JP5701084B2 - Heating system - Google Patents

Heating system Download PDF

Info

Publication number
JP5701084B2
JP5701084B2 JP2011020299A JP2011020299A JP5701084B2 JP 5701084 B2 JP5701084 B2 JP 5701084B2 JP 2011020299 A JP2011020299 A JP 2011020299A JP 2011020299 A JP2011020299 A JP 2011020299A JP 5701084 B2 JP5701084 B2 JP 5701084B2
Authority
JP
Japan
Prior art keywords
heat source
temperature
heat pump
heat
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011020299A
Other languages
Japanese (ja)
Other versions
JP2012159253A (en
Inventor
片山 馨
馨 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2011020299A priority Critical patent/JP5701084B2/en
Publication of JP2012159253A publication Critical patent/JP2012159253A/en
Application granted granted Critical
Publication of JP5701084B2 publication Critical patent/JP5701084B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明の実施の形態は、ヒートポンプ式冷凍サイクルを用いて温水を発生させるヒートポンプ式熱源機を複数台用いた加温システムに関する。   The embodiment of the present invention relates to a heating system using a plurality of heat pump heat source units that generate hot water using a heat pump refrigeration cycle.

床暖房、ファンコイルユニット等の負荷に対して温水を供給して暖房等の加温を行なう加温システムにおいて、水を加熱する手段として外気等の空気を熱源としたヒートポンプ式熱源機を用いることが考えられている。 このようなヒートポンプ式熱源機では、水を加熱するための熱量が負荷の要求する熱量以上である必要がある。したがって、負荷の放熱量に応じて最適能力(加熱熱量)のヒートポンプ式熱源機を選定する必要がある。 加熱熱量は設置先や負荷の種類等によって異なるため、それぞれの負荷に見合った加熱能力を備えたヒートポンプ式熱源機の種類を準備しなければならない。
また、加熱能力を大きくするために複数の冷凍サイクルを備え、各冷凍サイクルの加熱出力となる水熱交換器を直列に接続して大能力化を図ったヒートポンプ式熱源機も考えられている。(特許文献1参照)
In a heating system that supplies warm water to a load such as floor heating or a fan coil unit to heat such as heating, use a heat pump heat source machine that uses air such as outside air as a heat source as a means for heating water. Is considered. In such a heat pump heat source machine, the amount of heat for heating water needs to be equal to or greater than the amount of heat required by the load. Therefore, it is necessary to select a heat pump type heat source device having an optimum capacity (heating heat amount) according to the heat radiation amount of the load. Since the amount of heat to be heated varies depending on the installation location, the type of load, and the like, it is necessary to prepare a type of heat pump type heat source device having a heating capacity suitable for each load.
In order to increase the heating capacity, a heat pump type heat source apparatus that includes a plurality of refrigeration cycles and connects the water heat exchangers serving as heating outputs of the respective refrigeration cycles in series to increase the capacity is also considered. (See Patent Document 1)

特開2008−175476号公報JP 2008-175476 A

しかしながら、負荷に応じて最適な加熱能力を備えたヒートポンプ式熱源機を準備した場合、機種数が多くなってしまい、製造や流通が非効率的になるという問題が生じる。   However, when a heat pump type heat source device having an optimum heating capacity according to the load is prepared, there is a problem that the number of models increases and manufacturing and distribution become inefficient.

本発明の実施形態によれば、加温システムは、水配管によって負荷に複数台のヒートポンプ式熱源機の冷凍サイクル中の水―冷媒熱交換器を直列に接続する。
各ヒートポンプ式熱源機は、水―冷媒熱交換器の入口側の水温を検出する入口温度センサと、水―冷媒熱交換器の出口側の水温を検出する出口温度センサと、入口温度センサによって検出した入口水温と停止温度とを比較して、入口温度が停止温度を超えると冷凍サイクルの運転を停止させ、入口温度が停止温度未満に低下するまで停止状態を継続する運転制御手段と、出口温度センサによって検出した出口水温と目標温度とを比較してヒートポンプ冷凍サイクルによる加熱量を制御する加熱量制御手段とを備える。
加温システムは、直列接続されたヒートポンプ式熱源機中の上流側のヒートポンプ式熱源機の目標温度を、下流側のヒートポンプ式熱源機の冷凍サイクルの停止温度以上に設定する。
According to the embodiment of the present invention, the heating system connects in series the water-refrigerant heat exchangers in the refrigeration cycle of the plurality of heat pump heat source units to the load by water piping.
Each heat pump heat source is detected by an inlet temperature sensor that detects the water temperature on the inlet side of the water-refrigerant heat exchanger, an outlet temperature sensor that detects the water temperature on the outlet side of the water-refrigerant heat exchanger, and an inlet temperature sensor. The operation control means for stopping the operation of the refrigeration cycle when the inlet temperature exceeds the stop temperature and continuing the stop state until the inlet temperature drops below the stop temperature, and the outlet temperature A heating amount control means for comparing the outlet water temperature detected by the sensor and the target temperature to control the heating amount by the heat pump refrigeration cycle is provided.
The heating system sets the target temperature of the upstream heat pump heat source device in the heat pump heat source devices connected in series to be equal to or higher than the stop temperature of the refrigeration cycle of the downstream heat pump heat source device.

本発明の実施形態に係る加温システムの構成図。The block diagram of the heating system which concerns on embodiment of this invention. 同加温システムに使用されるヒートポンプ式熱源機の冷凍サイクルと制御ブロック図。The refrigerating cycle and control block diagram of the heat pump type heat source machine used for the heating system. 同ヒートポンプ式熱源機の制御フローチャート。The control flowchart of the heat pump type heat source machine. 同ヒートポンプ式熱源機の各部の温度変化と冷凍サイクルの運転状態を示すグラフ。The graph which shows the temperature change of each part of the heat pump type heat source machine, and the operating state of a refrigerating cycle.

本発明の実施形態について、図1乃至図4を用いて説明する。   An embodiment of the present invention will be described with reference to FIGS.

本発明の実施形態に係るヒートポンプ式熱源機およびこのヒートポンプ式熱源機を用いた加温システム1の構成を図1に示す。   FIG. 1 shows a configuration of a heat pump heat source device according to an embodiment of the present invention and a heating system 1 using the heat pump heat source device.

加温システム1では、床暖房、ファンコイルユニット等の負荷4に水配管5から供給される温水が流通する。負荷4では、この温水の熱が放熱され所定の暖房や加温が行われる。水配管5は途中にポンプ3が設けられ、このポンプ3が動作することで水配管5内の水が流通するようになっている。水配管5途中には複数のヒートポンプ式熱源機HS(1)〜HS(n)が直列に設けられている。水配管5は負荷4とポンプ3、複数のヒートポンプ式熱源機HS(1)〜HS(n)の各水―冷媒熱交換器(図2中の26)を直列に接続した閉回路を構成している。ポンプ3を運転することで、水配管5内の水が負荷4、直列接続された複数のヒートポンプ式熱源機HS(1)〜HS(n)間を循環する。このように熱を搬送する水は閉回路になっている。
なお、図1では最終段のヒートポンプ式熱源機HS(n)と負荷4との間にポンプ3を配置しているが、ポンプ3の設置位置は水配管5途中のどこに設けても良い。
In the heating system 1, hot water supplied from the water pipe 5 flows to a load 4 such as a floor heater or a fan coil unit. In the load 4, the heat of the hot water is radiated to perform predetermined heating and heating. The water pipe 5 is provided with a pump 3 in the middle, and the water in the water pipe 5 is circulated by operating the pump 3. In the middle of the water pipe 5, a plurality of heat pump heat source machines HS (1) to HS (n) are provided in series. The water pipe 5 constitutes a closed circuit in which the load 4, the pump 3, and the water-refrigerant heat exchangers (26 in FIG. 2) of the plurality of heat pump heat source machines HS (1) to HS (n) are connected in series. ing. By operating the pump 3, the water in the water pipe 5 circulates between the load 4 and a plurality of heat pump heat source machines HS (1) to HS (n) connected in series. Thus, the water which conveys heat is a closed circuit.
In FIG. 1, the pump 3 is arranged between the heat pump heat source machine HS (n) at the final stage and the load 4, but the installation position of the pump 3 may be provided anywhere in the water pipe 5.

以下、水配管5に対して直列接続されたヒートポンプ式熱源機HS(1)〜HS(n)において任意のヒートポンプ式熱源機をヒートポンプ式熱源機HS(i)とし、このヒートポンプ式熱源機HS(i)に隣接し、水配管5に流れる水の方向を基準として下流側のヒートポンプ式熱源機をヒートポンプ式熱源機HS(i+1)で表す。
ポンプ3の運転によって、負荷4から流出した低温水は、複数のヒートポンプ式熱源機HS(1)〜HS(n)を直列に流れる。ここで、ヒートポンプ式熱源機HS(1)〜HS(n)が運転されれば、水配管5内の水が所望の温度になるまで各ヒートポンプ式熱源機HS(1)〜HS(n)で順次加熱され、この加熱された水(湯)が、再び負荷4に戻る。この結果、負荷4には温水が供給され、その熱を放熱して、暖房または加温が実行される。
Hereinafter, in the heat pump heat source machines HS (1) to HS (n) connected in series to the water pipe 5, an arbitrary heat pump heat source machine is referred to as a heat pump heat source machine HS (i), and the heat pump heat source machine HS ( A downstream heat pump heat source machine is represented by a heat pump heat source machine HS (i + 1) with reference to the direction of water flowing through the water pipe 5 adjacent to i).
The low temperature water that has flowed out of the load 4 due to the operation of the pump 3 flows in series through a plurality of heat pump heat source machines HS (1) to HS (n). Here, if the heat pump heat source machines HS (1) to HS (n) are operated, the heat pump heat source machines HS (1) to HS (n) are operated until the water in the water pipe 5 reaches a desired temperature. The heated water (hot water) is returned to the load 4 again. As a result, hot water is supplied to the load 4, and the heat is radiated to perform heating or heating.

図2に示す各ヒートポンプ式熱源機HS(1)〜HS(n)は、いずれも同一構成となっており、1つのヒートポンプ式冷凍サイクルとその冷凍サイクルを制御する制御装置とから構成される。ヒートポンプ式冷凍サイクルは、インバータ装置23で可変速駆動される圧縮機24、冷媒の流通方向を変更する四方弁25、水―冷媒熱交換器26、膨張弁27、熱源側熱交換器28、再び四方弁2を通過して圧縮機24へと戻るように順次冷媒配管を接続することで構成された一般的な冷凍サイクルとなっている。   Each of the heat pump heat source machines HS (1) to HS (n) shown in FIG. 2 has the same configuration, and includes one heat pump refrigeration cycle and a control device that controls the refrigeration cycle. The heat pump refrigeration cycle includes a compressor 24 driven at a variable speed by an inverter device 23, a four-way valve 25 for changing the refrigerant flow direction, a water-refrigerant heat exchanger 26, an expansion valve 27, a heat source side heat exchanger 28, and again. A general refrigeration cycle is formed by connecting refrigerant pipes sequentially so as to pass through the four-way valve 2 and return to the compressor 24.

熱源側熱交換器28は、例えば、フィンドチューブタイプの空気熱交換器であり、この熱交換器に通風するためのプロペラファン29が設けられている。
なお、四方弁25は熱源側熱交換器28の表面に空気中の水分が凝縮してできる着霜を溶かす除霜運転のために設けられるが、着霜しない高温の雰囲気条件下で熱源側熱交換器28が使用されるのであれば、四方弁25は不要となる。
The heat source side heat exchanger 28 is, for example, a finned tube type air heat exchanger, and is provided with a propeller fan 29 for ventilating the heat exchanger.
The four-way valve 25 is provided for a defrosting operation for melting frost formed by condensation of moisture in the air on the surface of the heat source side heat exchanger 28. If the exchanger 28 is used, the four-way valve 25 is unnecessary.

冷凍サイクルが運転されると圧縮機24で冷媒が圧縮され、吐出された高温高圧冷媒が四方弁25を経由して水―冷媒熱交換器26に流れる。水―冷媒熱交換器26では水配管5を流れる水と冷凍サイクル中の高温高圧冷媒が熱交換し、水が加熱される。   When the refrigeration cycle is operated, the refrigerant is compressed by the compressor 24, and the discharged high-temperature high-pressure refrigerant flows to the water-refrigerant heat exchanger 26 via the four-way valve 25. In the water-refrigerant heat exchanger 26, the water flowing through the water pipe 5 and the high-temperature high-pressure refrigerant in the refrigeration cycle exchange heat to heat the water.

各ヒートポンプ式熱源機HS(1)〜HS(n)の冷凍サイクルの冷媒として、本実施の形態ではHFC冷媒であるR410Aを用いているが、適切な他の冷媒を用いてもよい。   In this embodiment, R410A, which is an HFC refrigerant, is used as a refrigerant in the refrigeration cycle of each heat pump heat source machine HS (1) to HS (n), but other appropriate refrigerants may be used.

ヒートポンプ式熱源機HS(1)〜HS(n)は、負荷4が必要とする最大加熱量すなわち負荷4での最大放熱量に対し、少なくとも各ヒートポンプ式熱源機HS(1)〜HS(n)の最大加熱能力の合計が大きくなるように選定される。 望ましくは、負荷4の予想される最大放熱量が、複数台のヒートポンプ式熱源機HS(1)〜HS(n−1)の最大加熱能力を合計した合計最大加熱能力と略同じとし、最下流にあるヒートポンプ式熱源機HS(n)の加熱能力が余るように設定する。   The heat pump heat source machines HS (1) to HS (n) are at least each of the heat pump heat source machines HS (1) to HS (n) with respect to the maximum heating amount required by the load 4, that is, the maximum heat radiation amount at the load 4. The total maximum heating capacity is selected to be large. Desirably, the expected maximum heat dissipation amount of the load 4 is substantially the same as the total maximum heating capacity obtained by adding up the maximum heating capacities of the plurality of heat pump heat source machines HS (1) to HS (n-1), and is most downstream. It is set so that the heating capacity of the heat pump type heat source machine HS (n) in is left.

例えば、負荷4が必要とする最大加熱能力が7Kwであれば、最大加熱能力が5Kwのヒートポンプ式熱源機が2台(合計最大加熱能10Kw)を水配管5に対して直列接続して用いられる。
また、各ヒートポンプ式熱源機HS(1)〜HS(n)は全く同一でなくとも、各ヒートポンプ式熱源機HS(1)〜HS(n)の加熱能力を異ならせても良い。例えば、加熱能力が5Kwのヒートポンプ式熱源機と2.5Kwのヒートポンプ式熱源機を組み合わせることも可能である。
負荷4が必要とする最大加熱能力が7Kwの場合の組み合わせとして、水配管5中の水の流れに対して上流側から5Kwのヒートポンプ式熱源機を1台と2.5Kwのヒートポンプ式熱源機2台を直列に接続(合計最大加熱能10Kw)すればよい。この組み合わせであれば、上流側の5Kwのヒートポンプ式熱源機を1台とその下流側の2.5Kwのヒートポンプ式熱源機1台で、負荷4の最大加熱能力である7Kwを超えた7.5Kwとなり、最下流の2.5Kwのヒートポンプ式熱源機HS(n)は余裕分となる。
For example, if the maximum heating capacity required by the load 4 is 7 Kw, two heat pump heat source machines having a maximum heating capacity of 5 Kw (total maximum heating capacity 10 Kw) are connected in series to the water pipe 5. .
Further, the heat pump heat source machines HS (1) to HS (n) may not be exactly the same, and the heat pump heat source machines HS (1) to HS (n) may have different heating capacities. For example, it is also possible to combine a heat pump type heat source machine with a heating capacity of 5 Kw and a 2.5 Kw heat pump type heat source machine.
As a combination when the maximum heating capacity required by the load 4 is 7 Kw, one 5 Kw heat pump heat source machine and 2.5 Kw heat pump heat source machine 2 from the upstream side with respect to the flow of water in the water pipe 5 The bases may be connected in series (total maximum heating capacity 10 Kw). With this combination, one upstream 5Kw heat pump heat source unit and one downstream 2.5Kw heat pump heat source unit, 7.5Kw exceeding the maximum heating capacity 7Kw of load 4 Thus, the most downstream 2.5 Kw heat pump heat source machine HS (n) has a margin.

次に、図2に従ってヒートポンプ式熱源機HS(i)の制御装置について説明する。 圧縮機24を駆動するインバータ装置23とプロペラファン29を駆動するファンモータ30は、制御手段である制御器21によって制御される。 制御器21は、マイクロコンピュータおよびその周辺回路から構成される。制御器21には、その入力側に水―冷媒熱交換器26の入口側の水配管5の温度(以下、入口水温Tin(i)という。)を検出する入口温度センサ32と水―冷媒熱交換器26の出口側の水配管5の温度(以下、出口水温Tout(i)という。)を検出する出口温度センサ31が入力される。さらに、制御器21には、使用者が設定操作可能な操作手段である操作器22が接続されている。 制御器21には、これらのセンサ31、32の検出温度および操作器22の設定内容が入力され、これらのデータに基づき圧縮機24やファンモータ30の回転数を決定し、制御する。   Next, the control device of the heat pump heat source machine HS (i) will be described with reference to FIG. The inverter device 23 that drives the compressor 24 and the fan motor 30 that drives the propeller fan 29 are controlled by a controller 21 as control means. The controller 21 includes a microcomputer and its peripheral circuits. The controller 21 has an inlet temperature sensor 32 for detecting the temperature of the water pipe 5 on the inlet side of the water-refrigerant heat exchanger 26 (hereinafter referred to as inlet water temperature Tin (i)) on the input side, and water-refrigerant heat. An outlet temperature sensor 31 that detects the temperature of the water pipe 5 on the outlet side of the exchanger 26 (hereinafter referred to as outlet water temperature Tout (i)) is input. Furthermore, the controller 21 is connected to an operating device 22 which is an operating means that can be set by the user. The controller 21 receives the detected temperatures of the sensors 31 and 32 and the setting contents of the operation unit 22 and determines and controls the rotation speed of the compressor 24 and the fan motor 30 based on these data.

さらに、熱源側熱交換器28の加熱運転時の冷媒出口配管近傍には熱交温度センサ33が設けられ、冷媒温度(Te)を検出する。また熱源側熱交換器28の熱交換用空気流入側には熱交換用の空気温度(To)を検出する温度センサ34が設けられている。これらのセンサ33,34も制御器21に接続され、制御器21は、検出した各温度Te、Toを読み取る。 これらのセンサ33,34の検出温度は、熱源側熱交換器28の着霜状態の検出に用いられる。制御器21は、各温度Te、Toの差(To−Te)及びその差の時間変化に基づき着霜状態を検出し、その着霜量が除霜に必要な量に到達したか否かを判断し、除霜が必要と判断した場合、除霜運転を行なう。なお、上述したように除霜運転が必要なければ、これらのセンサ33,34は不要となる。   Further, a heat exchange temperature sensor 33 is provided in the vicinity of the refrigerant outlet pipe during the heating operation of the heat source side heat exchanger 28 to detect the refrigerant temperature (Te). Further, a temperature sensor 34 for detecting a heat exchange air temperature (To) is provided on the heat exchange air inflow side of the heat source side heat exchanger 28. These sensors 33 and 34 are also connected to the controller 21, and the controller 21 reads the detected temperatures Te and To. The detected temperatures of these sensors 33 and 34 are used to detect the frosting state of the heat source side heat exchanger 28. The controller 21 detects the frosting state based on the difference between the temperatures Te and To (To-Te) and the time change of the difference, and determines whether or not the frosting amount has reached the amount necessary for defrosting. If it is determined that defrosting is necessary, a defrosting operation is performed. If the defrosting operation is not necessary as described above, these sensors 33 and 34 are unnecessary.

操作手段として機能する操作器22は、図2にその外観を示すように、表面に2種類のアップ/ダウン操作ボタン22a、22b及びヒートポンプ熱源機HS(i)の運転/停止を指示する運転/停止釦22cが設けられている。第1アップ/ダウン操作ボタン22aは、ヒートポンプ熱源機HS(i)の停止温度Toff(i)を設定するための操作釦で、入口温度センサ32の検出する入口水温Tin(i)が停止温度Toff(i)を超えると圧縮機24及びファンモータ30を停止する。 この第1アップ/ダウン操作ボタン22aの上部には表示手段である第1液晶表示部22dが設けられており、第1アップ/ダウン操作ボタン22aによって設定された停止温度Toff(i)がデジタル値で表示される。   As shown in FIG. 2, the operating device 22 functioning as an operating means has an operation / instruction for instructing operation / stop of the two types of up / down operation buttons 22 a and 22 b and the heat pump heat source machine HS (i) on the surface. A stop button 22c is provided. The first up / down operation button 22a is an operation button for setting the stop temperature Toff (i) of the heat pump heat source machine HS (i), and the inlet water temperature Tin (i) detected by the inlet temperature sensor 32 is the stop temperature Toff. When (i) is exceeded, the compressor 24 and the fan motor 30 are stopped. Above the first up / down operation button 22a, a first liquid crystal display unit 22d as display means is provided, and the stop temperature Toff (i) set by the first up / down operation button 22a is a digital value. Is displayed.

一方、第2アップ/ダウン操作ボタン22bは、ヒートポンプ熱源機HS(i)の出湯温度を設定するための釦で、ヒートポンプ熱源機HS(i)から出力される温水(出口水温)の目標温度Ts(i)を設定するためのものである。 第2アップ/ダウン操作ボタン22bの上部にも表示手段である第2液晶表示部22eが設けられており、第2アップ/ダウン操作ボタン22bによって設定された目標温度Ts(i)がデジタル値で表示される。このように、操作器22は、使用者が、ヒートポンプ熱源機HS(i)の停止温度Toff(i)と温水の目標温度Ts(i)を独立して設定可能になっている。   On the other hand, the second up / down operation button 22b is a button for setting the tapping temperature of the heat pump heat source unit HS (i), and the target temperature Ts of the hot water (outlet water temperature) output from the heat pump heat source unit HS (i). This is for setting (i). A second liquid crystal display unit 22e, which is a display means, is also provided above the second up / down operation button 22b, and the target temperature Ts (i) set by the second up / down operation button 22b is a digital value. Is displayed. As described above, the operating device 22 allows the user to set the stop temperature Toff (i) of the heat pump heat source machine HS (i) and the target temperature Ts (i) of the hot water independently.

制御器21は、操作器22により設定された停止温度Toff(i)と目標温度Ts(i)を読み込むとともに入口温度センサ32の検出する入口水温Tin(i)と出口温度センサ31が検出する出口水温Tout(i)、冷媒温度Te、空気温度Toを読み込む。 制御器21は、これらのデータ等を用いてヒートポンプ熱源機HS(i)を制御するための以下の手段を有している。
(1) 入口水温Tin(i)と停止温度Toff(i)を比較し、その結果に応じてヒートポンプ熱源機HS(i)の冷凍サイクルの運転/停止を制御する運転制御手段。
(2) ヒートポンプ熱源機HS(i)の運転中、目標温度Ts(i)と出口水温Tout(i)との差ΔT(i)に応じてインバータ装置23の出力周波数f(i)を変化させ、圧縮機24の回転数を制御してヒートポンプ熱源機HS(i)の加熱量を制御する加熱量制御手段。
(3) 熱源側熱交換器28の冷媒温度Teと熱交換用の空気温度Toの差(To−Te)及びその差の時間変化に基づき着霜状態を検出し、その着霜量が除霜に必要な量に到達したか否かを判断し、除霜が必要と判断した場合、除霜運転を行う除霜運転手段。
The controller 21 reads the stop temperature Toff (i) and the target temperature Ts (i) set by the operating device 22 and detects the inlet water temperature Tin (i) detected by the inlet temperature sensor 32 and the outlet detected by the outlet temperature sensor 31. The water temperature Tout (i), the refrigerant temperature Te, and the air temperature To are read. The controller 21 has the following means for controlling the heat pump heat source machine HS (i) using these data and the like.
(1) Operation control means for comparing the inlet water temperature Tin (i) and the stop temperature Toff (i) and controlling the operation / stop of the refrigeration cycle of the heat pump heat source machine HS (i) according to the result.
(2) During the operation of the heat pump heat source machine HS (i), the output frequency f (i) of the inverter device 23 is changed according to the difference ΔT (i) between the target temperature Ts (i) and the outlet water temperature Tout (i). A heating amount control means for controlling the heating amount of the heat pump heat source machine HS (i) by controlling the rotational speed of the compressor 24.
(3) The frost formation state is detected based on the difference (To-Te) between the refrigerant temperature Te of the heat source side heat exchanger 28 and the air temperature To for heat exchange (To-Te) and the time change of the difference, and the amount of frost formation is defrosted. A defrosting operation means for performing a defrosting operation when it is determined whether or not a necessary amount is reached and defrosting is necessary.

操作器22での設定内容に基づくヒートポンプ熱源機HS(i)の運転動作を、図3の制御器21の制御フローチャートに基づき説明する。
制御器21は、運転/停止釦22cにおいて運転が設定されている間は、ヒートポンプ熱源機HS(i)を運転するために操作器22に設定された停止温度Toff(i)、目標温度Ts(i)を読み込むと共に各種温度センサの検出値である入口水温Tin(i)、出口水温Tout(i)、冷媒温度Teと熱交換用の空気温度Toを読み込む(ステップST0)。なお、運転/停止釦22cにおいて停止が設定されていれば、ヒートポンプ熱源機HS(i)の運転を停止する。
The operation of the heat pump heat source machine HS (i) based on the setting content in the operation device 22 will be described based on the control flowchart of the controller 21 in FIG.
While the operation is set by the operation / stop button 22c, the controller 21 stops the temperature Toff (i) and the target temperature Ts () that are set in the operation device 22 to operate the heat pump heat source device HS (i). i) is read, and inlet water temperature Tin (i), outlet water temperature Tout (i), refrigerant temperature Te, and air temperature To for heat exchange, which are detection values of various temperature sensors, are read (step ST0). In addition, if the stop is set in the operation / stop button 22c, the operation of the heat pump heat source machine HS (i) is stopped.

ステップST0に続いて、入口水温Tin(i)と停止温度Toff(i)を比較し(ステップST1)、Tin(i)>Toff(i)となった場合(ステップST1のYes)は、負荷4での放熱が少なく、加熱の必要がないと判断されるため、ヒートポンプ熱源機HS(i)の冷凍サイクルの運転を停止、すなわち、圧縮機24、ファンモータ30を停止させる(ステップST2)。ステップST2で冷凍サイクルを停止させた後は、再び最初のステップST1に戻り、入口水温Tin(i)が停止温度Toff(i)未満に低下するまでは停止状態を継続する。   Subsequent to step ST0, the inlet water temperature Tin (i) and the stop temperature Toff (i) are compared (step ST1). If Tin (i)> Toff (i) (Yes in step ST1), the load 4 Therefore, the operation of the refrigeration cycle of the heat pump heat source device HS (i) is stopped, that is, the compressor 24 and the fan motor 30 are stopped (step ST2). After stopping the refrigeration cycle in step ST2, the process returns to the first step ST1 again, and the stopped state is continued until the inlet water temperature Tin (i) falls below the stop temperature Toff (i).

一方、ステップST1において、入口水温Tin(i)が停止温度Toff(i)未満に低下している場合(ステップST1のNo)には、負荷4に供給する水の温度が低下しているため、加熱が必要と判断されるため、ヒートポンプ熱源機HS(i)の冷凍サイクルを運転する。すなわち、圧縮機24、ファンモータ30を運転させる(ステップST3〜5)。   On the other hand, in step ST1, when the inlet water temperature Tin (i) is lower than the stop temperature Toff (i) (No in step ST1), the temperature of the water supplied to the load 4 is decreased. Since it is determined that heating is necessary, the refrigeration cycle of the heat pump heat source machine HS (i) is operated. That is, the compressor 24 and the fan motor 30 are operated (steps ST3 to ST5).

具体的には、圧縮機24を運転するインバータ装置23の出力周波数f(i)をステップST3、4で決定して、この周波数出力f(i)をインバータ装置23から圧縮機24に対して出力させるとともにファンモータ30が所定の回転数となるように運転する。 まず、ステップST3では、温度差ΔT(i)を操作器22により設定された目標温度Ts(i)から出口水温Tout(i)を減算して算出する。続いてステップST4にてこの温度差ΔT(i)とその時間変化割合に基づきインバータ装置23の出力周波数f(i)を算出する。この出力周波数f(i)の算出は、例えばPI制御等により、温度差ΔT(i)に比例して出力周波数f(i)を制御することで、加熱量を制御するために行なわれる。そして、算出された出力周波数f(i)となるように次のステップST5でインバータ装置23を制御する。   Specifically, the output frequency f (i) of the inverter device 23 that operates the compressor 24 is determined in steps ST3 and ST4, and this frequency output f (i) is output from the inverter device 23 to the compressor 24. And the fan motor 30 is operated so as to have a predetermined rotational speed. First, in step ST3, the temperature difference ΔT (i) is calculated by subtracting the outlet water temperature Tout (i) from the target temperature Ts (i) set by the operating device 22. Subsequently, in step ST4, the output frequency f (i) of the inverter device 23 is calculated based on the temperature difference ΔT (i) and the time change rate. The calculation of the output frequency f (i) is performed to control the heating amount by controlling the output frequency f (i) in proportion to the temperature difference ΔT (i) by, for example, PI control. And the inverter apparatus 23 is controlled by following step ST5 so that it may become the calculated output frequency f (i).

この結果、目標温度Ts(i)と出口水温Tout(i)との差ΔT(i)が大きければ出力周波数f(i)が大きくなって圧縮機24の回転数が増加し、ヒートポンプ熱源機HS(i)の加熱能力を増大させ、差ΔT(i)が小さければ出力周波数f(i)が小さくなって圧縮機24の回転数が低下し、ヒートポンプ熱源機HS(i)の加熱能力を減少させる。   As a result, if the difference ΔT (i) between the target temperature Ts (i) and the outlet water temperature Tout (i) is large, the output frequency f (i) increases and the rotational speed of the compressor 24 increases, and the heat pump heat source machine HS When the heating capacity of (i) is increased and the difference ΔT (i) is small, the output frequency f (i) is decreased, the rotational speed of the compressor 24 is decreased, and the heating capacity of the heat pump heat source machine HS (i) is decreased. Let

ステップST5に続き、除霜運転の要否の判定が行われる。まず、冷媒温度Teと空気温度Toとの差(To−Te)及びその時間変化が算出される(ステップST6)。算出されたデータが、予め定められた除霜必要条件に合致するか否かが判定される(ステップST7)。ここで、除霜が必要と判断されると冷凍サイクルの除霜運転が実行される(ステップST8)。除霜運転中は除霜運転が完了したか否かが判断され(ステップST9)、完了するまで(ステップST9のNO)除霜運転が継続され、完了すれば(ステップST9のYES)、再びステップST1に戻り、加熱運転に復帰する。なお、除霜完了の判断は、例えば、除霜運転の時間(7分間)や冷媒温度Teの上昇等が用いられる。
一方、ステップST7において除霜が不要と判断された場合(ステップST7のNo)は、ステップST0に戻り、再び各ステップを繰り返す。
Following step ST5, it is determined whether or not the defrosting operation is necessary. First, a difference (To−Te) between the refrigerant temperature Te and the air temperature To and its time change are calculated (step ST6). It is determined whether or not the calculated data matches a predetermined defrosting requirement (step ST7). Here, if it is determined that defrosting is necessary, the defrosting operation of the refrigeration cycle is executed (step ST8). During the defrosting operation, it is determined whether or not the defrosting operation is completed (step ST9). Until the defrosting operation is completed (NO in step ST9), the defrosting operation is continued (step ST9 YES). Return to ST1 and return to heating operation. The determination of the completion of defrosting uses, for example, the defrosting operation time (7 minutes), the rise in the refrigerant temperature Te, or the like.
On the other hand, when it is determined in step ST7 that defrosting is not necessary (No in step ST7), the process returns to step ST0 and repeats each step again.

ここで、図2に戻り、冷凍サイクルの動作を説明する。 加熱運転中は、図2に示す冷凍サイクルの配管の横に記載された実線矢印の方向に冷媒が流れる。 まず圧縮機24が運転されると、圧縮され高温・高圧となった冷媒は、四方弁25を通過して水―冷媒熱交換器26へと流入する。水―冷媒熱交換器26は、凝縮器として機能し、冷媒の熱を水配管5中を流れる水に供給し、水を加熱し、冷媒自身は凝縮して液冷媒となる。この液冷媒は、膨張弁27を通過する際に膨張して低圧・低温となり、蒸発器として機能する熱源側熱交換器28へと流入する。熱源側熱交換器28内で、冷媒は、プロペラファン29によって送風される空気と熱交換し、空気中の熱を奪い、ガス冷媒へと蒸発し、四方弁25を通って圧縮機24へと戻り、これを繰り返す。   Here, returning to FIG. 2, the operation of the refrigeration cycle will be described. During the heating operation, the refrigerant flows in the direction of the solid line arrow described beside the piping of the refrigeration cycle shown in FIG. First, when the compressor 24 is operated, the refrigerant that has been compressed to a high temperature and high pressure passes through the four-way valve 25 and flows into the water-refrigerant heat exchanger 26. The water-refrigerant heat exchanger 26 functions as a condenser, supplies the heat of the refrigerant to the water flowing through the water pipe 5, heats the water, and the refrigerant itself condenses into a liquid refrigerant. This liquid refrigerant expands to low pressure and low temperature when passing through the expansion valve 27, and flows into the heat source side heat exchanger 28 that functions as an evaporator. In the heat source side heat exchanger 28, the refrigerant exchanges heat with the air blown by the propeller fan 29, takes heat in the air, evaporates into a gas refrigerant, and passes through the four-way valve 25 to the compressor 24. Return and repeat.

熱源側熱交換器28を室外に設置している場合、冬季には、吸熱する熱源側熱交換器28の表面に結露した水が凍結し、霜に成長することがある。この着霜を放置すると熱源側熱交換器28が空気と熱交換できなくなるため、適宜、除霜運転が必要となる。冷媒温度Teと熱交換用の空気温度Toの差(To−Te)及びその差の時間変化に基づき除霜運転が必要と判断された場合、制御器21は、四方弁25を反転させ、冷媒の流れを逆方向へ移行させるとともにインバータ装置23の出力周波数f(i)を制御して圧縮機24を除霜用の回転数に固定し、ファンモータ30の運転を停止させる。   In the case where the heat source side heat exchanger 28 is installed outdoors, the water condensed on the surface of the heat source side heat exchanger 28 that absorbs heat may freeze and grow into frost in winter. If this frost formation is left, the heat source side heat exchanger 28 cannot exchange heat with air, so that a defrosting operation is necessary as appropriate. When it is determined that the defrosting operation is necessary based on the difference between the refrigerant temperature Te and the air temperature To for heat exchange (To-Te) and the time change of the difference, the controller 21 reverses the four-way valve 25 to And the output frequency f (i) of the inverter device 23 is controlled to fix the compressor 24 at the rotation speed for defrosting, and the operation of the fan motor 30 is stopped.

この結果、除霜運転中は、圧縮機24から吐出された冷媒は、図2中破線矢印の方向に流れ、四方弁25を通過し、熱源側熱交換器28へと流れ、ここで放熱する。熱源側熱交換器28の表面に付着した霜は、内部を流れる高温の冷媒によって溶かされる。その後、冷媒は膨張弁27、水―冷媒熱交換器26を経て四方弁を経由して圧縮機24へと戻る。この際、水―冷媒熱交換器26では、加熱運転ができず、逆に吸熱が行なわれるため、水配管5を流れる水の温度を低下させてしまうことになる。このため、除霜運転は極力短時間で完了することが望ましい。除霜運転が完了すると制御器21は、四方弁25を元の位置に戻し、再び上述した加熱運転が再開される。   As a result, during the defrosting operation, the refrigerant discharged from the compressor 24 flows in the direction of the broken line arrow in FIG. 2, passes through the four-way valve 25, flows to the heat source side heat exchanger 28, and dissipates heat here. . The frost adhering to the surface of the heat source side heat exchanger 28 is melted by the high-temperature refrigerant flowing inside. Thereafter, the refrigerant returns to the compressor 24 via the four-way valve through the expansion valve 27 and the water-refrigerant heat exchanger 26. At this time, in the water-refrigerant heat exchanger 26, the heating operation cannot be performed and the heat absorption is performed on the contrary, so that the temperature of the water flowing through the water pipe 5 is lowered. For this reason, it is desirable to complete the defrosting operation in as short a time as possible. When the defrosting operation is completed, the controller 21 returns the four-way valve 25 to the original position, and the heating operation described above is resumed.

本実施の形態は、使用者がヒートポンプ式熱源機HS(i)の操作器22を操作して停止温度Toff(i)及び温水の目標温度Ts(i)のそれぞれを独立して設定することができるようにしているため、きわめて容易にヒートポンプ式熱源機HS(i)の複数台の直列接続設置が可能となる。   In the present embodiment, the user can set the stop temperature Toff (i) and the target temperature Ts (i) of the hot water independently by operating the operating device 22 of the heat pump heat source machine HS (i). Therefore, it is possible to connect a plurality of heat pump heat source machines HS (i) in series with each other very easily.

図1に示すように加温システム1では、複数台の独立した、すなわち、統合的に制御する制御装置を備えない、ヒートポンプ式熱源機HS(i)が水配管5を通じて負荷4に対して直列接続される。ここで、複数台のヒートポンプ式熱源機HS(1)〜HS(n)は、その合計最大加熱能力が、負荷4の予想される最大放熱量を超えるものが選定されている。すなわち、複数台のヒートポンプ式熱源機HS(1)〜HS(n)の各最大加熱能力を合計した合計最大加熱能力が、負荷4の最大放熱量より大きい。   As shown in FIG. 1, in the heating system 1, a heat pump heat source machine HS (i) that is not provided with a plurality of independent, ie, integrated control devices, is connected in series to the load 4 through the water pipe 5. Connected. Here, the plurality of heat pump heat source machines HS (1) to HS (n) whose total maximum heating capacity exceeds the expected maximum heat radiation amount of the load 4 is selected. That is, the total maximum heating capacity obtained by adding the maximum heating capacities of the plurality of heat pump heat source machines HS (1) to HS (n) is larger than the maximum heat radiation amount of the load 4.

使用者はヒートポンプ式熱源機HS(i)及び、その下流に設置されたヒートポンプ式熱源機HS(i+1)の各々の操作器22を操作して、水配管5内の水の流れ方向を基準に上流側のヒートポンプ式熱源機HS(i)の水―冷媒熱交換器26出口の温水の目標温度Ts(i)をその下流側のヒートポンプ式熱源機HS(i+1)の停止温度Toff(i+1)以上に設定する。すなわち、Toff(i+1)≦Ts(i)とする。このような温度設定を行なうことで両方のヒートポンプ式熱源機HS(i)を効率よく運転させることが可能となる。例えば、各温度の設定値をTs(i)=47℃>Toff(i)=45℃、Ts(i+1)=47℃>Toff(i+1)=46℃とする。なお、この実施の形態においては、Ts(i)=Ts(i+1)としたが、Ts(i)≦Ts(i+1)であれば、良い。   The user operates each operating device 22 of the heat pump heat source machine HS (i) and the heat pump heat source machine HS (i + 1) installed downstream thereof, based on the flow direction of the water in the water pipe 5. The target temperature Ts (i) of the water-refrigerant heat exchanger 26 outlet of the upstream heat pump heat source machine HS (i) is equal to or higher than the stop temperature Toff (i + 1) of the downstream heat pump heat source apparatus HS (i + 1). Set to. That is, Toff (i + 1) ≦ Ts (i). By performing such temperature setting, both heat pump heat source machines HS (i) can be efficiently operated. For example, the set values of each temperature are Ts (i) = 47 ° C.> Toff (i) = 45 ° C., Ts (i + 1) = 47 ° C.> Toff (i + 1) = 46 ° C. In this embodiment, Ts (i) = Ts (i + 1), but it is sufficient if Ts (i) ≦ Ts (i + 1).

ヒートポンプ式熱源機HS(i)及びヒートポンプ式熱源機HS(i+1)に対して、上記設定を行なった場合の加温システム1の動作を図4に基づき説明する。なお、図4の各部の温度変化を示す上段のグラフにおいて、太い実線がヒートポンプ式熱源機HS(i)の出口水温Tout(i)(=Tin(i))を、一点鎖線が、ヒートポンプ式熱源機HS(i+1)の出口水温Tout(i+1)を、細い実線がヒートポンプ式熱源機HS(i)の入口水温Tin(i)を表している。
ここで、図4中、t0〜t1の区間のようにヒートポンプ式熱源機HS(1)〜(n)の合計加熱能力よりも負荷4の放熱量が少ない状態では、上流側のヒートポンプ式熱源機HS(1)〜HS(i)によって水が十分な温度にまで昇温できるため、ヒートポンプ式熱源機HS(i)の出口水温Tout(i)は、目標温度Ts(i)の47℃近くに維持されている。このため、下流側のヒートポンプ式熱源機HS(i+1)は、入口水温Tin(i+1)が停止温度Toff(i+1)=46℃を超えているため、冷凍サイクルの運転を停止している。
The operation of the heating system 1 when the above settings are made for the heat pump heat source machine HS (i) and the heat pump heat source machine HS (i + 1) will be described with reference to FIG. In the upper graph showing the temperature change of each part in FIG. 4, the thick solid line indicates the outlet water temperature Tout (i) (= Tin (i)) of the heat pump heat source machine HS (i), and the alternate long and short dash line indicates the heat pump heat source. The outlet water temperature Tout (i + 1) of the machine HS (i + 1) and the thin solid line represent the inlet water temperature Tin (i) of the heat pump heat source machine HS (i).
Here, in a state where the heat radiation amount of the load 4 is less than the total heating capacity of the heat pump heat source machines HS (1) to (n) as in the section from t0 to t1 in FIG. 4, the upstream heat pump heat source machine. Since water can be heated to a sufficient temperature by HS (1) to HS (i), the outlet water temperature Tout (i) of the heat pump heat source machine HS (i) is close to 47 ° C. of the target temperature Ts (i). Maintained. For this reason, the downstream heat pump heat source machine HS (i + 1) stops the operation of the refrigeration cycle because the inlet water temperature Tin (i + 1) exceeds the stop temperature Toff (i + 1) = 46 ° C.

ここで、負荷4の放熱量が増加し、ヒートポンプ式熱源機HS(i)の入口水温Tin(i)が低下すると、ヒートポンプ式熱源機HS(i)の加熱量が不足し出口水温Tout(i) も低下してくる。ヒートポンプ式熱源機HS(i)では、温度差ΔT(i)(Ts(i)−Tout(i))が大きくなることでインバータ装置23の出力周波数f(i)を増加させ、加熱能力を増加させ、出口水温Tout(i)を上昇させようとするが、それでも加熱能力が不足し、出口水温Tout(i)が下流側のヒートポンプ式熱源機HS(i+1)の入口水温Tin(i+1)が停止温度Toff(i+1)=46℃よりも低下する図4中t1時点でヒートポンプ式熱源機HS(i+1)の冷凍サイクルが運転を開始する。   Here, if the heat radiation amount of the load 4 increases and the inlet water temperature Tin (i) of the heat pump heat source device HS (i) decreases, the heating amount of the heat pump heat source device HS (i) becomes insufficient and the outlet water temperature Tout (i ) Will also decline. In the heat pump heat source machine HS (i), the temperature difference ΔT (i) (Ts (i) −Tout (i)) is increased to increase the output frequency f (i) of the inverter device 23 and increase the heating capacity. The outlet water temperature Tout (i) is increased, but the heating capacity is still insufficient, and the outlet water temperature Tout (i) is stopped at the inlet water temperature Tin (i + 1) of the heat pump heat source machine HS (i + 1) on the downstream side. The refrigeration cycle of the heat pump heat source machine HS (i + 1) starts operation at time t1 in FIG. 4 when the temperature Toff (i + 1) is lower than 46 ° C.

すなわち、負荷4の放熱量が大きい状態においては、上流側のヒートポンプ式熱源機HS(i)及び下流側のヒートポンプ式熱源機HS(i+1)の両方の加熱運転が行われる。結果的に、複数のヒートポンプ式熱源機HS(i)〜HS(i+1)が分散して加熱運転を行うことになる。このため、ヒートポンプ式熱源機HS(i+1)の出口水温Tuot(i+1)は、負荷4の放熱量の変動に伴って大きく低下することなく47℃近くを維持できる。
なお、図4に示すようにヒートポンプ式熱源機HS(i)の出口配管とヒートポンプ式熱源機HS(i+1)の入口配管は水配管5によって直接接続されているため、ヒートポンプ式熱源機HS(i)の出口水温Tout(i)とヒートポンプ式熱源機HS(i+1)の入口水温Tin(i+1)はほぼ同じとなる。
That is, in the state where the heat radiation amount of the load 4 is large, both the upstream heat pump heat source machine HS (i) and the downstream heat pump heat source machine HS (i + 1) are heated. As a result, a plurality of heat pump heat source machines HS (i) to HS (i + 1) are dispersed to perform the heating operation. For this reason, the outlet water temperature Tuot (i + 1) of the heat pump heat source machine HS (i + 1) can be maintained close to 47 ° C. without greatly decreasing with the variation in the heat radiation amount of the load 4.
As shown in FIG. 4, since the outlet pipe of the heat pump heat source machine HS (i) and the inlet pipe of the heat pump heat source machine HS (i + 1) are directly connected by the water pipe 5, the heat pump heat source machine HS (i ) Outlet water temperature Tout (i) and the inlet water temperature Tin (i + 1) of the heat pump heat source machine HS (i + 1) are substantially the same.

再び、負荷4の放熱量が減少すると、上流側のヒートポンプ式熱源機HS(i)の入口水温Tin(i)が上昇し、これに伴って上流側のヒートポンプ式熱源機HS(i)の加熱能力で十分に水を加熱できるようになり、図4中t2時点で出口水温Tout(i)が46℃を超えると、Tin(i+1)が46℃を超え、Toff(i+1)=46℃以上となる。この時点で、下流側のヒートポンプ式熱源機HS(i+1)が加熱運転を停止(OFF)し、上流側のヒートポンプ式熱源機HS(i)のみが加熱運転を継続する。 なお、ヒートポンプ式熱源機HS(i+1)が加熱運転を停止(OFF)に伴い、加温システム1全体の加熱能力が減少するため、水配管5中を循環する水の温度が若干低下する。この水温低下がヒートポンプ式熱源機HS(i)の出口水温Tout(i)の低下に至れば、ヒートポンプ式熱源機HS(i)では、目標温度Ts(i)と出口水温Tout(i)との差ΔT(i)が大きくなり、出力周波数f(i)を大きくしてヒートポンプ熱源機HS(i)の加熱能力を増大させ、自動的に水温低下を補う運転が実行される。   When the heat radiation amount of the load 4 is decreased again, the inlet water temperature Tin (i) of the upstream heat pump heat source machine HS (i) rises, and accordingly the upstream heat pump heat source machine HS (i) is heated. When the outlet water temperature Tout (i) exceeds 46 ° C. at time t2 in FIG. 4, Tin (i + 1) exceeds 46 ° C. and Toff (i + 1) = 46 ° C. or higher. Become. At this time, the heat pump heat source machine HS (i + 1) on the downstream side stops (OFF) the heating operation, and only the heat pump heat source machine HS (i) on the upstream side continues the heating operation. In addition, since the heating capability of the whole heating system 1 decreases with the heat pump type heat source machine HS (i + 1) stopping the heating operation (OFF), the temperature of the water circulating in the water pipe 5 slightly decreases. If this water temperature decrease leads to a decrease in the outlet water temperature Tout (i) of the heat pump heat source device HS (i), the heat pump heat source device HS (i) has a target temperature Ts (i) and an outlet water temperature Tout (i). The difference ΔT (i) is increased, the output frequency f (i) is increased to increase the heating capacity of the heat pump heat source machine HS (i), and an operation for automatically compensating for the water temperature drop is executed.

このように負荷4の放熱量が小さい場合に、複数台のヒートポンプ式熱源機HS(1)〜(n)によって分散して加熱すると個々のヒートポンプ式熱源機HS(1)〜(n)における加熱量が小さくなりすぎて個々の熱源機の効率が低下する。そこで、負荷4の放熱量が減少した場合は、一部のヒートポンプ式熱源機HS(i+1)を停止させ、少ない台数のヒートポンプ式熱源機HS(i)の加熱能力を制御して運転することで1台当たりの加熱量を大きくすることができ、加温システム1の総合効率を向上させることができる。   In this way, when the heat radiation amount of the load 4 is small, when the heat is dispersed and heated by a plurality of heat pump heat source machines HS (1) to (n), heating in the individual heat pump heat source machines HS (1) to (n) is performed. The amount becomes too small, and the efficiency of the individual heat source machines decreases. Therefore, when the heat radiation amount of the load 4 decreases, a part of the heat pump heat source machines HS (i + 1) are stopped, and the heating capacity of a small number of heat pump heat source machines HS (i) is controlled and operated. The heating amount per vehicle can be increased, and the overall efficiency of the heating system 1 can be improved.

ここで、図4中t3時点で、上流側のヒートポンプ式熱源機HS(i)では、その長時間の運転に伴い除霜運転が開始されている。除霜運転中は、ヒートポンプ式熱源機HS(i)の水−冷媒熱交換器26が低温となる。このため、出口水温Tout(i)が急激に低下し、その入口水温Tin(i)以下まで低下していく。すなわち、本来加熱すべき水配管5中の水から熱を奪う。この出口水温Tout(i)の低下に伴い、下流側のヒートポンプ式熱源機HS(i+1)の入水温度Tin(i+1)が、その停止温度Toff(i+1)=46℃よりも低下した時点で、ヒートポンプ式熱源機HS(i+1)の冷凍サイクル運転が開始される(図4中のt4点)。   Here, at the time point t3 in FIG. 4, the defrosting operation is started in the upstream heat pump heat source machine HS (i) along with the long-time operation. During the defrosting operation, the water-refrigerant heat exchanger 26 of the heat pump heat source machine HS (i) is at a low temperature. For this reason, the outlet water temperature Tout (i) rapidly decreases and decreases to the inlet water temperature Tin (i) or lower. That is, heat is taken from the water in the water pipe 5 that should be heated. When the outlet water temperature Tout (i) decreases, the incoming water temperature Tin (i + 1) of the heat pump heat source machine HS (i + 1) on the downstream side becomes lower than the stop temperature Toff (i + 1) = 46 ° C. The refrigeration cycle operation of the heat source machine HS (i + 1) is started (point t4 in FIG. 4).

ヒートポンプ式熱源機HS(i+1)の冷凍サイクル運転開始に伴い、出口水温Tout(i+1)は、上昇を始める。この結果、出口水温Tout(i+1)は極端に低下することなく、高い温度を維持できる。このように、上流側のヒートポンプ式熱源機HS(i)が除霜運転を行なうと停止していた下流側のヒートポンプ式熱源機HS(i+1)がバックアップ運転を行い、出口水温Tout(i+1)の低下が防止できる(図4中のt4〜t5区間)。
ここで、最下流のヒートポンプ式熱源機HS(n)が除霜運転に入った場合、低い出口水温Tout(n)の水が負荷4に流れることになってしまうが、本実施の形態の加温システム1では上流側のヒートポンプ式熱源機ほど運転頻度(時間)が多く、下流側に行くほど運転頻度(時間)が少なくなる。このため、最下流のヒートポンプ式熱源機HS(n)が除霜運転に入る状況は、極めて稀であり、その可能性は極めて低い。したがって、ほぼ常に最終段のヒートポンプ式熱源機HS(n)の出口水温Tout(n)である負荷4への供給水の温度は、負荷4の要求する温度を維持することができる。
With the start of the refrigeration cycle operation of the heat pump heat source machine HS (i + 1), the outlet water temperature Tout (i + 1) starts to rise. As a result, the outlet water temperature Tout (i + 1) can be maintained at a high temperature without extremely decreasing. Thus, when the upstream heat pump heat source machine HS (i) performs the defrosting operation, the downstream heat pump heat source apparatus HS (i + 1) performs the backup operation, and the outlet water temperature Tout (i + 1) is reduced. The decrease can be prevented (t4 to t5 interval in FIG. 4).
Here, when the most downstream heat pump heat source machine HS (n) enters the defrosting operation, water having a low outlet water temperature Tout (n) will flow to the load 4. In the temperature system 1, the operation frequency (time) is increased as the heat pump type heat source device is located upstream, and the operation frequency (time) is decreased as going downstream. For this reason, the situation where the most downstream heat pump type heat source machine HS (n) enters the defrosting operation is extremely rare, and the possibility thereof is extremely low. Therefore, the temperature of the water supplied to the load 4 that is the outlet water temperature Tout (n) of the final stage heat pump heat source machine HS (n) can be maintained at the temperature required by the load 4.

また、負荷4の予想される最大放熱量が、複数台のヒートポンプ式熱源機HS(1)〜HS(n−1)の最大加熱能力を合計した合計最大加熱能力と略同じとし、最下流にあるヒートポンプ式熱源機HS(n)の加熱能力が余るように設定しておけば、最下流のヒートポンプ式熱源機HS(n)は、通常状態では運転することがなく、負荷4の放熱量が大きい状態において上流側のいずれかのヒートポンプ式熱源機HS(1)〜HS(n−1)が除霜運転に入った場合のみ加熱運転をすることになり、完全なバックアップ運転用となる。接続されているヒートポンプ式熱源機HS(1)〜HS(n−1)のうちの複数のヒートポンプ式熱源機が同時に除霜運転に入る可能性は極めて少ない。この結果、最下流にあるヒートポンプ式熱源機HS(n)の加熱能力が余る設定であれば、負荷4への供給水の温度は、常に負荷4の要求する温度を維持することができる。   In addition, the expected maximum heat dissipation amount of the load 4 is substantially the same as the total maximum heating capacity obtained by adding up the maximum heating capacities of the plurality of heat pump heat source machines HS (1) to HS (n-1), If the heat capacity of a certain heat pump type heat source machine HS (n) is set to be surplus, the heat pump type heat source machine HS (n) at the most downstream side will not operate in a normal state, and the heat radiation amount of the load 4 In the large state, the heating operation is performed only when any one of the heat pump heat source devices HS (1) to HS (n-1) on the upstream side enters the defrosting operation, and is used for a complete backup operation. There is very little possibility that a plurality of heat pump heat source machines among the connected heat pump heat source machines HS (1) to HS (n-1) simultaneously enter the defrosting operation. As a result, if the heating capacity of the heat pump heat source machine HS (n) located at the most downstream is set to be excessive, the temperature of the water supplied to the load 4 can always maintain the temperature required by the load 4.

さらに、万が一いずれかのヒートポンプ式熱源機HS(1)〜HS(n)が故障し、冷凍サイクル運転ができなくなった場合にも、上述したようにヒートポンプ式熱源機HS(1)〜HS(n)のいずれかが除霜運転に入った場合と同様に、残りのヒートポンプ式熱源機でバックアップ運転して、供給水の温度は、負荷4の要求する温度を維持することができ、信頼性の高い加温システム1を構築できる。   Furthermore, even if any one of the heat pump heat source machines HS (1) to HS (n) fails and the refrigeration cycle operation cannot be performed, as described above, the heat pump heat source machines HS (1) to HS (n As in the case where any one of the above) enters the defrosting operation, the remaining heat pump type heat source machine performs the backup operation, and the temperature of the supply water can maintain the temperature required by the load 4 and is reliable. A high heating system 1 can be constructed.

再び、図4の戻り説明する。図中、t5時点にてヒートポンプ式熱源機HS(i)の除霜運転が終了し、加熱運転に復帰する。この復帰に伴い、出口水温Tout(i)(=入口水温Tin(i+1))は急激に上昇し、t6時点において入口水温Tin(i+1)が、停止温度Toff(i+1)を超えるため、ヒートポンプ式熱源機HS(i+1)の加熱運転は終了し、冷凍サイクルが停止する。ヒートポンプ式熱源機HS(i+1)の加熱運転が停止すると出口水温Tout(i+1)は出口水温Tout(i)及び入口水温Tin(i+1)と略同じになる。この時点では、すでにヒートポンプ式熱源機HS(i)の加熱運転により十分に高温の46℃の温水が供給されている。   Returning to FIG. In the figure, at time t5, the defrosting operation of the heat pump heat source machine HS (i) is completed, and the operation returns to the heating operation. With this return, the outlet water temperature Tout (i) (= inlet water temperature Tin (i + 1)) rises rapidly, and the inlet water temperature Tin (i + 1) exceeds the stop temperature Toff (i + 1) at time t6. The heating operation of the machine HS (i + 1) is finished and the refrigeration cycle is stopped. When the heating operation of the heat pump heat source machine HS (i + 1) is stopped, the outlet water temperature Tout (i + 1) becomes substantially the same as the outlet water temperature Tout (i) and the inlet water temperature Tin (i + 1). At this time, sufficiently high-temperature 46 ° C. hot water has already been supplied by the heating operation of the heat pump heat source machine HS (i).

図4中、t6〜t7の区間ではt0〜t1区間と同様にヒートポンプ式熱源機HS(i)の加熱運転だけが行われ、ヒートポンプ式熱源機HS(i+1)の加熱運転は停止した状態である。ここで、負荷4の放熱量が減少し、水配管5からヒートポンプ式熱源機HS(i)に流入する水温が上昇して、入口水温Tin(i)が停止温度Ts(i)=45℃を超える値まで上昇すると、ヒートポンプ式熱源機HS(i)も停止する(区間t7〜)。   In FIG. 4, only the heating operation of the heat pump heat source machine HS (i) is performed in the section from t6 to t7, similarly to the section from t0 to t1, and the heating operation of the heat pump heat source apparatus HS (i + 1) is stopped. . Here, the heat radiation amount of the load 4 decreases, the water temperature flowing into the heat pump heat source machine HS (i) from the water pipe 5 rises, and the inlet water temperature Tin (i) becomes the stop temperature Ts (i) = 45 ° C. If it rises to a value exceeding, the heat pump heat source machine HS (i) also stops (section t7-).

以上の通り、本実施の形態によれば、温水を供給する負荷4の放熱量が大きい時には、複数台のヒートポンプ式熱源機HS(i)が同時に加熱運転を行なう分散加熱運転が実行され、負荷4の放熱量が小さい時には複数台のヒートポンプ式熱源機HS(i)のうち下流側のヒートポンプ式熱源機HS(i)から停止し、上流側のヒートポンプ式熱源機HS(i)のみで加熱運転が行なわれることになり、負荷の状況に合致した総合効率の高い運転が可能な加温システム1を得ることができる。 また、上流側のヒートポンプ式熱源機HS(i)が除霜運転に入った場合には、下流側のヒートポンプ式熱源機HS(i)の加熱運転を行うことで所定の出湯温度を維持できる。そして、下流側のヒートポンプ式熱源機HS(i)の運転頻度は、上流側のヒートポンプ式熱源機HS(i)よりも少なくなるため、下流側のヒートポンプ式熱源機HS(i)が除霜運転に入る頻度を少なくすることができ、下流側のヒートポンプ式熱源機HS(i)が除霜運転に入り、出湯温度を低下させる頻度を少なくできる。   As described above, according to the present embodiment, when the heat radiation amount of the load 4 supplying hot water is large, the distributed heating operation in which the plurality of heat pump heat source machines HS (i) perform the heating operation simultaneously is executed. When the heat radiation amount of 4 is small, the heat pump type heat source machine HS (i) is stopped from the downstream heat pump type heat source machine HS (i), and only the upstream side heat pump type heat source machine HS (i) is heated. As a result, the heating system 1 capable of high-efficiency operation that matches the load condition can be obtained. Further, when the upstream heat pump heat source machine HS (i) enters the defrosting operation, the predetermined hot water temperature can be maintained by performing the heating operation of the downstream heat pump heat source apparatus HS (i). And since the operation frequency of the heat pump type heat source machine HS (i) on the downstream side is less than the heat pump type heat source machine HS (i) on the upstream side, the heat pump type heat source machine HS (i) on the downstream side is defrosted. The frequency of entering can be reduced, and the frequency at which the downstream heat pump heat source machine HS (i) enters the defrosting operation and lowers the tapping temperature can be reduced.

さらに、このような加温システム1を構築するにあたり、各ヒートポンプ式熱源機HS(1)〜HS(n)で検出される情報のすべてを統合して制御する集中管理装置を設けることなく、独立した個々のヒートポンプ式熱源機HS(1)〜HS(n)の操作器22を用いて設置場所(順序)に基づき各温度設定を行なうだけでよい。このため、標準的となるヒートポンプ式熱源機HSを準備するだけで放熱量の異なる負荷4に対しても良好な加熱運転が可能となる。
Furthermore, in constructing such a heating system 1, it is possible to independently provide a centralized management device that integrates and controls all the information detected by the heat pump heat source machines HS (1) to HS (n). It is only necessary to set each temperature based on the installation location (order) using the operating devices 22 of the individual heat pump heat source machines HS (1) to HS (n). For this reason, it is possible to perform a favorable heating operation even for the load 4 having a different heat radiation amount by merely preparing a standard heat pump heat source machine HS.

なお、本実施の形態の加温システム1では、複数台のヒートポンプ式熱源機HS(1)〜(n)において、ヒートポンプ式熱源機HS(i)の温水の目標温度Ts(i)をその下流に設置されたヒートポンプ式熱源機HS(i+1)の停止温度Toff(i+1)以上に設定(Ts(i)≧Toff(i+1))したが、負荷4の放熱量が大きく、水配管5に直列接続されるヒートポンプ式熱源機HS(1)〜HS(n)の台数が多数に上る場合には、これを水配管5に対する上流と下流で複数の群(グループ)に分け、上流群内のヒートポンプ式熱源機の温水の目標温度Tsを同じ値にするとともに、この目標温度Tsを下流群のヒートポンプ式熱源機の停止温度Toff以上に設定するようにしてもよい。 In addition, in the heating system 1 of the present embodiment, the target temperature Ts (i) of the hot water of the heat pump heat source machine HS (i) is downstream of the plurality of heat pump heat source machines HS (1) to (n). Was set higher than the stop temperature Toff (i + 1) of the heat pump heat source machine HS (i + 1) installed in (Ts (i) ≥ Toff (i + 1)), but the heat dissipation amount of the load 4 is large and connected in series to the water pipe 5 When the number of heat pump type heat source machines HS (1) to HS (n) to be increased is divided into a plurality of groups (groups) upstream and downstream of the water pipe 5, the heat pump type in the upstream group The target temperature Ts of the hot water of the heat source machine may be set to the same value, and the target temperature Ts may be set to be equal to or higher than the stop temperature Toff of the heat pump heat source machines in the downstream group.

また、本実施の形態においては、ヒートポンプ式熱源機HS(i)とその下流に設置されたヒートポンプ式熱源機HS(i+1)の各温度の設定値をTs(i)=47℃>Toff(i)=45℃、Ts(i+1)=47℃>Toff(i+1)=46℃としている。ここで、Toff(i)=45℃<Toff(i+1)=46℃に設定しているため、ヒートポンプ式熱源機HS(i)の入口水温Tin(i)が45℃と46℃の間にある場合、ヒートポンプ式熱源機HS(i)が停止し、ヒートポンプ式熱源機HS(i+1)のみが運転することになる。このような状態はそれほど発生頻度は多くないと思われるが、ヒートポンプ式熱源機HS(i+1)を完全にヒートポンプ式熱源機HS(i)のバックアップ用、すなわち、ヒートポンプ式熱源機HS(i)が除霜運転や故障で運転を停止している時以外は、ヒートポンプ式熱源機HS(i)が運転している期間内でしかヒートポンプ式熱源機HS(i+1)運転しないようにするには、Toff(i)≧Toff(i+1)、例えば、両方とも45℃等に設定すれば良い。   In the present embodiment, the set values of the temperatures of the heat pump heat source device HS (i) and the heat pump heat source device HS (i + 1) installed downstream thereof are expressed as Ts (i) = 47 ° C.> Toff (i ) = 45 ° C., Ts (i + 1) = 47 ° C.> Toff (i + 1) = 46 ° C. Here, since Toff (i) = 45 ° C. <Toff (i + 1) = 46 ° C., the inlet water temperature Tin (i) of the heat pump heat source machine HS (i) is between 45 ° C. and 46 ° C. In this case, the heat pump heat source machine HS (i) is stopped, and only the heat pump heat source machine HS (i + 1) is operated. Although such a state seems not to occur so frequently, the heat pump heat source machine HS (i + 1) is completely used as a backup for the heat pump heat source machine HS (i), that is, the heat pump heat source machine HS (i) To prevent the heat pump heat source machine HS (i + 1) from operating only during the period during which the heat pump heat source apparatus HS (i) is operating, except when the operation is stopped due to defrosting operation or failure, Toff (I) ≧ Toff (i + 1), for example, both may be set to 45 ° C. or the like.

本発明は、上記実施形態に限定されない。さらに、本発明の実施の形態に開示されている複数の構成要素を適宜組み合わせることにより種々の発明を形成できる。例えば、本発明の実施の形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施の形態に亘る構成要素を適宜組み合わせてもよい。   The present invention is not limited to the above embodiment. Furthermore, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiments of the present invention. For example, you may delete some components from all the components shown by embodiment of this invention. Furthermore, you may combine the component covering different embodiment suitably.

1…加温システム、HS(1)〜HS(n)…ヒートポンプ熱源機、3…ポンプ、4…負荷、5…水配管、22…操作器、21…制御器、23…インバータ装置、24…圧縮機、26…水―冷媒熱交換器、28…熱源側熱交換器、29…プロペラファン、30…ファンモータ、31…出口温度センサ、32…入口温度センサ DESCRIPTION OF SYMBOLS 1 ... Heating system, HS (1) -HS (n) ... Heat pump heat source machine, 3 ... Pump, 4 ... Load, 5 ... Water piping, 22 ... Operation device, 21 ... Controller, 23 ... Inverter device, 24 ... Compressor, 26 ... Water-refrigerant heat exchanger, 28 ... Heat source side heat exchanger, 29 ... Propeller fan, 30 ... Fan motor, 31 ... Outlet temperature sensor, 32 ... Inlet temperature sensor

Claims (2)

水配管によって負荷と複数台のヒートポンプ式熱源機の冷凍サイクル中の水―冷媒熱交換器を直列に接続し、
各ヒートポンプ式熱源機は、前記水―冷媒熱交換器の入口側の水温を検出する入口温度センサと、前記水―冷媒熱交換器の出口側の水温を検出する出口温度センサと、前記入口温度センサによって検出した入口水温と停止温度とを比較して、前記入口温度が前記停止温度を超えると冷凍サイクルの運転を停止させ、前記入口温度が前記停止温度未満に低下するまで停止状態を継続する運転制御手段と、前記出口温度センサによって検出した出口水温と目標温度とを比較して冷凍サイクルによる加熱量を制御する加熱量制御手段とを備え、
前記水―冷媒熱交換器が直列接続された前記ヒートポンプ式熱源機中の上流側の前記ヒートポンプ式熱源機の前記目標温度を、下流側の前記ヒートポンプ式熱源機の前記停止温度以上に設定したことを特徴とする加温システム。
A water pipe connects the load and the water-refrigerant heat exchanger in the refrigeration cycle of multiple heat pump heat source units in series.
Each heat pump heat source machine includes an inlet temperature sensor that detects a water temperature on the inlet side of the water-refrigerant heat exchanger, an outlet temperature sensor that detects a water temperature on the outlet side of the water-refrigerant heat exchanger, and the inlet temperature. Comparing the inlet water temperature detected by the sensor and the stop temperature, if the inlet temperature exceeds the stop temperature, the operation of the refrigeration cycle is stopped, and the stop state is continued until the inlet temperature falls below the stop temperature. An operation control means, and a heating amount control means for controlling the heating amount by the refrigeration cycle by comparing the outlet water temperature detected by the outlet temperature sensor and the target temperature,
The target temperature of the heat pump heat source device on the upstream side in the heat pump heat source device in which the water-refrigerant heat exchanger is connected in series is set to be equal to or higher than the stop temperature of the heat pump heat source device on the downstream side. A heating system characterized by
前記複数台のヒートポンプ式熱源機は、その合計最大加熱能力が、負荷の最大放熱量より大きいことを特徴とする請求項1記載の加温システム。   The heating system according to claim 1, wherein the plurality of heat pump heat source units have a total maximum heating capacity larger than a maximum heat radiation amount of a load.
JP2011020299A 2011-02-02 2011-02-02 Heating system Active JP5701084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011020299A JP5701084B2 (en) 2011-02-02 2011-02-02 Heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011020299A JP5701084B2 (en) 2011-02-02 2011-02-02 Heating system

Publications (2)

Publication Number Publication Date
JP2012159253A JP2012159253A (en) 2012-08-23
JP5701084B2 true JP5701084B2 (en) 2015-04-15

Family

ID=46839941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011020299A Active JP5701084B2 (en) 2011-02-02 2011-02-02 Heating system

Country Status (1)

Country Link
JP (1) JP5701084B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6152645B2 (en) * 2013-01-08 2017-06-28 東京電力ホールディングス株式会社 Heat supply system
JP6959194B2 (en) * 2018-07-31 2021-11-02 日立グローバルライフソリューションズ株式会社 Hot water supply device and control method of hot water supply device
JP7368323B2 (en) * 2020-06-12 2023-10-24 株式会社コロナ heating system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4058696B2 (en) * 2004-05-28 2008-03-12 日立アプライアンス株式会社 Heat pump hot water supply system
JP4372096B2 (en) * 2005-12-19 2009-11-25 シャープ株式会社 Heat pump water heater and control method of the heat pump water heater
JP4651627B2 (en) * 2007-01-19 2011-03-16 三菱電機株式会社 Refrigeration air conditioner
JP4999529B2 (en) * 2007-04-23 2012-08-15 三菱電機株式会社 Heat source machine and refrigeration air conditioner
JP2012159255A (en) * 2011-02-02 2012-08-23 Toshiba Carrier Corp Heat pump type heat source device, and heating system

Also Published As

Publication number Publication date
JP2012159253A (en) 2012-08-23

Similar Documents

Publication Publication Date Title
JP5642207B2 (en) Refrigeration cycle apparatus and refrigeration cycle control method
JP2012159255A (en) Heat pump type heat source device, and heating system
US8657207B2 (en) Hot water circulation system associated with heat pump and method for controlling the same
JP6190388B2 (en) Heat pump hot water heater
JP5341622B2 (en) Air conditioner
JP2013119954A (en) Heat pump hot water heater
JP5816422B2 (en) Waste heat utilization system of refrigeration equipment
JP6231403B2 (en) Combined heat source heat pump device
WO2020161805A1 (en) Air conditioner control device, outdoor unit, relay unit, heat source unit, and air conditioner
JP5457861B2 (en) Defrosting operation method of heat pump device
JP5701084B2 (en) Heating system
JP6609198B2 (en) Combined heat source heat pump device
AU2009227388B8 (en) Heating and method for controlling the heating
JP4050600B2 (en) Operation number control method and operation number control device for connected chiller / heater
JP2013130344A (en) Hot water supply/air conditioning system, and control method thereof
JP2019148382A (en) Heat pump type heating device
JP2012007751A (en) Heat pump cycle device
JP5516332B2 (en) Heat pump type hot water heater
JP6208086B2 (en) Combined heat source heat pump device
US20100043465A1 (en) Heat pump system and method of controlling the same
JP6258802B2 (en) Combined heat source heat pump device
JP3644373B2 (en) Heat pump floor heating system
JP7368323B2 (en) heating system
JP5818601B2 (en) Heat pump heat source machine
JP7392567B2 (en) air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150217

R150 Certificate of patent or registration of utility model

Ref document number: 5701084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250