JP2007183030A - Connected type water cooler-heater, and its operating method - Google Patents

Connected type water cooler-heater, and its operating method Download PDF

Info

Publication number
JP2007183030A
JP2007183030A JP2006000724A JP2006000724A JP2007183030A JP 2007183030 A JP2007183030 A JP 2007183030A JP 2006000724 A JP2006000724 A JP 2006000724A JP 2006000724 A JP2006000724 A JP 2006000724A JP 2007183030 A JP2007183030 A JP 2007183030A
Authority
JP
Japan
Prior art keywords
heater
chiller
chilled water
driven
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006000724A
Other languages
Japanese (ja)
Other versions
JP4707562B2 (en
Inventor
Tadatsuyo Kimura
忠剛 木村
Yasuo Ikezaki
安雄 池崎
Yukio Nakazato
幸雄 中里
Katsuhiro Kubo
勝弘 久保
Kazuhiro Kitamura
和浩 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Ebara Refrigeration Equipment and Systems Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Ebara Refrigeration Equipment and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Ebara Refrigeration Equipment and Systems Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2006000724A priority Critical patent/JP4707562B2/en
Publication of JP2007183030A publication Critical patent/JP2007183030A/en
Application granted granted Critical
Publication of JP4707562B2 publication Critical patent/JP4707562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connected type water cooler-heater, and its operating method reducing an initial cost of a whole of the connected type water cooler-heater, and capable of carrying out highly efficient (COP) operation in response to a load by composing water cooler-heaters of the connected type water cooler-heater by at least one commercial power source driven water cooler-heater, and at least one inverter driven water cooler-heater. <P>SOLUTION: The operating method is for the connected type water cooler-heater provided with the commercial power source driven water cooler-heater 11 connected to a common cold water pipe arrangement 14, a commercial power source driven slave water cooler-heater 12-1, and an inverter driven slave water cooler-heater 12-2. Each water cooler-heater carries out predetermined certain temperature control of each cold water outlet temperature. An optimum operating number is calculated at every interval certain by the number of connected water cooler-heaters, a set temperature difference of a cold water inlet and outlet, and the cold water inlet temperature. By comparison between the optimum operating number and an operating number, the operating number is maintained at the present or varied to operate the water cooler-heaters at the optimum operating number. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、共通の冷水配管にヘッダーを介して接続された商用電源駆動の冷温水機とインバータ駆動の冷温水機を複数台備えた連結式冷温水機、及びその運転方法に関するものである。   The present invention relates to a connected chiller / heater including a plurality of commercial-power-driven chiller / heater units and inverter-driven chiller / heater units connected to a common chilled water pipe via a header, and an operation method thereof.

共通の冷水配管にヘッダーを介して複数台の冷温水機を接続してなる連結式冷温水機は、負荷容量の変動に対応して運転台数制御でき、効率のよい運転ができる冷温水機システムである。このように連結式冷温水機を構成する複数の冷温水機に使用する冷温水機としては、商用電源駆動冷温水機と、インバータ駆動冷温水機がある。商用電源駆動冷温水機は商用電源からの周波数60Hz(又は50Hz)の電力を駆動モータに供給して運転し、容量制御はスライドバルブの制御で行なう冷温水機である。また、インバータ駆動冷温水機は商用電源からの電力をインバータを介してその電圧・周波数を変えて駆動モータに供給して運転し、容量制御は該インバータによる電圧・周波数制御で行う冷温水機である。   A connected chiller / heater system, in which multiple chiller / heater units are connected to a common chilled water pipe via a header, can control the number of units in response to fluctuations in load capacity, and can be operated efficiently. It is. As the chiller / heater used in the plurality of chiller / heaters constituting the coupled chiller / heater in this way, there are a commercial power supply-driven chiller / heater and an inverter-driven chiller / heater. The commercial power supply driven chiller / heater is a chiller / heater operated by supplying electric power of frequency 60 Hz (or 50 Hz) from the commercial power supply to the drive motor, and controlling the capacity by controlling the slide valve. An inverter-driven chiller / heater is operated by supplying power from a commercial power supply to the drive motor through the inverter while changing its voltage / frequency, and capacity control is performed by voltage / frequency control by the inverter. is there.

商用電源駆動冷温水機は図4の曲線Aに示すように、最大負荷(100%負荷)では効率(COP)が良いが、部分負荷では効率が悪いという特性を有している。これに対してインバータ駆動冷温水機はモータに供給する駆動電力の電圧・周波数制御で行うことから、図4の曲線Bに示すように最大負荷近傍ではインバータでのロス分商用電源駆動冷温水機(曲線A)より効率が悪いが、部分負荷では効率がよいという特性を有している。また、インバータ駆動冷温水機はインバータを備える分、商用電源駆動冷温水機に比べてイニシャルコストが高い。   As shown by a curve A in FIG. 4, the commercial power supply chiller / heater has a characteristic that the efficiency (COP) is good at the maximum load (100% load) but the efficiency is poor at the partial load. On the other hand, since the inverter-driven chiller / heater is controlled by voltage / frequency control of the drive power supplied to the motor, as shown by the curve B in FIG. Although it is less efficient than (curve A), it has a characteristic that efficiency is good at partial load. In addition, the inverter-driven chiller / heater has an initial cost that is higher than that of a commercial power supply-driven chiller / heater because the inverter is provided.

連結式冷温水機を構成する複数台の冷温水機の全部を商用電源駆動冷温水機にすると、イニシャルコストは低いが、台数運転において効率よい運転ができないという問題があり、その分ランニングコストが高くなる。また、複数台の冷温水機の全部をインバータ駆動冷温水機とすると、台数運転において効率よい運転ができ、ランニングコストを低減できるが、イニシャルコストが高くなるという問題がある。
特開2004−144457号公報
If all of the multiple chiller / heater units that make up the connected chiller / heater unit are commercial power-driven chiller / heater units, the initial cost is low, but there is a problem that efficient operation is not possible in the unit operation, and the running cost is reduced accordingly. Get higher. Further, if all of the plurality of chiller / heater units are inverter-driven chiller / heater units, the number of units can be efficiently operated and the running cost can be reduced, but the initial cost is increased.
JP 2004-144457 A

本発明は上述の点に鑑みてなされたもので、連結式冷温水機の冷温水機を少なくとも1台の商用電源駆動冷温水機と少なくとも1台のインバータ駆動冷温水機とで構成し、連結式冷温水機全体のイニシャルコストを下げると共に、負荷に応じて高い効率(COP)で運転できる連結式冷温水機、及びその運転方法を提供することを目的とする。   The present invention has been made in view of the above-described points, and the chiller / heater of the connected chiller / heater is composed of at least one commercial power supply-driven chiller / heater and at least one inverter-driven chiller / warmer. An object of the present invention is to provide a connected chiller / heater that can be operated at high efficiency (COP) according to the load, and an operation method thereof, while reducing the initial cost of the chiller / cooler.

上記課題を解決するため請求項1に記載の本発明は、共通の冷水配管に接続された少なくとも1台の商用電源駆動の冷温水機と、少なくとも1台のインバータ駆動の冷温水機を備えた連結式冷温水機の運転方法であって、前記各冷温水機は冷凍運転時に、各々の冷水出口温度を所定の一定温度制御し、前記冷温水機の連結数、冷水出入口設定温度差、冷水入口温度により一定時間毎に最適運転台数を演算し、該最適運転台数と運転台数の比較により、運転台数を現状に維持又は増減させて、前記最適運転台数で前記冷温水機を運転することを特徴とする。   In order to solve the above-mentioned problems, the present invention according to claim 1 includes at least one commercial-power-driven chiller / heater connected to a common chilled water pipe and at least one inverter-driven chiller / heater. A method of operating a connected chiller / heater, wherein each chiller / heater controls the temperature of each chilled water outlet at a predetermined constant temperature during refrigeration operation, the number of chilled water heaters connected, the temperature difference between the chilled water inlet / outlet, Calculate the optimal number of units to be operated at regular intervals based on the inlet temperature, and maintain or increase / decrease the number of units in operation by comparing the optimal number of units with the number of units operated, and operate the chiller / heater with the optimal number of units to be operated. Features.

なお、ここでいう冷温水機は、冷凍と温水の両方に使用できる機器のみを指し示すのではなく、冷水を取り出す機能のみを持ち、温水を取り出すことを目的としない単なる冷凍機をも含むものとする。   In addition, the cold / hot water machine here does not indicate only a device that can be used for both freezing and hot water, but also includes a simple refrigerator that has only a function of taking out cold water and is not intended to take out hot water.

請求項2に記載の発明は、請求項1に記載の連結式冷温水機の運転方法であって、前記冷温水機の運転台数増加時は前記インバータ駆動冷温水機を優先して運転し、運転台数減少時は前記商用電源駆動冷温水機を優先して停止すると共に、前記冷温水機の冷水出口温度設定温度をカスケード制御できるようにし、前記商用電源駆動冷温水機は前記インバータ駆動冷温水機に比べて、冷水設定温度を一定値下げるか或いは圧縮機にロード信号を与えて負荷を多くかけるようにしたことを特徴とする。   The invention according to claim 2 is the operation method of the connected chiller / heater according to claim 1, wherein the inverter-driven chiller / heater is preferentially operated when the number of the chiller / heater increased. When the number of operating units decreases, the commercial power supply chilled water heater is stopped preferentially, and the chilled water outlet temperature setting temperature of the chilled water heater can be cascade-controlled. Compared to the machine, the cold water set temperature is lowered by a certain value or a load signal is given to the compressor to increase the load.

請求項3に記載の発明は、共通の冷水配管に複数台の冷温水機を接続された連結式冷温水機であって、前記複数台の冷温水機を少なくとも1台の商用電源駆動の冷温水機と、少なくとも1台のインバータ駆動の冷温水機とし、前記各冷温水機は冷凍運転時に各々の冷水出口温度を所定の一定温度に制御し、前記冷温水機の連結数、冷水出入口設定温度差、冷水入口温度により一定時間毎に最適運転台数を演算し、該最適運転台数と運転台数の比較により、運転台数を現状に維持又は増減させて、前記最適運転台数で前記冷温水機を運転する運転制御手段を備えたことを特徴とする。   The invention described in claim 3 is a connected chiller / heater in which a plurality of chiller / heaters are connected to a common chilled water pipe, and the plurality of chiller / heaters are connected to at least one commercial power source driven chiller / heater. A water machine and at least one inverter-driven chiller / heater are used, and each chiller / heater controls each chilled water outlet temperature to a predetermined constant temperature during refrigeration operation, and sets the number of connected chiller / hot water machines and the chilled water inlet / outlet. Calculate the optimum number of units to be operated at regular intervals based on the temperature difference and the chilled water inlet temperature, and maintain or increase / decrease the number of units in operation by comparing the optimum unit with the number of units in operation. An operation control means for operating is provided.

請求項4に記載の発明は、請求項3に記載の連結式冷温水機において、運転制御手段は、前記冷温水機の運転台数増加時は前記インバータ駆動冷温水機を優先して運転し、運転台数減少時は前記商用電源駆動冷温水機を優先して停止すると共に、前記複数台の冷温水機の冷水出口温度設定温度をカスケード制御できるようにし、前記商用電源駆動冷温水機は前記インバータ駆動冷温水機に比べて、冷水設定温度を一定値下げるか或いは圧縮機にロード信号を与えて負荷を多くかけるようにする機能を備えたことを特徴とする。   According to a fourth aspect of the present invention, in the connected chiller / heater according to the third aspect, the operation control means preferentially operates the inverter-driven chiller / heater when the number of chilled / hot water heaters is increased, When the number of operating units decreases, the commercial power supply chilled water heater is stopped preferentially, and the chilled water outlet temperature setting temperature of the plurality of chilled water heaters can be cascade-controlled. Compared to the drive chiller / heater, the chilled water set temperature is lowered by a certain value or a load signal is given to the compressor to increase the load.

請求項1に記載の本発明によれば、各冷温水機は冷凍運転時に、各々の冷水出口温度を所定の一定温度制御し、冷温水機の連結数、冷水出入口設定温度差、冷水入口温度により一定時間毎に最適運転台数を演算し、該最適運転台数と運転台数の比較により、運転台数を現状に維持又は増減させて、最適運転台数で前記冷温水機を運転するので、最大負荷から部分負荷に渡って効率のよい運転が可能でランニングコストを低減できると共に、全台数をインバータ駆動冷温水機で構成する場合に比較し連結式冷温水機全体のイニシャルコストを下げる連結式冷温水機の運転方法を提供できる。   According to the first aspect of the present invention, during the refrigeration operation, each chiller / heater controls the chilled water outlet temperature at a predetermined constant temperature, the number of chilled water heaters connected, the chilled water inlet / outlet set temperature difference, and the chilled water inlet temperature. To calculate the optimal number of units to be operated at regular intervals, and maintain or increase or decrease the number of units in operation by comparing the optimal number of units with the number of units in operation and operate the chiller / heater with the optimal number of units. Efficient operation over partial loads is possible, reducing running costs and reducing the initial cost of all connected chilled water heaters compared to when all units are composed of inverter-driven chilled water heaters Can provide driving methods.

請求項2に記載の発明によれば、冷温水機の運転台数増加時はインバータ駆動冷温水機を優先して運転し、運転台数減少時は商用電源駆動冷温水機を優先して停止すると共に、冷温水機の冷水出口温度設定温度をカスケード制御できるようにし、商用電源駆動冷温水機はインバータ駆動冷温水機に比べて、冷水設定温度を一定値下げるか或いは圧縮機にロード信号を与えて負荷を多くかけるようにしたので、連結式冷温水機全体のイニシャルコストの低減と、効率向上を図ることができる。   According to the second aspect of the present invention, when the number of operating chilled water heaters increases, the inverter driven chilled water heater is prioritized and when the number of operating chillers decreases, the commercial power source driven chilled water heater is prioritized and stopped. The chilled water outlet temperature setting temperature of the chilled water heater can be cascade controlled, and the commercial power supply chilled water heater can lower the chilled water set temperature by a certain value or give a load signal to the compressor compared to the inverter driven chiller water heater. Since a large load is applied, it is possible to reduce the initial cost and improve the efficiency of the entire connected chiller / heater.

請求項3に記載の発明によれば、複数台の冷温水機を少なくとも1台の商用電源駆動の冷温水機と、少なくとも1台のインバータ駆動の冷温水機とし、各冷温水機は冷凍運転時に各々の冷水出口温度を所定の一定温度に制御し、冷温水機の連結数、冷水出入口設定温度差、冷水入口温度により一定時間毎に最適運転台数を演算し、該最適運転台数と運転台数の比較により、運転台数を現状に維持又は増減させて、最適運転台数で冷温水機を運転する運転制御手段を備えたので、最大負荷から部分負荷に渡って効率のよい運転が可能でランニングコストを低減できると共に、全台数をインバータ駆動冷温水機で構成する場合に比較し連結式冷温水機全体のイニシャルコストを下げる連結式冷温水機を提供ができる。   According to the third aspect of the present invention, the plurality of chiller / heaters are at least one commercial-power-driven chiller / heater and at least one inverter-driven chiller / heater. Occasionally, each chilled water outlet temperature is controlled to a predetermined constant temperature, and the optimal number of operating units is calculated every fixed time according to the number of connected chilled water heaters, the temperature difference between the chilled water inlet and outlet, and the chilled water inlet temperature. Compared to the above, the operation control means to maintain the number of operating units at the current state or increase / decrease and operate the chiller / heater with the optimal number of operating units is provided, enabling efficient operation from the maximum load to partial load and running cost In addition, it is possible to provide a connected chiller / heater that reduces the initial cost of the entire connected chiller / heater compared to a case where all the units are configured by inverter-driven chillers / heaters.

請求項4に記載の発明によれば、運転制御手段は、冷温水機の運転台数増加時はインバータ駆動冷温水機を優先して運転し、運転台数減少時は前記商用電源駆動冷温水機を優先して停止すると共に、複数台の冷温水機の冷水出口温度設定温度をカスケード制御できるようにし、商用電源駆動冷温水機はインバータ駆動冷温水機に比べて、冷水設定温度を一定値下げるか或いは圧縮機にロード信号を与えて負荷を多くかけるようにする機能を備えたので、連結式冷温水機全体のイニシャルコストの低減と、効率向上を図ることができる。   According to a fourth aspect of the present invention, the operation control means preferentially operates the inverter-driven chiller / heater when the number of chilled water heaters is increased, and the commercial power supply chiller / heater is decreased when the number of operated chillers is decreased. In addition to stopping with priority, it enables cascade control of the chilled water outlet temperature setting temperature of multiple chilled water heaters. Does the commercial power supply chilled water heater reduce the chilled water set temperature by a certain value compared to the inverter driven chiller water heater? Alternatively, since the load signal is given to the compressor to increase the load, it is possible to reduce the initial cost of the connected chiller / heater and improve the efficiency.

以下、本発明の実施形態例を図面に基づいて説明する。なお、以下の説明は冷温水機を冷凍機として使用する冷凍運転の形態を主として説明する。図1は本発明に係る連結式冷温水機の構成例を示す図である。図1に示すように本連結式冷温水機は1台の親機冷温水機11、2台の子機冷温水機12−1、12−2を備えている。該親機冷温水機11、子機冷温水機12−1、及び子機冷温水機12−2はそれぞれヘッダー13を介して逆環水法にて冷水配管14に接続され、該冷水配管14から親機冷温水機11、子機冷温水機12−1、及び子機冷温水機12−2のそれぞれに均等に冷水Wが流れるように構成されている。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the following description mainly demonstrates the form of the freezing operation which uses a cold / hot water machine as a refrigerator. FIG. 1 is a diagram showing a configuration example of a connected chiller / heater according to the present invention. As shown in FIG. 1, this connected chiller / heater includes one master chiller / heater 11 and two slave chillers 12-1 and 12-2. The parent machine cold / hot water machine 11, the child machine cold / hot water machine 12-1, and the child machine cold / hot water machine 12-2 are connected to the cold water pipe 14 by the reverse ring water method via the header 13. The cold water W is configured to flow evenly from the main device cold / hot water machine 11, the child machine cold / hot water machine 12-1, and the child machine cold / hot water machine 12-2.

ここで、親機冷温水機11と子機冷温水機12−1は商用電源からの商用電力を直接供給(周波数変換せずに)して駆動する商用電源駆動冷温水機であり、子機冷温水機12−2は商用電源からの電力をインバータを介して電圧・周波数変換して駆動モータに供給し、駆動するインバータ駆動冷温水機である。また、本連結式冷温水機は子機冷温水機12を4台まで連結可能となっている。   Here, the parent / cooling / hot water machine 11 and the child's cooling / heating machine 12-1 are commercial power source driven cold / hot water machines that are driven by directly supplying commercial power from a commercial power source (without frequency conversion). The chiller / heater 12-2 is an inverter-driven chiller / heater that drives the electric power from a commercial power source by converting the voltage and frequency through an inverter and supplying the converted electric power to the drive motor. In addition, this connected chiller / heater can connect up to four slave chillers 12.

親機冷温水機11の冷水入口配管15には、冷水入口温度センサー16が取り付けられ、親機冷温水機11、子機冷温水機12−1、子機冷温水機12−2のそれぞれの冷水出口配管17には冷水出口温度センサー18が取り付けられている。親機冷温水機11、子機冷温水機12−1、及び子機冷温水機12−2のそれぞれには操作盤19が設けられていて、CPU(図示せず)が内臓されている。各操作盤19はモジュール間通信配線20で接続され、親機冷温水機11から子機冷温水機12−1、12−2への冷水で入口温度設定、子機冷温水機12−1、12−2から親機冷温水機11へデータ伝送を行っている。また、親機冷温水機11は遠方信号線23を介して遠方制御されるようになっている。   A chilled water inlet temperature sensor 16 is attached to the chilled water inlet pipe 15 of the parent chiller / hot water machine 11, and each of the parent chiller / hot water machine 11, the child chiller / hot water machine 12-1, and the child machine chiller / heater 12-2. A cold water outlet temperature sensor 18 is attached to the cold water outlet pipe 17. An operation panel 19 is provided in each of the parent machine cold / hot water machine 11, the child machine cold / hot water machine 12-1, and the child machine cold / hot water machine 12-2, and a CPU (not shown) is incorporated therein. Each operation panel 19 is connected by an inter-module communication wiring 20, and the inlet temperature is set by cold water from the parent machine cooling / warming water machine 11 to the child machine cooling / warming water machines 12-1, 12-2, Data transmission is performed from 12-2 to the main unit cold / hot water machine 11. In addition, the parent / cooling / hot water machine 11 is remotely controlled via a remote signal line 23.

親機冷温水機11の制御盤19には冷水入口温度センサー16で検出された冷水入口温度、合流部冷水出口温度センサー22で検出された冷水出口温度、遠方信号線23からの遠方制御信号Sが入力されるようになっている。また、各冷温水機の操作盤19には温度調節計24が設けられ、冷水出口温度センサー18の出力が入力されるようになっている。また、親機冷温水機11には温度設定制御部25が設けられ、各冷温水機の設定温度を制御するようになっている。   The control panel 19 of the master chiller / heater 11 has a chilled water inlet temperature detected by the chilled water inlet temperature sensor 16, a chilled water outlet temperature detected by the junction chilled water outlet temperature sensor 22, and a remote control signal S from the remote signal line 23. Is entered. The operation panel 19 of each chiller / heater is provided with a temperature controller 24 so that the output of the chilled water outlet temperature sensor 18 is input. Further, a temperature setting control unit 25 is provided in the parent / cooling / hot water machine 11 so as to control the set temperature of each cooling / heating machine.

親機冷温水機11、子機冷温水機12−1、及び子機冷温水機12−2のそれぞれは圧縮機の吸込み風量を変化させて、冷水出口温度を一定値に制御している。更に親機冷温水機11の操作盤19内には、各冷温水機出口温度の平均温度、又は合流部の温度を制御するため、各冷温水機の冷水又は出口設定温度をカスケード制御している。なお、21は冷水ポンプであり、冷水ポンプ21からの冷水Wは冷水配管14、ヘッダー13、冷水入口配管15、15、15を通って親機冷温水機11、子機冷温水機12−1、及び子機冷温水機12−2の各蒸発器33に供給され、各蒸発器33の冷水は冷水出口配管17、17、17を通って排出され、出口側の冷水配管14に合流する。   Each of the main unit cold / hot water machine 11, the sub-unit cold / hot water machine 12-1, and the sub-unit cold / hot water machine 12-2 changes the suction air volume of the compressor to control the cold water outlet temperature to a constant value. Further, in the operation panel 19 of the main unit chiller / heater 11, in order to control the average temperature of each chiller / heater outlet temperature or the temperature of the junction, the chilled water or outlet set temperature of each chiller / heater is cascade controlled. Yes. Reference numeral 21 denotes a chilled water pump, and the chilled water W from the chilled water pump 21 passes through the chilled water pipe 14, the header 13, and the chilled water inlet pipes 15, 15, and 15, and the master chiller / heater 11 and the slave chiller / heater 12-1. And the cold water of each evaporator 33 are discharged through the cold water outlet pipes 17, 17, 17 and merge with the cold water pipe 14 on the outlet side.

図2は商用電源駆動冷温水機である親機冷温水機11及び子機冷温水機12−1の構成例を示す図である。商用電源駆動冷温水機は、圧縮機30、凝縮器31、膨張弁32、蒸発器33を備え、これら機器を冷媒配管34で接続して構成されている。蒸発器33で蒸発した冷媒蒸気は圧縮機30に吸入され高温高圧の冷媒蒸気に圧縮され、凝縮器31で冷却水配管35を通る冷却水で冷却され、冷媒凝縮液となる。該冷媒凝縮液は膨張弁32で低圧低温まで減圧され蒸発器33に入り蒸発すると共に、冷水入口配管15を通る冷水を冷却する。   FIG. 2 is a diagram illustrating a configuration example of a parent machine cooling / heating machine 11 and a child machine cooling / heating machine 12-1, which are commercial power supply driven cooling / heating machines. The commercial power supply driven chiller / heater includes a compressor 30, a condenser 31, an expansion valve 32, and an evaporator 33, and these devices are connected by a refrigerant pipe 34. Refrigerant vapor evaporated in the evaporator 33 is sucked into the compressor 30 and compressed into high-temperature and high-pressure refrigerant vapor, cooled in the condenser 31 with cooling water passing through the cooling water pipe 35, and becomes refrigerant condensed liquid. The refrigerant condensate is depressurized to a low pressure and a low temperature by the expansion valve 32, enters the evaporator 33 and evaporates, and cools the cold water passing through the cold water inlet pipe 15.

商用電源(AC)が配線遮断器37、スター−Δ接触器38を介して圧縮機30の駆動モータ39に供給し、60Hz時約3600rpmにて圧縮機ロータ44を回転し圧縮機30を運転している。冷水出口配管17の出口に設けた冷水出口温度センサー18で検出した冷水出口温度を温度調節計24に送り、該温度調節計24にて容量電磁弁41を開閉し、ピストン42を動作させてスライドバルブ43を動かして、吸込み風量を連続無段階に制御し、冷水出口温度が一定になるように制御している。   A commercial power supply (AC) is supplied to the drive motor 39 of the compressor 30 via the wiring breaker 37 and the star-Δ contactor 38, and the compressor rotor 44 is operated by rotating the compressor rotor 44 at about 3600 rpm at 60 Hz. ing. The cold water outlet temperature detected by the cold water outlet temperature sensor 18 provided at the outlet of the cold water outlet pipe 17 is sent to the temperature controller 24. The temperature regulator 24 opens and closes the capacity electromagnetic valve 41, and the piston 42 is operated to slide. The valve 43 is moved to control the suction air volume continuously and continuously so that the cold water outlet temperature is constant.

図3はインバータ駆動冷温水機である子機冷温水機12−2の構成例を示す図である。インバータ駆動冷温水機は、圧縮機30、凝縮器31、膨張弁32、蒸発器33を備え、これら機器を冷媒配管34で接続して構成されている。蒸発器33で蒸発した冷媒蒸気は圧縮機30に吸入され高温高圧の冷媒蒸気に圧縮され、凝縮器31で冷却水配管35を通る冷却水で冷却され、冷媒凝縮液となる。該冷媒凝縮液を膨張弁32で低圧低温まで減圧して蒸発器33に入り蒸発すると共に、冷水入口配管15を通る冷水を冷却する点は、図2に示す商用電源駆動冷温水機と同一である。   FIG. 3 is a diagram showing a configuration example of a slave unit chiller / heater 12-2 that is an inverter-driven chiller / heater. The inverter-driven chiller / heater includes a compressor 30, a condenser 31, an expansion valve 32, and an evaporator 33, and these devices are connected by a refrigerant pipe 34. Refrigerant vapor evaporated in the evaporator 33 is sucked into the compressor 30 and compressed into high-temperature and high-pressure refrigerant vapor, cooled in the condenser 31 with cooling water passing through the cooling water pipe 35, and becomes refrigerant condensed liquid. The refrigerant condensate is depressurized to a low pressure and a low temperature by the expansion valve 32, enters the evaporator 33 and evaporates, and cools the chilled water passing through the chilled water inlet pipe 15 in the same manner as the commercial power supply driven chiller / heater shown in FIG. is there.

商用電源(AC)は配線遮断器37を介してインバータ46に供給され、電圧・周波数を変化させて、圧縮機30の駆動モータ39に供給されている。冷水出口配管17の出口に設けた冷水出口温度センサー18で検出した冷水出口温度を温度調節計24に送り、該温度調節計24にてインバータ46を制御し、駆動モータ39の回転数を増減して、圧縮機30の吸込み風量を変化させて、冷水出口温度を一定に制御している。   The commercial power supply (AC) is supplied to the inverter 46 through the wiring breaker 37, and is supplied to the drive motor 39 of the compressor 30 by changing the voltage and frequency. The cold water outlet temperature detected by the cold water outlet temperature sensor 18 provided at the outlet of the cold water outlet pipe 17 is sent to the temperature controller 24, and the inverter 46 is controlled by the temperature controller 24 to increase or decrease the rotational speed of the drive motor 39. Thus, the cold water outlet temperature is controlled to be constant by changing the amount of air sucked into the compressor 30.

図4に上記スライドバルブ制御である商用電源駆動冷温水機と回転数制御であるインバータ駆動冷温水機の部分負荷特性を示す。図4において、曲線Aは商用電源駆動冷温水機の部分負荷特性を、曲線Bはインバータ駆動冷温水機の部分負荷特性をそれぞれ示す。図示する通り、最大負荷(100%)近傍では商用電源駆動冷温水機に比べてインバータ駆動冷温水機ではインバータ46の効率低下の分、2〜4%効率(COP)が低下するが、部分負荷ではインバータ駆動冷温水機の方が効率の高い運転ができる。   FIG. 4 shows the partial load characteristics of the commercial power supply driven chiller / heater that is the slide valve control and the inverter driven chiller / heater that is the rotational speed control. In FIG. 4, a curve A shows a partial load characteristic of a commercial power supply driven chiller / heater, and a curve B shows a partial load characteristic of an inverter driven chiller / heater. As shown in the figure, in the vicinity of the maximum load (100%), in the inverter-driven chiller / heater, the efficiency of the inverter 46 is reduced by 2-4% compared to the commercial power-driven chiller / heater, but the partial load is reduced. Then, the inverter-driven chiller / heater can operate more efficiently.

上記のように商用電源駆動冷温水機である親機冷温水機11及び子機冷温水機12−1、インバータ駆動冷温水機である子機冷温水機12−2を組み合わせてなる連結式冷温水機において、負荷に応じて商用電源駆動冷温水機及びインバータ駆動冷温水機の台数制御を行なえば高い効率の運転が可能である。ここで、親機冷温水機11にて設定した冷温水機の連結数N、冷水出入口設定温度差をDT(100%負荷とした時の)、冷水出口設定温度Sv、実際の負荷によって変化する冷水入口温度Tiにより最適運転台数(必要運転台数)rを下式より求め、
r={N×(Ti−Sv)}/DT
運転台数Rとの差より、一定時間毎に運転台数を現状に維持又は増減させて最適台数で運転することにより、連結式冷温水機全体の効率の高い運転ができる。
As described above, the connected cold / hot water machine 11 is a combination of the parent / cooling / hot water machine 11 and the child machine / cooling / heating machine 12-1, which are commercial power supply-driven cooling / heating machines, and the child machine cooling / heating machine 12-2, which is an inverter-driven cooling / heating machine. In a water machine, high efficiency operation is possible by controlling the number of commercial power source driven chiller / heater units and inverter-driven chiller / heater units according to the load. Here, the number N of chilled / hot water units set in the main unit chiller / hot water device 11, the chilled water inlet / outlet set temperature difference is DT (when 100% load is set), the chilled water outlet set temperature Sv, and the actual load. Obtain the optimum number of units (required number of units) r from the following formula using the cold water inlet temperature Ti,
r = {N × (Ti−Sv)} / DT
From the difference from the number of operating units R, maintaining the number of operating units at the current state or increasing / decreasing the number of units at a certain time and operating with the optimal number of units enables high-efficiency operation of the entire connected chiller / heater.

図5は連結式冷温水機における冷却時台数運転フローを示す図である。台数運転を所定時間(本実施形態では3分間)連続して〔r+1+α〕<Rか否かを判断し(ステップST1)、YESであったら商用電源駆動冷温水機の運転を1台減らし、即ち商用電源駆動冷温水機を優先して停止し(ステップST2)、NOであったら所定時間(本実施形態では3分間)連続してR<〔r−α〕か否かを判断し(ステップST3)、YESであったらインバータ駆動冷温水機の運転台数を1台増やし、即ちインバータ駆動冷温水機を優先して運転し(ステップST4)、NOであったらステップST1に戻り、処理を繰り返す。   FIG. 5 is a diagram showing a unit operation flow during cooling in the connected chiller / heater. It is determined whether or not [r + 1 + α] <R continuously for a predetermined time (3 minutes in the present embodiment) (step ST1). If YES, the operation of the commercial power supply chiller / heater is reduced by one, that is, The commercial power supply chiller / heater is preferentially stopped (step ST2), and if NO, it is determined whether or not R <[r−α] continuously for a predetermined time (in this embodiment, 3 minutes) (step ST3). If YES, the number of inverter-driven chiller / heaters is increased by one, that is, the inverter-driven chiller / heater is operated with priority (step ST4). If NO, the process returns to step ST1 and the process is repeated.

図6は冷却時の冷却台数運転演算結果を示す図である。図6において、横軸は冷水温度〔℃〕と冷温水機の必要運転台数rを縦軸は運転台数Rを示す。ここでは冷温水機の冷水出口温度を7℃の一定温度に維持制御する場合を示す。図示するように、冷温水機の1台、2台の運転において冷水入口温度がα降下すると冷温水機を1台停止し、α上昇すると冷温水機を1台追加運転する。   FIG. 6 is a diagram showing a calculation result of the number of cooling units during cooling. In FIG. 6, the horizontal axis indicates the chilled water temperature [° C.] and the required number r of chilled water heaters, and the ordinate indicates the number R of operating water. Here, a case where the cold water outlet temperature of the cold / hot water machine is maintained and controlled at a constant temperature of 7 ° C. is shown. As shown in the figure, in the operation of one or two chiller / heaters, when the chilled water inlet temperature decreases by α, one chiller / heater is stopped, and when α rises, one additional chiller / heater is operated.

冷温水機の運転台数は一定時間毎に最適台数を演算し冷温水機の運転台数を現状に維持又は一台ずつ増減させることにより、台数運転時の合流部の冷水出口温度の変化を小さくでき、安定した温度の冷水Wの供給が可能であると同時に、冷温水機が同時に起動しないため、始動電流による電源系統への影響を小さくできる。更に冷水出口温度が所定値より2℃下がると自動停止させ、冷温水の出口温度の下がり過ぎを防止している。   By calculating the optimum number of chilled water heaters at regular intervals and maintaining the current number of chilled water heaters or increasing or decreasing them one by one, changes in the chilled water outlet temperature at the merging section during unit operation can be reduced. Since the chilled water W can be supplied at a stable temperature and at the same time the chiller / heater is not started simultaneously, the influence of the starting current on the power supply system can be reduced. Furthermore, when the cold water outlet temperature falls by 2 ° C. below a predetermined value, it is automatically stopped to prevent the outlet temperature of the cold / hot water from dropping too much.

図7は複数台の冷温水機を備えた連結式冷温水機の連結運転時の部分負荷特性を示す図である。図7において、曲線Aは本実施形態例である2台の商用電源駆動冷温水機(親機冷温水機11と子機冷温水機12−1)と1台のインバータ駆動冷温水機(子機冷温水機12−2)からなる連結式冷温水機の部分負荷特性を、曲線Bは3台の冷温水機全部がインバータ駆動冷温水機の部分負荷特性を、曲線Cは3台の冷温水機全部が商用電源駆動冷温水機の部分負荷特性を示す。   FIG. 7 is a diagram showing a partial load characteristic during a connected operation of a connected chiller / heater equipped with a plurality of chiller / heaters. In FIG. 7, a curve A indicates two commercial power source driven chiller / heaters (master chiller / heater 11 and slave chiller / heater 12-1) and one inverter-driven chiller / heater (child slave) according to the present embodiment. The partial load characteristics of a connected chiller / heater consisting of a chiller / heater 12-2), curve B shows the partial load characteristics of all three chiller / heaters, and curve C shows the chill / cooler All water machines show the partial load characteristics of commercial power supply chilled / hot water machines.

曲線Aに示すように、本実施形態例に係る連結式冷温水機では、商用電源駆動冷温水機(親機冷温水機11と子機冷温水機12−1)は冷水出口温度を(1.5℃下げて)5.5℃にして負荷をかけるようにし、インバータ駆動冷温水機(子機冷温水機12−2)は商用電源駆動冷温水機に比べて冷水出口設定温度を高くして部分負荷で運転することにより、商用電源駆動冷温水機の負荷が大きいところでの高いCOPと、インバータ駆動冷温水機の部分負荷での高いCOPを有効利用できるため、曲線Cの全部が商用電源駆動冷温水機に比べてイニシャルコストアップを最小値に抑えながらもCOPを高くできる。また、曲線Bの全部がインバータ駆動冷温水機に比べても100%付近及び最小負荷近辺では高い効率の運転ができ、イニシャルコストを低く抑えることができる。   As shown by the curve A, in the connected chiller / heater according to the present embodiment, the commercial power supply chiller / warm water machine (the master chiller / heater 11 and the slave chiller / heater 12-1) sets the chilled water outlet temperature to (1). Reduce the temperature by 5 ° C to 5.5 ° C so that the load is applied, and the inverter-driven chiller / heater 12-2 has a higher chilled water outlet set temperature than the commercial power-driven chiller / heater. By operating at a partial load, a high COP at a large load of the commercial power supply driven chiller / heater and a high COP at a partial load of the inverter driven chiller / heater can be used effectively. The COP can be increased while keeping the initial cost increase to a minimum value compared to the driving chiller / heater. In addition, even when the entire curve B is near 100% and near the minimum load even when compared to the inverter-driven chiller / heater, high-efficiency operation can be performed, and the initial cost can be kept low.

商用電源駆動冷温水機(親機冷温水機11と子機冷温水機12−1)は冷水出口温度設定温度を下げるか、ロード信号を与えて負荷を掛けて運転し、残りの負荷をインバータ駆動冷温水機(ここでは子機冷温水機12−2)で部分負荷運転することにより、連結式冷温水機全体のイニシャルコストの低減と、効率向上を図ることができる。   Commercial power-driven chiller / heater (master chiller / heater 11 and slave chiller / heater 12-1) is operated by lowering the chilled water outlet temperature set temperature or by applying a load by giving a load signal, and the remaining load is invertered By performing partial load operation with the driving chiller / heater (here, the slave chiller / heater 12-2), it is possible to reduce the initial cost of the coupled chiller / heater as a whole and improve the efficiency.

上記実施形態では冷凍運転の形態を主として説明したが、冷水、冷却水の流路の切替え等により、凝縮器出口の流体を温水として取り出す温水機として動作させた場合でも、配管等の詳細は図示は省略するが、同様に制御可能である。図6に示したのと同様に、連結数N、出入口設定温度差DT、出口設定温度Sv、入口温度Ti(この場合の温度は温水温度)に基づく台数制御が可能である。また、商用電源駆動冷温水機は温水出口温度設定温度を上げるか、ロード信号を与えて負荷を掛けて運転し、残りの負荷をインバータ駆動冷温水機で部分負荷運転することにより、連結式冷温水機全体のイニシャルコストの低減と、効率向上を図ることができることも冷凍機運転時と同様である。   In the above embodiment, the mode of the refrigeration operation has been mainly described, but the details of the piping and the like are illustrated even when operated as a hot water machine that takes out the fluid at the outlet of the condenser as hot water by switching the flow path of cold water or cooling water. Is omitted, but can be controlled similarly. Similar to that shown in FIG. 6, the number control based on the number of connections N, the inlet / outlet set temperature difference DT, the outlet set temperature Sv, and the inlet temperature Ti (the temperature in this case is the hot water temperature) is possible. In addition, commercial power supply chilled water heaters are operated by raising the hot water outlet temperature set temperature or by applying a load by giving a load signal, and by operating the remaining load partly with an inverter driven chiller water heater. The initial cost of the entire water machine can be reduced and the efficiency can be improved as in the case of operating the refrigerator.

以上本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible.

本発明に係る連結式冷温水機の構成例を示す図である。It is a figure which shows the structural example of the connection type cold / hot water machine which concerns on this invention. 本発明に係る連結式冷温水機に用いる商用電源駆動冷温水機の構成例を示す図である。It is a figure which shows the structural example of the commercial power source drive cold / hot water machine used for the connection type cold / hot water machine which concerns on this invention. 本発明に係る連結式冷温水機に用いるインバータ駆動冷温水機の構成例を示す図である。It is a figure which shows the structural example of the inverter drive cold / hot water machine used for the connection type cold / hot water machine which concerns on this invention. 商用電源駆動冷温水機とインバータ駆動冷温水機の部分負荷特性を示す。The partial load characteristics of commercial power supply driven chilled water heaters and inverter driven chilled water heaters are shown. 本発明に係る連結式冷温水機の冷却時台数運転フローを示す図である。It is a figure which shows the number operation flow at the time of cooling of the connection type cold / hot water machine which concerns on this invention. 本発明に係る連結式冷温水機の冷却時台数運転演算結果を示す図である。It is a figure which shows the unit operation calculation result at the time of cooling of the connection type | mold cold / hot water machine which concerns on this invention. 連結式冷温水機の連結運転時の部分負荷特性を示す図である。It is a figure which shows the partial load characteristic at the time of the connection driving | operation of a connection type | mold cold / hot water machine.

符号の説明Explanation of symbols

11 親機冷温水機
12 子機冷温水機
13 ヘッダー
14 冷水配管
15 冷水入口配管
16 冷水入口温度センサー
17 冷水出口配管
18 冷水出口温度センサー
19 操作盤
20 モジュール間通信配線
21 冷水ポンプ
22 合流部冷水出口温度センサー
23 遠方信号線
24 温度調節計
25 温度設定制御部
30 圧縮機
31 凝縮器
32 膨張弁
33 蒸発器
34 冷媒配管
35 冷却水配管
38 スター−Δ接触器
39 駆動モータ
41 容量電磁弁
42 ピストン
43 スライドバルブ
44 圧縮機ロータ
46 インバータ
11 Chiller / Hot Water Machine 12 Child Machine Chiller / Heater 13 Header 14 Chilled Water Pipe 15 Chilled Water Inlet Pipe 16 Chilled Water Inlet Temperature Sensor 17 Chilled Water Outlet Pipe 18 Chilled Water Outlet Temperature Sensor 19 Operation Panel 20 Module Communication Wiring 21 Chilled Water Pump 22 Merged Port Chilled Water Outlet temperature sensor 23 Remote signal line 24 Temperature controller 25 Temperature setting control unit 30 Compressor 31 Condenser 32 Expansion valve 33 Evaporator 34 Refrigerant piping 35 Cooling water piping 38 Star-Δ contactor 39 Drive motor 41 Capacitance solenoid valve 42 Piston 43 Slide valve 44 Compressor rotor 46 Inverter

Claims (4)

共通の冷水配管に接続された少なくとも1台の商用電源駆動の冷温水機と、少なくとも1台のインバータ駆動の冷温水機を備えた連結式冷温水機の運転方法であって、
前記各冷温水機は冷凍運転時に、各々の冷水出口温度を所定の一定温度制御し、前記冷温水機の連結数、冷水出入口設定温度差、冷水入口温度により一定時間毎に最適運転台数を演算し、該最適運転台数と運転台数の比較により、運転台数を現状に維持又は増減させて、前記最適運転台数で前記冷温水機を運転することを特徴とする連結式冷温水機の運転方法。
An operation method of a connected chiller / heater equipped with at least one commercial power-driven chiller / heater connected to a common chilled water pipe and at least one inverter-driven chiller / heater,
Each chilled water heater controls the temperature of each chilled water outlet at a predetermined constant temperature during refrigeration operation, and calculates the optimal number of units to be operated at fixed time intervals based on the number of connected chilled water heaters, chilled water inlet / outlet set temperature difference, and chilled water inlet temperature. The operation method of the connected chiller-heater is characterized in that the chilled water heater is operated with the optimum operation number by maintaining or increasing or decreasing the number of the operation number by comparing the optimum operation number and the operation number.
請求項1に記載の連結式冷温水機の運転方法であって、
前記冷温水機の運転台数増加時は前記インバータ駆動冷温水機を優先して運転し、運転台数減少時は前記商用電源駆動冷温水機を優先して停止すると共に、前記冷温水機の冷水出口温度設定温度をカスケード制御できるようにし、
前記商用電源駆動冷温水機は前記インバータ駆動冷温水機に比べて、冷水設定温度を一定値下げるか或いは圧縮機にロード信号を与えて負荷を多くかけるようにしたことを特徴とする連結式冷温水機の運転方法。
It is a driving | running method of the connection type cold / hot water machine of Claim 1, Comprising:
When the number of operating chilled water heaters is increased, the inverter driven chilled water heater is prioritized, and when the operating number is decreased, the commercial power driven chilled water heater is prioritized and the chilled water outlet of the chilled water heater is Enables cascade control of temperature setting temperature,
Compared with the inverter-driven chiller / heater, the commercial power-driven chiller / heater is configured to reduce the set temperature of the chilled water by a certain value or to provide a load signal to the compressor to increase the load. How to drive a water machine.
共通の冷水配管に複数台の冷温水機を接続された連結式冷温水機であって、
前記複数台の冷温水機を少なくとも1台の商用電源駆動の冷温水機と、少なくとも1台のインバータ駆動の冷温水機とし、
前記各冷温水機は冷凍運転時に、各々の冷水出口温度を所定の一定温度に制御し、前記冷水機の連結数、冷水出入口設定温度差、冷水入口温度により一定時間毎に最適運転台数を演算し、該最適運転台数と運転台数の比較により、運転台数を現状に維持又は増減させて、前記最適運転台数で前記冷温水機を運転する運転制御手段を備えたことを特徴とする連結式冷温水機。
It is a connected chiller / heater with multiple chillers connected to a common chilled water pipe,
The plurality of chiller / heaters are at least one commercial power supply chiller / heater and at least one inverter-driven chiller / heater,
Each chiller / heater controls the chilled water outlet temperature to a predetermined constant temperature during refrigeration operation, and calculates the optimum number of units to be operated at fixed time intervals based on the number of connected chillers, the chilled water inlet / outlet set temperature difference, and the chilled water inlet temperature. In addition, it is possible to maintain or increase or decrease the number of operating units to the current state by comparing the number of operating units with the number of operating units, and to provide an operation control means for operating the chiller / heater with the optimal number of operating units. Water machine.
請求項3に記載の連結式冷温水機において、
運転制御手段は、前記冷温水機の運転台数増加時は前記インバータ駆動冷温水機を優先して運転し、運転台数減少時は前記商用電源駆動冷温水機を優先して停止すると共に、前記複数台の冷温水機の冷水出口温度設定温度をカスケード制御できるようにし、前記商用電源駆動冷温水機は前記インバータ駆動冷温水機に比べて、冷水設定温度を一定値下げるか或いは圧縮機にロード信号を与えて負荷を多くかけるようにする機能を備えたことを特徴とする連結式冷温水機。
In the connection type cold / hot water machine of Claim 3,
The operation control means preferentially operates the inverter-driven chiller / heater when the number of chilled water heaters increases, and prioritizes and stops the commercial power-driven chiller / heater when the number of operated units decreases. Cascade control of the chilled water outlet temperature setting temperature of the chiller / warm water heater is performed, and the commercial power source driven chiller / heater lowers the chilled water set temperature by a constant value or a load signal to the compressor as compared with the inverter driven chiller / warm water heater. A connected chiller / heater characterized by having a function to apply a large amount of load.
JP2006000724A 2006-01-05 2006-01-05 Connected chiller / heater and its operation method Active JP4707562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006000724A JP4707562B2 (en) 2006-01-05 2006-01-05 Connected chiller / heater and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006000724A JP4707562B2 (en) 2006-01-05 2006-01-05 Connected chiller / heater and its operation method

Publications (2)

Publication Number Publication Date
JP2007183030A true JP2007183030A (en) 2007-07-19
JP4707562B2 JP4707562B2 (en) 2011-06-22

Family

ID=38339280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006000724A Active JP4707562B2 (en) 2006-01-05 2006-01-05 Connected chiller / heater and its operation method

Country Status (1)

Country Link
JP (1) JP4707562B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014364A (en) * 2008-07-04 2010-01-21 Hitachi Plant Technologies Ltd Air conditioning system, and method of controlling the same
JP2011058660A (en) * 2009-09-07 2011-03-24 Hitachi Cable Ltd Cold water circulation system
JP2013160446A (en) * 2012-02-06 2013-08-19 Daikin Industries Ltd Outside air treatment system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457055A (en) * 1987-08-28 1989-03-03 Toshiba Corp Refrigeration cycle device
JPH03172587A (en) * 1989-11-30 1991-07-25 Hitachi Ltd Compressor unit with extensive capacity control range and air-conditioning system therewith
JP2003222368A (en) * 2002-01-30 2003-08-08 Lg Electronics Inc Air conditioner and method of controlling the same
JP2004144457A (en) * 2002-08-30 2004-05-20 Ebara Refrigeration Equipment & Systems Co Ltd Method and device for controlling number of operating connected type water cooler-heaters
JP2005226980A (en) * 2004-02-16 2005-08-25 Ebara Refrigeration Equipment & Systems Co Ltd Control system for refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457055A (en) * 1987-08-28 1989-03-03 Toshiba Corp Refrigeration cycle device
JPH03172587A (en) * 1989-11-30 1991-07-25 Hitachi Ltd Compressor unit with extensive capacity control range and air-conditioning system therewith
JP2003222368A (en) * 2002-01-30 2003-08-08 Lg Electronics Inc Air conditioner and method of controlling the same
JP2004144457A (en) * 2002-08-30 2004-05-20 Ebara Refrigeration Equipment & Systems Co Ltd Method and device for controlling number of operating connected type water cooler-heaters
JP2005226980A (en) * 2004-02-16 2005-08-25 Ebara Refrigeration Equipment & Systems Co Ltd Control system for refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014364A (en) * 2008-07-04 2010-01-21 Hitachi Plant Technologies Ltd Air conditioning system, and method of controlling the same
JP2011058660A (en) * 2009-09-07 2011-03-24 Hitachi Cable Ltd Cold water circulation system
JP2013160446A (en) * 2012-02-06 2013-08-19 Daikin Industries Ltd Outside air treatment system

Also Published As

Publication number Publication date
JP4707562B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
KR101383526B1 (en) Heat source system
US6257007B1 (en) Method of control of cooling system condenser fans and cooling tower fans and pumps
JP5558400B2 (en) Heat source system and number control method for heat source system
CN212431402U (en) Motor cooling system and refrigerating system of air suspension compressor
EP2960600B1 (en) System for managing lubricant levels in tandem compressor assemblies of an hvac system
CN102627064B (en) Vehicle self-contained refrigeration machine set
CN104990211A (en) Control method of multi-machine-head variable-frequency centrifugal central air conditioning unit
JP2007240131A (en) Optimization control of heat source unit and accessory
JP2010054152A (en) Heat source system and its control method
JP6413713B2 (en) Snow and ice air conditioning system
WO2021223530A1 (en) Control method for inverter air conditioner
JP4707562B2 (en) Connected chiller / heater and its operation method
JP4050600B2 (en) Operation number control method and operation number control device for connected chiller / heater
JP5286479B2 (en) Cold water circulation system
KR20050050536A (en) A heat pump using the heating and conditioning systems
CN105864969A (en) Low-frequency running starting method and system after silent placement of variable-frequency air conditioner and air conditioner
WO2017050072A1 (en) Water chiller-heater unit of air cooled heat pump and defrosting control method therefor
CN204534926U (en) Multi-connection refrigeration system
JP2017155950A (en) Heat source system
JP2000097479A (en) Air conditioner
CN104896630A (en) Multi-split refrigerating system and control method thereof
JPH11264625A (en) Cold water making device and refrigeration capacity control method thereof
CN204574320U (en) With naturally cold multi-connection refrigeration system
AU2018411936A1 (en) Hot water supply apparatus
JP3125796B2 (en) Cold water production equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110315

R150 Certificate of patent or registration of utility model

Ref document number: 4707562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250