JP6208086B2 - Combined heat source heat pump device - Google Patents

Combined heat source heat pump device Download PDF

Info

Publication number
JP6208086B2
JP6208086B2 JP2014135057A JP2014135057A JP6208086B2 JP 6208086 B2 JP6208086 B2 JP 6208086B2 JP 2014135057 A JP2014135057 A JP 2014135057A JP 2014135057 A JP2014135057 A JP 2014135057A JP 6208086 B2 JP6208086 B2 JP 6208086B2
Authority
JP
Japan
Prior art keywords
heating
heat
refrigerant
heat pump
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014135057A
Other languages
Japanese (ja)
Other versions
JP2016011819A (en
Inventor
眞柄 隆志
隆志 眞柄
真典 上田
真典 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2014135057A priority Critical patent/JP6208086B2/en
Publication of JP2016011819A publication Critical patent/JP2016011819A/en
Application granted granted Critical
Publication of JP6208086B2 publication Critical patent/JP6208086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Description

本発明は、複合熱源ヒートポンプ装置に係り、特に、空気熱源を利用する第2ヒートポンプ回路が単独で作動して暖房運転を行っている時に空気熱源熱交換器の除霜動作に入る場合、除霜動作時は、地中熱源を利用する第1ヒートポンプ回路を作動させて暖房運転をバックアップする複合熱源ヒートポンプ装置に関するものである。   The present invention relates to a composite heat source heat pump device, and in particular, when a second heat pump circuit using an air heat source operates independently and performs a heating operation, the defrost operation of the air heat source heat exchanger is performed. In operation, the present invention relates to a composite heat source heat pump device that operates a first heat pump circuit that uses a ground heat source to back up heating operation.

近時、太陽の熱を受けて大地に蓄えられた「地中熱」は、年間を通して温度変化が少ないためこの地中熱エネルギーを有効活用できる地中熱ヒートポンプが注目されている。特に、地中熱ヒートポンプは、冬の寒さが厳しい寒冷地でも安定した暖房ができるという特質を有する。   Recently, “geothermal heat” stored in the earth under the heat of the sun has little change in temperature throughout the year, so geothermal heat pumps that can effectively use this geothermal energy are attracting attention. In particular, geothermal heat pumps have the property that they can be stably heated even in cold regions where the winter is cold.

従来、地中熱ヒートポンプに加勢して空気熱ヒートポンプによってさらに暖房出力を向上させるために、第1圧縮機、第1加熱熱交換器、第1膨張弁、地中熱源熱交換器を有する地中熱ヒートポンプと、第2圧縮機、第2加熱熱交換器、第2膨張弁、空気熱源熱交換器を有する空気熱ヒートポンプとを備え、凝縮器としての第1加熱熱交換器および第2加熱熱交換器とを、放熱端末に循環液を循環させる加熱循環ポンプを有する加熱循環回路に対して直列に連結し、外気温度に応じて採熱効率の高い熱源を選択して、地中熱ヒートポンプまたは空気熱ヒートポンプのどちらか一方を作動させると共に加熱循環ポンプを駆動させる、あるいは暖房負荷の大きさに応じて地中熱ヒートポンプおよび空気熱ヒートポンプの双方を作動させると共に加熱循環ポンプを駆動させて、放熱端末側の熱媒(循環液)を加熱して放熱端末に供給する暖房運転を行うヒートポンプ装置が創案されている。(例えば、特許文献1)。   Conventionally, a ground having a first compressor, a first heating heat exchanger, a first expansion valve, and a ground heat source heat exchanger in order to support the ground heat heat pump and further improve the heating output by the air heat heat pump. A heat heat pump, a second compressor, a second heating heat exchanger, a second expansion valve, and an air heat heat pump having an air heat source heat exchanger, the first heating heat exchanger and the second heating heat as a condenser An exchanger is connected in series to a heating circulation circuit having a heating circulation pump that circulates the circulating fluid to the heat radiating terminal, and a heat source with high heat collection efficiency is selected according to the outside air temperature, and a geothermal heat pump or air Either one of the heat heat pumps is operated and the heating circulation pump is driven, or both the underground heat pump and the air heat heat pump are operated and applied depending on the size of the heating load. The circulating pump is driven, the heat radiation terminal side of the heating medium heat pump apparatus which performs by heating (circulating fluid) heating operation is supplied to the heat radiating terminal is devised. (For example, patent document 1).

特開2014−35109号公報JP 2014-35109 A

ところで、このような従来のヒートポンプサイクル装置において、空気熱ヒートポンプが単独で作動して暖房運転を行っている時、外気温度や暖房負荷の大きさ等、条件によっては空気熱ヒートポンプを構成する空気熱源熱交換器が着霜することがあり、空気熱源熱交換器は着霜すると熱交換効率が低下するため、空気熱源熱交換器の除霜をする必要がある。   By the way, in such a conventional heat pump cycle device, when the air heat heat pump operates alone and performs heating operation, the air heat source constituting the air heat heat pump depending on conditions such as the outside air temperature and the size of the heating load. The heat exchanger may be frosted, and if the air heat source heat exchanger is frosted, the heat exchange efficiency is lowered, so the air heat source heat exchanger needs to be defrosted.

上記除霜の動作としては、空気熱ヒートポンプを構成する第2膨張弁を全開とすると共に空気熱ヒートポンプの冷媒の流れ方向を暖房運転時の冷媒の流れ方向とは逆転させ、第2圧縮機から吐出された高温の冷媒を、空気熱源熱交換器に直接供給して空気熱源熱交換器に発生した霜を溶かし、空気熱源熱交換器から流出した冷媒を、第2膨張弁で減圧されることなく第2膨張弁を通過させ、第2加熱熱交換器を流通させて、再び第2圧縮機に戻している。(除霜動作)   As the defrosting operation, the second expansion valve constituting the air heat heat pump is fully opened, and the refrigerant flow direction of the air heat heat pump is reversed from the refrigerant flow direction during the heating operation. The discharged high-temperature refrigerant is directly supplied to the air heat source heat exchanger to melt the frost generated in the air heat source heat exchanger, and the refrigerant flowing out of the air heat source heat exchanger is decompressed by the second expansion valve. Instead, the second expansion valve is passed, the second heating heat exchanger is circulated, and returned to the second compressor again. (Defrosting operation)

この除霜動作を行う時に加熱循環ポンプの駆動を停止すると、循環液が放熱端末側に供給されないため無暖房状態になると共に、第2加熱熱交換器において、空気熱源熱交換器に発生した霜を溶かすために熱交換して低温となった冷媒と第2加熱熱交換器内に滞留している循環液との間で最初は熱交換するものの、循環液の温度は低下の一途をたどり、循環液側から冷媒側に吸熱される熱も少なくなり、空気熱源熱交換器の除霜に利用する熱が採れず、除霜動作時間が長引いてしまい、たとえ除霜動作が終了して暖房運転を再開したとしても、再開当初は温度の低い循環液が放熱端末に供給されてしまうので、暖房感を大幅に損ねてしまうという問題を有するものであった。   If driving of the heating circulation pump is stopped when performing this defrosting operation, the circulating fluid is not supplied to the heat radiating terminal side, so that no heating is performed and frost generated in the air heat source heat exchanger in the second heating heat exchanger Although the heat exchange is initially performed between the refrigerant whose temperature has been lowered to melt the refrigerant and the circulating fluid staying in the second heating heat exchanger, the temperature of the circulating fluid continues to decrease, Less heat is absorbed from the circulating fluid side to the refrigerant side, and heat used for defrosting the air heat source heat exchanger cannot be taken, resulting in prolonged defrosting operation time. Even when the operation is resumed, since the circulating fluid having a low temperature is supplied to the heat radiation terminal at the beginning of the operation, there is a problem that the feeling of heating is greatly impaired.

一方、除霜動作を行う時に加熱循環ポンプの駆動を継続しても、空気熱源熱交換器に発生した霜を溶かすために熱交換して低温となった冷媒と循環液とが、第2加熱熱交換器において熱交換し、循環液は冷却され、第2加熱熱交換器を流出した温度の低い循環液が放熱端末に供給されることになり、今まで暖房していた被空調空間を逆に冷却してしまうという問題を有するものであり、さらに、放熱端末を流出した循環液は加熱されることがないので、再び第2加熱熱交換器に流入する循環液は温度が低いままであることから、第2加熱熱交換器において循環液側から冷媒側に吸熱される熱も少なく、空気熱源熱交換器の除霜に利用する熱が採れず、除霜動作時間が長引くという問題を有するものであった。   On the other hand, even if the heating circulation pump is continuously driven when the defrosting operation is performed, the refrigerant and the circulating liquid, which have undergone heat exchange to melt the frost generated in the air heat source heat exchanger, become the second heating. Heat is exchanged in the heat exchanger, the circulating fluid is cooled, and the circulating fluid having a low temperature that flows out of the second heating heat exchanger is supplied to the heat radiating terminal. In addition, since the circulating fluid that has flowed out of the heat radiating terminal is not heated, the circulating fluid that flows into the second heating heat exchanger again remains at a low temperature. Therefore, in the second heating heat exchanger, there is also little heat absorbed from the circulating fluid side to the refrigerant side, and heat used for defrosting of the air heat source heat exchanger cannot be taken, and the defrosting operation time is prolonged. It was a thing.

本発明は、このような背景に鑑みてなされたものであり、除霜動作中も被空調空間の暖房が継続され、除霜動作時間も長引くことのない複合熱源ヒートポンプ装置を提供することを課題とする。
また、除霜動作終了後の暖房動作の移行が安定的にスムーズに移行されるように地中熱循環ポンプの駆動を制御するようにしたものである。
The present invention has been made in view of such a background, and it is an object of the present invention to provide a composite heat source heat pump device in which heating of an air-conditioned space is continued even during a defrosting operation and the defrosting operation time is not prolonged. And
Further, the driving of the underground heat circulation pump is controlled so that the transition of the heating operation after the defrosting operation is stably and smoothly shifted.

本発明は上記課題を解決するために、請求項1では、放熱端末に循環液を循環させる加熱循環ポンプを有する加熱循環回路と、この加熱循環回路に配設された凝縮器としての第1加熱熱交換器と、前記加熱循環回路に配設された凝縮器としての第2加熱熱交換器と、熱媒を循環させて地中から採熱させる地中熱循環ポンプと、この地中熱循環ポンプで循環される熱媒で回路内を循環する第1冷媒を加熱する地中熱源熱交換器と、前記第1冷媒を圧縮する第1圧縮機と、前記第1圧縮機から吐出された前記第1冷媒を流通させる前記第1加熱熱交換器と、前記第1加熱熱交換器から流出した前記第1冷媒を減圧する第1膨張弁とを有し、前記第1加熱熱交換器を介して前記循環液を加熱する第1ヒートポンプ回路と、外気から採熱して回路内を循環する第2冷媒を加熱する空気熱源熱交換器と、前記第2冷媒を圧縮する第2圧縮機と、前記第2圧縮機から吐出された前記第2冷媒を流通させる前記第2加熱熱交換器と、前記第2加熱熱交換器から流出した前記第2冷媒を減圧する第2膨張弁と、前記第2冷媒の流れ方向を切り換える切換弁とを有し、前記第2加熱熱交換器を介して前記循環液を加熱する第2ヒートポンプ回路と、動作を制御する制御装置とを備え、前記第1加熱熱交換器は、前記加熱循環回路における前記第2加熱熱交換器の上流側に直列に配設され、前記第2ヒートポンプ回路を作動させると共に前記加熱循環ポンプを駆動させて前記循環液を加熱する暖房運転を行う複合熱源ヒートポンプ装置において、前記制御装置は、前記切換弁を、前記第2冷媒の流れ方向が前記暖房運転時の前記第2冷媒の流れ方向と逆になるように切り換えて、前記第2圧縮機から吐出された前記第2冷媒を前記空気熱源熱交換器に供給して前記空気熱源熱交換器に発生した霜を溶かす除霜動作を実行すると共に当該除霜動作時に前記加熱循環ポンプを駆動させる除霜動作制御手段を有し、前記暖房運転時に前記除霜動作制御手段が前記除霜動作を実行する場合には、前記第1ヒートポンプ回路を作動させ、更に前記除霜動作終了後の一定時間は、前記地中熱循環ポンプを最大回転数で駆動させた後、減圧された第1冷媒が所定温度になるように回転数を段階的に低下させるようにしたものである。   In order to solve the above-described problems, the present invention provides a heating circuit having a heating circulation pump for circulating a circulating liquid in a heat radiating terminal, and a first heating as a condenser disposed in the heating circuit. A heat exchanger, a second heating heat exchanger as a condenser disposed in the heating circulation circuit, a ground heat circulation pump for circulating heat medium and collecting heat from the ground, and this ground heat circulation A ground heat source heat exchanger that heats the first refrigerant circulating in the circuit with a heat medium circulated by a pump, a first compressor that compresses the first refrigerant, and the first compressor that is discharged from the first compressor The first heating heat exchanger for circulating the first refrigerant, and a first expansion valve for depressurizing the first refrigerant flowing out of the first heating heat exchanger, and through the first heating heat exchanger A first heat pump circuit for heating the circulating fluid and collecting heat from the outside air An air heat source heat exchanger that heats the second refrigerant that circulates; a second compressor that compresses the second refrigerant; and the second heating heat exchange that circulates the second refrigerant discharged from the second compressor. A second expansion valve that depressurizes the second refrigerant that has flowed out of the second heating heat exchanger, and a switching valve that switches a flow direction of the second refrigerant, and the second heating heat exchanger A second heat pump circuit that heats the circulating fluid via a control device and a control device that controls the operation, wherein the first heating heat exchanger is connected in series to the upstream side of the second heating heat exchanger in the heating circulation circuit. In the combined heat source heat pump apparatus that operates the second heat pump circuit and drives the heating circulation pump to perform the heating operation for heating the circulating fluid, the control device includes the switching valve and the second heat pump circuit. 2 Flow direction of refrigerant Switching to be opposite to the flow direction of the second refrigerant during the heating operation, the second refrigerant discharged from the second compressor is supplied to the air heat source heat exchanger to exchange the air heat source heat. A defrosting operation control means for driving the heating circulation pump during the defrosting operation and performing the defrosting operation for melting the frost generated in the cooler, and the defrosting operation control means during the heating operation is the defrosting operation Is performed, the first heat pump circuit is operated, and after the defrosting operation is completed, the first refrigerant is decompressed after the geothermal circulation pump is driven at the maximum rotational speed for a certain period of time. The rotational speed is decreased stepwise so that the temperature reaches a predetermined temperature.

また、請求項2では、前記制御装置は、前記除霜動作を開始するための所定の除霜開始条件が成立したと判断したら、前記第1ヒートポンプ回路の作動を開始させ、前記第1ヒートポンプ回路の作動を開始させてから所定時間が経過した後に、前記除霜動作制御手段は、前記除霜動作を開始するものとした。   According to a second aspect of the present invention, when the control device determines that a predetermined defrosting start condition for starting the defrosting operation is satisfied, the control device starts the operation of the first heat pump circuit, and the first heat pump circuit. After a predetermined time has elapsed since the start of the operation, the defrosting operation control means starts the defrosting operation.

また、請求項3では、前記除霜動作制御手段は、前記除霜動作時の前記加熱循環ポンプを所定の除霜回転速度で駆動させるようにし、前記所定の除霜回転速度は前記暖房運転時よりも低く設定した回転速度とした。   According to a third aspect of the present invention, the defrosting operation control means drives the heating circulation pump during the defrosting operation at a predetermined defrosting rotation speed, and the predetermined defrosting rotation speed is determined during the heating operation. The rotation speed was set to a lower value.

また、請求項4では、前記制御装置は、前記除霜動作時に、前記第1ヒートポンプ回路の前記第1圧縮機を最大回転速度で駆動させるものとした。   According to a fourth aspect of the present invention, the control device drives the first compressor of the first heat pump circuit at a maximum rotational speed during the defrosting operation.

また、請求項5では、前記制御装置は、前記除霜動作を終了するための所定の除霜終了条件が成立したと判断したら、前記切換弁を、前記第2冷媒の流れ方向が前記暖房運転時の前記第2冷媒の流れ方向となるように切り換えて、前記暖房運転としての前記第2ヒートポンプ回路の作動を再開させ、前記第2ヒートポンプ回路の作動再開後、一定時間が経過するまでは、前記第1ヒートポンプ回路の作動を継続するものとした。   According to a fifth aspect of the present invention, when the control device determines that a predetermined defrosting termination condition for ending the defrosting operation is satisfied, the control valve is set so that the flow direction of the second refrigerant is the heating operation. Switching to be the flow direction of the second refrigerant at the time, restarting the operation of the second heat pump circuit as the heating operation, and after resuming the operation of the second heat pump circuit, until a certain time elapses, The operation of the first heat pump circuit was continued.

また、請求項6では、前記制御装置は、前記第2ヒートポンプ回路の作動を再開して前記一定時間が経過した後、前記加熱循環回路を循環する前記循環液の温度が設定された目標温水温度に到達したら、前記第1圧縮機の回転速度を徐々に低下させて、前記第1ヒートポンプ回路の作動を停止するものとした。   Moreover, in Claim 6, the said control apparatus restarts the operation | movement of a said 2nd heat pump circuit, and after the said fixed time passes, the target hot water temperature to which the temperature of the said circulating fluid which circulates through the said heating circulation circuit was set. , The rotational speed of the first compressor is gradually decreased to stop the operation of the first heat pump circuit.

この発明の請求項1によれば、第2ヒートポンプ回路を作動させると共に加熱循環ポンプを駆動させて循環液を加熱する暖房運転を行っているときに、空気熱源熱交換器に発生した霜を溶かす除霜動作が実行される場合において、除霜動作を実行するときは、第1ヒートポンプ回路を作動させることにより、除霜動作前に第2ヒートポンプ回路の作動により行われていた暖房運転を、第1ヒートポンプ回路を作動させてバックアップし、安定した暖房出力を確保して、除霜動作中も暖房運転を継続することができると共に、空気熱源熱交換器の除霜に利用される熱を、第2加熱熱交換器を介して循環液側から第2冷媒側に与えることができ、除霜動作が行われる時間を長引かせることがないものであり、また、除霜動作終了後の一定時間は、第1ヒートポンプ回路の地中熱循環ポンプを最大回転数で駆動させ、その後は、減圧された第1冷媒が所定温度になるように回転数を段階的に低下させるようにすることで、第2ヒートポンプ回路の暖房動作が立上がるまで、第1ヒートポンプ回路から加熱循環回路へ供給される熱量を補充して、第2ヒートポンプ回路の暖房動作の立上げが安定的でスムーズ行われるようにしたものである。   According to the first aspect of the present invention, the frost generated in the air heat source heat exchanger is melted when the second heat pump circuit is operated and the heating circulation pump is driven to perform the heating operation for heating the circulating fluid. In the case where the defrosting operation is performed, when the defrosting operation is performed, the heating operation performed by the operation of the second heat pump circuit before the defrosting operation is performed by operating the first heat pump circuit. 1 Heat pump circuit is activated and backed up, stable heating output is secured, heating operation can be continued during the defrosting operation, and heat used for defrosting of the air heat source heat exchanger is 2 It can be given from the circulating fluid side to the second refrigerant side via the heating heat exchanger, so that the time during which the defrosting operation is performed is not prolonged, and the fixed time after the defrosting operation is completed is , The second heat pump is driven by driving the underground heat circulation pump of the 1 heat pump circuit at the maximum rotation speed and then decreasing the rotation speed stepwise so that the decompressed first refrigerant reaches a predetermined temperature. Until the heating operation of the circuit starts up, the amount of heat supplied from the first heat pump circuit to the heating circulation circuit is supplemented so that the heating operation of the second heat pump circuit can be started up stably and smoothly. .

また、請求項2によれば、除霜動作を開始するための所定の除霜開始条件が成立したと判断したら、第1ヒートポンプ回路の作動を開始させ、第1ヒートポンプ回路の作動を開始させてから所定時間が経過した後に、除霜動作を開始するようにしたことで、バックアップとして作動する第1ヒートポンプ回路が安定した暖房出力を出せるようになる時間が経過するまでは除霜動作の開始を待つので、安定した暖房出力を確保した状態で除霜動作を開始することができ、除霜動作中も暖房運転を継続することができるものである。   According to claim 2, when it is determined that a predetermined defrosting start condition for starting the defrosting operation is established, the operation of the first heat pump circuit is started and the operation of the first heat pump circuit is started. Since the defrosting operation is started after a predetermined time has elapsed, the defrosting operation is started until the time when the first heat pump circuit operating as a backup can output a stable heating output has elapsed. Since it waits, a defrosting operation can be started in a state where a stable heating output is secured, and the heating operation can be continued even during the defrosting operation.

また、請求項3によれば、除霜動作時の加熱循環ポンプを所定の除霜回転速度で駆動させるようにし、所定の除霜回転速度は暖房運転時よりも低く設定した回転速度としたことで、暖房運転時と比較して、単位時間当たりの循環液の循環流量が減少し、温度効率が上がるため、第1加熱熱交換器から流出する循環液の温度が高くなり、第2加熱熱交換器に流入する循環液の温度が高くなるので、第2加熱熱交換器において循環液側から第2冷媒側に吸熱される熱が多くなり、第2圧縮機から吐出されて空気熱源熱交換器に供給される第2冷媒の温度も上がるため、空気熱源熱交換器に発生した霜も溶けやすくなり、除霜動作時間を短縮することができ、除霜動作時間を長引かせることがないものである。   According to claim 3, the heating circulation pump during the defrosting operation is driven at a predetermined defrosting rotational speed, and the predetermined defrosting rotational speed is set to a rotational speed set lower than that during the heating operation. Therefore, compared with the heating operation, the circulating flow rate of the circulating fluid per unit time is reduced and the temperature efficiency is increased. Therefore, the temperature of the circulating fluid flowing out of the first heating heat exchanger is increased, and the second heating heat is increased. Since the temperature of the circulating fluid flowing into the exchanger becomes higher, more heat is absorbed from the circulating fluid side to the second refrigerant side in the second heating heat exchanger, and is discharged from the second compressor to be exchanged with the air heat source. Because the temperature of the second refrigerant supplied to the cooler also rises, the frost generated in the air heat source heat exchanger is easily melted, the defrosting operation time can be shortened, and the defrosting operation time is not prolonged. It is.

また、請求項4によれば、除霜動作時に、第1ヒートポンプ回路の第1圧縮機を最大回転速度で駆動させることで、除霜動作が行われる前の第2ヒートポンプ回路の暖房出力分をできるだけカバーするように第1ヒートポンプ回路を作動させ、第1加熱熱交換器から流出する循環液の温度をより高めることができるため、第2加熱熱交換器に流入する循環液の温度が高くなり、第2加熱熱交換器を流出する循環液の温度も高く保つことができ、放熱端末へ供給される循環液の温度低下をできるだけ抑制し、できるだけ暖房感を損ねないように暖房運転を継続できるものである。さらに、第1加熱熱交換器から流出する循環液の温度を高めることができるため、第2加熱熱交換器に流入する循環液の温度が高くなるので、第2加熱熱交換器において循環液側から第2冷媒側に吸熱される熱が多くなり、第2冷媒の温度もその分上昇し、第2圧縮機から吐出されて空気熱源熱交換器に供給される第2冷媒の温度も上がるため、空気熱源熱交換器に発生した霜も溶けやすくなり、除霜動作を行っている時間を短縮することができ、除霜動作時間を長引かせることがないものである。   According to the fourth aspect of the present invention, the amount of heating output of the second heat pump circuit before the defrosting operation is performed by driving the first compressor of the first heat pump circuit at the maximum rotation speed during the defrosting operation. Since the first heat pump circuit is operated so as to cover as much as possible and the temperature of the circulating fluid flowing out from the first heating heat exchanger can be further increased, the temperature of the circulating fluid flowing into the second heating heat exchanger becomes higher. The temperature of the circulating fluid flowing out of the second heating heat exchanger can be kept high, the temperature drop of the circulating fluid supplied to the heat radiating terminal can be suppressed as much as possible, and the heating operation can be continued so as not to impair the feeling of heating as much as possible. Is. Furthermore, since the temperature of the circulating fluid flowing out from the first heating heat exchanger can be increased, the temperature of the circulating fluid flowing into the second heating heat exchanger becomes higher, so the circulating fluid side in the second heating heat exchanger Since the heat absorbed from the refrigerant to the second refrigerant side increases, the temperature of the second refrigerant also rises by that amount, and the temperature of the second refrigerant discharged from the second compressor and supplied to the air heat source heat exchanger also rises. Further, frost generated in the air heat source heat exchanger is also easily melted, the time during which the defrosting operation is performed can be shortened, and the defrosting operation time is not prolonged.

また、請求項5によれば、除霜動作を終了するための所定の除霜終了条件が成立したと判断したら、切換弁を、第2冷媒の流れ方向が暖房運転時の第2冷媒の流れ方向となるように切り換えて、暖房運転としての第2ヒートポンプ回路の作動を再開させ、第2ヒートポンプ回路の作動再開後、一定時間が経過するまでは、第1ヒートポンプ回路の作動を継続するようにしたことで、第2ヒートポンプ回路が安定した暖房出力を出せるようになる時間が経過するまでは、バックアップとして作動させている第1ヒートポンプ回路の作動を継続させるので、除霜動作終了後においても安定した暖房出力を確保することができ、暖房運転を継続することができるものである。   Further, according to claim 5, when it is determined that a predetermined defrosting termination condition for ending the defrosting operation is satisfied, the switching valve is set so that the flow direction of the second refrigerant is the flow of the second refrigerant during the heating operation. The operation of the second heat pump circuit is resumed as a heating operation, and the operation of the first heat pump circuit is continued until a certain time has elapsed after the operation of the second heat pump circuit is resumed. As a result, the operation of the first heat pump circuit operating as a backup is continued until the time when the second heat pump circuit can output a stable heating output elapses. Thus, the heating output can be secured and the heating operation can be continued.

また、請求項6によれば、第2ヒートポンプ回路の作動を再開して一定時間が経過した後、加熱循環回路を循環する前記循環液の温度が設定された目標温水温度に到達したら、第1圧縮機の回転速度を徐々に低下させて、第1ヒートポンプ回路の作動を停止するようにしたことで、除霜動作終了後において、バックアップとして作動させていた第1ヒートポンプ回路の作動を徐々に制限していき、第2ヒートポンプ回路のみを作動させての暖房運転の状態にスムーズに移行させることができるものである。   According to the sixth aspect of the present invention, after the operation of the second heat pump circuit is resumed and a predetermined time has elapsed, when the temperature of the circulating fluid circulating in the heating circulation circuit reaches the set target hot water temperature, the first By gradually reducing the rotation speed of the compressor and stopping the operation of the first heat pump circuit, the operation of the first heat pump circuit that was operating as a backup after the defrosting operation is gradually limited. As a result, only the second heat pump circuit can be operated to smoothly shift to the heating operation state.

本発明の実施形態に係る複合熱源ヒートポンプ装置の主要なユニットを示す外観構成図。The external appearance block diagram which shows the main units of the composite heat source heat pump apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る複合熱源ヒートポンプ装置の全体構成を示す構成図。The block diagram which shows the whole structure of the composite heat source heat pump apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る除霜動作を示す回路図。The circuit diagram which shows the defrost operation which concerns on embodiment of this invention. 本発明の実施形態に係る第2ヒートポンプ回路を作動させての暖房運転時に除霜動作が実行される場合の動作を示すタイムチャート。The time chart which shows operation | movement in case defrosting operation is performed at the time of the heating operation which act | operates the 2nd heat pump circuit which concerns on embodiment of this invention.

本発明の実施形態に係る複合熱源ヒートポンプ装置1の構成について適宜図1と図2を参照しながら詳細に説明する。
図1に示すように、複合熱源ヒートポンプ装置1は、第1ヒートポンプ回路40(図2参照)を備える地中熱ヒートポンプユニット4と、第2ヒートポンプ回路50(図2参照)を備える空気熱ヒートポンプユニット5とを有している。また、複合熱源ヒートポンプ装置1は放熱端末36に熱媒としての循環液L(例えば、温水や不凍液)を循環させる負荷側循環回路としての加熱循環回路30と、熱源側循環回路としての地中熱循環回路20と、複合熱源ヒートポンプ装置1の動作を制御する制御手段としての制御装置6(61、62、63)と、制御装置6に信号を送るリモコン60とを有している。
The configuration of the composite heat source heat pump apparatus 1 according to the embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2 as appropriate.
As shown in FIG. 1, the composite heat source heat pump device 1 includes a ground heat pump unit 4 including a first heat pump circuit 40 (see FIG. 2) and an air heat heat pump unit including a second heat pump circuit 50 (see FIG. 2). 5. The composite heat source heat pump device 1 includes a heating circulation circuit 30 as a load-side circulation circuit that circulates a circulation liquid L (for example, hot water or antifreeze liquid) as a heat medium in the heat radiating terminal 36, and a ground heat as a heat source-side circulation circuit. It has a circulation circuit 20, a control device 6 (61, 62, 63) as control means for controlling the operation of the composite heat source heat pump device 1, and a remote controller 60 that sends a signal to the control device 6.

図2に示すように、本実施形態に係る複合熱源ヒートポンプ装置1は、地中熱源を利用して放熱端末36側の循環液Lを加熱する第1ヒートポンプ回路40の第1加熱熱交換器41と、空気熱源を利用して放熱端末36側の循環液Lを加熱する第2ヒートポンプ回路50の第2加熱熱交換器51とを加熱循環回路30に対して直列に接続した複合熱源ヒートポンプ装置であり、加熱循環回路30を循環する循環液Lの流れに対して、第1加熱熱交換器41が第2加熱熱交換器51よりも上流側に配設されている。この複合熱源ヒートポンプ装置1は、暖房装置および冷房装置として機能させることができるが、以下の実施形態においては主として暖房装置として使用している場合の構成要素および動作について説明する。   As shown in FIG. 2, the composite heat source heat pump apparatus 1 according to the present embodiment uses a ground heat source to heat the circulating liquid L on the heat radiating terminal 36 side, and the first heating heat exchanger 41 of the first heat pump circuit 40. And a combined heat source heat pump device in which a second heating heat exchanger 51 of a second heat pump circuit 50 that heats the circulating fluid L on the heat radiation terminal 36 side using an air heat source is connected in series to the heating circulation circuit 30. In addition, the first heating heat exchanger 41 is disposed on the upstream side of the second heating heat exchanger 51 with respect to the flow of the circulating liquid L circulating in the heating circulation circuit 30. The composite heat source heat pump device 1 can function as a heating device and a cooling device, but in the following embodiments, components and operations when mainly used as a heating device will be described.

第1ヒートポンプ回路40は、第1冷媒C1を圧縮する能力可変の第1圧縮機43と、第1圧縮機43から吐出された高温の第1冷媒C1を流通させ、この高温の第1冷媒C1と加熱循環回路30を流れる循環液Lとの熱交換を行う第1凝縮器としての第1加熱熱交換器41と、第1加熱熱交換器41から流出する第1冷媒C1を減圧する第1減圧手段としての第1膨張弁44と、第1膨張弁44からの減圧された低温の第1冷媒C1と地中熱循環回路20を流れる熱媒H1との熱交換を行う第1蒸発器としての地中熱源熱交換器45と、これらを環状に接続する第1冷媒配管42とを備えて構成されている。この第1ヒートポンプ回路40は、第1冷媒C1が循環すると共に、第1加熱熱交換器41を介して加熱循環回路30を流れる循環液Lを加熱する。   The first heat pump circuit 40 circulates the first variable-capacity compressor 43 that compresses the first refrigerant C1 and the high-temperature first refrigerant C1 discharged from the first compressor 43, and the high-temperature first refrigerant C1. And a first heating heat exchanger 41 as a first condenser that performs heat exchange between the circulating fluid L flowing in the heating circulation circuit 30 and a first refrigerant C1 that flows out of the first heating heat exchanger 41 is depressurized. As a first expansion valve 44 that performs heat exchange between the first expansion valve 44 serving as a decompression unit, the decompressed low-temperature first refrigerant C1 from the first expansion valve 44, and the heat medium H1 that flows through the underground heat circulation circuit 20. The underground heat source heat exchanger 45 and a first refrigerant pipe 42 that connects these in an annular shape are configured. The first heat pump circuit 40 circulates the first refrigerant C1 and heats the circulating liquid L flowing through the heating circulation circuit 30 via the first heating heat exchanger 41.

また、図2に示す地中熱ヒートポンプユニット4において、符号42aは、第1圧縮機43から吐出された第1冷媒C1の温度を検出する第1冷媒吐出温度センサであり、符号42bは、第1膨張弁44から地中熱源熱交換器45までの第1冷媒配管42、つまり低圧側の第1冷媒配管42に設けられ、低圧側の第1冷媒C1の温度を検出する第1冷媒温度センサである。   In the underground heat pump unit 4 shown in FIG. 2, reference numeral 42a is a first refrigerant discharge temperature sensor that detects the temperature of the first refrigerant C1 discharged from the first compressor 43, and reference numeral 42b is a first refrigerant discharge temperature sensor. 1st refrigerant | coolant temperature sensor provided in the 1st refrigerant | coolant piping 42 from the 1 expansion valve 44 to the underground heat source heat exchanger 45, ie, the 1st refrigerant | coolant piping 42 of a low voltage | pressure side, and detects the temperature of the 1st refrigerant | coolant C1 of a low voltage | pressure side. It is.

第2ヒートポンプ回路50は、第2冷媒C2を圧縮する能力可変の第2圧縮機53と、第2圧縮機53から吐出された高温の第2冷媒C2を流通させ、この高温の第2冷媒C2と加熱循環回路30を流れる循環液Lとの熱交換を行う第2凝縮器としての第2加熱熱交換器51と、第2加熱熱交換器51から流出する第2冷媒C2を減圧する第2減圧手段としての第2膨張弁54と、第2膨張弁54からの減圧した低温の第2冷媒C2を流通させ、この低温の第2冷媒C2と送風ファン56の作動により送られる空気との熱交換を行う第2蒸発器としての空気熱源熱交換器55と、これらを環状に接続する第2冷媒配管52とを備えて構成されている。この第2ヒートポンプ回路50は、第2冷媒C2が循環すると共に、第2加熱熱交換器51を介して加熱循環回路30を流れる循環液Lを加熱する。   The second heat pump circuit 50 circulates the variable-capacity second compressor 53 that compresses the second refrigerant C2 and the high-temperature second refrigerant C2 discharged from the second compressor 53, and this high-temperature second refrigerant C2 And the second heating heat exchanger 51 as a second condenser for exchanging heat with the circulating liquid L flowing through the heating circulation circuit 30, and the second refrigerant C2 flowing out from the second heating heat exchanger 51 is depressurized. The heat of the second expansion valve 54 serving as a decompression means and the low-temperature second refrigerant C2 decompressed from the second expansion valve 54 circulates and the air sent by the operation of the low-temperature second refrigerant C2 and the blower fan 56. An air heat source heat exchanger 55 serving as a second evaporator that performs exchange and a second refrigerant pipe 52 that connects these in an annular shape are configured. The second heat pump circuit 50 circulates the second refrigerant C2 and heats the circulating liquid L flowing through the heating circulation circuit 30 via the second heating heat exchanger 51.

第2冷媒配管52には、第2ヒートポンプ回路50における第2冷媒C2の流れ方向を切り換える切換弁としての四方弁58が設けられており、四方弁58は、第2圧縮機53から吐出された第2冷媒C2を、第2加熱熱交換器51、第2膨張弁54、空気熱源熱交換器55の順に流通させ、第2圧縮機53に戻す流路を形成する状態(暖房運転時の状態)と、第2圧縮機53から吐出された第2冷媒C2を、空気熱源熱交換器55、第2膨張弁54、第2加熱熱交換器51の順に流通させ、第2圧縮機53に戻す流路を形成する状態(除霜動作時の状態)とに切り換え可能なものである。
本実施形態では、空気熱源熱交換器55が低温となり、着霜した場合に、第2圧縮機53から吐出される第2冷媒C2が空気熱源熱交換器55に向けて流れるように四方弁58が切り換えられて、第2圧縮機53からの高温の第2冷媒C2により空気熱源熱交換器55に発生した霜が溶かされるようになっている。
The second refrigerant pipe 52 is provided with a four-way valve 58 as a switching valve for switching the flow direction of the second refrigerant C2 in the second heat pump circuit 50, and the four-way valve 58 is discharged from the second compressor 53. The second refrigerant C2 is circulated in the order of the second heating heat exchanger 51, the second expansion valve 54, and the air heat source heat exchanger 55 to form a flow path that returns to the second compressor 53 (state during heating operation) ) And the second refrigerant C2 discharged from the second compressor 53 are circulated in the order of the air heat source heat exchanger 55, the second expansion valve 54, and the second heating heat exchanger 51, and returned to the second compressor 53. It can be switched to a state where a flow path is formed (a state during a defrosting operation).
In the present embodiment, when the air heat source heat exchanger 55 becomes low temperature and frost is formed, the four-way valve 58 so that the second refrigerant C2 discharged from the second compressor 53 flows toward the air heat source heat exchanger 55. Is switched, and the frost generated in the air heat source heat exchanger 55 is melted by the high-temperature second refrigerant C2 from the second compressor 53.

また、図2に示す空気熱ヒートポンプユニット5において、符号52aは、第2圧縮機53から吐出された第2冷媒C2の温度を検出する第2冷媒吐出温度センサであり、符号52bは、第2膨張弁54から空気熱源熱交換器55までの第2冷媒配管52、つまり低圧側の第2冷媒配管52に設けられ、低圧側の第2冷媒C2の温度を検出する第2冷媒温度センサであり、符号57は外気温度を検出する外気温センサである。   In the air heat heat pump unit 5 shown in FIG. 2, reference numeral 52a is a second refrigerant discharge temperature sensor that detects the temperature of the second refrigerant C2 discharged from the second compressor 53, and reference numeral 52b is a second refrigerant discharge temperature sensor. The second refrigerant temperature sensor is provided in the second refrigerant pipe 52 from the expansion valve 54 to the air heat source heat exchanger 55, that is, the second refrigerant pipe 52 on the low pressure side, and detects the temperature of the second refrigerant C2 on the low pressure side. Reference numeral 57 denotes an outside air temperature sensor for detecting the outside air temperature.

なお、第1ヒートポンプ回路40および第2ヒートポンプ回路50の冷媒としては、R410AやR32等のHFC冷媒や二酸化炭素冷媒等の任意の冷媒を用いることができる。   In addition, as a refrigerant | coolant of the 1st heat pump circuit 40 and the 2nd heat pump circuit 50, arbitrary refrigerant | coolants, such as HFC refrigerant | coolants, such as R410A and R32, and a carbon dioxide refrigerant | coolant, can be used.

第1加熱熱交換器41、地中熱源熱交換器45、および第2加熱熱交換器51は、例えばプレート式熱交換器で構成されている。このプレート式熱交換器は、複数の伝熱プレートが積層され、冷媒を流通させる冷媒流路と熱媒である流体を流通させる流体流路とが各伝熱プレートを境にして交互に形成されている。   The 1st heating heat exchanger 41, the underground heat source heat exchanger 45, and the 2nd heating heat exchanger 51 are comprised by the plate type heat exchanger, for example. In this plate heat exchanger, a plurality of heat transfer plates are stacked, and a refrigerant flow path for circulating a refrigerant and a fluid flow path for circulating a fluid as a heat medium are alternately formed with each heat transfer plate as a boundary. ing.

地中熱循環回路20は、地中熱源熱交換器45と、地中熱源熱交換器45を流通する第1冷媒C1を加熱する熱源として地中に設置された地中熱交換器23と、これらを環状に接続する地中熱配管21とを備えて構成されている。また、地中熱配管21には、地中熱循環回路20に熱媒H1としてエチレングリコールやプロピレングリコール等を添加した不凍液を循環させる回転速度(単位時間当たりの回転数)可変の地中熱循環ポンプ22が設けられている。なお、図2における符号24は、熱媒H1を貯留し地中熱循環回路20の圧力を調整する地中用シスターンである。   The underground heat circulation circuit 20 includes an underground heat source heat exchanger 45, an underground heat exchanger 23 installed in the ground as a heat source for heating the first refrigerant C1 flowing through the underground heat source heat exchanger 45, It is provided with the underground heat piping 21 which connects these cyclically | annularly. In addition, the underground heat pipe 21 has a variable rotation speed (the number of rotations per unit time) for circulating an antifreeze liquid in which ethylene glycol, propylene glycol or the like is added as a heat medium H1 to the underground heat circulation circuit 20. A pump 22 is provided. In addition, the code | symbol 24 in FIG. 2 is the underground system turn which adjusts the pressure of the underground heat circulation circuit 20 by storing the heat medium H1.

ここで、地中熱循環回路20では、暖房運転を行う際に、地中熱交換器23によって地中から地中熱を採熱し、その熱を帯びた熱媒H1が地中熱循環ポンプ22により地中熱源熱交換器45に供給される。そして、地中熱源熱交換器45にて、地中熱源熱交換器45の冷媒流路を流通する第1冷媒C1と地中熱源熱交換器45の流体流路を流通する熱媒H1とが対向して流れて熱交換が行われ、地中熱交換器23にて採熱された地中熱が第1冷媒C1側に汲み上げられて第1冷媒C1が加熱され、地中熱源熱交換器45は蒸発器として機能するものとなる。   Here, in the underground heat circulation circuit 20, when performing the heating operation, the underground heat exchanger 23 collects the underground heat from the ground, and the heat medium H <b> 1 with the heat is the underground heat circulation pump 22. Is supplied to the underground heat source heat exchanger 45. In the underground heat source heat exchanger 45, the first refrigerant C1 that flows through the refrigerant flow path of the underground heat source heat exchanger 45 and the heat medium H1 that flows through the fluid flow path of the underground heat source heat exchanger 45 are Heat exchange is performed by flowing in the opposite direction, the underground heat collected by the underground heat exchanger 23 is pumped to the first refrigerant C1 side, the first refrigerant C1 is heated, and the underground heat source heat exchanger 45 functions as an evaporator.

加熱循環回路30は、第1凝縮器としての第1加熱熱交換器41と、第2凝縮器としての第2加熱熱交換器51と、被空調空間を加熱する床暖房パネルやパネルコンベクタ等の負荷端末としての放熱端末36と、これらを上流側から順に環状に接続する加熱配管31とを備えて構成されている。また、加熱配管31には、加熱循環回路30に循環液Lを循環させる加熱循環ポンプ32が設けられており、放熱端末36毎に分岐した加熱配管31の各々には、その開閉により放熱端末36への循環液Lの供給を制御する熱動弁33がそれぞれ設けられている。なお、放熱端末36は、図2では2つ設けられているが、1つであってもよく、3つ以上であってもよく、数量や仕様が特に限定されるものではない。   The heating circuit 30 includes a first heating heat exchanger 41 as a first condenser, a second heating heat exchanger 51 as a second condenser, a floor heating panel and a panel convector for heating the air-conditioned space, etc. The heat radiating terminal 36 as a load terminal and a heating pipe 31 that connects these in a circular shape in order from the upstream side are provided. The heating pipe 31 is provided with a heating circulation pump 32 that circulates the circulating liquid L in the heating circulation circuit 30. Each of the heating pipes 31 branched for each heat radiation terminal 36 is opened and closed to open the heat radiation terminal 36. Thermally operated valves 33 are provided for controlling the supply of the circulating fluid L to each. In addition, although the two heat radiating terminals 36 are provided in FIG. 2, one may be sufficient and three or more may be sufficient, and quantity and a specification are not specifically limited.

このように、加熱循環回路30において第1凝縮器としての第1加熱熱交換器41と第2凝縮器としての第2加熱熱交換器51とが直列に接続されており、加熱循環回路30を循環する循環液Lは、第1加熱熱交換器41を流通した後で、第2加熱熱交換器51を流通して、放熱端末36に供給されるように構成されている。   Thus, in the heating circulation circuit 30, the first heating heat exchanger 41 as the first condenser and the second heating heat exchanger 51 as the second condenser are connected in series, and the heating circulation circuit 30 is The circulating liquid L to be circulated is configured to be supplied to the heat radiating terminal 36 through the second heating heat exchanger 51 after flowing through the first heating heat exchanger 41.

なお、図2に示す加熱循環回路30において、符号34は、加熱配管31に設けられ放熱端末36から第1加熱熱交換器41に流入する循環液Lの温度を検出する戻り温水温度センサであり、符号35は、循環液Lを貯留し加熱循環回路30の圧力を調整する暖房用シスターンである。   In the heating circulation circuit 30 shown in FIG. 2, reference numeral 34 denotes a return hot water temperature sensor that detects the temperature of the circulating fluid L that is provided in the heating pipe 31 and flows into the first heating heat exchanger 41 from the heat radiating terminal 36. Reference numeral 35 denotes a heating system that stores the circulating fluid L and adjusts the pressure of the heating circulation circuit 30.

制御装置6は、地中熱循環回路20、第1ヒートポンプ回路40、および加熱循環回路30の動作を制御する地中熱ヒートポンプ制御装置61と、第2ヒートポンプ回路50の動作を制御する空気熱ヒートポンプ制御装置62と、除霜動作を制御する除霜動作制御手段としての除霜動作制御装置63とを備えている。制御装置6は、各種のデータやプログラムを記憶する記憶部と、演算・制御処理を行う制御部とを備えており、外気温センサ57や温度センサ42a、42b等の各温度センサ、およびリモコン60からの信号を受けて、複合熱源ヒートポンプ装置1の動作を制御できるようになっている。   The control device 6 includes a geothermal heat pump control device 61 that controls the operation of the underground heat circulation circuit 20, the first heat pump circuit 40, and the heating circulation circuit 30, and an air heat heat pump that controls the operation of the second heat pump circuit 50. A control device 62 and a defrosting operation control device 63 as defrosting operation control means for controlling the defrosting operation are provided. The control device 6 includes a storage unit that stores various data and programs, and a control unit that performs calculation / control processing. Each temperature sensor such as the outside air temperature sensor 57 and the temperature sensors 42a and 42b, and the remote control 60 The operation of the composite heat source heat pump device 1 can be controlled in response to the signal from.

制御装置6は、暖房運転中、第1加熱熱交換器41の直上流側の循環液Lの温度を検出する戻り温水温度センサ34の検出値が、リモコン60の設定温度に基づいて設定される目標温水温度になるように、第1ヒートポンプ回路40の作動による暖房運転の場合は第1圧縮機43の回転速度を制御し、第2ヒートポンプ回路50の作動による暖房運転の場合は第2圧縮機53の回転速度を制御し、第1ヒートポンプ回路40および第2ヒートポンプ回路50の双方が作動している場合は第1圧縮機43および第2圧縮機53の回転速度を制御する。すなわち、制御装置6は、第1加熱熱交換器41の直上流側の加熱循環回路30に設置され放熱端末36から流出した循環液Lの温度を検出する1つの戻り温水温度センサ34の検出値から全体の暖房負荷を把握して、これに応じて、第1ヒートポンプ回路40または第2ヒートポンプ回路50のどちらか一方、あるいは第1ヒートポンプ回路40および第2ヒートポンプ回路50の双方の作動を制御するように構成されている。   During the heating operation, the control device 6 sets the detection value of the return hot water temperature sensor 34 that detects the temperature of the circulating fluid L immediately upstream of the first heating heat exchanger 41 based on the set temperature of the remote controller 60. In the heating operation by the operation of the first heat pump circuit 40, the rotation speed of the first compressor 43 is controlled so as to reach the target hot water temperature, and in the heating operation by the operation of the second heat pump circuit 50, the second compressor. 53, the rotational speed of the first compressor 43 and the second compressor 53 is controlled when both the first heat pump circuit 40 and the second heat pump circuit 50 are operating. That is, the control device 6 is installed in the heating circulation circuit 30 immediately upstream of the first heating heat exchanger 41, and the detection value of one return hot water temperature sensor 34 that detects the temperature of the circulating fluid L that has flowed out from the heat radiation terminal 36. To determine the overall heating load, and control the operation of either the first heat pump circuit 40 or the second heat pump circuit 50, or both the first heat pump circuit 40 and the second heat pump circuit 50 according to this. It is configured as follows.

前記除霜動作制御装置63は、加熱循環ポンプ32を所定の除霜回転速度で駆動させ放熱端末36による暖房運転を継続した状態で、第2圧縮機53から吐出された高温の第2冷媒C2を空気熱源熱交換器55に供給して、空気熱源熱交換器55に発生した霜を溶かす除霜動作を実行する。
加熱循環ポンプ32の所定の除霜回転速度は、暖房運転時における回転速度よりも低く設定されている。例えば、暖房運転における加熱循環ポンプ32の回転速度が3500rpmとすると、除霜動作時の加熱循環ポンプ32の除霜回転速度は、3500rpmよりも低い2500rpmとすることができる。
The defrosting operation control device 63 drives the heating circulation pump 32 at a predetermined defrosting rotation speed and continues the heating operation by the heat radiating terminal 36, so that the high-temperature second refrigerant C2 discharged from the second compressor 53 is continued. Is supplied to the air heat source heat exchanger 55 to perform a defrosting operation for melting frost generated in the air heat source heat exchanger 55.
The predetermined defrosting rotation speed of the heating circulation pump 32 is set lower than the rotation speed during the heating operation. For example, when the rotation speed of the heating circulation pump 32 in the heating operation is 3500 rpm, the defrosting rotation speed of the heating circulation pump 32 during the defrosting operation can be set to 2500 rpm, which is lower than 3500 rpm.

なお、本実施形態においては、暖房運転時の加熱循環ポンプ32の回転速度を3500rpmとし、除霜動作を行っている時の加熱循環ポンプ32の除霜回転速度を2500rpmとしたが、これに限定されるものではなく、暖房運転における加熱循環ポンプ32の回転速度、および除霜回転速度は、ヒートポンプ装置の仕様や圧縮機の性能、設置環境、熱負荷等を勘案しながら、必要な暖房出力と除霜動作時間とのバランスを考慮して適宜設定される。   In the present embodiment, the rotation speed of the heating circulation pump 32 during heating operation is set to 3500 rpm, and the defrosting rotation speed of the heating circulation pump 32 during the defrosting operation is set to 2500 rpm. The rotational speed of the heating circulation pump 32 and the defrosting rotational speed in the heating operation are not limited to the required heating output while taking into consideration the specifications of the heat pump device, the performance of the compressor, the installation environment, the thermal load, etc. It is set as appropriate in consideration of the balance with the defrosting operation time.

前記除霜動作の形態は、図3に示すように、暖房運転時(図1の空気熱ヒートポンプユニット5参照)と逆方向に第2冷媒C2を循環させる形態であり、具体的には、図3に示す除霜動作は、第2膨張弁54を除霜動作前の暖房運転時よりも所定の開度まで拡大、ここでは全開まで拡大すると共に、四方弁58を除霜動作時の状態に切り換えて第2冷媒C2の流れ方向が暖房運転時の第2冷媒C2の流れ方向と逆になるようにし、第2圧縮機53から吐出された高温の第2冷媒C2を、空気熱源熱交換器55に直接供給して空気熱源熱交換器55に発生した霜を溶かす。空気熱源熱交換器55にて霜との熱交換で温度低下し空気熱源熱交換器55から流出した低温の第2冷媒C2は、第2膨張弁54で減圧されることなく第2膨張弁54を通過し、第2加熱熱交換器51を流通して再び第2圧縮機53に戻るものである。   As shown in FIG. 3, the defrosting operation is a mode in which the second refrigerant C2 is circulated in the direction opposite to that during the heating operation (see the air-heat heat pump unit 5 in FIG. 1). The defrosting operation shown in FIG. 3 is such that the second expansion valve 54 is expanded to a predetermined opening than the heating operation before the defrosting operation, here it is fully opened, and the four-way valve 58 is brought into a state during the defrosting operation. The second refrigerant C2 is switched so that the flow direction of the second refrigerant C2 is opposite to the flow direction of the second refrigerant C2 during the heating operation, and the high-temperature second refrigerant C2 discharged from the second compressor 53 is converted into an air heat source heat exchanger. The frost generated in the air heat source heat exchanger 55 is melted by supplying the heat directly to the heat exchanger 55. The low-temperature second refrigerant C <b> 2 that has fallen in temperature due to heat exchange with frost in the air heat source heat exchanger 55 and has flowed out of the air heat source heat exchanger 55 is not decompressed by the second expansion valve 54, and the second expansion valve 54. , Passes through the second heating heat exchanger 51 and returns to the second compressor 53 again.

前記除霜動作の開始は、例えば、外気温センサ57で検出した外気温度が予め設定された除霜開始温度に達したか否か、または外気温センサ57で検出した外気温度および第2冷媒温度センサ52bで検出した冷媒温度がそれぞれ予め設定された除霜開始温度に達したか否かを制御装置6が判断、すなわち所定の除霜開始条件が成立したか否かを制御装置6が判断して、除霜開始条件が成立したと判断したら除霜動作を開始することができる。また、除霜動作の完了は、第2冷媒温度センサ52bで検出する空気熱源熱交換器55を流通してきた第2冷媒C2の温度が、予め設定された除霜終了温度に達したか否かを制御装置6が判断、すなわち所定の除霜終了条件が成立したか否かを制御装置6が判断して、除霜終了条件が成立したと判断したら除霜動作を終了し暖房運転を再開させる。   The start of the defrosting operation is, for example, whether or not the outside air temperature detected by the outside air temperature sensor 57 has reached a preset defrosting starting temperature, or the outside air temperature and the second refrigerant temperature detected by the outside air temperature sensor 57. The control device 6 determines whether or not the refrigerant temperature detected by the sensor 52b has reached a preset defrost start temperature, that is, the control device 6 determines whether or not a predetermined defrost start condition is satisfied. When it is determined that the defrosting start condition is satisfied, the defrosting operation can be started. The completion of the defrosting operation is whether or not the temperature of the second refrigerant C2 that has passed through the air heat source heat exchanger 55 detected by the second refrigerant temperature sensor 52b has reached a preset defrosting end temperature. Is determined by the control device 6, that is, the control device 6 determines whether or not a predetermined defrosting termination condition is satisfied. If it is determined that the defrosting termination condition is satisfied, the defrosting operation is terminated and the heating operation is restarted. .

また、制御装置6は、前記第2ヒートポンプ回路50の除霜動作終了後の一定時間ここでは5〜10分間は、地中熱循環回路20の地中熱循環ポンプ22を最大回転数で駆動させた後、回転数を段階的に低下させて後、温度センサ42bが検出する減圧された第1冷媒が所定温度ここでは0.5℃になるように回転数を制御することにより、第2ヒートポンプ回路50の暖房動作が立上がるまで、第1ヒートポンプ回路40から加熱循環回路30へ供給される熱量を補充して、第2ヒートポンプ回路50の暖房動作の立上げが安定的でスムーズ行われるようにしたものである。   Further, the control device 6 drives the underground heat circulation pump 22 of the underground heat circulation circuit 20 at the maximum number of rotations for a fixed time after the defrosting operation of the second heat pump circuit 50 is completed, here for 5 to 10 minutes. Then, after the rotational speed is decreased stepwise, the second heat pump is controlled by controlling the rotational speed so that the decompressed first refrigerant detected by the temperature sensor 42b reaches a predetermined temperature, here 0.5 ° C. Until the heating operation of the circuit 50 starts up, the amount of heat supplied from the first heat pump circuit 40 to the heating circulation circuit 30 is supplemented so that the heating operation of the second heat pump circuit 50 can be started up stably and smoothly. It is a thing.

次に、図1および図2に示す複合熱源ヒートポンプ装置1の動作について説明する。
リモコン60から放熱端末36による被空調空間の加熱の指示がなされると、制御装置6は、外気温センサ57の検出する外気温度に基づき、地中熱源を利用する第1ヒートポンプ回路40および空気熱源を利用する第2ヒートポンプ回路50のうち、熱源として採熱効率のよい方を選択して作動させる。
Next, the operation of the composite heat source heat pump apparatus 1 shown in FIGS. 1 and 2 will be described.
When the remote control 60 gives an instruction to heat the air-conditioned space by the heat radiating terminal 36, the control device 6 uses the ground heat source and the first heat pump circuit 40 and the air heat source based on the outside air temperature detected by the outside air temperature sensor 57. Of the second heat pump circuits 50 using the above, the one having the better heat collection efficiency is selected and operated as the heat source.

例えば、春季や秋季のように外気温度がそれほど低くない場合(例えば、5℃以上)で、暖房負荷が小さい場合には、制御装置6は、空気熱源を利用する第2ヒートポンプ回路50のみを作動させる。この場合、制御装置6は、第2圧縮機53、第2膨張弁54、送風ファン56、および加熱循環ポンプ32の駆動を開始させ、暖房運転が開始される。暖房運転が開始されると、第2加熱熱交換器51では加熱循環ポンプ32により循環される循環液Lと第2圧縮機53から吐出された高温高圧の第2冷媒C2とが熱交換され、加熱された循環液Lが放熱端末36に供給され被空調空間を加熱すると共に、空気熱源熱交換器55では、送風ファン56の駆動により送られる空気と第2膨張弁54から吐出された低温低圧の第2冷媒C2とが熱交換され、空気熱により第2冷媒C2を加熱し蒸発させる。なお、この場合、加熱循環回路30を循環する循環液Lは、第1加熱熱交換器41も通過することになるが、このときには第1ヒートポンプ回路40は作動していないため、第1加熱熱交換器41では加熱されることなく通過する。   For example, when the outside air temperature is not so low (for example, 5 ° C. or more) as in spring or autumn, and the heating load is small, the control device 6 operates only the second heat pump circuit 50 using the air heat source. Let In this case, the control device 6 starts driving the second compressor 53, the second expansion valve 54, the blower fan 56, and the heating circulation pump 32, and the heating operation is started. When the heating operation is started, the second heating heat exchanger 51 exchanges heat between the circulating liquid L circulated by the heating circulation pump 32 and the high-temperature and high-pressure second refrigerant C2 discharged from the second compressor 53, The heated circulating liquid L is supplied to the heat radiating terminal 36 to heat the air-conditioned space, and in the air heat source heat exchanger 55, the air sent by driving the blower fan 56 and the low-temperature and low-pressure discharged from the second expansion valve 54. The second refrigerant C2 is heat-exchanged, and the second refrigerant C2 is heated and evaporated by air heat. In this case, the circulating liquid L circulating in the heating circuit 30 also passes through the first heating heat exchanger 41. At this time, since the first heat pump circuit 40 is not operated, the first heating heat is not supplied. The exchanger 41 passes without being heated.

一方、冬季のように外気温度が低い場合(例えば、5℃以下)には、制御装置6は、地中熱源を利用する第1ヒートポンプ回路40のみを作動させる。この場合、制御装置6は、第1圧縮機43、第1膨張弁44、地中熱循環ポンプ22、および加熱循環ポンプ32の駆動を開始させ、暖房運転が開始される。暖房運転が開始されると、第1加熱熱交換器41では加熱循環ポンプ32により循環される循環液Lと第1圧縮機43から吐出された高温高圧の第1冷媒C1とが熱交換され、加熱された循環液Lが放熱端末36に供給され被空調空間を加熱すると共に、地中熱源熱交換器45では、地中熱循環ポンプ22により循環され地中熱交換器23を介して地中熱を採熱した熱媒H1と第1膨張弁44から吐出された低温低圧の第1冷媒C1とが熱交換され、地中熱により第1冷媒C1を加熱し蒸発させる。なお、この場合、加熱循環回路30を循環する循環液Lは、第2加熱熱交換器51も通過することになるが、このときには第2ヒートポンプ回路50は作動していないため、第2加熱熱交換器51では加熱されることなく通過する。   On the other hand, when the outside air temperature is low as in winter (for example, 5 ° C. or less), the control device 6 operates only the first heat pump circuit 40 that uses the underground heat source. In this case, the control device 6 starts driving the first compressor 43, the first expansion valve 44, the underground heat circulation pump 22, and the heating circulation pump 32, and the heating operation is started. When the heating operation is started, the first heating heat exchanger 41 exchanges heat between the circulating liquid L circulated by the heating circulation pump 32 and the high-temperature and high-pressure first refrigerant C1 discharged from the first compressor 43, The heated circulating liquid L is supplied to the heat radiating terminal 36 to heat the air-conditioned space, and in the underground heat source heat exchanger 45, it is circulated by the underground heat circulation pump 22 and underground through the underground heat exchanger 23. The heat medium H1 that has collected heat and the low-temperature and low-pressure first refrigerant C1 discharged from the first expansion valve 44 exchange heat, and the first refrigerant C1 is heated and evaporated by underground heat. In this case, the circulating fluid L circulating in the heating circulation circuit 30 also passes through the second heating heat exchanger 51. At this time, since the second heat pump circuit 50 is not operated, the second heating heat The exchanger 51 passes through without being heated.

また、暖房運転の立上げ時や、第1ヒートポンプ回路40または第2ヒートポンプ回路50のどちらか一方が作動して暖房運転を行っている時に、外気温度がさらに低下する等して暖房負荷が大きくなり、一方の作動のみでは所望の暖房出力が得られないとき等に、制御装置6は、第1ヒートポンプ回路40および第2ヒートポンプ回路50の両方を作動させた暖房運転を行う。第1ヒートポンプ回路40および第2ヒートポンプ回路50の両方を作動させた暖房運転を例とした場合、制御装置6は、第1圧縮機43、第1膨張弁44、地中熱循環ポンプ22、第2圧縮機53、第2膨張弁54、送風ファン56、および加熱循環ポンプ32を駆動させて暖房運転が行われる。暖房運転中は、第1加熱熱交換器41では、加熱循環ポンプ32により循環される循環液Lと第1圧縮機43から吐出された高温高圧の第1冷媒C1とが対向して流れて熱交換が行われて循環液Lが加熱され、また、第2加熱熱交換器51では、加熱循環ポンプ32により循環される循環液Lと第2圧縮機53から吐出された高温高圧の第2冷媒C2とが対向して流れて熱交換が行われて循環液Lが加熱される。このように、加熱循環回路30を循環する循環液Lは、第1加熱熱交換器41で加熱された後、第2加熱熱交換器51でもさらに加熱されて放熱端末36に供給され、放熱端末36を流通するときに循環液Lの熱が被空調空間に放熱されることで被空調空間の暖房が行われるものである。   Further, when the heating operation is started up or when either the first heat pump circuit 40 or the second heat pump circuit 50 is operated to perform the heating operation, the outside air temperature further decreases, and the heating load is increased. Thus, when a desired heating output cannot be obtained by only one operation, the control device 6 performs the heating operation in which both the first heat pump circuit 40 and the second heat pump circuit 50 are operated. In the case of the heating operation in which both the first heat pump circuit 40 and the second heat pump circuit 50 are operated as an example, the control device 6 includes the first compressor 43, the first expansion valve 44, the underground heat circulation pump 22, the first The 2 compressor 53, the 2nd expansion valve 54, the ventilation fan 56, and the heating circulation pump 32 are driven, and heating operation is performed. During the heating operation, in the first heating heat exchanger 41, the circulating fluid L circulated by the heating circulation pump 32 and the high-temperature and high-pressure first refrigerant C1 discharged from the first compressor 43 flow oppositely to generate heat. Exchange is performed and the circulating liquid L is heated, and in the second heating heat exchanger 51, the circulating liquid L circulated by the heating circulation pump 32 and the high-temperature and high-pressure second refrigerant discharged from the second compressor 53. C2 flows oppositely, heat exchange is performed, and the circulating liquid L is heated. As described above, the circulating liquid L circulating in the heating circuit 30 is heated by the first heating heat exchanger 41 and then further heated by the second heating heat exchanger 51 to be supplied to the heat radiating terminal 36. When the circulation liquid 36 is circulated, the heat of the circulating liquid L is radiated to the air-conditioned space, whereby the air-conditioned space is heated.

次に、特徴的な動作として、空気熱源の利用する第2ヒートポンプ回路50のみを作動させて暖房運転を行っているときに空気熱源熱交換器55に発生した霜を溶かす除霜動作が実行される場合の複合熱源ヒートポンプ装置1の動作について、図4のタイムチャートを用いて説明する。なお、図4中の時間t0は、第2ヒートポンプ回路50のみを作動させて行う暖房運転が安定した後の任意の時間とする。   Next, as a characteristic operation, a defrosting operation for melting frost generated in the air heat source heat exchanger 55 when only the second heat pump circuit 50 used by the air heat source is operated to perform the heating operation is executed. The operation of the composite heat source heat pump device 1 will be described with reference to the time chart of FIG. Note that the time t0 in FIG. 4 is an arbitrary time after the heating operation performed by operating only the second heat pump circuit 50 is stabilized.

前記第2ヒートポンプ回路50を作動させると共に加熱循環ポンプ32を駆動させ、第2加熱熱交換器51にて循環液Lを加熱して、加熱された循環液Lを放熱端末36に供給する暖房運転を行っている最中に、制御装置6が、外気温センサ57で検出した外気温度等から除霜開始条件が成立したと判断した場合(時間t1)、第1圧縮機43、第1膨張弁44、地中熱循環ポンプ22の駆動を開始させて第1ヒートポンプ回路40の作動を開始させる(時間t1〜)。この時、加熱循環ポンプ32は駆動させたままである。   The heating operation of operating the second heat pump circuit 50 and driving the heating circulation pump 32 to heat the circulating fluid L in the second heating heat exchanger 51 and supplying the heated circulating fluid L to the heat radiating terminal 36. When the control device 6 determines that the defrosting start condition is satisfied from the outside air temperature detected by the outside air temperature sensor 57 during the operation (time t1), the first compressor 43, the first expansion valve 44, the operation of the first heat pump circuit 40 is started by starting the driving of the underground heat circulation pump 22 (time t1). At this time, the heating circulation pump 32 remains driven.

前記第1ヒートポンプ回路40の作動を開始させてから、予め設定された第1の時間(t1時間〜時間t2)として例えば5分が経過した後、第2圧縮機53、第2膨張弁54、送風ファン56の駆動を停止させ、一旦、第2ヒートポンプ回路50の作動を停止させる(時間t2)。第2ヒートポンプ回路50の作動を停止させた時、第2膨張弁54の開度は全開とされ、予め設定された第2の時間(時間t2〜時間t3)が経過するのを待つものであるが、これは、第2膨張弁54の開度を全開として所定の時間の経過を待つことで第2圧縮機53の吐出側(高圧側)と吸込側(低圧側)の差圧をなくし、第2圧縮機53等の機能部品を次の起動時に安全に起動させるために行っているものである。なお、本実施形態では、時間t2〜時間t3の間、第2ヒートポンプ回路50の作動を停止させているが、この期間、第2圧縮機53を駆動させたまま第2膨張弁54の開度を全開として、予め設定された第2の時間(時間t2〜時間t3)が経過するのを待つことで、第2圧縮機53の吐出側(高圧側)と吸込側(低圧側)の差圧をなくすこともできるため、第2ヒートポンプ回路50を作動させたまま次の動作へ移行することも可能である。   After the operation of the first heat pump circuit 40 is started, for example, after 5 minutes have passed as a preset first time (t1 time to time t2), the second compressor 53, the second expansion valve 54, The driving of the blower fan 56 is stopped, and the operation of the second heat pump circuit 50 is once stopped (time t2). When the operation of the second heat pump circuit 50 is stopped, the opening of the second expansion valve 54 is fully opened, and waits for a preset second time (time t2 to time t3) to elapse. However, this eliminates the differential pressure between the discharge side (high pressure side) and the suction side (low pressure side) of the second compressor 53 by waiting for a predetermined time with the opening of the second expansion valve 54 fully open, This is performed in order to safely start the functional components such as the second compressor 53 at the next startup. In the present embodiment, the operation of the second heat pump circuit 50 is stopped during the period from time t2 to time t3. During this period, the opening degree of the second expansion valve 54 is maintained while the second compressor 53 is driven. Is fully opened, and the differential pressure between the discharge side (high pressure side) and the suction side (low pressure side) of the second compressor 53 is waited for a preset second time (time t2 to time t3) to elapse. Therefore, it is possible to shift to the next operation while operating the second heat pump circuit 50.

前記制御装置6が、第1ヒートポンプ回路40の作動を開始させてから所定時間(時間t1〜時間t3)が経過したと判断すると、除霜動作制御装置63は、四方弁58を除霜動作時の状態に切り換えて除霜動作を開始すると共に、加熱循環ポンプ32を所定の除霜回転速度(ここでは2500rpm)で駆動させる(時間t3〜)。このとき、加熱循環ポンプ32は駆動し第1ヒートポンプ回路40も作動しているので、暖房運転を継続した状態で除霜動作が行われることとなる。   When the control device 6 determines that a predetermined time (time t1 to time t3) has elapsed since the start of the operation of the first heat pump circuit 40, the defrosting operation control device 63 causes the four-way valve 58 to operate during the defrosting operation. The defrosting operation is started by switching to this state, and the heating circulation pump 32 is driven at a predetermined defrosting rotation speed (here, 2500 rpm) (time t3). At this time, since the heating circulation pump 32 is driven and the first heat pump circuit 40 is also operating, the defrosting operation is performed while the heating operation is continued.

前記除霜動作は、先に図3を用いて説明したように、第2膨張弁54を全開とすると共に、四方弁58を除霜動作時の状態に切り換えて第2冷媒C2の流れ方向が暖房運転時の第2冷媒C2の流れ方向と逆となるようにし、第2圧縮機53から吐出された高温の第2冷媒C2を、直接的に空気熱源熱交換器55に供給して空気熱源熱交換器55に発生した霜を溶かし、空気熱源熱交換器55から流出した第2冷媒C2を、第2膨張弁54で減圧されることなく第2膨張弁54を通過させ、第2加熱熱交換器51を流通させて、再び第2圧縮機53に戻す。   In the defrosting operation, as described above with reference to FIG. 3, the second expansion valve 54 is fully opened and the four-way valve 58 is switched to the state during the defrosting operation so that the flow direction of the second refrigerant C2 is changed. The high-temperature second refrigerant C2 discharged from the second compressor 53 is directly supplied to the air heat source heat exchanger 55 so as to be opposite to the flow direction of the second refrigerant C2 during the heating operation. The frost generated in the heat exchanger 55 is melted, and the second refrigerant C2 flowing out of the air heat source heat exchanger 55 is allowed to pass through the second expansion valve 54 without being depressurized by the second expansion valve 54. The exchanger 51 is circulated and returned to the second compressor 53 again.

この除霜動作時、第2加熱熱交換器51では、第2冷媒C2と循環液Lとの間で熱交換が行われ、循環液Lの熱が第2冷媒C2側に吸熱されて、その熱が空気熱源熱交換器55の除霜用として利用されるものであるが、除霜動作を行っている時の加熱循環ポンプ32は、除霜動作が行われる前の暖房運転時における回転速度(ここでは3500rpm)よりも低い所定の除霜回転速度(ここでは2500rpm)で駆動している。ここで、第1加熱熱交換器41に流入する循環液Lの温度が一定で、第1加熱熱交換器41において冷媒C1から循環液Lに一定の熱量が与えられた場合を想定すると、加熱循環ポンプ32の回転速度を、例えば3500rpmとしたときよりも2500rpmと低くしたときの方が、単位時間当たりの循環液Lの循環流量が減少し、温度効率が上がるため、第1加熱熱交換器41から流出する循環液Lの温度が高くなるものである。よって、除霜動作時に、加熱循環ポンプ32が所定の除霜回転速度で駆動すると、除霜動作が行われる前の暖房運転時と比較して、単位時間当たりの循環液Lの循環流量が減少し、温度効率が上がるため、第1加熱熱交換器41から流出する循環液Lの温度が高くなる、すなわち、第2加熱熱交換器51に流入する循環液Lの温度が高くなるので、第2加熱熱交換器51において循環液L側から第2冷媒C2側に吸熱される熱が多くなり、第2冷媒C2の温度もその分上昇し、第2圧縮機53から吐出されて空気熱源熱交換器55に供給される第2冷媒C2の温度も上がるため、空気熱源熱交換器55に発生した霜も溶けやすくなるものである。したがって、除霜動作時の加熱循環ポンプ32の回転速度を、除霜動作が行われる前の第2ヒートポンプ回路50を作動させての暖房運転時よりも、それよりも低く設定された所定の除霜回転速度で駆動させた時の方が、除霜動作時間を短縮することができ、除霜動作時間を長引かせることがないものである。   During this defrosting operation, in the second heating heat exchanger 51, heat exchange is performed between the second refrigerant C2 and the circulating fluid L, and the heat of the circulating fluid L is absorbed into the second refrigerant C2 side, Although heat is used for defrosting of the air heat source heat exchanger 55, the heating circulation pump 32 when performing the defrosting operation is the rotational speed during the heating operation before the defrosting operation is performed. It is driven at a predetermined defrosting rotation speed (here 2500 rpm) lower than (here 3500 rpm). Here, assuming that the temperature of the circulating fluid L flowing into the first heating heat exchanger 41 is constant and a certain amount of heat is given from the refrigerant C1 to the circulating fluid L in the first heating heat exchanger 41, For example, when the rotational speed of the circulation pump 32 is lowered to 2500 rpm rather than 3500 rpm, the circulation flow rate of the circulating liquid L per unit time decreases and the temperature efficiency increases. Therefore, the first heating heat exchanger The temperature of the circulating fluid L flowing out from 41 increases. Therefore, when the heating circulation pump 32 is driven at a predetermined defrosting rotation speed during the defrosting operation, the circulation flow rate of the circulating fluid L per unit time is reduced as compared with the heating operation before the defrosting operation is performed. Since the temperature efficiency is increased, the temperature of the circulating fluid L flowing out from the first heating heat exchanger 41 is increased, that is, the temperature of the circulating fluid L flowing into the second heating heat exchanger 51 is increased. In the 2-heating heat exchanger 51, the heat absorbed from the circulating fluid L side to the second refrigerant C2 side increases, and the temperature of the second refrigerant C2 also rises by that amount, and is discharged from the second compressor 53 to be air heat source heat. Since the temperature of the second refrigerant C2 supplied to the exchanger 55 also rises, frost generated in the air heat source heat exchanger 55 is easily melted. Therefore, the rotational speed of the heating circulation pump 32 during the defrosting operation is set to a predetermined value that is set lower than that during the heating operation in which the second heat pump circuit 50 is operated before the defrosting operation is performed. When driven at the frost rotation speed, the defrosting operation time can be shortened, and the defrosting operation time is not prolonged.

また、除霜動作時は、第1ヒートポンプ回路40の第1圧縮機43を最大回転速度(例えば、90rps)で駆動させており、そうすることで、除霜動作が行われる前の第2ヒートポンプ回路50の暖房出力分をできるだけカバーするように第1ヒートポンプ回路40を作動させ、第1加熱熱交換器41から流出する循環液Lの温度をより高めることができるため、第2加熱熱交換器51に流入する循環液Lの温度が高くなり、第2加熱熱交換器51を流出する循環液Lの温度も高く保つことができ、放熱端末36へ供給される循環液Lの温度低下をできるだけ抑制し、できるだけ暖房感を損ねないように暖房運転を継続できるものである。さらに、第1加熱熱交換器41から流出する循環液Lの温度を高めることができるため、第2加熱熱交換器51に流入する循環液Lの温度が高くなるので、第2加熱熱交換器51において循環液L側から第2冷媒C2側に吸熱される熱が多くなり、第2冷媒C2の温度もその分上昇し、第2圧縮機53から吐出されて空気熱源熱交換器55に供給される第2冷媒C2の温度も上がるため、空気熱源熱交換器55に発生した霜も溶けやすくなり、除霜動作を行っている時間を短縮することができ、除霜動作時間を長引かせることがないものである。
なお、第1圧縮機43の前記最大回転速度は、厳格に適用する趣旨ではなく、許容回転速度や許容回転速度から安全率を見込んだもの等も含まれるものとする。
In addition, during the defrosting operation, the first compressor 43 of the first heat pump circuit 40 is driven at the maximum rotational speed (for example, 90 rps), so that the second heat pump before the defrosting operation is performed. Since the first heat pump circuit 40 is operated so as to cover the heating output of the circuit 50 as much as possible, the temperature of the circulating liquid L flowing out from the first heating heat exchanger 41 can be further increased, so that the second heating heat exchanger The temperature of the circulating liquid L flowing into the 51 becomes higher, the temperature of the circulating liquid L flowing out of the second heating heat exchanger 51 can be kept high, and the temperature of the circulating liquid L supplied to the heat radiation terminal 36 can be lowered as much as possible. It is possible to suppress the heating and continue the heating operation so as not to impair the feeling of heating as much as possible. Furthermore, since the temperature of the circulating fluid L flowing out from the first heating heat exchanger 41 can be increased, the temperature of the circulating fluid L flowing into the second heating heat exchanger 51 is increased, so that the second heating heat exchanger In 51, the heat absorbed from the circulating fluid L side to the second refrigerant C2 side increases, and the temperature of the second refrigerant C2 rises by that amount, and is discharged from the second compressor 53 and supplied to the air heat source heat exchanger 55. Since the temperature of the second refrigerant C2 to be increased also increases, the frost generated in the air heat source heat exchanger 55 is easily melted, the time during which the defrosting operation is performed can be shortened, and the defrosting operation time can be prolonged. There is no.
Note that the maximum rotation speed of the first compressor 43 is not strictly applied, and includes an allowable rotation speed and a value that allows for a safety factor from the allowable rotation speed.

そして、除霜動作を行っている時に、制御装置6が、第2冷媒温度センサ52bで検出する空気熱源熱交換器55を流通してきた第2冷媒C2の温度から所定の除霜終了条件が成立したと判断すると、第2圧縮機53の駆動を停止させ、除霜動作を終了させると同時に、一旦、第2ヒートポンプ回路50の作動を停止させる(時間t4)。この時、加熱循環ポンプ32の回転速度は、所定の除霜回転速度(2500rpm)から除霜動作が行われる前の暖房運転時における回転速度(3500rpm)に戻すものである(時間t4)。   When the defrosting operation is performed, a predetermined defrosting termination condition is established from the temperature of the second refrigerant C2 that has flowed through the air heat source heat exchanger 55 detected by the second refrigerant temperature sensor 52b. When it is determined that the second compressor 53 has been driven, the defrosting operation is terminated, and at the same time, the operation of the second heat pump circuit 50 is temporarily stopped (time t4). At this time, the rotation speed of the heating circulation pump 32 is returned from the predetermined defrost rotation speed (2500 rpm) to the rotation speed (3500 rpm) in the heating operation before the defrost operation is performed (time t4).

時間t4において、第2ヒートポンプ回路50の作動を停止させた時、第2膨張弁54の開度は全開であり、予め設定された第3の時間(時間t4〜時間t5)が経過するのを待つものであるが、これは、第2膨張弁54の開度を全開として所定の時間の経過を待つことで第2圧縮機53の吐出側(高圧側)と吸込側(低圧側)の差圧をなくし、第2圧縮機53等の機能部品を次の起動時に安全に起動させるために行っているものである。なお、本実施形態では、時間t4〜時間t5の間、第2ヒートポンプ回路50の作動を一旦停止させているが、除霜動作中は第2膨張弁54の開度は全開であり、第2圧縮機53の吐出側(高圧側)と吸込側(低圧側)の差圧はないため、除霜動作が終了したときに、予め設定された第3の時間(時間t4〜時間t5)を省略して、第2圧縮機53の駆動を停止させることなく第2ヒートポンプ回路50を作動させたまま、四方弁58を暖房運転時の状態に切り換えて次の動作へ移行することも可能である。   When the operation of the second heat pump circuit 50 is stopped at time t4, the opening of the second expansion valve 54 is fully open, and the preset third time (time t4 to time t5) has elapsed. This waits for the difference between the discharge side (high pressure side) and the suction side (low pressure side) of the second compressor 53 by waiting for the passage of a predetermined time with the opening of the second expansion valve 54 fully opened. This is performed in order to eliminate the pressure and to safely start the functional components such as the second compressor 53 at the next start-up. In the present embodiment, the operation of the second heat pump circuit 50 is temporarily stopped during the time t4 to the time t5. However, during the defrosting operation, the opening degree of the second expansion valve 54 is fully open, Since there is no differential pressure between the discharge side (high pressure side) and the suction side (low pressure side) of the compressor 53, the preset third time (time t4 to time t5) is omitted when the defrosting operation is completed. Then, the four-way valve 58 can be switched to the heating operation state and the next operation can be performed while the second heat pump circuit 50 is operated without stopping the driving of the second compressor 53.

前記制御装置6が、前記第3の時間が経過したと判断すると、四方弁58を暖房運転時の状態に切り換えると共に、第2圧縮機53、第2膨張弁54、送風ファン56の駆動を再開させ、第2ヒートポンプ回路50の作動を再開させ(時間t5〜)、第2ヒートポンプ回路50の作動を再開させてから、予め設定された一定時間(時間t5〜時間t7)として例えば5分が経過したと判断すると、第1圧縮機43、第1膨張弁44、地中熱循環ポンプ22の駆動を停止させ、第1ヒートポンプ回路40の作動を停止させ(時間t7)、第2ヒートポンプ回路50のみを作動させての暖房運転に戻るものである(時間t7〜)。   When the control device 6 determines that the third time has elapsed, the four-way valve 58 is switched to the heating operation state, and the second compressor 53, the second expansion valve 54, and the blower fan 56 are restarted. Then, the operation of the second heat pump circuit 50 is restarted (time t5), and after the operation of the second heat pump circuit 50 is restarted, for example, 5 minutes elapses as a predetermined time (time t5 to time t7). When it is determined that the first compressor 43, the first expansion valve 44, and the underground heat circulation pump 22 are stopped, the operation of the first heat pump circuit 40 is stopped (time t7), and only the second heat pump circuit 50 is detected. It returns to the heating operation by operating (time t7-).

なお、本実施形態では、制御装置6は、前記一定時間が経過したと判断した場合、第1ヒートポンプ回路40の作動を停止させるようにしたが、前記一定時間が経過した時点で端末温度センサ34で検出される循環液Lの温度が目標温水温度に到達している場合は、第1ヒートポンプ回路40の作動を停止させるようにしてもよく、さらに、前記一定時間が経過した時点で端末温度センサ34で検出される循環液Lの温度が目標温水温度に到達していたら、第1圧縮機43の回転速度を徐々に低下させるようにして、最終的に第1ヒートポンプ回路40の作動を停止させるようにしてもよく、また、前記一定時間が経過した時点で端末温度センサ34で検出される循環液Lの温度が目標温水温度に到達していない場合には、端末温度センサ34で検出される循環液Lの温度が目標温水温度に到達するまでは第1ヒートポンプ回路40および第2ヒートポンプ回路50の両方を作動させ、端末温度センサ34で検出される循環液Lの温度が目標温水温度に到達したら、第1ヒートポンプ回路40の作動を停止させる、あるいは、第1圧縮機43の回転速度を徐々に低下させるようにして、最終的に第1ヒートポンプ回路40の作動を停止させるようにしてもよいものである。なお、上記のように、循環液Lの温度が設定された目標温水温度に到達したら、第1圧縮機43の回転速度を徐々に低下させて、第1ヒートポンプ回路40の作動を停止させる制御を行うものは、除霜動作終了後において、バックアップとして作動させていた第1ヒートポンプ回路40の作動を徐々に制限していき、主動力源としての第2ヒートポンプ回路50のみを作動させての暖房運転の状態にスムーズに移行させることができるものである。   In the present embodiment, the control device 6 stops the operation of the first heat pump circuit 40 when it is determined that the predetermined time has elapsed. However, when the predetermined time has elapsed, the terminal temperature sensor 34 is stopped. When the temperature of the circulating fluid L detected in step S1 reaches the target hot water temperature, the operation of the first heat pump circuit 40 may be stopped, and when the predetermined time has elapsed, the terminal temperature sensor If the temperature of the circulating fluid L detected at 34 has reached the target hot water temperature, the rotational speed of the first compressor 43 is gradually decreased, and the operation of the first heat pump circuit 40 is finally stopped. If the temperature of the circulating fluid L detected by the terminal temperature sensor 34 does not reach the target hot water temperature when the predetermined time has elapsed, the terminal temperature sensor 3 Both the first heat pump circuit 40 and the second heat pump circuit 50 are operated until the temperature of the circulating fluid L detected in step S1 reaches the target hot water temperature, and the temperature of the circulating fluid L detected by the terminal temperature sensor 34 is the target. When the hot water temperature is reached, the operation of the first heat pump circuit 40 is stopped, or the rotation speed of the first compressor 43 is gradually decreased to finally stop the operation of the first heat pump circuit 40. It may be. Note that, as described above, when the temperature of the circulating fluid L reaches the set target hot water temperature, the control is performed such that the rotation speed of the first compressor 43 is gradually decreased and the operation of the first heat pump circuit 40 is stopped. What is to be performed is that after the defrosting operation is completed, the operation of the first heat pump circuit 40 that has been operated as a backup is gradually limited, and only the second heat pump circuit 50 as the main power source is operated to perform the heating operation. It is possible to smoothly shift to the state.

前記第2ヒートポンプ回路50の除霜動作終了後の一定時間ここでは5〜10分間(t4〜t6)は、地中熱循環回路20の地中熱循環ポンプ22を最大回転数で駆動させた後、回転数を段階的に低下させて後、温度センサ42bが検出する減圧された第1冷媒が所定温度ここでは0.5℃になるように回転数を制御することにより、第2ヒートポンプ回路50の暖房動作が立上がるまで、第1ヒートポンプ回路40から加熱循環回路30へ供給される熱量を補充して、第2ヒートポンプ回路50の暖房動作の立上げが安定的でスムーズ行われるようにしたものである。   A predetermined time after the defrosting operation of the second heat pump circuit 50 is completed. Here, for 5 to 10 minutes (t4 to t6), the underground heat circulation pump 22 of the underground heat circulation circuit 20 is driven at the maximum rotation speed. After the rotational speed is decreased stepwise, the second heat pump circuit 50 is controlled by controlling the rotational speed so that the decompressed first refrigerant detected by the temperature sensor 42b has a predetermined temperature, here 0.5 ° C. The amount of heat supplied from the first heat pump circuit 40 to the heating circuit 30 is supplemented until the heating operation of the second heat pump circuit 40 is started, so that the heating operation of the second heat pump circuit 50 can be started stably and smoothly. It is.

以上説明したように、第2ヒートポンプ回路50のみを作動させての暖房運転を行っているときに空気熱源熱交換器55に発生した霜を溶かす除霜動作が実行される場合において、除霜動作を実行しているとき(時間t3〜時間t4)は、第1ヒートポンプ回路40を作動させると共に加熱循環ポンプ32を駆動させることにより、除霜動作前に第2ヒートポンプ回路50の作動により行われていた暖房運転を、第1ヒートポンプ回路40を作動させてバックアップし、第1ヒートポンプ回路40の作動で安定した暖房出力を確保して除霜動作中も暖房運転を継続することができると共に、空気熱源熱交換器55の除霜に利用される熱を、第2加熱熱交換器51を介して循環液L側から第2冷媒C2側に与えることができ、除霜動作が行われる時間を長引かせることがないものである。   As described above, the defrosting operation is performed when the defrosting operation for melting the frost generated in the air heat source heat exchanger 55 is performed when the heating operation is performed by operating only the second heat pump circuit 50. Is performed (time t3 to time t4) by operating the second heat pump circuit 50 before the defrosting operation by operating the first heat pump circuit 40 and driving the heating circulation pump 32. The heating operation can be backed up by operating the first heat pump circuit 40, and the heating operation can be continued even during the defrosting operation by securing a stable heating output by the operation of the first heat pump circuit 40. Heat used for defrosting of the heat exchanger 55 can be applied from the circulating fluid L side to the second refrigerant C2 side via the second heating heat exchanger 51, and a defrosting operation is performed. It is that there is no possible to prolong the time.

また、第1ヒートポンプ回路40の作動を開始させてから、所定時間(時間t1〜時間t3)が経過した後に、除霜動作制御装置63は除霜動作を開始するようにしたことで、バックアップとして作動する第1ヒートポンプ回路40が安定した暖房出力を出せるようになる時間が経過するまでは除霜動作の開始を待つので、安定した暖房出力を確保した状態で除霜動作を開始することができ、除霜動作中も暖房運転を継続することができるものである。   In addition, after a predetermined time (time t1 to time t3) has elapsed since the operation of the first heat pump circuit 40 has started, the defrosting operation control device 63 starts the defrosting operation as a backup. Since the start of the defrosting operation is waited until the time when the operating first heat pump circuit 40 can output a stable heating output elapses, the defrosting operation can be started with a stable heating output secured. The heating operation can be continued even during the defrosting operation.

また、除霜動作が終了すると、除霜動作前に暖房運転の主動力源として作動していた第2ヒートポンプ回路50の作動を再開させ、第2ヒートポンプ回路50の作動再開後、一定時間(時間t5〜時間t7)が経過するまでは、第1ヒートポンプ回路40の作動を継続するようにしたことで、主動力源としての第2ヒートポンプ回路50が安定した暖房出力を出せるようになる時間が経過するまでは、バックアップとして作動させている第1ヒートポンプ回路40の作動を継続させるので、除霜動作終了後においても安定した暖房出力を確保することができ、暖房運転を継続することができるものである。   When the defrosting operation is completed, the operation of the second heat pump circuit 50 that has been operating as the main power source of the heating operation before the defrosting operation is resumed, and after the operation of the second heat pump circuit 50 is resumed, a certain time (time Until the time t5 to the time t7) elapses, the operation of the first heat pump circuit 40 is continued so that the second heat pump circuit 50 as the main power source can output a stable heating output. Until then, the operation of the first heat pump circuit 40 operated as a backup is continued, so that stable heating output can be secured even after the defrosting operation is completed, and the heating operation can be continued. is there.

1 複合熱源ヒートポンプ装置
6 制御装置
22 地中熱循環ポンプ
30 加熱循環回路
32 加熱循環ポンプ
36 放熱端末
40 第1ヒートポンプ回路
41 第1加熱熱交換器
43 第1圧縮機
44 第1膨張弁
45 地中熱源熱交換器
50 第2ヒートポンプ回路
51 第2加熱熱交換器
53 第2圧縮機
54 第2膨張弁
55 空気熱源熱交換器
58 四方弁
61 地中熱ヒートポンプ制御装置
62 空気熱ヒートポンプ制御装置
63 除霜動作制御装置
C1 第1冷媒
C2 第2冷媒
L 循環液
DESCRIPTION OF SYMBOLS 1 Composite heat source heat pump apparatus 6 Control apparatus 22 Geothermal circulation pump 30 Heating circulation circuit 32 Heating circulation pump 36 Heat radiation terminal 40 1st heat pump circuit 41 1st heating heat exchanger 43 1st compressor 44 1st expansion valve 45 Underground Heat source heat exchanger 50 Second heat pump circuit 51 Second heating heat exchanger 53 Second compressor 54 Second expansion valve 55 Air heat source heat exchanger 58 Four-way valve 61 Ground heat heat pump control device 62 Air heat heat pump control device 63 Frost operation control device C1 First refrigerant C2 Second refrigerant L Circulating fluid

Claims (6)

放熱端末に循環液を循環させる加熱循環ポンプを有する加熱循環回路と、この加熱循環回路に配設された凝縮器としての第1加熱熱交換器と、前記加熱循環回路に配設された凝縮器としての第2加熱熱交換器と、熱媒を循環させて地中から採熱させる地中熱循環ポンプと、この地中熱循環ポンプで循環される熱媒で回路内を循環する第1冷媒を加熱する地中熱源熱交換器と、前記第1冷媒を圧縮する第1圧縮機と、前記第1圧縮機から吐出された前記第1冷媒を流通させる前記第1加熱熱交換器と、前記第1加熱熱交換器から流出した前記第1冷媒を減圧する第1膨張弁とを有し、前記第1加熱熱交換器を介して前記循環液を加熱する第1ヒートポンプ回路と、外気から採熱して回路内を循環する第2冷媒を加熱する空気熱源熱交換器と、前記第2冷媒を圧縮する第2圧縮機と、前記第2圧縮機から吐出された前記第2冷媒を流通させる前記第2加熱熱交換器と、前記第2加熱熱交換器から流出した前記第2冷媒を減圧する第2膨張弁と、前記第2冷媒の流れ方向を切り換える切換弁とを有し、前記第2加熱熱交換器を介して前記循環液を加熱する第2ヒートポンプ回路と、動作を制御する制御装置とを備え、前記第1加熱熱交換器は、前記加熱循環回路における前記第2加熱熱交換器の上流側に直列に配設され、前記第2ヒートポンプ回路を作動させると共に前記加熱循環ポンプを駆動させて前記循環液を加熱する暖房運転を行う複合熱源ヒートポンプ装置において、前記制御装置は、前記切換弁を、前記第2冷媒の流れ方向が前記暖房運転時の前記第2冷媒の流れ方向と逆になるように切り換えて、前記第2圧縮機から吐出された前記第2冷媒を前記空気熱源熱交換器に供給して前記空気熱源熱交換器に発生した霜を溶かす除霜動作を実行すると共に当該除霜動作時に前記加熱循環ポンプを駆動させる除霜動作制御手段を有し、前記暖房運転時に前記除霜動作制御手段が前記除霜動作を実行する場合には、前記第1ヒートポンプ回路を作動させ、更に前記除霜動作終了後の一定時間は、前記地中熱循環ポンプを最大回転数で駆動させた後、減圧された第1冷媒が所定温度になるように回転数を段階的に低下させるようにしたことを特徴とする複合熱源ヒートポンプ装置。   A heating circulation circuit having a heating circulation pump that circulates a circulating liquid in a heat radiating terminal, a first heating heat exchanger as a condenser disposed in the heating circulation circuit, and a condenser disposed in the heating circulation circuit As a second heating heat exchanger, a ground heat circulation pump that circulates the heat medium and collects heat from the ground, and a first refrigerant that circulates in the circuit with the heat medium circulated by the ground heat circulation pump A ground heat source heat exchanger for heating the first refrigerant, a first compressor for compressing the first refrigerant, the first heating heat exchanger for circulating the first refrigerant discharged from the first compressor, A first expansion valve for depressurizing the first refrigerant flowing out from the first heating heat exchanger, and a first heat pump circuit for heating the circulating fluid via the first heating heat exchanger; An air source heat exchanger that heats and heats the second refrigerant circulating in the circuit; A second compressor that compresses the second refrigerant; the second heating heat exchanger that causes the second refrigerant discharged from the second compressor to flow; and the second that flows out of the second heating heat exchanger. A second heat pump circuit that has a second expansion valve that depressurizes the refrigerant and a switching valve that switches a flow direction of the second refrigerant, and that heats the circulating fluid via the second heating heat exchanger; The first heating heat exchanger is arranged in series upstream of the second heating heat exchanger in the heating circulation circuit, operates the second heat pump circuit and the heating In the combined heat source heat pump apparatus that performs a heating operation in which a circulating pump is driven to heat the circulating liquid, the control device is configured to switch the switching valve, and the flow direction of the second refrigerant is that of the second refrigerant during the heating operation. Opposite to the flow direction And the defrosting operation for supplying the second refrigerant discharged from the second compressor to the air heat source heat exchanger to melt the frost generated in the air heat source heat exchanger and performing the removal. A defrosting operation control means for driving the heating circulation pump during a frost operation; and when the defrosting operation control means executes the defrosting operation during the heating operation, the first heat pump circuit is operated, Furthermore, after the defrosting operation is completed, after the geothermal circulation pump is driven at the maximum rotation speed, the rotation speed is decreased stepwise so that the decompressed first refrigerant reaches a predetermined temperature. A composite heat source heat pump device characterized by that. 前記制御装置は、前記除霜動作を開始するための所定の除霜開始条件が成立したと判断したら、前記第1ヒートポンプ回路の作動を開始させ、前記第1ヒートポンプ回路の作動を開始させてから所定時間が経過した後に、前記除霜動作制御手段は、前記除霜動作を開始するようにしたことを特徴とする請求項1に記載の複合熱源ヒートポンプ装置。   When the control device determines that a predetermined defrosting start condition for starting the defrosting operation is satisfied, it starts the operation of the first heat pump circuit and starts the operation of the first heat pump circuit. The composite heat source heat pump device according to claim 1, wherein the defrosting operation control means starts the defrosting operation after a predetermined time has elapsed. 前記除霜動作制御手段は、前記除霜動作時の前記加熱循環ポンプを所定の除霜回転速度で駆動させるようにし、前記所定の除霜回転速度は前記暖房運転時よりも低く設定した回転速度としたことを特徴とする請求項1または2に記載の複合熱源ヒートポンプ装置。   The defrosting operation control means drives the heating circulation pump at the time of the defrosting operation at a predetermined defrosting rotation speed, and the predetermined defrosting rotation speed is set to be lower than that at the time of the heating operation. The composite heat source heat pump device according to claim 1, wherein the heat source heat pump device is a composite heat source heat pump device. 前記制御装置は、前記除霜動作時に、前記第1ヒートポンプ回路の前記第1圧縮機を最大回転速度で駆動させることを特徴とする請求項1から3の何れか一項に記載の複合熱源ヒートポンプ装置。   4. The combined heat source heat pump according to claim 1, wherein the control device drives the first compressor of the first heat pump circuit at a maximum rotational speed during the defrosting operation. 5. apparatus. 前記制御装置は、前記除霜動作を終了するための所定の除霜終了条件が成立したと判断したら、前記切換弁を、前記第2冷媒の流れ方向が前記暖房運転時の前記第2冷媒の流れ方向となるように切り換えて、前記暖房運転としての前記第2ヒートポンプ回路の作動を再開させ、前記第2ヒートポンプ回路の作動再開後、一定時間が経過するまでは、前記第1ヒートポンプ回路の作動を継続するようにしたことを特徴とする請求項1から4の何れか一項に記載の複合熱源ヒートポンプ装置。   When the control device determines that a predetermined defrosting termination condition for ending the defrosting operation is satisfied, the control device causes the switching valve to switch the second refrigerant when the flow direction of the second refrigerant is in the heating operation. Switching to the flow direction, the operation of the second heat pump circuit as the heating operation is restarted, and the operation of the first heat pump circuit is continued until a certain time has elapsed after the operation of the second heat pump circuit is restarted. The composite heat source heat pump device according to any one of claims 1 to 4, wherein 前記制御装置は、前記第2ヒートポンプ回路の作動を再開して前記一定時間が経過した後、前記加熱循環回路を循環する前記循環液の温度が設定された目標温水温度に到達したら、前記第1圧縮機の回転速度を徐々に低下させて、前記第1ヒートポンプ回路の作動を停止するようにしたことを特徴とする請求項5に記載の複合熱源ヒートポンプ装置。   The control device restarts the operation of the second heat pump circuit, and after the predetermined time has elapsed, when the temperature of the circulating fluid circulating in the heating circulation circuit reaches a set target hot water temperature, the first control device 6. The composite heat source heat pump device according to claim 5, wherein the operation of the first heat pump circuit is stopped by gradually decreasing the rotational speed of the compressor.
JP2014135057A 2014-06-30 2014-06-30 Combined heat source heat pump device Active JP6208086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014135057A JP6208086B2 (en) 2014-06-30 2014-06-30 Combined heat source heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014135057A JP6208086B2 (en) 2014-06-30 2014-06-30 Combined heat source heat pump device

Publications (2)

Publication Number Publication Date
JP2016011819A JP2016011819A (en) 2016-01-21
JP6208086B2 true JP6208086B2 (en) 2017-10-04

Family

ID=55228648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014135057A Active JP6208086B2 (en) 2014-06-30 2014-06-30 Combined heat source heat pump device

Country Status (1)

Country Link
JP (1) JP6208086B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023827A (en) * 2014-07-17 2016-02-08 株式会社コロナ Composite heat source heat pump device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102213179B1 (en) * 2021-01-04 2021-02-04 허은진 Multi-cycle heating and cooling system using multiple heating source

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123567U (en) * 1984-01-31 1985-08-20 株式会社東芝 air conditioner
JPS6134066U (en) * 1984-07-30 1986-03-01 株式会社東芝 Defrosting control device for variable capacity air conditioners
JPH0823457B2 (en) * 1987-02-25 1996-03-06 三洋電機株式会社 Refrigeration system operation controller
JP5809872B2 (en) * 2011-08-08 2015-11-11 東芝キヤリア株式会社 Heating device
WO2013038439A1 (en) * 2011-09-13 2013-03-21 三菱電機株式会社 Refrigeration and air-conditioning device
JP6166874B2 (en) * 2012-08-08 2017-07-19 株式会社コロナ Heat pump equipment
JP6231395B2 (en) * 2014-02-05 2017-11-15 株式会社コロナ Combined heat source heat pump device
JP6193142B2 (en) * 2014-02-05 2017-09-06 株式会社コロナ Combined heat source heat pump device
JP6231403B2 (en) * 2014-02-28 2017-11-15 株式会社コロナ Combined heat source heat pump device
JP6258800B2 (en) * 2014-07-07 2018-01-10 株式会社コロナ Combined heat source heat pump device
JP6359398B2 (en) * 2014-09-22 2018-07-18 株式会社コロナ Combined heat source heat pump device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023827A (en) * 2014-07-17 2016-02-08 株式会社コロナ Composite heat source heat pump device

Also Published As

Publication number Publication date
JP2016011819A (en) 2016-01-21

Similar Documents

Publication Publication Date Title
JP6231395B2 (en) Combined heat source heat pump device
JP6231403B2 (en) Combined heat source heat pump device
JP5524571B2 (en) Heat pump equipment
JP2010216783A (en) Air conditioning system
JP2014035109A (en) Heat pump apparatus
JP6609198B2 (en) Combined heat source heat pump device
JP6147659B2 (en) Heat pump equipment
JP5763361B2 (en) Geothermal heat pump device
JP6208086B2 (en) Combined heat source heat pump device
JP6537990B2 (en) Heat pump type cold and hot water supply system
JP6599812B2 (en) Combined heat source heat pump device
JP6258802B2 (en) Combined heat source heat pump device
JP6359398B2 (en) Combined heat source heat pump device
JP6359397B2 (en) Combined heat source heat pump device
JP6258800B2 (en) Combined heat source heat pump device
JP2012013354A (en) Heat-pump type hot-water heating device
JP6143682B2 (en) Combined heat source heat pump device
JP6193142B2 (en) Combined heat source heat pump device
JP6574393B2 (en) Combined heat source heat pump device
JP6830296B2 (en) Combined heat source heat pump device
JP6258804B2 (en) Combined heat source heat pump device
JP6208085B2 (en) Heat pump equipment
JP6467276B2 (en) Combined heat source heat pump device
JP2020041712A (en) Composite heat pump device
JP6549296B2 (en) Combined heat source heat pump system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170906

R150 Certificate of patent or registration of utility model

Ref document number: 6208086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250