に配置した第1ポンプを作動させ、該第1ポンプが該第1ポンプの全揚程近くの所定値に達したときに、該第1ポンプの下流側に配置した渦巻き式の第2ポンプを作動させることを特徴とする三重効用吸収式冷凍機。 A high temperature regenerator that heats a dilute solution to generate a high temperature refrigerant vapor and an intermediate concentrated solution, and a high temperature refrigerant vapor from the high temperature regenerator is heated by the high temperature refrigerant vapor from the high temperature regenerator to generate a high temperature refrigerant vapor. An intermediate temperature regenerator, a low temperature regenerator that heats the intermediate concentrated solution from the intermediate temperature regenerator by the high temperature refrigerant vapor from the intermediate temperature regenerator to generate a high temperature refrigerant vapor and uses the intermediate concentrated solution as a concentrated solution, and the low temperature A condenser that cools the high-temperature refrigerant vapor from the regenerator to form a refrigerant liquid; an evaporator that evaporates the refrigerant liquid from the condenser to form a low-temperature refrigerant vapor and cools the secondary refrigerant for cooling; An absorber that cools the concentrated solution from the low-temperature regenerator and absorbs the low-temperature refrigerant vapor from the evaporator into the concentrated solution to generate a diluted solution; and the diluted solution in the absorber is converted to the high-temperature regenerator A triple effect absorption refrigerator equipped with feeding means The feeding means is constituted by connecting two pumps that are inverter-controlled based on the pressure in the high-temperature regenerator in series, and the total of the total heads of the two pumps is the rating of the cooling system. Having a total head corresponding to the pressure generated in the high-temperature regenerator during capacity operation, and first operating the first pump disposed upstream of the two pumps when starting the cooling operation; When the first pump reaches a predetermined value close to the total head of the first pump, the spiral second pump disposed downstream of the first pump is operated, and the triple effect absorption type refrigerator. 前記第1ポンプおよび前記第2ポンプは同一機種の渦巻き式のポンプであることを特徴とする請求項1または2に記載の三重効用吸収式冷凍機。 The triple-effect absorption refrigerator according to claim 1 or 2, wherein the first pump and the second pump are spiral pumps of the same model.
JP2004075502A 2004-03-17 2004-03-17 Triple effect absorption refrigerator Expired - Fee Related JP4321318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004075502A JP4321318B2 (en) 2004-03-17 2004-03-17 Triple effect absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004075502A JP4321318B2 (en) 2004-03-17 2004-03-17 Triple effect absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2005265231A JP2005265231A (en) 2005-09-29
JP4321318B2 true JP4321318B2 (en) 2009-08-26

Family

ID=35089980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004075502A Expired - Fee Related JP4321318B2 (en) 2004-03-17 2004-03-17 Triple effect absorption refrigerator

Country Status (1)

Country Link
JP (1) JP4321318B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7868680B2 (en) 2006-09-06 2011-01-11 Panasonic Corporation Semiconductor input/output control circuit
KR101702952B1 (en) * 2016-05-13 2017-02-09 삼중테크 주식회사 Triple effect absorption chiller
KR101710072B1 (en) * 2016-12-26 2017-02-27 삼중테크 주식회사 Triple effect absorption chiller using heat source
US10018383B2 (en) 2016-05-13 2018-07-10 Samjung Tech Co., Ltd. Triple effect absorption chiller

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101696832A (en) * 2009-09-28 2010-04-21 李华玉 Type-I regenerative double-effect absorption heat pump
CN101694332A (en) * 2009-09-28 2010-04-14 李华玉 Back-heating type triple-effect first category absorption heat pump
CN101818960B (en) * 2010-04-28 2012-03-21 李华玉 First type absorption heat pump utilizing multiple ends of double evaporator to supply heat
CN102116538B (en) * 2011-03-06 2012-08-29 李华玉 Double-effect and triple-effect first-type absorption heat pump with heat return end and heat supply end

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7868680B2 (en) 2006-09-06 2011-01-11 Panasonic Corporation Semiconductor input/output control circuit
KR101702952B1 (en) * 2016-05-13 2017-02-09 삼중테크 주식회사 Triple effect absorption chiller
US10018383B2 (en) 2016-05-13 2018-07-10 Samjung Tech Co., Ltd. Triple effect absorption chiller
KR101710072B1 (en) * 2016-12-26 2017-02-27 삼중테크 주식회사 Triple effect absorption chiller using heat source

Also Published As

Publication number Publication date
JP2005265231A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
JP4321318B2 (en) Triple effect absorption refrigerator
JP6486159B2 (en) Absorption refrigerator and control method thereof
JP6814071B2 (en) Absorption chiller system and absorption chiller using waste heat
JP2018141565A (en) Absorption type refrigeration system
JP4157723B2 (en) Triple effect absorption refrigerator
JP5907812B2 (en) Heat pump system and operation method thereof
JP5627411B2 (en) Double bundle type refrigerator system, heat source system and control method thereof
JPH11182948A (en) Air conditioner
JP2006112686A (en) Two stage temperature rising type absorption heat pump
JPH07218003A (en) Control system for refrigerator
JP2821724B2 (en) Single double effect absorption refrigerator
JP4308076B2 (en) Absorption refrigerator
JP2002195684A (en) Hybrid cold/warm water producing system using absorption cold/warm water generator as element
JP2009052811A (en) Exhaust heat drive-type absorption refrigerating device
JP2002181405A (en) Air-conditioning method and air conditioner
JP3434279B2 (en) Absorption refrigerator and how to start it
JP4064199B2 (en) Triple effect absorption refrigerator
JP2003336929A (en) Absorbing and compression type refrigerator and method of operating the refrigerator
JP4199977B2 (en) Triple effect absorption refrigerator
JP2005300069A (en) Absorption refrigerating machine
JPH10332219A (en) Heat supply apparatus
JPH0586543B2 (en)
JP3902912B2 (en) Control device
JP4149653B2 (en) Operation method of absorption chiller using exhaust heat
JP2002115928A (en) Control device connectable to existing unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees