JP2004144457A - Method and device for controlling number of operating connected type water cooler-heaters - Google Patents

Method and device for controlling number of operating connected type water cooler-heaters Download PDF

Info

Publication number
JP2004144457A
JP2004144457A JP2002342303A JP2002342303A JP2004144457A JP 2004144457 A JP2004144457 A JP 2004144457A JP 2002342303 A JP2002342303 A JP 2002342303A JP 2002342303 A JP2002342303 A JP 2002342303A JP 2004144457 A JP2004144457 A JP 2004144457A
Authority
JP
Japan
Prior art keywords
chiller
heater
water
hot water
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002342303A
Other languages
Japanese (ja)
Other versions
JP4050600B2 (en
Inventor
Yasuo Ikezaki
池崎 安雄
Yukio Nakazato
中里 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Refrigeration Equipment and Systems Co Ltd
Original Assignee
Ebara Refrigeration Equipment and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Refrigeration Equipment and Systems Co Ltd filed Critical Ebara Refrigeration Equipment and Systems Co Ltd
Priority to JP2002342303A priority Critical patent/JP4050600B2/en
Publication of JP2004144457A publication Critical patent/JP2004144457A/en
Application granted granted Critical
Publication of JP4050600B2 publication Critical patent/JP4050600B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for controlling the number of operating connected type water cooler-heaters operating the water heater-coolers by a number that is efficient as a whole system in a system of connected type water cooler-heaters, and capable of supplying stable cold water or hot water with little variation in cold water or hot water outlet temperature in starting and stopping the water cooler-heater. <P>SOLUTION: In the method for controlling the number of operating connected type water cooler-heaters provided with a plurality of water cooler-heaters 3-7 sharing cold and hot water piping, an optimum number of operating water cooler-heaters is calculated by the number of connected water cooler-heaters 3-7, a cold or hot water outlet set temperature difference, and an inlet temperature, and operation is carried out by comparing the calculated optimum number of operating water cooler-heaters with the actual operating number and varying the number of water cooler-heaters operated per a certain time one by one. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は冷温水配管を共通にした、複数の冷温水機を具備する連結式冷温水機の運転台数制御方法及び運転台数制御装置に関するものである。
【0002】
【従来の技術】
図1は従来のこの種の連結式冷温水機のシステム構成を示す図である(特許文献1参照)。図1において、1は入口ヘッダー管、2はポンプ、3、4、5、6、7は冷温水機、8は出口ヘッダー管である。入口ヘッダー管1から分岐した冷温水は、ポンプ2により圧送されて、冷温水機3、4、5、6、7に入り、各々の冷温水機が出口温度を制御して冷却又は加温している。なお、ここで冷温水には、ブラインも含むものとする。
【0003】
上記構成の連結式冷温水機のシステムにおいて、冷却運転時の運転台数制御方法は、ある台数の冷温水機(各々出口温度制御しながら)を所定時間(例えば3分間)連続運転し、出口ヘッダー管8の合流部の冷水出口温度が設定温度より所定温度(例えば1℃)低いと冷温水機の運転台数を1台減らし、高いと冷温水機の運転台数を1台増やすという方法を行っている。この方法は、冷温水機の容量を絞っても、冷水出口温度が低下する場合に、運転台数を減らしていくので、効率が悪い制御方法となる。
【0004】
また、このシステムでは、それぞれの冷温水機に流れ込む冷水又は温水を個別に止める機構が無いため、運転台数を減らしたときに停止した冷温水機にも冷水又は温水が流れ続ける。それにより、冷水又は温水の合流後の出口温度が不安定になると共に、大量の冷水又は温水を常に流し続けるために大きなポンプ動力が必要であった。
【0005】
【特許文献1】
特開2001−221541号公報
【0006】
【発明が解決しようとする課題】
本発明は上述の点に鑑みてなされたもので、連結式冷温水機のシステムにおいて、システム全体で効率のよい運転台数で冷温水機を運転すると共に、冷温水機の発停時における冷水、又は温水出口温度の変化の少ない安定した冷水又は温水を供給でき、さらに台数運転時に停止した冷温水機への冷水、又は温水のバイパスが無く安定した冷水又は温水出口温度をシステムに供給できる連結式冷温水機の運転台数制御方法及び運転台数制御装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため請求項1に記載の発明は、冷温水配管を共通にした、複数の冷温水機を具備する連結式冷温水機の運転台数制御方法であって、冷温水機の連結数、冷水又は温水出入口設定温度差、入口温度により冷温水機の最適運転台数を演算し、演算した冷温水機の最適運転台数と実際の運転台数の比較により、一定時間毎に運転する冷温水機を1台ずつ増減させて運転することを特徴とする。
【0008】
また請求項2に記載の発明は、冷温水配管を共通にした、複数の冷温水機を具備する連結式冷温水機の運転台数制御方法であって、冷温水機毎にポンプを設け、冷温水機は各々の冷水又は温水出口温度を制御し、冷温水機の連結数、冷水又は温水出入口設定温度差、入口温度により前記冷温水機の最適運転台数を演算し、前記演算した冷温水機の最適運転台数と実際の運転台数の比較により、一定時間毎に運転する冷温水機とそのポンプを1台ずつ増減させて運転することを特徴とする。
【0009】
また請求項3に記載の発明は、請求項2に記載の連結式冷温水機の運転台数制御方法において、自動運転中は冷温水機が全機停止した場合でも、ポンプは最後の一台を常時運転することを特徴とする。
【0010】
また、請求項4に記載の発明は、請求項1又は2又は3に記載の連結式冷温水機の運転台数制御方法において、冷温水機の設定温度をカスケード制御し、冷温水機の複数台運転時の冷水又は温水出口温度の平均値、又は合流部温度を制御すると共に、冷水又は温水の出入口温度差が一定値に低下した時、及び冷却時冷水の出口温度が一定値に低下又は加熱時温水の出口温度が一定値に上昇した時、前記一定時間毎に運転する冷温水機を1台ずつ増減させる運転に優先して自動停止することを特徴とする。
【0011】
また、請求項5に記載の発明は、冷温水配管を共通にした、複数の冷温水機を具備する連結式冷温水機の運転台数制御装置であって、制御手段を具備し、該制御手段は、冷温水機の連結数、冷水又は温水出入口設定温度差、入口温度により冷温水機の最適運転台数を演算し、該演算した冷温水機の最適運転台数と実際の運転台数の比較により、一定時間毎に運転する冷温水機を1台ずつ増減させて運転する機能を具備することを特徴とする。
【0012】
また、請求項6に記載の発明は、冷温水配管を共通にした、複数の冷温水機を具備する連結式冷温水機の運転台数制御装置であって、冷温水機毎にポンプを設け、制御手段を具備し、該制御手段は、前記冷温水機の連結数、冷水又は温水出入口設定温度差、入口温度により前記冷温水機の最適運転台数を演算し、該演算した冷温水機とポンプの最適運転台数と実際の運転台数の比較により、一定時間毎に運転する冷温水機とポンプを1台ずつ増減させて運転する機能を具備することを特徴とする。
【0013】
また、請求項7に記載の発明は、請求項6に記載の連結式冷温水機の運転台数制御装置において、自動運転中は、冷温水機が全機停止した場合でも、ポンプは最後の一台を常時運転する機能を具備することを特徴とする。
【0014】
また、請求項8に記載の発明は、請求項5又は6又は7に記載の連結式冷温水機の運転台数制御装置において、制御手段は、前記冷温水機の設定温度をカスケード制御し、前記冷温水機の複数台運転時の冷水又は温水出口温度の平均値、又は合流部温度を制御すると共に、冷水又は温水の出入口温度差が一定値に低下した時、及び冷却時冷水の出口温度が一定値に低下又は加熱時温水の出口温度が一定値に上昇した時、前記一定時間毎に運転する冷温水機を1台ずつ増減させる運転に優先して自動停止する機能を具備することを特徴とする。
【0015】
上記のように、冷温水配管を共通にした、複数の冷温水機を具備する連結式冷温水機において、各々の冷温水機の設定温度をカスケード制御して冷水又は温水出口平均温度、又は合流部温度を制御しながら、連結数、冷水又は温水出入口設定温度差、入口温度により冷温水機の最適運転台数を演算し、該演算した最適運転台数と実際の運転台数の比較により、一定時間毎に冷温水機の運転台数を増減させることにより、システム全体として効率のよい運転ができると共に、冷温水機の発停時における冷水、又は温水出口温度の変化の少ない安定した冷水又は温水を供給できる。
【0016】
さらに冷温水機毎にポンプを設け、冷温水機とそのポンプの運転台数を制御するので、台数運転時に停止した冷温水機への冷水、又は温水のバイパスが無く安定した冷水又は温水出口温度をシステムに供給できると共に、冷温水機を全機停止した場合でも、ポンプは最後の一台のみを常時運転するようにしたため、少ない冷温水量で、即ち少ないポンプ動力で冷温水の温度を監視できる。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態例を図面に基づいて説明する。図2は本発明に係る運転台数制御方法を実施する連結式冷温水機のシステム構成例を示す図である。図2において、1は入口ヘッダー管、2はポンプ、3、4、5、6、7はそれぞれ冷温水機、8は出口ヘッダー管である。ここでは、冷温水機3を親機とし、冷温水機4、5、6、7をそれぞれ子機としている。冷温水機3〜7は入口ヘッダー管1及び出口ヘッダー管8を介して逆環水法にて接続され、各冷温水機3〜7には、冷温水が均等に流れるように配管されている。
【0018】
親機の冷温水機3の入口配管には入口温度センサー9が取り付けられ、親機の冷温水機3の出口配管と子機の冷温水機4〜7の出口配管にはそれぞれ冷温水の出口温度を検出する出口温度センサー10が取り付けられている。各冷温水機3〜7にはそれぞれ操作盤11が設けられ、各操作盤11には図示しないCPUが内蔵されている。各冷温水機3、4、5、6、7の操作盤11はモジュール間通信配線12で接続され、親機である冷温水機3から子機である冷温水機4〜7への温度設定、子機である冷温水機4〜7のデータの親機である冷温水機3への伝送を行っている。また、親機である冷温水機3には遠隔信号線13が接続されている。なお、図2において、17は水熱交換器である。そして、各冷温水機3、4、5、6、7をモジュール1、2、3、4、5と定義している。
【0019】
図3は冷温水機の構成例を示す図である。図示するように冷温水機は蒸発器21、圧縮機22、凝縮器23、絞り機構24を具備し、蒸発器21で蒸発した冷媒ガスが圧縮機22で圧縮され、凝縮器23に導入されて冷却水又は温水25により冷却されて液化し、液化した冷媒は、絞り機構24で減圧され蒸発器21の冷媒室に入り、入口ヘッダー管1から流入する冷水から、熱を奪って蒸発して循環する。これにより、冷水は冷却され、出口ヘッダー管8へ流出する。
【0020】
各冷温水機3、4、5、6、7には出口温度制御部14が設けられている。各出口温度制御部14には出口温度センサー10の出力が入力され、圧縮機22の容量制御弁にて圧縮機22の吸込み風量を変化させて冷水又は温水出口を一定値に制御している。また、親機である冷温水機3には、各冷温水機3、4、5、6、7の設定温度を制御する設定温度制御部15が設けられている。該設定温度制御部15には各冷温水機3、4、5、6、7の出口の平均温度を演算入力又は合流部出口温度センサー16で検出して冷温水の出口温度が入力され、各冷温水機3、4、5、6、7の出口の平均温度、又は合流部の温度を制御するため、各冷温水機3、4、5、6、7の冷水又は出口設定温度をカスケード制御している。即ち、親機である冷温水機3の操作盤11により、各機器の冷温水機3〜7の目標値を変化させて制御している。
【0021】
図4は冷却時の冷温水機の運転台数制御のフローを示す図(加熱時は省略するが同様に行われる)で、図5は冷却時の冷温水機の運転台数演算結果を示す図である。親機である冷温水機3にて設定した連結台数N、冷温水出入口温度差(100%負荷時の)DT及び出口設定温度SVと、実際の負荷によって変化する冷水入口温度Tiにより最適運転台数rを下式(1)から演算して求め、実際の運転台数Rと該最適運転台数rとの差より、一定時間毎に冷温水機の運転台数を増減させ、最適運転台数で運転することにより、各冷温水機の絞り(低負荷)運転が防止でき、システム全体で効率の良い運転ができる。
r={N×(Ti−SV)}/DT              (1)
【0022】
図4において、3分連続運転を行い|r+1+a|<Rか又はr<0.4であるかを判断し(ステップST1)、YESであったら、実際の運転台数Rより1台を停止する(実際の運転台数R−1)(ステップST2)。NOであったら、3分連続運転を行いR<|r−a|であるかを判断し(ステップST3)、YESであったら、運転台数Rに1台運転台数を増加し(実際の運転台数R+1)(ステップST4)、NOであったら前記ステップST1に戻る。
【0023】
冷温水機の運転台数を上記のように、一定時間毎に1台ずつ増減させることにより、台数運転時の合流部の冷水出口温度の変化を小さくでき、安定した温度の冷温水を供給することが可能となると共に、複数台の冷温水機が同時に起動しないため、始動電流による電源系統への影響を小さくできる。更に、冷温水温度差が一定値に小さくなった場合は、冷温水機の運転台数制御に優先して冷温水機を停止させ、冷温水機の圧縮機22の吸込みガス量低下によるビルトインモータの冷却不足を防止できる。更に、冷却時冷水出口が所定値より所定温度(例えば2℃)下がると自動停止させて冷水の出口温度の下がり過ぎを防止している。
【0024】
冷却台数運転時の部分負荷特性を図6に示す。冷却負荷(冷水入口温度)により冷温水機を最適台数で運転することにより、低負荷までの効率のよい運転ができる。
【0025】
図7は本発明に係る連結式冷温水機の他のシステム構成例を示す図である。図7において、図2と同一符号を付した部分は同一又は相当部分を示す。本連結式冷温水機は図2の連結式冷温水機と同様、冷温水機3、4、5、6、7の5台が連結可能で、1台の親機と残りの子機からなり、冷温水配管は入口ヘッダー管1及び出口ヘッダー管8を介して逆環水法にて接続され、各冷温水機3〜7の冷温水が均等に流れるように配管されている。また、入口配管合流部には入口温度センサー9が取付けられ、親機の冷温水機3の出口配管と子機の冷温水機4〜7の出口配管にはそれぞれ冷温水の出口温度を検出する出口温度センサー10が取り付けられている。親機の冷温水機3と子機となる冷温水機4、5、6、7にはそれぞれ操作盤11が設けられ、CPUが内蔵され、各操作盤11はモジュール間通信配線12で接続され、親機から子機への温度設定、子機データの親機への伝送を行っている。また、親機である冷温水機3には遠隔信号線13が接続されている。なお、17は水熱交換器である。
【0026】
冷温水機の構成例は図3に示すものと同様であり、各冷温水機3、4、5、6、7は圧縮機22の容量制御弁にて圧縮機22の吸込み風量を変化させて、冷水又は温水出口温度を一定値に制御している。
【0027】
本連結式冷温水機が図2の連結式冷温水機と異なる点は、各冷温水機3、4、5、6、7のそれぞれにポンプ33、34、35、36、37と、入口温度センサー9を入口配管合流部に設けた点である。即ち、図2に示す連結式冷温水機では入口ヘッダー管1の上流側にポンプ2を設けた構成としているが、ここでは入口ヘッダー管1から分岐した各冷温水機3、4、5、6、7へと通ずる管1−1、1−2、1−3、1−4、1−5にそれぞれポンプ33、34、35、36、37を取付け、その下流側に逆止弁18を設けている。そして、各冷温水機3、4、5、6、7と各ポンプ33、34、35、36、37との組み合わせをモジュール1、2、3、4、5と定義している。
【0028】
図7に示す連結式冷温水機における冷温水機とポンプの連動運転タイムチャートを図8に示し、冷却時の運転台数制御フローチャートを図9に示す(加熱時は省略するが同様に行われる)。親機である冷温水機3の設定温度制御部15にて設定した連結台数N、冷温水出入口温度差DT、出口設定温度SVと実際の負荷によって変化する冷水入口温度Tiにより最適運転台数rを上記(1)式により演算して求め、実際の運転台数Rと該最適運転台数rとの差より、一定時間毎に冷温水機の運転台数を増減させ、最適運転台数で運転する。
【0029】
図9において、3分連続運転を行い|r+1+a|<Rであるかを判断し(ステップST5)、YESであったら、実際の運転台数Rより1台を停止する(実際の運転台数R−1)(ステップST6)。NOであったら、3分連続運転を行いR<|r−a|であるかを判断し(ステップST7)、YESであったら、運転台数Rに1台運転台数を増加し(実際の運転台数R+1)(ステップST8)、NOであったら前記ステップST5に戻る。これにより図10に示す冷却時の運転台数演算結果を得る。
【0030】
図7において、遠隔信号線13を通じて図示しない中央監視室からモジュール1の冷温水機3(親機)に対して運転指令が出されると図8に示すように、運転指令がONとなり、システムが起動し台数増減判断され、台数増減判断がR+1、即ち一台増加の場合はポンプ33を起動する(運転時間の短いモジュールから順次起動)。ポンプ起動後2分間のアンロードの時間を経て通水を確認し、冷温水機3を起動する。その後、台数増減判断がR−1、即ち一台減少の場合は冷温水機3を停止するが、中央監視室から運転停止指令が出されるまで、最後の1台のポンプ33は運転し続け、運転停止指令が出されたら、3分間の残留運転をした後、ポンプ33を停止する。
【0031】
モジュール2では、モジュール1の冷温水機3が起動した後、3分間経過後、台数増減判断がR+1、即ち一台増加の場合はポンプ34を起動する。ポンプ起動後30秒のアンロードの時間を経て通水を確認し、冷温水機4を起動する。その後、台数増減判断がR−1、即ち一台減少の場合は冷温水機4を停止し、3分間の残留運転をした後、ポンプ34を停止する。同様にして、モジュールNでは、モジュールN−1の冷温水機が起動した後、3分間経過後、台数増減判断がR+1、即ち一台増加の場合はポンプを起動する。ポンプ起動後30秒のアンロードの時間を経て通水を確認し、冷温水機を起動する。その後、台数増減判断がR−1、即ち一台減少の場合は冷温水機を停止し、3分間の残留運転をした後、ポンプを停止する。
【0032】
上記のように各モジュールの冷温水機が停止すると各冷温水機に接続されているポンプも連動して停止するので、該ポンプの停止した冷温水機に接続された管には冷水又は温水が流れず、運転時にポンプの停止した冷温水機への冷水又は温水のバイパスが無くなることになり、安定した冷水又は温水出口温度を供給することができる。
【0033】
また、台数運転判断により、順次冷温水機が停止し(運転時間の長い冷温水機から順次停止する)、最後の一台の冷温水機が停止した場合でも、モジュール1のポンプ33はそのまま運転を続け、中央監視室から運転停止指令が出された後、即ち運転指令OFFになった後、3分間の残留運転を経た後停止する。このように自動運転中は冷温水機を全機停止した場合でも、一台のポンプ(モジュール1のポンプ33)を常時運転するようにしたため、少ない冷温水量、即ち少ないポンプ動力で冷温水温度を監視でき、冷温水温度が上昇又は下降すれば、冷温水機を順次運転することができる。
【0034】
【発明の効果】
以上、説明したように各請求項に記載の発明によれば、下記のような優れた効果が得られる。
【0035】
請求項1及び請求項5に記載の発明によれば、一定時間毎に冷温水機の運転台数を増減させることにより、システム全体として効率のよい運転ができると共に、冷温水機の発停時における冷水、又は温水出口温度の変化の少ない安定した冷水又は温水を供給できる連結式冷温水機の運転台数制御方法及び運転台数制御装置を提供できる。
【0036】
また、請求項2及び請求項6に記載の発明によれば、停止した冷温水機のポンプを連動して停止するため、台数運転時の停止した冷温水機の冷温水バイパスが無くなり、安定した冷水又は温水出口温度をシステムに供給することができる。
【0037】
また、請求項3及び請求項7に記載の発明によれば、自動運転中は冷温水機を全機停止した場合でも、冷温水ポンプは最後の一台のみを常時運転することとしたため、少ない冷温水量で冷温水温度を監視でき、ポンプ動力が節約できる。
【0038】
また、請求項4及び請求項8に記載の発明によれば、冷温水温度差が一定値に小さくなった場合又は、冷温水出口が所定値より所定温度下がると自動停止させて冷温水機の運転台数制御に優先して冷温水機を停止させるので、冷温水機の圧縮機の吸込みガス量低下によるビルトインモータの冷却不足を防止できるとともに、冷水の出口温度の下がり過ぎを防止できる。
【図面の簡単な説明】
【図1】従来の連結式冷温水機のシステム構成を示す図である。
【図2】本発明に係る連結式冷温水機のシステム構成例を示す図である。
【図3】冷温水機の構成例を示す図である。
【図4】本発明に係る連結式冷温水機の冷却時の運転台数制御フローを示す図である。
【図5】本発明に係る連結式冷温水機の冷却時の運転台数演算結果を示す図である。
【図6】本発明に係る連結式冷温水機の冷却台数運転時の部分負荷特性を示す図である。
【図7】本発明に係る連結式冷温水機の他のシステム構成例を示す図である。
【図8】連結式冷温水機とポンプの連動運転タイムチャートを示す図である。
【図9】本発明に係る連結式冷温水機の冷却時の運転台数制御フローを示す図である
【図10】本発明に係る連結式冷温水機の冷却時の運転台数演算結果を示す図である。
【符号の説明】
1      入口ヘッダー管
2      ポンプ
3      冷温水機
4      冷温水機
5      冷温水機
6      冷温水機
7      冷温水機
8      出口ヘッダー管
9      入口温度センサー
10     出口温度センサー
11     操作盤
12     モジュール間通信配線
13     遠隔信号線
14     出口温度制御部
15     設定温度制御部
16     合流部出口温度センサー
17     水熱交換器
18     逆止弁
21     蒸発器
22     圧縮機
23     凝縮器
24     絞り機構
25     冷却水又は温水
33     ポンプ
34     ポンプ
35     ポンプ
36     ポンプ
37     ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an operation number control method and an operation number control device for a connected type chiller / heater having a plurality of chiller / heaters with a common chilled / hot water pipe.
[0002]
[Prior art]
FIG. 1 is a diagram showing a system configuration of this type of conventional connected chiller / heater (see Patent Document 1). In FIG. 1, 1 is an inlet header pipe, 2 is a pump, 3, 4, 5, 6, 7 are cold / hot water machines, and 8 is an outlet header pipe. The chilled / hot water branched from the inlet header pipe 1 is pumped by the pump 2 and enters the chilled / hot water machines 3, 4, 5, 6 and 7, where each chilled / hot water machine controls the outlet temperature to cool or warm. ing. Here, the cold / warm water includes brine.
[0003]
In the connected chiller / heater system configured as described above, the method of controlling the number of units during cooling operation is to continuously operate a certain number of chiller / heater units (while controlling the outlet temperature) for a predetermined time (for example, 3 minutes), If the chilled water outlet temperature at the junction of the pipe 8 is lower than the set temperature by a predetermined temperature (for example, 1 ° C.), the number of chilled water heaters is reduced by one, and if it is higher, the number of chilled water heaters is increased by one. Yes. Even if the capacity of the chiller / heater is reduced, this method is an inefficient control method because the number of operating units is reduced when the chilled water outlet temperature decreases.
[0004]
Further, in this system, since there is no mechanism for individually stopping the cold water or hot water flowing into each cold / hot water machine, the cold water or hot water continues to flow to the cold / hot water machine stopped when the number of operating units is reduced. As a result, the outlet temperature after the merging of cold water or hot water becomes unstable, and a large pump power is required to keep a large amount of cold water or hot water constantly flowing.
[0005]
[Patent Document 1]
JP-A-2001-221541 [0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and in a system of connected chiller / heater, while operating the chiller / heater with an efficient number of operation in the entire system, chilled water at the time of start / stop of the chiller / heater, Or it can supply stable chilled water or hot water with little change in hot water outlet temperature, and it can supply chilled water to hot / cold water machines stopped during unit operation or stable cold water or hot water outlet temperature without bypass of hot water to the system It is an object to provide a method for controlling the number of operating chilled / hot water machines and a device for controlling the number of operated devices.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention described in claim 1 is a method for controlling the number of connected chiller / heater units having a plurality of chiller / heater units having a common chiller / warm water pipe. The number of chilled water or hot water inlet / outlet set temperature difference and the inlet temperature are used to calculate the optimum number of chilled water heaters, and the calculated number of chilled water heaters is compared with the actual number of chilled water heaters. It is characterized by operating by increasing or decreasing the number of machines one by one.
[0008]
The invention described in claim 2 is a method for controlling the number of connected chiller / heater units having a plurality of chiller / heater units having a common chiller / warm water pipe, wherein a pump is provided for each chiller / heater unit. Each water machine controls the temperature of each chilled water or hot water outlet, calculates the optimum number of chilled water or hot water machines based on the number of connected chilled water or hot water machines, the temperature difference between the chilled water or hot water outlet and inlet, and the inlet temperature. According to the comparison between the optimum number of operating units and the actual number of operating units, the operation is performed by increasing / decreasing the number of chilled water heaters and their pumps that are operated at regular intervals.
[0009]
Further, the invention according to claim 3 is the operation number control method of the connected chiller-heater according to claim 2, even if the chiller-heater is stopped during the automatic operation, the pump is the last one. It is characterized by continuous operation.
[0010]
The invention described in claim 4 is a method for controlling the number of connected chiller / heater units according to claim 1, 2 or 3, wherein the set temperature of the chiller / heater is cascade-controlled, and a plurality of chiller / heater units are connected. Controls the average value of the chilled water or hot water outlet temperature during operation, or the temperature at the junction, and reduces or heats the outlet temperature of the chilled water or hot water to a constant value when the temperature difference between the inlet and outlet of the cold water or hot water decreases to a constant value. When the outlet temperature of the hot and cold water rises to a certain value, the operation is automatically stopped in preference to the operation of increasing or decreasing the number of the cold and hot water machines that are operated every certain time.
[0011]
Further, the invention according to claim 5 is an apparatus for controlling the number of connected chiller / heater units having a plurality of chiller / heater units having a common chiller / warm water pipe, comprising control means, the control unit Calculates the optimum number of chilled water heaters based on the number of connected chilled water heaters, chilled water or hot water inlet / outlet set temperature difference, inlet temperature, and compares the calculated number of chilled water heaters with the actual number of chilled water heaters. It is characterized in that it has a function of operating by increasing / decreasing the number of cold / hot water machines that operate at regular intervals.
[0012]
The invention according to claim 6 is a connected chiller / heater operation number control device having a plurality of chiller / heaters having a common chiller / heater pipe, and is provided with a pump for each chiller / heater, A control means, the control means calculates the optimum number of cold water heaters according to the number of connected cold water heaters, the temperature difference between the cold water or hot water inlet and outlet, the inlet temperature, and the calculated cold water heater and pump By comparing the optimal number of operating units with the actual number of operating units, it is characterized in that it has a function of operating by increasing / decreasing the number of chiller / heater units and pumps that operate at regular intervals.
[0013]
Further, the invention according to claim 7 is the connected chiller / heater operation number control device according to claim 6, wherein during automatic operation, the pump is the last one even if the chiller / heater stops. It is characterized by having a function of always operating the table.
[0014]
The invention described in claim 8 is the operation number control device for connected chilled water heaters according to claim 5, 6 or 7, wherein the control means cascade-controls the set temperature of the chilled water heaters, Controls the average value of the chilled water or hot water outlet temperature during the operation of multiple chilled water heaters or the junction temperature, and when the chilled water or hot water outlet / outlet temperature difference drops to a constant value, When the temperature of the hot water at the time of heating decreases to a certain value or rises to a certain value, it has a function of automatically stopping in preference to the operation of increasing or decreasing the number of the chiller / heater operated every certain time. And
[0015]
As described above, in a connected chiller / heater having a plurality of chiller / heater units that share a chiller / warm water pipe, the set temperature of each chiller / heater is cascade-controlled, and the chilled water or hot water outlet average temperature, or merged Calculate the optimum number of chilled water heaters using the number of connections, chilled water or hot water inlet / outlet set temperature difference, inlet temperature, and compare the calculated optimum number of operations with the actual number of units By increasing or decreasing the number of chiller / heater units operated, the system as a whole can be operated efficiently, and chilled water when the chiller / heater starts and stops, or stable chilled water or hot water with little change in the hot water outlet temperature can be supplied. .
[0016]
In addition, a pump is provided for each chiller / heater, and the number of chiller / heater units and the number of pumps operated is controlled. The pump can be supplied to the system, and even when all the cold / hot water machines are stopped, since only the last pump is always operated, the temperature of the cold / hot water can be monitored with a small amount of cold / hot water, that is, with a small pump power.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a diagram showing a system configuration example of a connected chiller / heater for carrying out the operating number control method according to the present invention. In FIG. 2, 1 is an inlet header pipe, 2 is a pump, 3, 4, 5, 6, and 7 are cold / hot water machines, and 8 is an outlet header pipe. Here, the cold / hot water machine 3 is used as a parent machine, and the cold / hot water machines 4, 5, 6, and 7 are used as child machines. The chilled water heaters 3 to 7 are connected by the reverse ring water method through the inlet header pipe 1 and the outlet header pipe 8, and the chilled water heaters 3 to 7 are piped so that the cold and hot water flows evenly. .
[0018]
An inlet temperature sensor 9 is attached to the inlet pipe of the chiller / hot water machine 3 of the parent machine, and the outlet pipe of the chiller / hot water machine 3 of the parent machine and the outlet pipes of the chiller / warm water machines 4 to 7 of the child machine are respectively outlets of cold / hot water An outlet temperature sensor 10 for detecting temperature is attached. Each of the hot / cold water heaters 3 to 7 is provided with an operation panel 11, and each operation panel 11 includes a CPU (not shown). The operation panels 11 of the chiller / heaters 3, 4, 5, 6, 7 are connected by the inter-module communication wiring 12, and the temperature is set from the chiller / heater 3 as the master unit to the chiller / heaters 4 to 7 as the slave units The data of the cold / hot water machines 4 to 7 that are the slaves is transmitted to the cold / hot water machine 3 that is the parent machine. In addition, a remote signal line 13 is connected to the cold / hot water machine 3 which is a parent machine. In FIG. 2, 17 is a water heat exchanger. And each cold / hot water machine 3, 4, 5, 6, 7 is defined as module 1, 2, 3, 4, 5.
[0019]
FIG. 3 is a diagram showing a configuration example of the cold / hot water machine. As shown in the figure, the chiller / heater includes an evaporator 21, a compressor 22, a condenser 23, and a throttle mechanism 24. The refrigerant gas evaporated by the evaporator 21 is compressed by the compressor 22 and introduced into the condenser 23. The refrigerant that is cooled and liquefied by cooling water or hot water 25 is depressurized by the throttle mechanism 24, enters the refrigerant chamber of the evaporator 21, and evaporates by removing heat from the cold water flowing from the inlet header pipe 1. To do. Thereby, the cold water is cooled and flows out to the outlet header pipe 8.
[0020]
Each chiller / heater 3, 4, 5, 6, 7 is provided with an outlet temperature controller 14. The output of the outlet temperature sensor 10 is input to each outlet temperature control unit 14, and the cold air or hot water outlet is controlled to a constant value by changing the suction air volume of the compressor 22 by the capacity control valve of the compressor 22. Moreover, the set temperature control part 15 which controls the set temperature of each cold / hot water machine 3,4,5,6,7 is provided in the cold / hot water machine 3 which is a main | base station. The set temperature control unit 15 receives the average temperature at the outlet of each of the chiller / heater units 3, 4, 5, 6, and 7 or detects the outlet temperature of the chilled / hot water by detecting it with the junction outlet temperature sensor 16. Cascade control of the chilled water or the outlet set temperature of each chiller / heater 3, 4, 5, 6, 7 in order to control the average temperature of the outlet of the chiller / heater 3, 4, 5, 6, 7 or the temperature of the junction doing. That is, control is performed by changing the target values of the chilled water heaters 3 to 7 of each device by using the operation panel 11 of the chilled water heater 3 serving as the master unit.
[0021]
FIG. 4 is a diagram showing a flow of control of the number of chilled / hot water units during cooling (not shown during heating but is performed in the same manner), and FIG. 5 is a diagram showing a calculation result of the number of chilled / hot water units operated during cooling. is there. The optimal number of units to be operated according to the number of connected units N set in the chiller / heater 3 as the master unit, the DT / C temperature difference (at 100% load) DT and the outlet set temperature SV, and the chilled water inlet temperature Ti that changes according to the actual load. Calculate r from the following equation (1), and increase / decrease the number of chilled water heaters at regular intervals based on the difference between the actual operating number R and the optimal operating number r, and operate at the optimal operating number. As a result, the throttle (low load) operation of each chiller / hot water machine can be prevented, and the entire system can be operated efficiently.
r = {N × (Ti−SV)} / DT (1)
[0022]
In FIG. 4, continuous operation is performed for 3 minutes, and it is determined whether | r + 1 + a | <R or r <0.4 (step ST1). If YES, one unit is stopped from the actual number R of operation ( Actual operation number R-1) (step ST2). If NO, run continuously for 3 minutes to determine whether R <| r−a | (step ST3). If YES, increase the number of operating units by 1 (the actual number of operating units). R + 1) (step ST4), if NO, the process returns to step ST1.
[0023]
As described above, the number of chilled water heaters can be increased or decreased one by one at regular intervals, so that the change in the chilled water outlet temperature at the merging section during unit operation can be reduced and chilled water with a stable temperature can be supplied. In addition, since a plurality of chiller / heaters do not start simultaneously, the influence of the starting current on the power supply system can be reduced. Further, when the temperature difference between the hot and cold water is reduced to a certain value, the hot and cold water machines are stopped in preference to the control of the number of operating cold and hot water machines, and the built-in motor of the built-in motor due to a decrease in the intake gas amount of the compressor 22 of the hot and cold water machines is stopped. Insufficient cooling can be prevented. Further, when the cooling water outlet at the time of cooling falls below a predetermined value by a predetermined temperature (for example, 2 ° C.), the cooling water outlet is automatically stopped to prevent the outlet temperature of the cold water from excessively decreasing.
[0024]
FIG. 6 shows the partial load characteristics when the number of cooling units is operated. By operating the chiller / heater with the optimum number of units depending on the cooling load (cold water inlet temperature), it is possible to operate efficiently up to low loads.
[0025]
FIG. 7 is a diagram showing another system configuration example of the connected chiller / heater according to the present invention. In FIG. 7, the parts denoted by the same reference numerals as those in FIG. 2 indicate the same or corresponding parts. This connected chiller / heater can be connected to 5 units of chilled / hot water units 3, 4, 5, 6, and 7 in the same way as the connected chiller / heater in FIG. 2 and consists of one master unit and the remaining slave units. The cold / hot water pipes are connected by the reverse ring water method through the inlet header pipe 1 and the outlet header pipe 8, and are piped so that the cold / hot water of each of the hot / cold water machines 3-7 flows evenly. In addition, an inlet temperature sensor 9 is attached to the inlet pipe junction, and the outlet temperature of the chilled / hot water 3 is detected in the outlet pipe of the chilled / hot water machine 3 of the master unit and the outlet pipes of the chilled / hot water machines 4 to 7 of the slave units. An outlet temperature sensor 10 is attached. An operation panel 11 is provided in each of the chiller / hot water machine 3 as a parent machine and the chiller / heater machines 4, 5, 6, and 7 as a child machine, and a CPU is built therein. The temperature is set from the master unit to the slave unit, and the slave unit data is transmitted to the master unit. In addition, a remote signal line 13 is connected to the cold / hot water machine 3 which is a parent machine. Reference numeral 17 denotes a water heat exchanger.
[0026]
The configuration example of the hot and cold water machine is the same as that shown in FIG. 3. Each of the hot and cold water machines 3, 4, 5, 6, and 7 changes the suction air volume of the compressor 22 by the capacity control valve of the compressor 22. The cold water or hot water outlet temperature is controlled to a constant value.
[0027]
This connected chiller / heater differs from the connected chiller / heater in FIG. 2 in that each chiller / heater 3, 4, 5, 6, 7 has a pump 33, 34, 35, 36, 37 and an inlet temperature. This is the point that the sensor 9 is provided at the inlet pipe junction. That is, the connected chiller / heater shown in FIG. 2 has a configuration in which the pump 2 is provided on the upstream side of the inlet header pipe 1, but here each of the chiller / heaters 3, 4, 5, 6 branched from the inlet header pipe 1. The pumps 33, 34, 35, 36, and 37 are attached to the pipes 1-1, 1-2, 1-3, 1-4, and 1-5, respectively, and the check valve 18 is provided on the downstream side thereof. ing. And the combination of each chiller / heater 3, 4, 5, 6, 7 and each pump 33, 34, 35, 36, 37 is defined as modules 1, 2, 3, 4, 5.
[0028]
FIG. 8 shows a linked operation time chart of the chiller / heater and the pump in the coupled chiller / heater shown in FIG. 7, and FIG. 9 shows a flowchart for controlling the number of units in operation at the time of cooling. . The optimum operating number r is determined by the number of connected units N set by the set temperature control unit 15 of the chilled / hot water machine 3 that is the parent machine, the chilled / hot water inlet / outlet temperature difference DT, the outlet set temperature SV, and the chilled water inlet temperature Ti that varies depending on the actual load. It is calculated by the above equation (1), and from the difference between the actual operating number R and the optimum operating number r, the operating number of the chilled water heaters is increased / decreased at regular intervals to operate at the optimum operating number.
[0029]
In FIG. 9, it is determined whether or not | r + 1 + a | <R by continuously operating for 3 minutes (step ST5). If YES, one unit is stopped from the actual number R of operations (actual number R-1 of operations). (Step ST6). If NO, run for 3 minutes continuously and determine whether R <| r−a | (step ST7). If YES, increase the number of operating units by 1 (the actual number of operating units). R + 1) (step ST8), if NO, the process returns to step ST5. Thereby, the operation number calculation result at the time of cooling shown in FIG. 10 is obtained.
[0030]
In FIG. 7, when an operation command is issued from the central monitoring room (not shown) to the cold / hot water machine 3 (master unit) of the module 1 through the remote signal line 13, the operation command is turned on as shown in FIG. When it is activated and the number of units is determined to increase / decrease, and the unit increase / decrease determination is R + 1, that is, one unit is increased, the pump 33 is started (sequentially starting from a module with a short operation time). After passing through the unloading time of 2 minutes after starting the pump, the water flow is confirmed and the cold / hot water machine 3 is started. Thereafter, if the unit increase / decrease determination is R-1, that is, if one unit is decreased, the chiller / heater 3 is stopped, but the last one pump 33 continues to operate until an operation stop command is issued from the central monitoring room, When the operation stop command is issued, the pump 33 is stopped after the remaining operation for 3 minutes.
[0031]
In the module 2, after the chiller / heater 3 of the module 1 is started, after 3 minutes, the pump 34 is started when the number increase / decrease determination is R + 1, that is, when one unit is increased. After passing the unloading time of 30 seconds after starting the pump, the water flow is confirmed and the cold / hot water machine 4 is started. Thereafter, when the number increase / decrease determination is R-1, that is, when one unit is decreased, the chiller / heater 4 is stopped, and after 3 minutes of residual operation, the pump 34 is stopped. Similarly, in module N, after the chiller / heater of module N-1 is started, after 3 minutes, the number of units increase / decrease determination is R + 1, that is, the pump is started when one unit is increased. Check the water flow after 30 seconds of unloading after starting the pump, and start the cold / hot water machine. Thereafter, when the unit increase / decrease determination is R-1, that is, when one unit is decreased, the chiller / heater is stopped, the remaining operation is performed for 3 minutes, and then the pump is stopped.
[0032]
As described above, when the chiller / heater of each module stops, the pumps connected to each chiller / heater also stop, so that the pipe connected to the chiller / heater stopped by the pump receives cold water or hot water. The cold water or hot water bypass to the cold / hot water machine in which the pump is stopped during operation is eliminated, and stable cold water or hot water outlet temperature can be supplied.
[0033]
In addition, when the number of units is determined, the chiller / heater is stopped sequentially (stops from the chiller / heater having a long operation time), and even if the last one chiller / heater stops, the pump 33 of the module 1 is operated as it is. After the operation stop command is issued from the central monitoring room, that is, after the operation command is turned off, the operation is stopped after 3 minutes of residual operation. In this way, even if all the chilled and hot water machines are stopped during automatic operation, one pump (pump 33 of module 1) is always operated, so the chilled and hot water temperature can be reduced with a small amount of chilled water, that is, with a small pump power. If the temperature of the cold / hot water rises or falls, the cold / hot water machine can be operated sequentially.
[0034]
【The invention's effect】
As described above, according to the invention described in each claim, the following excellent effects can be obtained.
[0035]
According to invention of Claim 1 and Claim 5, while increasing / decreasing the driving | running number of a cooling / heating machine for every fixed time, while being able to operate efficiently as the whole system, at the time of the start / stop of a cooling / heating machine It is possible to provide an operation number control method and an operation number control device for a connected chiller / heater capable of supplying chilled water or stable chilled water or hot water with little change in the hot water outlet temperature.
[0036]
Moreover, according to invention of Claim 2 and Claim 6, in order to stop the interlocking | cooling of the pump of the stopped cold / hot water machine, the cold / hot water bypass of the stopped cold / hot water machine at the time of unit operation was lost, and was stabilized. Cold water or hot water outlet temperature can be supplied to the system.
[0037]
Moreover, according to the invention of Claim 3 and Claim 7, even when all the cold / hot water machines are stopped during the automatic operation, the cold / hot water pump is always operated only for the last one, so that it is few. The temperature of cold / hot water can be monitored by the amount of cold / hot water, saving pump power.
[0038]
Moreover, according to the invention of Claim 4 and Claim 8, when the temperature difference of cold / hot water becomes small to a fixed value, or when the temperature of the cold / hot water outlet falls below a predetermined value, the automatic stop is performed. Since the chiller / heater is stopped in preference to the control of the number of operating units, it is possible to prevent insufficient cooling of the built-in motor due to a decrease in the intake gas amount of the compressor of the chiller / warm water heater, and it is possible to prevent the outlet temperature of the chilled water from being excessively lowered.
[Brief description of the drawings]
FIG. 1 is a diagram showing a system configuration of a conventional connected chiller / heater.
FIG. 2 is a diagram showing a system configuration example of a connected chiller / heater according to the present invention.
FIG. 3 is a diagram showing a configuration example of a cold / hot water machine.
FIG. 4 is a diagram showing a control flow for the number of operating units when the connected chiller / heater according to the present invention is cooled.
FIG. 5 is a diagram showing a calculation result of the number of operating units during cooling of the connected chiller / heater according to the present invention.
FIG. 6 is a diagram showing a partial load characteristic at the time of cooling unit operation of the connected chiller / heater according to the present invention.
FIG. 7 is a diagram showing another system configuration example of a connected chiller / heater according to the present invention.
FIG. 8 is a diagram showing a time chart for interlocking operation of a connected chiller / heater and a pump.
FIG. 9 is a diagram showing a control flow of the number of operating chilled water heaters when the connected chilled water heater according to the present invention is cooled. FIG. It is.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inlet header pipe 2 Pump 3 Chilled / hot water machine 4 Chilled / hot water machine 5 Chilled / hot water machine 6 Chilled / hot water machine 7 Chilled / hot water machine 8 Exit header pipe 9 Inlet temperature sensor 10 Outlet temperature sensor 11 Operation panel 12 Inter-module communication wiring 13 Remote signal line 14 outlet temperature controller 15 set temperature controller 16 junction outlet temperature sensor 17 water heat exchanger 18 check valve 21 evaporator 22 compressor 23 condenser 24 throttling mechanism 25 cooling water or hot water 33 pump 34 pump 35 pump 36 pump 37 pump

Claims (8)

冷温水配管を共通にした、複数の冷温水機を具備する連結式冷温水機の運転台数制御方法であって、
前記冷温水機の連結数、冷水又は温水出入口設定温度差、入口温度により前記冷温水機の最適運転台数を演算し、
前記演算した冷温水機の最適運転台数と実際の運転台数の比較により、一定時間毎に運転する冷温水機を1台ずつ増減させて運転することを特徴とする連結式冷温水機の運転台数制御方法。
A method for controlling the number of connected chiller / heater units having a plurality of chiller / heater units having a common chiller / warm water pipe,
Calculate the optimum number of cold water heaters by the number of connected cold water heaters, cold water or hot water inlet / outlet set temperature difference, inlet temperature,
The number of connected chiller / heater units operated by increasing or decreasing the number of chiller / heater units operated at regular intervals by comparing the calculated optimum number of chiller / heater units with the actual number of units operated Control method.
冷温水配管を共通にした、複数の冷温水機を具備する連結式冷温水機の運転台数制御方法であって、
前記冷温水機毎にポンプを設け、
前記冷温水機は各々の冷水又は温水出口温度を制御し、
前記冷温水機の連結数、冷水又は温水出入口設定温度差、入口温度により前記冷温水機の最適運転台数を演算し、
前記演算した冷温水機の最適運転台数と実際の運転台数の比較により、一定時間毎に運転する冷温水機とそのポンプを1台ずつ増減させて運転することを特徴とする連結式冷温水機の運転台数制御方法。
A method for controlling the number of connected chiller / heater units having a plurality of chiller / heater units having a common chiller / warm water pipe,
A pump is provided for each of the hot and cold water machines,
The cold / hot water machine controls each cold water or hot water outlet temperature,
Calculate the optimum number of cold water heaters by the number of connected cold water heaters, cold water or hot water inlet / outlet set temperature difference, inlet temperature,
The connected chiller / heater is operated by increasing / decreasing the chiller / heater operated at fixed time and its pump one by one by comparing the calculated optimum number of chiller / heater units with the actual number of units operated. How to control the number of operating units.
請求項2に記載の連結式冷温水機の運転台数制御方法において、
自動運転中は、冷温水機が全機停止した場合でも、ポンプは最後の一台を常時運転することを特徴とする連結式冷温水機の運転台数制御方法。
In the method for controlling the number of connected chiller / heater units according to claim 2,
A method for controlling the number of connected chiller / heater units in operation, wherein the pump always operates the last unit even when all the chiller / heater units are stopped during automatic operation.
請求項1又は2又は3に記載の連結式冷温水機の運転台数制御方法において、
前記冷温水機の設定温度をカスケード制御し、
前記冷温水機の複数台運転時の冷水又は温水出口温度の平均値、又は合流部温度を制御すると共に、冷水又は温水の出入口温度差が一定値に低下した時、及び冷却時冷水の出口温度が一定値に低下又は加熱時温水の出口温度が一定値に上昇した時、前記一定時間毎に運転する冷温水機を1台ずつ増減させる運転に優先して自動停止することを特徴とする連結式冷温水機の運転台数制御方法。
In the method for controlling the number of connected chiller / heater units according to claim 1, 2 or 3,
Cascade control of the set temperature of the water heater,
When controlling the average value of the cold water or hot water outlet temperature or the junction temperature at the time of operation of a plurality of the hot and cold water machines, and when the temperature difference between the inlet and outlet of the cold water or hot water decreases to a constant value, and the outlet temperature of the cold water during cooling Is automatically stopped in preference to the operation of increasing or decreasing the number of chiller / heater units that operate every certain time when the outlet temperature of the hot water during heating decreases to a certain value Method for controlling the number of operating water heaters.
冷温水配管を共通にした、複数の冷温水機を具備する連結式冷温水機の運転台数制御装置であって、
制御手段を具備し、該制御手段は、前記冷温水機の連結数、冷水又は温水出入口設定温度差、入口温度により前記冷温水機の最適運転台数を演算し、該演算した冷温水機の最適運転台数と実際の運転台数の比較により、一定時間毎に運転する冷温水機を1台ずつ増減させて運転する機能を具備することを特徴とする連結式冷温水機の運転台数制御装置。
A system for controlling the number of connected chiller / heater units having a plurality of chiller / heater units with common chiller / warm water pipes,
A control means, the control means calculates the optimum operating number of the chilled water heaters according to the number of connected chilled water heaters, the temperature difference between the chilled water or hot water inlet and outlet, the inlet temperature, and calculates the optimum chilled water heater An apparatus for controlling the number of connected chiller / heater units, which has a function of increasing / decreasing the number of chiller / heater units operated at fixed time intervals by comparing the number of units operated and the actual number of units operated.
冷温水配管を共通にした、複数の冷温水機を具備する連結式冷温水機の運転台数制御装置であって、
前記冷温水機毎にポンプを設け、
制御手段を具備し、該制御手段は、前記冷温水機の連結数、冷水又は温水出入口設定温度差、入口温度により前記冷温水機の最適運転台数を演算し、該演算した冷温水機とポンプの最適運転台数と実際の運転台数の比較により、一定時間毎に運転する冷温水機とポンプを1台ずつ増減させて運転する機能を具備することを特徴とする連結式冷温水機の運転台数制御装置。
A system for controlling the number of connected chiller / heater units having a plurality of chiller / heater units with common chiller / warm water pipes,
A pump is provided for each of the hot and cold water machines,
A control means, the control means calculates the optimum number of cold water heaters according to the number of connected cold water heaters, the temperature difference between the cold water or hot water inlet and outlet, the inlet temperature, and the calculated cold water heater and pump The number of connected chiller / heater units is characterized by having a function to increase / decrease the number of chiller / heater units and pumps that are operated at regular intervals by comparing the optimal number of units operated and the actual number of units operated Control device.
請求項6に記載の連結式冷温水機の運転台数制御装置において、
自動運転中は、冷温水機が全機停止した場合でも、ポンプは最後の一台を常時運転する機能を具備することを特徴とする連結式冷温水機の運転台数制御装置。
In the operation number control apparatus of the connection type cold / hot water machine of Claim 6,
A device for controlling the number of connected chiller / heater units in operation, wherein the pump has a function of always operating the last unit even when all the chiller / heater units are stopped during automatic operation.
請求項5又は6又は7に記載の連結式冷温水機の運転台数制御装置において、
前記制御手段は、前記冷温水機の設定温度をカスケード制御し、前記冷温水機の複数台運転時の冷水又は温水出口温度の平均値、又は合流部温度を制御すると共に、冷水又は温水の出入口温度差が一定値に低下した時、及び冷却時冷水の出口温度が一定値に低下又は加熱時温水の出口温度が一定値に上昇した時、前記一定時間毎に運転する冷温水機を1台ずつ増減させる運転に優先して自動停止する機能を具備することを特徴とする連結式冷温水機の運転台数制御装置。
In the operation number control apparatus of the connection type cold / hot water machine of Claim 5 or 6 or 7,
The control means cascade-controls the set temperature of the cold / hot water machine, and controls the average value of the cold water or hot water outlet temperature or the junction temperature at the time of operating a plurality of the cold / hot water machines, and the inlet / outlet of the cold water or hot water One chiller / heater that operates every certain time when the temperature difference drops to a certain value, and when the cooling water outlet temperature falls to a certain value or when the heating hot water outlet temperature rises to a certain value An apparatus for controlling the number of connected chiller / heater units to be operated, which has a function of automatically stopping in preference to an operation of increasing or decreasing each time.
JP2002342303A 2002-08-30 2002-11-26 Operation number control method and operation number control device for connected chiller / heater Expired - Lifetime JP4050600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002342303A JP4050600B2 (en) 2002-08-30 2002-11-26 Operation number control method and operation number control device for connected chiller / heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002255553 2002-08-30
JP2002342303A JP4050600B2 (en) 2002-08-30 2002-11-26 Operation number control method and operation number control device for connected chiller / heater

Publications (2)

Publication Number Publication Date
JP2004144457A true JP2004144457A (en) 2004-05-20
JP4050600B2 JP4050600B2 (en) 2008-02-20

Family

ID=32472893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002342303A Expired - Lifetime JP4050600B2 (en) 2002-08-30 2002-11-26 Operation number control method and operation number control device for connected chiller / heater

Country Status (1)

Country Link
JP (1) JP4050600B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183030A (en) * 2006-01-05 2007-07-19 Kansai Electric Power Co Inc:The Connected type water cooler-heater, and its operating method
KR100824078B1 (en) * 2007-04-24 2008-04-21 김영창 Waterpurifier
JP2009192186A (en) * 2008-02-18 2009-08-27 Hitachi Appliances Inc Refrigeration system
JP2011058660A (en) * 2009-09-07 2011-03-24 Hitachi Cable Ltd Cold water circulation system
WO2012017912A1 (en) * 2010-08-06 2012-02-09 三菱重工業株式会社 Refrigerator controller
CN102472519A (en) * 2009-11-13 2012-05-23 三菱重工业株式会社 Heat source system
JP2013092324A (en) * 2011-10-27 2013-05-16 Mitsubishi Electric Corp Refrigerating air conditioning device
JP2013178048A (en) * 2012-02-29 2013-09-09 Hitachi Appliances Inc Chilling unit
KR20160038606A (en) * 2014-09-30 2016-04-07 린나이코리아 주식회사 Cascade system for controlling numbers of standby boiler or gas water heater and method of the system
CN110094847A (en) * 2019-05-24 2019-08-06 珠海格力电器股份有限公司 The method and device of efficient control module unit
US11326804B2 (en) 2018-02-06 2022-05-10 Mitsubishi Electric Corporation Air-conditioning system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4707562B2 (en) * 2006-01-05 2011-06-22 関西電力株式会社 Connected chiller / heater and its operation method
JP2007183030A (en) * 2006-01-05 2007-07-19 Kansai Electric Power Co Inc:The Connected type water cooler-heater, and its operating method
KR100824078B1 (en) * 2007-04-24 2008-04-21 김영창 Waterpurifier
JP2009192186A (en) * 2008-02-18 2009-08-27 Hitachi Appliances Inc Refrigeration system
JP2011058660A (en) * 2009-09-07 2011-03-24 Hitachi Cable Ltd Cold water circulation system
CN102472519B (en) * 2009-11-13 2014-07-30 三菱重工业株式会社 Heat source system
CN102472519A (en) * 2009-11-13 2012-05-23 三菱重工业株式会社 Heat source system
WO2012017912A1 (en) * 2010-08-06 2012-02-09 三菱重工業株式会社 Refrigerator controller
JP2012037141A (en) * 2010-08-06 2012-02-23 Mitsubishi Heavy Ind Ltd Refrigerator controller
KR101496532B1 (en) * 2010-08-06 2015-02-26 미츠비시 쥬고교 가부시키가이샤 Refrigerator controller
JP2013092324A (en) * 2011-10-27 2013-05-16 Mitsubishi Electric Corp Refrigerating air conditioning device
JP2013178048A (en) * 2012-02-29 2013-09-09 Hitachi Appliances Inc Chilling unit
KR20160038606A (en) * 2014-09-30 2016-04-07 린나이코리아 주식회사 Cascade system for controlling numbers of standby boiler or gas water heater and method of the system
KR101647128B1 (en) 2014-09-30 2016-08-09 린나이코리아 주식회사 Cascade system for controlling numbers of standby boiler or gas water heater and method of the system
US11326804B2 (en) 2018-02-06 2022-05-10 Mitsubishi Electric Corporation Air-conditioning system
CN110094847A (en) * 2019-05-24 2019-08-06 珠海格力电器股份有限公司 The method and device of efficient control module unit

Also Published As

Publication number Publication date
JP4050600B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
CN212431402U (en) Motor cooling system and refrigerating system of air suspension compressor
EP2313709B1 (en) Chiller with setpoint adjustment
RU2362096C2 (en) Withdrawal of instantly releasing gas from cooling system header
US8701424B2 (en) Turbo chiller, heat source system, and method for controlling the same
JP4050600B2 (en) Operation number control method and operation number control device for connected chiller / heater
CN102628627B (en) Heat pump type heat source machine and heating system
CN102168899A (en) Heat pump system and control method thereof
CN109297222B (en) Control method of heat pump hot water unit
CA2536757C (en) Boosted air source heat pump
JP2013119954A (en) Heat pump hot water heater
JP2004278884A (en) Control device
JPH05223362A (en) Capacity balance control system of refrigeration system and operating method thereof
CN110822545A (en) Variable frequency air conditioning system and control method for low frequency operation thereof
KR20100136004A (en) Heat pump system having freezing protection apparatus
JP5701084B2 (en) Heating system
KR20050050536A (en) A heat pump using the heating and conditioning systems
JP6832732B2 (en) Refrigeration system
JP2007183030A (en) Connected type water cooler-heater, and its operating method
AU2018411936B2 (en) Hot water supply apparatus
JP2013104596A (en) Hot water heating/supplying system
CN113803910A (en) Motor cooling system and refrigerating system of air suspension compressor
JP2002122334A (en) Heat-pump type floor-heating equipment
JP3588144B2 (en) Operating number control of absorption chillers installed in parallel
CN112833605B (en) Refrigeration device and method for a refrigeration device
JP5798880B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061127

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070907

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071129

R150 Certificate of patent or registration of utility model

Ref document number: 4050600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term