JP2013160441A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2013160441A
JP2013160441A JP2012022642A JP2012022642A JP2013160441A JP 2013160441 A JP2013160441 A JP 2013160441A JP 2012022642 A JP2012022642 A JP 2012022642A JP 2012022642 A JP2012022642 A JP 2012022642A JP 2013160441 A JP2013160441 A JP 2013160441A
Authority
JP
Japan
Prior art keywords
chilled water
temperature
water inlet
water outlet
inlet temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012022642A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Okada
健 岡田
Koji Nakamura
康志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2012022642A priority Critical patent/JP2013160441A/en
Publication of JP2013160441A publication Critical patent/JP2013160441A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PROBLEM TO BE SOLVED: To provide a turbo refrigerator which exhibits highly operational efficiency when a cooling load is reduced in an intermediate period or the summer season or the like and a cooling water temperature as low as a rated load is not required.SOLUTION: A turbo refrigerator includes a cooling cycle which is configured by successively connecting a compressor, a condenser which condenses a refrigerant discharged from the compressor, a pressure reducing device and an evaporator which evaporates the refrigerant, and also includes a cooling water system which makes cooling water flow into the evaporator to perform heat exchange with the refrigerant to flow out. The refrigerator also includes a cooling water outlet temperature control mode which controls the cooling cycle based on a target cooling water outlet temperature, and a cooling water inlet temperature control mode which controls the cooling cycle based on the target cooling water inlet temperature.

Description

本発明は冷水を発生する冷凍機に関する。   The present invention relates to a refrigerator that generates cold water.

冷水を発生する冷凍機は、冷却負荷に対して一定の冷水温度を供給するように、冷水出口温度制御が行われる。   The refrigerator that generates the cold water is controlled at the outlet temperature of the cold water so as to supply a constant cold water temperature to the cooling load.

特開2009−204262号公報JP 2009-204262 A

中間期や冬期などの冷却負荷減少時は、設置状況などにより、必ずしも定格負荷時と同じ低い冷水温度が必要ではない場合がある。このような条件でも冷水温度は定格負荷時と同じ低い冷水温度を目標として制御されるため、効率が低い運転となるという問題があった。   When the cooling load decreases during the intermediate period or winter season, the low chilled water temperature that is the same as the rated load may not be necessary depending on the installation conditions. Even under such conditions, the chilled water temperature is controlled with the target of the same low chilled water temperature as that at the rated load.

このような問題に対する対応として、冷水出口温度の設定値を可変できる機能をもった冷凍機も存在するが、冷却負荷によって再設定が必要なため、安定した運転が行えないという問題があった。   As a countermeasure to such a problem, there are refrigerators having a function capable of changing the set value of the chilled water outlet temperature. However, since resetting is necessary depending on the cooling load, there is a problem that stable operation cannot be performed.

上記課題を解決するため、本発明の冷凍機は、凝縮器と蒸発器とを含む冷凍サイクルと、蒸発器に冷水を流入させて冷媒と熱交換させた後に流出させる冷水系統とを備え、目標冷水出口温度に基づいて冷凍サイクルを制御する冷水出口温度制御モードと、目標冷水入口温度に基づいて冷凍サイクルを制御する冷水入口温度制御モードとを備える。   In order to solve the above-mentioned problems, a refrigerator according to the present invention includes a refrigeration cycle including a condenser and an evaporator, and a cold water system that causes cold water to flow into the evaporator and heat exchange with the refrigerant, and then flows out. A chilled water outlet temperature control mode for controlling the refrigeration cycle based on the chilled water outlet temperature and a chilled water inlet temperature control mode for controlling the refrigeration cycle based on the target cold water inlet temperature are provided.

また、蒸発器2、凝縮器3を含む冷凍サイクルを備え、冷水出口温度制御から冷水入口温度制御への切替手段を有する。   Moreover, it has a refrigeration cycle including the evaporator 2 and the condenser 3, and has switching means from the cold water outlet temperature control to the cold water inlet temperature control.

冷水入口温度制御は、冷水入口温度設定値を定格冷水出口温度以上の任意の値で設定可能とする。   The chilled water inlet temperature control can set the chilled water inlet temperature set value to an arbitrary value equal to or higher than the rated chilled water outlet temperature.

冷水入口温度制御は、冷水入口温度が設定値より高い時は、冷水出口温度一定制御を行い、設定値以下の時に冷水入口温度制御に切替る。   In the cold water inlet temperature control, when the cold water inlet temperature is higher than the set value, the cold water outlet temperature constant control is performed, and when the cold water inlet temperature is lower than the set value, the control is switched to the cold water inlet temperature control.

冷水入口温度制御に切替えた場合、冷却負荷減少時に、冷水出口温度が上昇することで、冷凍機の運転効率が高くなる。   When switching to the cold water inlet temperature control, when the cooling load is reduced, the cold water outlet temperature rises, thereby increasing the operating efficiency of the refrigerator.

冷水入口温度制御に切替えた場合、冷水入口温度が一定となるように、容量制御弁を制御することで、冷水出口温度が上昇し、運転効率が高くなる。   When switching to chilled water inlet temperature control, the chilled water outlet temperature rises and operating efficiency increases by controlling the capacity control valve so that the chilled water inlet temperature is constant.

冷水出口温度が上昇した時に、インバータ駆動ターボ冷凍機の場合、冷水入口温度が一定となるように、圧縮機回転数を冷水出口温度の上昇に応じて低下させることで、消費電力が減少し、運転効率が高くなる。   When the chilled water outlet temperature rises, in the case of an inverter-driven turbo chiller, the power consumption is reduced by reducing the compressor rotation speed according to the rise in the chilled water outlet temperature so that the chilled water inlet temperature is constant. Driving efficiency is increased.

冷水出口温度が上昇した時に、吸収冷凍機の場合、冷水入口温度が一定になるように、再生器の熱入力を低下させることで、入力エネルギーが減少し、運転効率が高くなる。   In the case of an absorption refrigerator, when the cold water outlet temperature rises, by reducing the heat input of the regenerator so that the cold water inlet temperature is constant, the input energy is reduced and the operating efficiency is increased.

本発明の冷凍機によれば、冷水出口温度制御から冷水入口温度制御に切替えることで、冷却負荷減少時に冷水出口温度が上昇し、運転効率を高めることができる。   According to the refrigerator of the present invention, by switching from the cold water outlet temperature control to the cold water inlet temperature control, the cold water outlet temperature is increased when the cooling load is reduced, and the operation efficiency can be improved.

ターボ冷凍機のサイクルを示す系統図。The system diagram which shows the cycle of a turbo refrigerator. 冷水入口温度制御実施時の冷水温度特性図1。FIG. 1 is a chilled water temperature characteristic diagram when chilled water inlet temperature control is performed. 冷水出口温度制御実施時の冷水温度特性図2。FIG. 2 is a cold water temperature characteristic diagram 2 when the cold water outlet temperature control is performed. 冷水出口温度制御実施時の冷水温度特性図。The cold water temperature characteristic figure at the time of cold water outlet temperature control implementation. インバータターボ冷凍機で実施した時の冷却水温度別に冷凍能力に対して、シミュレーションしたCOP特性を示した図。The figure which showed the simulated COP characteristic with respect to the refrigerating capacity according to the cooling water temperature when implemented with an inverter turbo refrigerator. 吸収冷凍機のサイクルを示す系統図。The system diagram which shows the cycle of an absorption refrigerator.

本発明に係るターボ冷凍機の実施形態について図1を用いて説明する。   An embodiment of a turbo refrigerator according to the present invention will be described with reference to FIG.

本発明に係るターボ冷凍機は、圧縮機1、蒸発器2、凝縮器3、減圧装置9を順次接続して構成される冷凍サイクルを備え、圧縮機1で遠心羽根車により冷媒ガスは圧縮されて高温、高圧の冷媒ガスとなって凝縮器3に送られる。高温、高圧の冷媒ガスは、凝縮器3内を流れる冷却水によって凝縮液化し、冷媒液となって減圧装置9を通過して減圧され、蒸発器2に送られる。蒸発器2に送られた冷媒液は蒸発器2内を流れる冷水に加熱されて蒸発器し、冷媒蒸気となって圧縮機1に送られる。冷水系統には、冷水出口温度センサー4、冷水入口温度センサー5を備え、所定の冷水温度となるように、容量制御弁7を制御部8により制御している。   The turbo refrigerator according to the present invention includes a refrigeration cycle configured by sequentially connecting a compressor 1, an evaporator 2, a condenser 3, and a decompression device 9, and refrigerant gas is compressed by the centrifugal impeller in the compressor 1. Thus, the refrigerant gas is sent to the condenser 3 as a high-temperature and high-pressure refrigerant gas. The high-temperature and high-pressure refrigerant gas is condensed and liquefied by the cooling water flowing in the condenser 3, becomes refrigerant liquid, is reduced in pressure through the decompression device 9, and is sent to the evaporator 2. The refrigerant liquid sent to the evaporator 2 is heated by the cold water flowing in the evaporator 2 to evaporate, and is sent to the compressor 1 as refrigerant vapor. The chilled water system includes a chilled water outlet temperature sensor 4 and a chilled water inlet temperature sensor 5, and the capacity control valve 7 is controlled by the control unit 8 so as to reach a predetermined cold water temperature.

また、インバータ駆動ターボ冷凍機の場合は、冷水出口温度センサー4、冷水入口温度センサー5の他に、冷却水入口温度センサー7を備えており、これらの条件からインバータからの周波数指令により、圧縮機1の回転数を制御することでも冷水温度を制御することができる。   In addition, in the case of an inverter driven turbo refrigerator, a cooling water inlet temperature sensor 7 is provided in addition to the cold water outlet temperature sensor 4 and the cold water inlet temperature sensor 5, and the compressor is determined by the frequency command from the inverter based on these conditions. The cold water temperature can also be controlled by controlling the number of revolutions of 1.

以下に実施例1を図2を用いて説明する。   Example 1 will be described below with reference to FIG.

図2は、本発明における冷水入口温度制御実施時の冷却負荷量に対する冷水入口温度と冷水出口温度を示したものである。定格冷水入口温度は12℃、定格冷水出口温度は7℃、最大冷水温度差は5℃、最小冷水温度は1℃、冷水出口温度制御設定値は7℃、冷水入口温度制御設定値は12℃の場合である。冷水入口温度が冷水入口温度制御設定値である12℃以上となる冷却負荷状態時は、冷水出口温度7℃を目標として最大冷水温度差5℃となるようにターボ冷凍機は冷水出口温度制御を行っている。   FIG. 2 shows the cold water inlet temperature and the cold water outlet temperature with respect to the cooling load when the cold water inlet temperature control is performed in the present invention. Rated cold water inlet temperature is 12 ° C, rated cold water outlet temperature is 7 ° C, maximum chilled water temperature difference is 5 ° C, minimum chilled water temperature is 1 ° C, chilled water outlet temperature control set value is 7 ° C, chilled water inlet temperature control set value is 12 ° C This is the case. In the cooling load state where the chilled water inlet temperature is equal to or higher than the chilled water inlet temperature control set value of 12 ° C., the centrifugal chiller performs the chilled water outlet temperature control so that the maximum chilled water temperature difference is 5 ° C. with the target chilled water outlet temperature of 7 ° C. Is going.

冷却負荷が減少し、冷水入口温度が12℃になった時は、最大冷水温度差5℃の冷却能力により冷水出口温度は7℃となり、定格運転状態となる。さらに、冷却負荷が減少すると、冷水入口温度が12℃より低下するので、この場合には冷水入口温度が12℃一定となるように冷水入口温度制御を実施し、冷水出口温度は上昇する。冷却負荷が最小となるのは、最小冷水温度差1℃となった時で、その時の冷水出口温度は11℃まで上昇する。   When the cooling load decreases and the chilled water inlet temperature reaches 12 ° C., the chilled water outlet temperature becomes 7 ° C. due to the cooling capacity with a maximum chilled water temperature difference of 5 ° C., and the rated operation state is achieved. Further, when the cooling load decreases, the cold water inlet temperature falls below 12 ° C. In this case, the cold water inlet temperature control is performed so that the cold water inlet temperature becomes constant at 12 ° C., and the cold water outlet temperature rises. The cooling load is minimized when the minimum chilled water temperature difference is 1 ° C., and the chilled water outlet temperature at that time rises to 11 ° C.

逆に、冷水入口温度制御を行っているこの状態において、冷却負荷が増加していくと、冷水出口温度は低下してやがて7℃に達する。さらに冷水負荷が増加すると、冷水出口温度は7℃まで低下しなくなり冷水入口温度も12℃以上となる。この場合には、冷水出口温度7℃を目標として、最大能力で運転が行われる。   On the contrary, in this state where the cold water inlet temperature control is performed, when the cooling load increases, the cold water outlet temperature decreases and eventually reaches 7 ° C. When the chilled water load further increases, the chilled water outlet temperature does not decrease to 7 ° C, and the chilled water inlet temperature also becomes 12 ° C or higher. In this case, the operation is performed at the maximum capacity with the target of the cold water outlet temperature of 7 ° C.

以下に実施例2を図3を用いて説明する。   A second embodiment will be described below with reference to FIG.

図3は、上記の実施例1に対して、冷水入口温度制御設定値は12℃から10℃に変更した場合である。冷水入口温度が定格冷水入口温度である12℃以上の時は、最大冷水温度差5℃となるようにターボ冷凍機は制御を実施している。   FIG. 3 shows a case where the cold water inlet temperature control set value is changed from 12 ° C. to 10 ° C. with respect to the first embodiment. When the chilled water inlet temperature is equal to or higher than the rated chilled water inlet temperature of 12 ° C., the turbo refrigerator performs control so that the maximum chilled water temperature difference is 5 ° C.

そこから冷却負荷が減少すると、ターボ冷凍機は冷水出口温度制御を実施し、冷水出口温度が7℃一定となるように容量制御を実施する。さらに冷却負荷が減少し、冷水入口温度が冷水入口温度制御設定値10℃より低下した時、冷水出口温度制御から冷水入口温度制御に切替り、冷水入口温度制御設定値10℃一定となるように容量制御を実施する。冷却負荷が最小となるのは、最小冷水温度差1℃となった時で、その時の冷水出口温度は9℃まで上昇する。逆に、冷水入口温度制御を行っているこの状態において、冷却負荷が増加していくと、冷水出口温度は低下してやがて7℃に達する。さらに冷水負荷が増加すると、冷水出口温7℃以下になる。この場合には、冷水出口温度7℃を目標とする冷水出口温度制御が行われる。   When the cooling load is reduced from there, the centrifugal chiller performs cold water outlet temperature control, and performs capacity control so that the cold water outlet temperature is constant at 7 ° C. When the cooling load further decreases and the chilled water inlet temperature falls below the chilled water inlet temperature control set value 10 ° C, the chilled water outlet temperature control is switched to the chilled water inlet temperature control so that the chilled water inlet temperature control set value 10 ° C is constant. Perform capacity control. The cooling load is minimized when the minimum chilled water temperature difference is 1 ° C., and the chilled water outlet temperature at that time rises to 9 ° C. On the contrary, in this state where the cold water inlet temperature control is performed, when the cooling load increases, the cold water outlet temperature decreases and eventually reaches 7 ° C. When the cold water load further increases, the cold water outlet temperature becomes 7 ° C. or lower. In this case, cold water outlet temperature control is performed with the target of the cold water outlet temperature of 7 ° C.

冷水入口温度制御を実施しない、冷水出口温度制御時(図4)について説明する。ターボ冷凍機の条件は、上記実施例1に対して、冷水入口温度制御を実施しない以外は全て同じ場合である。冷水入口温度が定格冷水入口温度である12℃以上の時は、最大冷水温度差5℃となるようにターボ冷凍機は制御を実施している。さらに冷却負荷が減少すると、冷水出口温度が7℃一定となるように容量制御を実施し、最小冷水温度差1℃となった時、冷水入口温度は8℃、冷水出口温度は7℃となる。   The cold water outlet temperature control time (FIG. 4) in which the cold water inlet temperature control is not performed will be described. The conditions of the turbo refrigerator are the same as those in Example 1 except that the cold water inlet temperature control is not performed. When the chilled water inlet temperature is equal to or higher than the rated chilled water inlet temperature of 12 ° C., the turbo refrigerator performs control so that the maximum chilled water temperature difference is 5 ° C. When the cooling load is further reduced, capacity control is performed so that the chilled water outlet temperature becomes constant at 7 ° C. When the minimum chilled water temperature difference is 1 ° C., the chilled water inlet temperature is 8 ° C. and the chilled water outlet temperature is 7 ° C. .

実施例1と冷水出口温度制御時との違いは、冷水入口温度が12℃以下となる冷却負荷となった時、実施例1では冷水入口温度が12℃一定となるよう容量制御を実施するのに対して、冷水出口温度制御時は冷水出口温度が7℃一定になるよう容量制御を実施する違いがある。この結果、実施例1では、冷水入口温度が12℃以下の冷却負荷時は、冷却負荷が減少するほど、冷水出口温度が7℃より上昇する。この結果、最小冷水温度差1℃となった時、冷水出口温度制御時は冷水出口温度が7℃となるのに対して、実施例1では、冷水出口温度は4℃高い11℃となるという違いがある。   The difference between the first embodiment and the cold water outlet temperature control is that the capacity control is performed so that the cold water inlet temperature is constant at 12 ° C. in the first embodiment when the cooling water inlet temperature becomes 12 ° C. or lower. On the other hand, at the time of controlling the chilled water outlet temperature, there is a difference that the capacity control is performed so that the chilled water outlet temperature is constant at 7 ° C. As a result, in Example 1, when the cooling water inlet temperature is 12 ° C. or lower, the cold water outlet temperature rises from 7 ° C. as the cooling load decreases. As a result, when the minimum chilled water temperature difference is 1 ° C., the chilled water outlet temperature is 7 ° C. during the chilled water outlet temperature control, whereas in Example 1, the chilled water outlet temperature is 11 ° C. higher by 4 ° C. There is a difference.

実施例1と冷水出口温度制御時の運転効率の違いについて説明する。ターボ冷凍機の消費電力の大部分は、圧縮機1の必要動力分加えられる。圧縮機必要動力は、圧縮機1にかかる圧力比と冷媒循環量に影響され、圧力比が高いほど、また冷媒循環量多いほど必要動力は増加する。また、運転効率は、単位冷媒循環量あたりの消費電力で決まるため、圧力比が低いほど必要動力が低下し、運転効率は向上する。   A difference in operation efficiency between the first embodiment and the cold water outlet temperature control will be described. Most of the power consumption of the turbo chiller is added to the required power of the compressor 1. The required power of the compressor is affected by the pressure ratio applied to the compressor 1 and the amount of refrigerant circulation, and the required power increases as the pressure ratio increases and the amount of refrigerant circulation increases. In addition, since the operating efficiency is determined by the power consumption per unit refrigerant circulation rate, the lower the pressure ratio, the lower the required power and the higher the operating efficiency.

圧縮機1にかかる圧力比は、蒸発器2内の蒸発圧力と凝縮器3内の凝縮圧力によって決まる値である。この蒸発圧力と凝縮圧力は、冷水出口温度と冷却水出口温度の影響を大きく受ける。よって、冷水出口温度が高いほど、蒸発圧力が上昇する。その結果、圧力比が低下することで、運転効率は向上する。この結果、同じ冷水温度差、つまり同じ冷却負荷量において、冷水出口温度が高いほど運転効率が向上することになる。   The pressure ratio applied to the compressor 1 is a value determined by the evaporation pressure in the evaporator 2 and the condensation pressure in the condenser 3. The evaporation pressure and the condensation pressure are greatly affected by the cold water outlet temperature and the cooling water outlet temperature. Therefore, the higher the cold water outlet temperature, the higher the evaporation pressure. As a result, the operating efficiency is improved by reducing the pressure ratio. As a result, in the same chilled water temperature difference, that is, in the same cooling load amount, the higher the chilled water outlet temperature, the better the operation efficiency.

圧縮機回転数が一定のターボ冷凍機の場合、制御上は容量制御弁が同じ開度の場合、冷水出口温度が高いほど冷却能力が増大するので、同じ冷却負荷では、冷水出口温度が高いほど、容量制御弁7の開度は小さくなり、消費電力は低下する。   In the case of a turbo chiller with a constant compressor speed, if the capacity control valve has the same opening for control, the higher the chilled water outlet temperature, the greater the cooling capacity, so at the same cooling load, the higher the chilled water outlet temperature, The opening degree of the capacity control valve 7 is reduced and the power consumption is reduced.

一方、インバータ駆動ターボ冷凍機の場合、冷水出口温度が上昇し、その結果圧力が低下した時に、インバータにより圧縮機1の回転数を低下させることが可能となる。圧縮機の回転数低下による消費電力の減少は、容量制御弁7の開度を小さくする場合と比較し大きく、本発明の効果は大きくなる。   On the other hand, in the case of an inverter-driven turbo chiller, when the cold water outlet temperature rises and as a result the pressure drops, the inverter can reduce the rotational speed of the compressor 1. The reduction in power consumption due to the reduction in the rotational speed of the compressor is greater than in the case where the opening degree of the capacity control valve 7 is reduced, and the effect of the present invention is increased.

インバータ駆動ターボ冷凍機において、冷水入口温度制御時(実施例1)と冷水出口温度制御時の、冷却水温度別に冷凍能力に対してシミュレーションした運転効率(COP)を図5に示す。図5の横軸は冷凍能力(%)、縦軸がCOPであり、冷水入口制御(太い線)と冷水出口温度制御(細い線)時それぞれのCOPを示している。冷水入口温度制御を実施することで、冷凍能力が低くなるに従い、冷水出口温度制御時よりCOPが向上することが分かる。   FIG. 5 shows the operating efficiency (COP) simulated for the refrigeration capacity for each cooling water temperature in the inverter-driven turbo chiller at the time of cold water inlet temperature control (Example 1) and at the time of cold water outlet temperature control. The horizontal axis in FIG. 5 is the refrigeration capacity (%), and the vertical axis is the COP, which shows the COP at the time of cold water inlet control (thick line) and cold water outlet temperature control (thin line). It can be seen that by performing the cold water inlet temperature control, the COP is improved as compared with the cold water outlet temperature control as the refrigeration capacity decreases.

本発明に係る吸収冷凍機の実施形態について図6を用いて説明する。   An embodiment of an absorption refrigerator according to the present invention will be described with reference to FIG.

本発明に係る吸収冷凍機は、高温再生器10、低温再生器40、吸収器50、蒸発器2、凝縮器3を接続して構成される吸収冷凍サイクルを備え、高温再生器10で加熱源11により溶液が加熱されて沸騰し、発生した冷媒蒸気が低温再生器40に送られる。低温再生器40に送られた冷媒蒸気は伝熱管41を通過するうちに管外を流下する溶液を加熱し、冷媒蒸気自身は冷却されて凝縮し、絞り42を通過して凝縮器に送られる。低温再生器40の伝熱管41の管外には溶液散布装置43からの溶液が流下しており、伝熱管41内を流れる冷媒蒸気に加熱されて沸騰蒸発し、冷媒蒸気を発生する。発生した冷媒蒸気は凝縮器3に送られ、伝熱管31内を流れる冷却水に冷却されて凝縮液化して冷媒液となり、低温再生器40の伝熱管41から絞り42を通過して送られてきた冷媒液とともに、Uシール配管29を通過して減圧し、蒸発器2に送られる。蒸発器2に送られた冷媒液は、一旦蒸発器2の下部に貯められて、冷媒散布ポンプ71により、フロート弁26を通過して冷媒散布装置25に送られる。冷媒散布装置25から散布された冷媒液は伝熱管21の管外を流下する時に管内を流れる冷水を冷却し、冷媒液自身は加熱されて蒸発し、冷媒蒸気となって吸収器50に送られる。吸収器50内には高温再生器10および低温再生器40で加熱されて冷媒蒸気を発生し濃縮された溶液が送られてきており、溶液散布装置55から散布されている。溶液散布装置55から散布された濃溶液は、伝熱管51の管外を流下する間に蒸発器2からの冷媒蒸気を吸収し、吸収熱を伝熱管51内を流れる冷却水に放熱する。冷媒蒸気を吸収して濃度が薄くなった希溶液は、吸収器50の下部に一旦溜められた後溶液循環ポンプ72で低温溶液熱交換器61に送られ、高温再生器10および低温再生器40から送られてきた高温、高濃度の溶液と熱交換し、温度上昇したあと2つに分岐して、一方は低温再生器40の溶液散布装置43に送られて低温再生器40内の伝熱管41の管外に散布される。他方は高温溶液熱交換器62に送られて、高温再生器10から送られてきた高温、高濃度の溶液と熱交換し、温度上昇したあと高温再生器10に流入し、加熱源11に加熱されて沸騰する。加熱源11に加熱されて冷媒蒸気を発生して高温高濃度となった濃溶液は、高温用液熱交換器に送られて吸収器50からの希溶液と熱交換し、温度を低下させる。一方、低温再生器40の溶液散布装置43に送られた希溶液は、低温再生器40内の伝熱管41の管外で高温再生器10からの冷媒蒸気に加熱されて冷媒蒸気を発生して濃溶液となった後、低温再生器40から流出して高温溶液熱交換器からの濃溶液と合流し、溶液散布ポンプ73に送られる。溶液散布ポンプ73から吐出された濃溶液は、低温溶液熱交換器61に送られて吸収器50からの希溶液と熱交換し、温度を低下させたあと吸収器50の溶液散布装置55に送られて、伝熱管51の管外に散布される。   The absorption refrigerator according to the present invention includes an absorption refrigeration cycle configured by connecting a high temperature regenerator 10, a low temperature regenerator 40, an absorber 50, an evaporator 2, and a condenser 3. 11, the solution is heated and boiled, and the generated refrigerant vapor is sent to the low-temperature regenerator 40. The refrigerant vapor sent to the low-temperature regenerator 40 heats the solution flowing down outside the pipe while passing through the heat transfer pipe 41, and the refrigerant vapor itself is cooled and condensed, and passes through the throttle 42 and sent to the condenser. . The solution from the solution spraying device 43 flows outside the heat transfer tube 41 of the low-temperature regenerator 40, and is heated by the refrigerant vapor flowing in the heat transfer tube 41 to evaporate to generate refrigerant vapor. The generated refrigerant vapor is sent to the condenser 3, cooled by the cooling water flowing in the heat transfer pipe 31, condensed into a refrigerant liquid, and sent from the heat transfer pipe 41 of the low temperature regenerator 40 through the throttle 42. Together with the refrigerant liquid, the pressure is reduced through the U-seal pipe 29 and sent to the evaporator 2. The refrigerant liquid sent to the evaporator 2 is temporarily stored in the lower part of the evaporator 2, and is sent to the refrigerant spraying device 25 through the float valve 26 by the refrigerant spraying pump 71. The refrigerant liquid sprayed from the refrigerant spraying device 25 cools the cold water flowing through the pipe when flowing down the heat transfer pipe 21, and the refrigerant liquid itself is heated and evaporated to be sent to the absorber 50 as refrigerant vapor. . In the absorber 50, a concentrated solution that is heated by the high-temperature regenerator 10 and the low-temperature regenerator 40 to generate refrigerant vapor is sent and dispersed from the solution spraying device 55. The concentrated solution sprayed from the solution spraying device 55 absorbs the refrigerant vapor from the evaporator 2 while flowing down the heat transfer tube 51, and dissipates the absorbed heat to the cooling water flowing in the heat transfer tube 51. The dilute solution whose concentration has been reduced by absorbing the refrigerant vapor is once stored in the lower part of the absorber 50 and then sent to the low-temperature solution heat exchanger 61 by the solution circulation pump 72, and the high-temperature regenerator 10 and the low-temperature regenerator 40. Heat exchange with the high-temperature and high-concentration solution sent from the air, and after the temperature rises, it branches into two, one of which is sent to the solution spraying device 43 of the low-temperature regenerator 40 and the heat transfer tube in the low-temperature regenerator 40 41 is sprayed outside the tube. The other is sent to the high-temperature solution heat exchanger 62 and exchanges heat with the high-temperature and high-concentration solution sent from the high-temperature regenerator 10. After the temperature rises, it flows into the high-temperature regenerator 10 and is heated by the heating source 11. Has been boiling. The concentrated solution heated to the heating source 11 to generate refrigerant vapor and having a high temperature and high concentration is sent to a high-temperature liquid heat exchanger to exchange heat with the dilute solution from the absorber 50, thereby lowering the temperature. On the other hand, the dilute solution sent to the solution spraying device 43 of the low temperature regenerator 40 is heated by the refrigerant vapor from the high temperature regenerator 10 outside the heat transfer tube 41 in the low temperature regenerator 40 to generate refrigerant vapor. After becoming a concentrated solution, it flows out from the low temperature regenerator 40, joins with the concentrated solution from the high temperature solution heat exchanger, and is sent to the solution spray pump 73. The concentrated solution discharged from the solution spray pump 73 is sent to the low-temperature solution heat exchanger 61 to exchange heat with the dilute solution from the absorber 50. After the temperature is lowered, the concentrated solution is sent to the solution spray device 55 of the absorber 50. And sprayed outside the heat transfer tube 51.

冷水系統には、冷水出口温度センサー4、冷水入口温度センサー5を備え、所定の冷水温度となるように、制御部8により加熱源11の熱入力を制御している。   The chilled water system includes a chilled water outlet temperature sensor 4 and a chilled water inlet temperature sensor 5, and the heat input of the heating source 11 is controlled by the control unit 8 so as to reach a predetermined cold water temperature.

図6の吸収冷凍機を用いて冷水入口温度制御を実施したときの冷水入口温度と冷水出口温度の関係は、実施例1の図2および実施例2の図3と同様になる。すなわち、定格入口冷水温度12℃、定格冷水出口温度7℃、冷水温度制御設定値5℃、最小冷水温度差1℃、冷水出口温度制御設定値7℃、冷水入口温度制御設定値12℃の場合の実施例3では、冷水入口温度と冷水出口温度の関係は図2のようになる。その時の制御の動きは実施例1の場合と同様である。   The relationship between the cold water inlet temperature and the cold water outlet temperature when the cold water inlet temperature control is performed using the absorption refrigerator of FIG. 6 is the same as that in FIG. 2 of the first embodiment and FIG. 3 of the second embodiment. That is, in case of rated inlet chilled water temperature 12 ° C, rated chilled water outlet temperature 7 ° C, chilled water temperature control set value 5 ° C, minimum chilled water temperature difference 1 ° C, chilled water outlet temperature control set value 7 ° C, chilled water inlet temperature control set value 12 ° C In Example 3, the relationship between the cold water inlet temperature and the cold water outlet temperature is as shown in FIG. The control movement at that time is the same as in the first embodiment.

また、上記の実施例3に対して、冷水入口温度制御設定値を12℃から10℃に変更した場合の実施例4では、冷水入口温度と冷水出口温度の関係は図3のようになる。その時の制御の動きは実施例2の場合と同様である。   Further, in Example 4 in which the chilled water inlet temperature control set value is changed from 12 ° C. to 10 ° C., the relationship between the chilled water inlet temperature and the chilled water outlet temperature is as shown in FIG. The control movement at that time is the same as in the second embodiment.

図6の吸収冷凍機において、冷水入口温度制御を実施せず冷水出口温度制御を行う場合についても、ターボ冷凍機の場合と同様に冷水入口温度と冷水出口温度の関係は図4のようになり、制御の動きも同様である。   In the absorption chiller of FIG. 6, when the chilled water inlet temperature control is not performed and the chilled water outlet temperature control is performed, the relationship between the chilled water inlet temperature and the chilled water outlet temperature is as shown in FIG. The control movement is the same.

実施例3および実施例4において、冷水入口温度が所定の値以下となった場合には、冷水出口温度は7℃より高くなり、蒸発圧力および温度が高くなるのでサイクル全体の濃度が低下し、再生器の温度、圧力が低下するので熱損失を低減することができるとともに、溶液循環量も減少するので高温再生器での加熱量を低減することができ、吸収冷凍サイクルの運転効率を向上できるという効果がある。   In Example 3 and Example 4, when the chilled water inlet temperature is below a predetermined value, the chilled water outlet temperature is higher than 7 ° C., and the evaporation pressure and temperature are increased, so the concentration of the entire cycle is reduced. Since the temperature and pressure of the regenerator are reduced, heat loss can be reduced, and the amount of solution circulation is also reduced, so that the amount of heating in the high-temperature regenerator can be reduced and the operating efficiency of the absorption refrigeration cycle can be improved. There is an effect.

以上の実施例において、冷水入口温度制御は、冷水入口温度制御設定値を与えて冷水入口温度がその設定値と一致するように制御するものであるが、冷水入口温度制御設定値と冷水入口温度の偏差、すなわち(冷水入口温度設定値−冷水入口温度)を制御サイクル毎に冷水出口温度制御設定値に加算して新たな冷水出口温度制御設定値とし、この値を目標値として冷水出口温度制御を実施することにより同様の効果を得ることができる。   In the above embodiment, the chilled water inlet temperature control is to control the chilled water inlet temperature control set value and the chilled water inlet temperature by giving the chilled water inlet temperature control set value and controlling the chilled water inlet temperature to match the set value. Deviation, that is, (chilled water inlet temperature set value-chilled water inlet temperature) is added to the chilled water outlet temperature control set value for each control cycle to obtain a new chilled water outlet temperature control set value. The same effect can be obtained by performing the above.

以上の実施例においては、冷水入口温度あるいは冷水出口温度がそれぞれ冷水入口温度の設定値あるいは冷水出口温度の設定値より低下したり、上昇したりした場合に、出口温度制御モードと入口温度制御モードを切り替えるようにしているが、これらの設定値にヒステリシスを設けて、冷水入口温度設定値Tsi−Δtより冷水入口温度が低下した時に冷水出口温度制御モードから冷水入口温度制御モードへ切替え、冷水出口温度設定値Tso−Δtより冷水出口温度が低下した時に冷水入口温度制御から冷水出口温度制御に切替えるようにすることにより、安定した制御および制御モードの切換えを行うことができる。   In the above embodiment, when the chilled water inlet temperature or the chilled water outlet temperature is lowered or increased from the set value of the chilled water inlet temperature or the set value of the chilled water outlet temperature, respectively, the outlet temperature control mode and the inlet temperature control mode are set. However, when the chilled water inlet temperature falls below the chilled water inlet temperature set value Tsi-Δt, the chilled water outlet temperature control mode is switched to the chilled water inlet temperature control mode, By switching from the chilled water inlet temperature control to the chilled water outlet temperature control when the chilled water outlet temperature is lower than the temperature set value Tso-Δt, stable control and switching of the control mode can be performed.

以上の実施例においては、冷水入口温度を基準に冷水入口温度制御から冷水出口温度制御への切替を実施し、冷水出口温度を基準に冷水入口温度制御から冷水出口温度制御への切り替えを実施しているが、冷凍サイクルおよび冷凍機の他の状態量を入力として運転負荷の状態を推定し、この推定値を基に制御の切替を行うことも可能である。   In the above embodiment, switching from cold water inlet temperature control to cold water outlet temperature control is performed based on the cold water inlet temperature, and switching from cold water inlet temperature control to cold water outlet temperature control is performed based on the cold water outlet temperature. However, it is also possible to estimate the operating load state using other state quantities of the refrigeration cycle and the refrigerator as inputs, and to switch control based on this estimated value.

すなわち、冷水入口温度と冷水出口温度の差から冷水負荷を推定し、負荷量が所定の値より低くなったときに冷水入口温度制御を行い、負荷量が所定の値より高くなったときに冷水出口温度制御を行うと良い。この場合には、冷水入口温度と冷水出口温度の両方を用いて冷水負荷を推定しているので、冷水入口温度のみを用いた制御に比べて冷水負荷量の推定がより性格になるという利点がある。   That is, the chilled water load is estimated from the difference between the chilled water inlet temperature and the chilled water outlet temperature, the chilled water inlet temperature control is performed when the load amount becomes lower than a predetermined value, and the chilled water load is controlled when the load amount becomes higher than the predetermined value. It is good to control the outlet temperature. In this case, since the chilled water load is estimated using both the chilled water inlet temperature and the chilled water outlet temperature, there is an advantage that the estimation of the chilled water load becomes more personal than the control using only the chilled water inlet temperature. is there.

あるいは、冷凍機を空調用に用いる場合には、冷却水温度が低い時には空調負荷が小さく除湿負荷も小さくなると推定されるので、冷却水温度があらかじめ設定した温度以下の場合に冷水入口温度制御を実施するようにしても良い。この場合には、空調の快適性を損なうことなく、効率の良い冷凍機の運転を行うことができ、省エネルギーを図ることができるという効果もある。   Alternatively, when the refrigerator is used for air conditioning, it is estimated that when the cooling water temperature is low, the air conditioning load is small and the dehumidification load is also small, so the cooling water inlet temperature control is performed when the cooling water temperature is lower than the preset temperature. You may make it implement. In this case, it is possible to operate the refrigerator efficiently without impairing the comfort of air conditioning, and there is also an effect that energy saving can be achieved.

また、冷凍機の各部の温度、圧力やターボ冷凍機では圧縮機の回転数、吸収冷凍機では加熱源の加熱量の情報から冷凍機の負荷を推定することも可能である。この推定値を用いて切替制御を行っても良い。   In addition, it is possible to estimate the load of the refrigerator from the information on the temperature and pressure of each part of the refrigerator, the rotation speed of the compressor in the turbo refrigerator, and the heating amount of the heating source in the absorption refrigerator. Switching control may be performed using this estimated value.

さらに、冷水入口温度制御と冷水出口温度制御の切替スイッチを設けて、冷凍機の運転者が制御方式を切り換えることができるようにしても良い。この場合には、制御回路および制御ロジックが簡素化できるというメリットがある。   Furthermore, a changeover switch between the cold water inlet temperature control and the cold water outlet temperature control may be provided so that the operator of the refrigerator can switch the control method. In this case, there is an advantage that the control circuit and the control logic can be simplified.

以上、本発明の冷凍機は、冷媒を凝縮させる凝縮器と、減圧装置と、冷媒を蒸発させる蒸発器とを含んで構成される冷凍サイクルと、蒸発器に冷水を流入させて冷媒と熱交換させた後に流出させる冷水系統とを備え、目標冷水出口温度に基づいて冷凍サイクルを制御する冷水出口温度制御モードと、目標冷水入口温度に基づいて冷凍サイクルを制御する冷水入口温度制御モードと、を備える。また、目標冷水入口温度を定格冷水出口温度以上の任意の値で設定可能とする。また、冷水入口温度が所定の設定値より高い時は、冷水出口温度制御モードで運転し、所定の設定値以下の時は、冷水入口温度制御モードで運転する。また、冷水出口温度が目標冷水出口温度より低下した時に、冷水入口温度制御モードから冷水出口温度制御モードへ切り替える。また、冷凍サイクルは、圧縮機と圧縮機から吐出された冷媒を凝縮させる凝縮器と、減圧装置と、理恵倍を蒸発させる蒸発器とを順次接続して構成された圧縮式冷凍サイクルであり、圧縮機より上流側に配置される容量制御弁を備え、冷水入口温度制御モードでは、冷水入口温度が一定となるように容量制御弁を制御する。また、冷凍サイクルは、圧縮機と圧縮機から吐出された冷媒を凝縮させる凝縮器と、減圧装置と、理恵倍を蒸発させる蒸発器とを順次接続して構成された圧縮式冷凍サイクルであり、圧縮機は、インバータ駆動されるインバータ圧縮機であり、冷水入口温度が一定となるように、圧縮機の回転数を冷水出口温度の上昇に応じて低下させる。また、冷凍サイクルは、高温再生器と低温再生器と吸収器と凝縮器と減圧装置と蒸発器を接続して構成される吸収冷凍サイクルであり、高温再生器には加熱源を備え、入口温度制御モードでは冷水温度が一定になるように加熱源の入熱量を制御する。   As described above, the refrigerator of the present invention includes a refrigeration cycle including a condenser for condensing refrigerant, a decompression device, and an evaporator for evaporating the refrigerant, and heat exchange with the refrigerant by flowing cold water into the evaporator. A cold water outlet temperature control mode for controlling the refrigeration cycle based on the target chilled water outlet temperature, and a chilled water inlet temperature control mode for controlling the refrigeration cycle based on the target chilled water inlet temperature. Prepare. In addition, the target cold water inlet temperature can be set to an arbitrary value equal to or higher than the rated cold water outlet temperature. When the chilled water inlet temperature is higher than a predetermined set value, the chilled water outlet temperature control mode is operated. When the chilled water inlet temperature is lower than the predetermined set value, the chilled water inlet temperature control mode is operated. When the chilled water outlet temperature falls below the target chilled water outlet temperature, the chilled water inlet temperature control mode is switched to the chilled water outlet temperature control mode. The refrigeration cycle is a compression refrigeration cycle configured by sequentially connecting a compressor and a condenser that condenses the refrigerant discharged from the compressor, a decompression device, and an evaporator that evaporates Rie times. A capacity control valve disposed upstream of the compressor is provided, and in the cold water inlet temperature control mode, the capacity control valve is controlled so that the cold water inlet temperature is constant. The refrigeration cycle is a compression refrigeration cycle configured by sequentially connecting a compressor and a condenser that condenses the refrigerant discharged from the compressor, a decompression device, and an evaporator that evaporates Rie times. The compressor is an inverter compressor that is driven by an inverter, and reduces the rotation speed of the compressor in accordance with an increase in the chilled water outlet temperature so that the chilled water inlet temperature becomes constant. The refrigeration cycle is an absorption refrigeration cycle configured by connecting a high-temperature regenerator, a low-temperature regenerator, an absorber, a condenser, a decompression device, and an evaporator. The high-temperature regenerator includes a heating source and an inlet temperature. In the control mode, the heat input amount of the heating source is controlled so that the cold water temperature becomes constant.

1 圧縮機
2 蒸発器
3 凝縮器
4 冷水出口温度センサー
5 冷水入口温度センサー
6 冷却水入口温度センサー
7 容量制御弁
8 制御部
9 減圧装置
10 高温再生器
11 加熱源
21、31、41、51 伝熱管
25 冷媒散布装置
26 フロート弁
29 Uシール配管
40 低温再生器
42 絞り
43、55 溶液散布装置
50 吸収器
61 低温溶液熱交換器
62 高温用液熱交換器
71 冷媒散布ポンプ
72 溶液循環ポンプ
73 溶液散布ポンプ
DESCRIPTION OF SYMBOLS 1 Compressor 2 Evaporator 3 Condenser 4 Chilled water outlet temperature sensor 5 Chilled water inlet temperature sensor 6 Chilled water inlet temperature sensor 7 Capacity control valve 8 Control part 9 Depressurizer 10 High temperature regenerator 11 Heating source 21, 31, 41, 51 Transmission Heat pipe 25 Refrigerant spray device 26 Float valve 29 U seal pipe 40 Low temperature regenerator 42 Restriction 43, 55 Solution spray device 50 Absorber 61 Low temperature solution heat exchanger 62 High temperature liquid heat exchanger 71 Refrigerant spray pump 72 Solution circulation pump 73 Solution Spray pump

Claims (7)

冷媒を凝縮させる凝縮器と、減圧装置と、冷媒を蒸発させる蒸発器とを含んで構成される冷凍サイクルと、蒸発器に冷水を流入させて冷媒と熱交換させた後に流出させる冷水系統とを備え、
目標冷水出口温度に基づいて冷凍サイクルを制御する冷水出口温度制御モードと、目標冷水入口温度に基づいて冷凍サイクルを制御する冷水入口温度制御モードと、を備えた冷凍機。
A refrigeration cycle including a condenser for condensing refrigerant, a decompression device, and an evaporator for evaporating the refrigerant, and a chilled water system for flowing out chilled water through the evaporator and exchanging heat with the refrigerant and then flowing out Prepared,
A refrigerator comprising: a chilled water outlet temperature control mode for controlling a refrigeration cycle based on a target chilled water outlet temperature; and a chilled water inlet temperature control mode for controlling a refrigeration cycle based on a target chilled water inlet temperature.
前記目標冷水入口温度を定格冷水出口温度以上の任意の値で設定可能とする請求項1に記載の冷凍機。   The refrigerator according to claim 1, wherein the target cold water inlet temperature can be set to an arbitrary value equal to or higher than a rated cold water outlet temperature. 冷水入口温度が所定の設定値より高い時は、前記冷水出口温度制御モードで運転し、前記所定の設定値以下の時は、前記冷水入口温度制御モードで運転する請求項1に記載の冷凍機。   2. The refrigerator according to claim 1, wherein when the chilled water inlet temperature is higher than a predetermined set value, the refrigerator is operated in the chilled water outlet temperature control mode, and when the chilled water inlet temperature is lower than the predetermined set value, the chiller is operated in the chilled water inlet temperature control mode. . 冷水出口温度が前記目標冷水出口温度より低下した時に、冷水入口温度制御モードから冷水出口温度制御モードへ切り替える請求項1に記載の冷凍機。   The refrigerator according to claim 1, wherein when the chilled water outlet temperature is lower than the target chilled water outlet temperature, the chilled water inlet temperature control mode is switched to the chilled water outlet temperature control mode. 前記冷凍サイクルは、圧縮機と前記圧縮機から吐出された冷媒を凝縮させる前記凝縮器と、減圧装置と、理恵倍を蒸発させる蒸発器とを順次接続して構成された圧縮式冷凍サイクルであり、
前記圧縮機より上流側に配置される容量制御弁を備え、
前記冷水入口温度制御モードでは、冷水入口温度が一定となるように前記容量制御弁を制御する請求項1に記載の冷凍機。
The refrigeration cycle is a compression refrigeration cycle configured by sequentially connecting a compressor, the condenser for condensing refrigerant discharged from the compressor, a decompression device, and an evaporator for evaporating Rie times. ,
A displacement control valve disposed upstream of the compressor;
The refrigerator according to claim 1, wherein in the cold water inlet temperature control mode, the capacity control valve is controlled so that a cold water inlet temperature is constant.
前記冷凍サイクルは、圧縮機と前記圧縮機から吐出された冷媒を凝縮させる前記凝縮器と、減圧装置と、理恵倍を蒸発させる蒸発器とを順次接続して構成された圧縮式冷凍サイクルであり、
前記圧縮機は、インバータ駆動されるインバータ圧縮機であり、
冷水入口温度が一定となるように、圧縮機の回転数を冷水出口温度の上昇に応じて低下させる請求項1に記載の冷凍機。
The refrigeration cycle is a compression refrigeration cycle configured by sequentially connecting a compressor, the condenser for condensing refrigerant discharged from the compressor, a decompression device, and an evaporator for evaporating Rie times. ,
The compressor is an inverter-driven inverter compressor;
The refrigerator according to claim 1, wherein the number of rotations of the compressor is decreased according to an increase in the temperature of the cold water outlet so that the temperature of the cold water inlet is constant.
前記冷凍サイクルは、高温再生器と低温再生器と吸収器と前記凝縮器と前記減圧装置と前記蒸発器を接続して構成される吸収冷凍サイクルであり、
前記高温再生器には加熱源を備え、前記入口温度制御モードでは冷水温度が一定になるように前記加熱源の入熱量を制御する請求項1に記載の冷凍機。
The refrigeration cycle is an absorption refrigeration cycle configured by connecting a high temperature regenerator, a low temperature regenerator, an absorber, the condenser, the pressure reducing device, and the evaporator,
The refrigerator according to claim 1, wherein the high-temperature regenerator includes a heating source, and the heat input amount of the heating source is controlled so that a cold water temperature is constant in the inlet temperature control mode.
JP2012022642A 2012-02-06 2012-02-06 Refrigerator Pending JP2013160441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012022642A JP2013160441A (en) 2012-02-06 2012-02-06 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012022642A JP2013160441A (en) 2012-02-06 2012-02-06 Refrigerator

Publications (1)

Publication Number Publication Date
JP2013160441A true JP2013160441A (en) 2013-08-19

Family

ID=49172837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012022642A Pending JP2013160441A (en) 2012-02-06 2012-02-06 Refrigerator

Country Status (1)

Country Link
JP (1) JP2013160441A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021131175A (en) * 2020-02-19 2021-09-09 オリオン機械株式会社 Free cooling chiller and operation method therefor

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5781370U (en) * 1980-11-06 1982-05-19
JPS57192759A (en) * 1981-05-22 1982-11-26 Mitsubishi Heavy Ind Ltd Controller for refrigerator
JPS60207858A (en) * 1984-04-02 1985-10-19 株式会社日立製作所 Method of controlling capacity of turbo-refrigerator
JPH04254163A (en) * 1991-02-01 1992-09-09 Hitachi Ltd Absorption type refrigerator and control method thereof
JPH11118282A (en) * 1997-10-16 1999-04-30 Hitachi Ltd Cold/hot water supply device
JP2000310452A (en) * 1999-04-27 2000-11-07 Hitachi Ltd Turbo refrigerator
JP3354896B2 (en) * 1999-03-30 2002-12-09 ダイダン株式会社 Cooling water variable flow control device
JP2005257221A (en) * 2004-03-15 2005-09-22 Toyo Netsu Kogyo Kk Cooling water control method of refrigerator
JP2009204262A (en) * 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd Turbo refrigerating machine, heat source system and their control method
JP2009204222A (en) * 2008-02-27 2009-09-10 Mitsubishi Heavy Ind Ltd Turbo refrigerator, refrigerating system and their control method
JP2011038711A (en) * 2009-08-12 2011-02-24 Hitachi Appliances Inc Turbo refrigerator
JP2011163601A (en) * 2010-02-05 2011-08-25 Hitachi Appliances Inc Absorption type heat pump device
JP2013160440A (en) * 2012-02-06 2013-08-19 Hitachi Appliances Inc Turbo refrigerator

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5781370U (en) * 1980-11-06 1982-05-19
JPS57192759A (en) * 1981-05-22 1982-11-26 Mitsubishi Heavy Ind Ltd Controller for refrigerator
JPS60207858A (en) * 1984-04-02 1985-10-19 株式会社日立製作所 Method of controlling capacity of turbo-refrigerator
JPH04254163A (en) * 1991-02-01 1992-09-09 Hitachi Ltd Absorption type refrigerator and control method thereof
JPH11118282A (en) * 1997-10-16 1999-04-30 Hitachi Ltd Cold/hot water supply device
JP3354896B2 (en) * 1999-03-30 2002-12-09 ダイダン株式会社 Cooling water variable flow control device
JP2000310452A (en) * 1999-04-27 2000-11-07 Hitachi Ltd Turbo refrigerator
JP2005257221A (en) * 2004-03-15 2005-09-22 Toyo Netsu Kogyo Kk Cooling water control method of refrigerator
JP2009204222A (en) * 2008-02-27 2009-09-10 Mitsubishi Heavy Ind Ltd Turbo refrigerator, refrigerating system and their control method
JP2009204262A (en) * 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd Turbo refrigerating machine, heat source system and their control method
JP2011038711A (en) * 2009-08-12 2011-02-24 Hitachi Appliances Inc Turbo refrigerator
JP2011163601A (en) * 2010-02-05 2011-08-25 Hitachi Appliances Inc Absorption type heat pump device
JP2013160440A (en) * 2012-02-06 2013-08-19 Hitachi Appliances Inc Turbo refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021131175A (en) * 2020-02-19 2021-09-09 オリオン機械株式会社 Free cooling chiller and operation method therefor
JP7205916B2 (en) 2020-02-19 2023-01-17 オリオン機械株式会社 Free cooling chiller and its operation method

Similar Documents

Publication Publication Date Title
CN108332285B (en) Air conditioner system
JP2018115773A (en) Refrigeration cycle device
CN104374117A (en) Water chilling unit and control method
JP4167190B2 (en) Refrigeration system and operation method thereof
JP2011017455A (en) Turbo refrigerator
CN108302839A (en) Air-conditioner system
CN105627625A (en) Hybrid heating process of heat pump and hot water heating combined system
CN105758045A (en) Ultralow-temperature overlapped triple generation heat pump unit
JP5971964B2 (en) Turbo refrigerator
WO2019128517A1 (en) Air-conditioner system
JP2013160441A (en) Refrigerator
JP5098547B2 (en) Absorption refrigeration system
JP2008175430A (en) Air conditioner
JP2010078298A (en) Absorption refrigerator
CN102589204B (en) Refrigeration circulating system with separated heat pipe loop coupled with evaporator
JP3443100B2 (en) Absorption refrigerator and method of operating the same
JP6613404B2 (en) Refrigeration system
JP2003004330A (en) Exhaust heat recovery air conditioner
JP6455752B2 (en) Refrigeration system
KR20180085363A (en) Low load control system for 2-stage low temperature hot water absorption chiller
WO2022211078A1 (en) Refrigeration cycle device
JP2022044138A (en) Absorption type refrigeration system and absorption type refrigerator
JP6347427B2 (en) Refrigeration system
CN205119548U (en) Evaporation -condensation integration unit
CN115839566A (en) Multi-mode four-pipe air source heat pump unit and operation control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150123

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150820

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150902

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160315

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160404