JP6959194B2 - Hot water supply device and control method of hot water supply device - Google Patents

Hot water supply device and control method of hot water supply device Download PDF

Info

Publication number
JP6959194B2
JP6959194B2 JP2018143098A JP2018143098A JP6959194B2 JP 6959194 B2 JP6959194 B2 JP 6959194B2 JP 2018143098 A JP2018143098 A JP 2018143098A JP 2018143098 A JP2018143098 A JP 2018143098A JP 6959194 B2 JP6959194 B2 JP 6959194B2
Authority
JP
Japan
Prior art keywords
hot water
refrigerant
temperature
temperature sensor
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018143098A
Other languages
Japanese (ja)
Other versions
JP2020020505A (en
Inventor
聡 石▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2018143098A priority Critical patent/JP6959194B2/en
Publication of JP2020020505A publication Critical patent/JP2020020505A/en
Application granted granted Critical
Publication of JP6959194B2 publication Critical patent/JP6959194B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、給湯装置及び給湯装置の制御方法に関する。 The present invention relates to a hot water supply device and a control method for the hot water supply device.

ヒートポンプ式給湯装置はお湯を沸き上げるためのヒートポンプユニットとそのお湯を貯湯するための貯湯ユニットで構成されている。ヒートポンプユニットは圧縮機、水-冷媒熱交換器、減圧装置、空気熱交換器で構成され、それらが環状に接続されている。沸き上げ運転時には空気熱交換器は蒸発器として動作する。そのため、外気温度が低く、湿度が高い場合には空気熱交換器に霜が付着することがあり、沸き上げ能力が低下し、省エネ性を損なってしまう。そこで空気熱交換器の霜を落とす除霜運転が必要となる。 The heat pump type hot water supply device consists of a heat pump unit for boiling hot water and a hot water storage unit for storing the hot water. The heat pump unit consists of a compressor, a water-refrigerant heat exchanger, a decompression device, and an air heat exchanger, which are connected in an annular shape. During the boiling operation, the air heat exchanger operates as an evaporator. Therefore, when the outside air temperature is low and the humidity is high, frost may adhere to the air heat exchanger, the boiling capacity is lowered, and energy saving is impaired. Therefore, a defrosting operation for removing frost from the air heat exchanger is required.

その除霜が必要かどうかを判断する手段として、特許文献1は、外気温度と空気熱交換器出口温度を利用して、外気温度に対して所定温度低い基準温度以下に空気熱交換器出口温度がなった場合に除霜が必要と判断し、除霜運転を行う。 As a means for determining whether or not the defrosting is necessary, Patent Document 1 utilizes the outside air temperature and the air heat exchanger outlet temperature to lower the air heat exchanger outlet temperature below a reference temperature, which is a predetermined temperature lower than the outside air temperature. If the temperature becomes low, it is judged that defrosting is necessary, and defrosting operation is performed.

特開2003−222392号公報Japanese Unexamined Patent Publication No. 2003-222392

しかしながら、外気温度サーミスタはヒートポンプユニットの外部に設けられるため、雪や氷が外気温度サーミスタに付着した場合、空気熱交換器出口温度との温度差が正しくとれないため、上記の方法の場合、空気熱交換器に霜が付着していても、除霜運転を行うことができない虞がある。 However, since the outside air temperature thermister is provided outside the heat pump unit, if snow or ice adheres to the outside air temperature thermista, the temperature difference from the air heat exchanger outlet temperature cannot be taken correctly. Therefore, in the case of the above method, air is used. Even if frost adheres to the heat exchanger, there is a risk that the defrosting operation cannot be performed.

上記事情に鑑みてなされた第1の本発明は、
貯湯タンクと、該貯湯タンクに両端が繋がる管と、該管の一端側から他端側に向かう方向に冷水を送り出すポンプと、を有する湯水作成部と、
冷媒を圧縮する圧縮機と、圧縮された冷媒を前記冷水と熱交換させる水−冷媒熱交換器と、熱交換された冷媒を減圧させる減圧部と、減圧した冷媒を空気と熱交換させる空気熱交換器と、を有するサイクルと、
前記水−冷媒熱交換器出口温度を検知する放熱器出口温度センサと、を有する給湯装置であって、
前記放熱器出口温度センサの検知温度が下降を開始し、下降速度が低下した後、上昇に転じたことを検知すると、前記放熱器出口温度センサの検知温度の推移に基づいて前記空気熱交換器の除霜を実行することを特徴とする。
The first invention made in view of the above circumstances is
A hot water preparation unit having a hot water storage tank, a pipe connecting both ends to the hot water storage tank, and a pump for sending cold water from one end side to the other end side of the pipe.
A compressor that compresses the refrigerant, a water-refrigerant heat exchanger that exchanges heat with the cold water, a decompression unit that decompresses the heat-exchanged refrigerant, and air heat that exchanges the decompressed refrigerant with air. With a switch, with a cycle,
A hot water supply device including a radiator outlet temperature sensor that detects the outlet temperature of the water-refrigerant heat exchanger.
When it is detected that the detection temperature of the radiator outlet temperature sensor starts to decrease, the decrease speed decreases, and then the temperature starts to increase, the air heat exchanger is based on the transition of the detection temperature of the radiator outlet temperature sensor. It is characterized by performing defrosting.

(参考例)
また、上記事情に鑑みてなされた第2の本発明は、
貯湯タンクと、該貯湯タンクに両端が繋がる管と、該管の一端側から他端側に向かう方向に冷水を送り出すポンプと、を有する湯水作成部と、
冷媒を圧縮する圧縮機と、圧縮された冷媒を前記冷水と熱交換させる水−冷媒熱交換器と、熱交換された冷媒を減圧させる減圧部と、減圧した冷媒を空気と熱交換させる空気熱交換器と、を有するサイクルと、
前記水−冷媒熱交換器出口温度を検知する放熱器出口温度センサと、を有する給湯装置の制御方法であって、
前記膨張弁を開放した状態で前記圧縮機を駆動させるとともに、前記ポンプを駆動させて冷水を前記水−冷媒熱交換器に送り出し始めた後、前記膨張弁の開度を低下させていく初期運転ステップと、
前記圧縮機の回転数及び前記膨張弁の開度を略一定に維持する通常運転ステップと、
前記圧縮機の回転数を増加させる及び/又は前記ポンプの送出流量を低下させる着霜時ステップと、
前記圧縮機の回転数を増加させる及び/又は前記膨張弁の開度を増加させる除霜ステップと、をこの順で実行することを特徴とする。
(Reference example)
In addition, the second invention made in view of the above circumstances
A hot water preparation unit having a hot water storage tank, a pipe connecting both ends to the hot water storage tank, and a pump for sending cold water from one end side to the other end side of the pipe.
A compressor that compresses the refrigerant, a water-refrigerant heat exchanger that exchanges heat with the cold water, a decompression unit that decompresses the heat-exchanged refrigerant, and air heat that exchanges the decompressed refrigerant with air. With a switch, with a cycle,
A method for controlling a hot water supply device having a radiator outlet temperature sensor for detecting the outlet temperature of the water-refrigerant heat exchanger.
An initial operation in which the compressor is driven with the expansion valve open, the pump is driven to start sending cold water to the water-refrigerant heat exchanger, and then the opening degree of the expansion valve is reduced. Steps and
A normal operation step for maintaining the rotation speed of the compressor and the opening degree of the expansion valve substantially constant, and
A frost formation step that increases the number of revolutions of the compressor and / or decreases the delivery flow rate of the pump.
The defrosting step of increasing the rotation speed of the compressor and / or increasing the opening degree of the expansion valve is performed in this order.

実施例1の給湯装置の全体構成図Overall configuration diagram of the hot water supply device of the first embodiment 実施例1の給湯装置のモリエル線図上で表したサイクル線図The cycle diagram shown on the Moriel diagram of the hot water supply device of Example 1. 実施例1の給湯装置の温度チャートTemperature chart of the hot water supply device of Example 1 実施例1の給湯装置の除霜運転の制御フローチャートControl flowchart of defrosting operation of hot water supply device of Example 1

以下、添付の図面を参照しつつ本発明の実施例を説明する。本発明の各種の構成要素は必ずしも個々に独立したものである必要はなく、例えば、一の構成要素が複数の部材から成ること、複数の構成要素が一の部材から成ること、或る構成要素の一部と他の構成要素の一部とが重複すること、を許容する。 Hereinafter, examples of the present invention will be described with reference to the accompanying drawings. The various components of the present invention do not necessarily have to be individually independent, for example, one component may consist of a plurality of members, a plurality of components may consist of a single member, or a certain component. Allows duplication of some of the components with some of the other components.

図1は本実施例の給湯装置の全体構成図である。
給湯装置は、ヒートポンプ100と湯水作成部101と、これらを制御する制御装置11とを有する。
[熱サイクル]
ヒートポンプ100は、冷媒を圧縮する圧縮機1、圧縮された高温冷媒を貯湯タンク12の水に熱交換させることで放熱する水−冷媒熱交換器2、放熱した冷媒を膨張させる膨張弁3、及び膨張した液冷媒を蒸発させる蒸発器4が、熱サイクルとして環状に接続されている。蒸発器4は、外気と熱交換可能に配されている。
FIG. 1 is an overall configuration diagram of the hot water supply device of this embodiment.
The hot water supply device includes a heat pump 100, a hot water preparation unit 101, and a control device 11 for controlling these.
[Thermodynamic cycle]
The heat pump 100 includes a compressor 1 that compresses the refrigerant, a water-refrigerant heat exchanger 2 that dissipates heat by exchanging heat of the compressed high-temperature refrigerant with the water in the hot water storage tank 12, an expansion valve 3 that expands the dissipated refrigerant, and so on. The evaporator 4 that evaporates the expanded liquid refrigerant is connected in a ring shape as a heat cycle. The evaporator 4 is arranged so as to be heat exchangeable with the outside air.

圧縮機1と水−冷媒熱交換器2との間には、圧縮機1の冷媒吐出温度を検知する吐出温度センサ7が配されている。吐出温度センサ7の検知温度が高くなるにつれて膨張弁3の開度を低下させることでヒートポンプ100のサイクルCOP(Coefficient Of Performance)を好適にすることができる。
蒸発器4には、外気との熱交換を促進するファン6が配されている。また、ポンプ5によって水−冷媒熱交換器2に送り出される冷水の温度を検知する入水温度センサ9が配されている。水−冷媒熱交換器2の出口と膨張弁3との間には、放熱後冷媒温度を検知する放熱器出口温度センサ20を備える。また、水-冷媒熱交換器2で熱交換された湯の温度を検知する出湯温度サーミスタ10を備える。
A discharge temperature sensor 7 for detecting the refrigerant discharge temperature of the compressor 1 is arranged between the compressor 1 and the water-refrigerant heat exchanger 2. By reducing the opening degree of the expansion valve 3 as the detection temperature of the discharge temperature sensor 7 increases, the cycle COP (Coefficient Of Performance) of the heat pump 100 can be made suitable.
The evaporator 4 is provided with a fan 6 that promotes heat exchange with the outside air. Further, a water entry temperature sensor 9 for detecting the temperature of cold water sent to the water-refrigerant heat exchanger 2 by the pump 5 is arranged. A radiator outlet temperature sensor 20 for detecting the refrigerant temperature after heat dissipation is provided between the outlet of the water-refrigerant heat exchanger 2 and the expansion valve 3. Further, the hot water temperature thermistor 10 for detecting the temperature of the hot water exchanged by the water-refrigerant heat exchanger 2 is provided.

[湯水作成部101]
湯水作成部101は、貯湯タンク12と、貯湯タンク12下端側に給水する給水管と、貯湯タンク12上端側から湯水を取り出す給湯管とを有する。また、貯湯タンク12の下端側から水−冷媒熱交換器2を通って貯湯タンク12の上端側にかけては湯水が通過可能な管で接続されており、貯湯タンク12と水−冷媒熱交換器2との間には貯湯タンク12から水−冷媒熱交換器2に向けて送水するポンプ5が配されている。
[Hot water preparation unit 101]
The hot water preparation unit 101 has a hot water storage tank 12, a water supply pipe for supplying water to the lower end side of the hot water storage tank 12, and a hot water supply pipe for taking out hot water from the upper end side of the hot water storage tank 12. Further, from the lower end side of the hot water storage tank 12 to the upper end side of the hot water storage tank 12 through the water-refrigerant heat exchanger 2, a pipe through which hot water can pass is connected, and the hot water storage tank 12 and the water-refrigerant heat exchanger 2 are connected. A pump 5 for sending water from the hot water storage tank 12 to the water-refrigerant heat exchanger 2 is arranged between the hot water storage tank 12 and the water-refrigerant heat exchanger 2.

[熱サイクルによる冷媒の変化]
図2は本実施例の給湯装置のモリエル線図である。
圧縮機1において冷媒は圧縮されるため、冷媒圧力が増大するとともに圧縮機1から受ける圧縮の仕事でエンタルピーがやや増加する。このため、冷媒は圧縮機1によってモリエル線図中、右上に向かって進む(圧縮過程)。
[Changes in refrigerant due to thermal cycle]
FIG. 2 is a Moriel diagram of the hot water supply device of this embodiment.
Since the refrigerant is compressed in the compressor 1, the refrigerant pressure increases and the enthalpy slightly increases due to the compression work received from the compressor 1. Therefore, the refrigerant travels toward the upper right in the Moriel diagram by the compressor 1 (compression process).

また、水−冷媒熱交換器2において冷媒は放熱するため、冷媒のエンタルピーが減少する。このため、冷媒は水−冷媒熱交換器2によってモリエル線図中、左に向かって進む(放熱過程)。 Further, since the refrigerant dissipates heat in the water-refrigerant heat exchanger 2, the enthalpy of the refrigerant is reduced. Therefore, the refrigerant travels to the left in the Moriel diagram by the water-refrigerant heat exchanger 2 (heat dissipation process).

また、膨張弁3において冷媒は膨張して圧力が減少する。このため、冷媒は膨張弁3によってモリエル線図中、下に向かって進む(膨張過程)。 Further, in the expansion valve 3, the refrigerant expands and the pressure decreases. Therefore, the refrigerant travels downward in the Moriel diagram by the expansion valve 3 (expansion process).

また、蒸発器4において冷媒は外気と熱交換する。通常、蒸発器4における冷媒温度は外気より低くなるため、冷媒は蒸発器4によって吸熱してエンタルピーが増加する。このため、冷媒は蒸発器4によってモリエル線図中、右に向かって進む(蒸発過程)。 Further, in the evaporator 4, the refrigerant exchanges heat with the outside air. Normally, the temperature of the refrigerant in the evaporator 4 is lower than that of the outside air, so that the refrigerant absorbs heat by the evaporator 4 and the enthalpy increases. Therefore, the refrigerant travels to the right in the Moriel diagram by the evaporator 4 (evaporation process).

[制御進行に伴う各箇所における温度の変動]
図3は本実施例の給湯装置の水−冷媒熱交換器2出口温度と入水温度の時間経過を示す図である。制御装置11が下記の各制御を指令する。制御装置11は各制御を実行できればそのハードウエア構造は特に制限されず、例えば、熱サイクルに組み込まれたCPU等の演算部、熱サイクルとは別体に設けられた指令装置にすることができる。
(初期運転)
給湯装置が湯沸しを開始すると、まず、膨張弁3を開放した状態で圧縮機1が好ましくは定速で駆動され、また、ポンプ5が駆動して水−冷媒熱交換器2に貯湯タンク12の水を供給する。これにより、圧縮された高温冷媒が水−冷媒熱交換器2を通過するため、放熱器出口温度センサ20の温度(図3中、「水熱交出口冷媒温度」)は急激に上昇し始める。
[Temperature fluctuation at each location as control progresses]
FIG. 3 is a diagram showing the passage of time between the water-refrigerant heat exchanger 2 outlet temperature and the water inlet temperature of the hot water supply device of this embodiment. The control device 11 commands each of the following controls. The hardware structure of the control device 11 is not particularly limited as long as each control can be executed. For example, the control device 11 can be a command device provided separately from the arithmetic unit such as a CPU incorporated in the thermal cycle and the thermal cycle. ..
(Initial operation)
When the water heater starts boiling water, first, the compressor 1 is preferably driven at a constant speed with the expansion valve 3 open, and the pump 5 is driven to drive the water-refrigerant heat exchanger 2 into the hot water storage tank 12. Supply water. As a result, the compressed high-temperature refrigerant passes through the water-refrigerant heat exchanger 2, so that the temperature of the radiator outlet temperature sensor 20 (“water heat exchange outlet refrigerant temperature” in FIG. 3) begins to rise sharply.

次に、膨張弁3を徐々に閉じていくと、熱サイクルを循環する冷媒流量が減少するところ、水−冷媒熱交換器2によって放熱されるエンタルピ量は比較的変動しない。したがって、単位流量あたりの冷媒の放熱量(エンタルピ減少量)は増大することから、放熱器出口温度センサ20が検知する冷媒の温度は低下していく。また、貯湯タンク12下部から供給される水は比較的温度一定であるため、放熱器出口温度センサ20と入水温度センサ9の温度差が小さくなる。 Next, when the expansion valve 3 is gradually closed, the flow rate of the refrigerant circulating in the heat cycle decreases, but the amount of enthalpy dissipated by the water-refrigerant heat exchanger 2 does not fluctuate relatively. Therefore, since the amount of heat radiation of the refrigerant (the amount of decrease in enthalpy) per unit flow rate increases, the temperature of the refrigerant detected by the radiator outlet temperature sensor 20 decreases. Further, since the temperature of the water supplied from the lower part of the hot water storage tank 12 is relatively constant, the temperature difference between the radiator outlet temperature sensor 20 and the water inlet temperature sensor 9 becomes small.

膨張弁3の閉塞を目標値まで進めたら、膨張弁3の閉塞を停止させる。すると、圧縮機1の回転数や膨張弁3の開度が(少なくとも概ね)時不変になったことから、熱サイクルは徐々に安定していく。このため、放熱器出口温度センサ20が検知する冷媒の温度は比較的変動しなくなる。すなわち、放熱器出口温度センサ20と入水温度センサ9の温度差が最小となる。 When the blockage of the expansion valve 3 is advanced to the target value, the blockage of the expansion valve 3 is stopped. Then, since the rotation speed of the compressor 1 and the opening degree of the expansion valve 3 become (at least almost) invariant, the thermal cycle gradually stabilizes. Therefore, the temperature of the refrigerant detected by the radiator outlet temperature sensor 20 does not fluctuate relatively. That is, the temperature difference between the radiator outlet temperature sensor 20 and the water entry temperature sensor 9 is minimized.

(通常運転)
上記の初期運転後は、圧縮機1の回転数や膨張弁3開度を概ね一定に保つことで、安定した熱量を水−冷媒熱交換器2に供給できるようになる。この場合のモリエル線図中のサイクルを、図2中、四角形のプロット点で結んだ実線で描いている。
しかし、熱サイクルの作動を継続すると、外気との間で熱交換をしている蒸発器4は氷点下の温度を維持し続けていることから徐々に着霜して霜で覆われていく。
(Normal operation)
After the above initial operation, by keeping the rotation speed of the compressor 1 and the opening degree of the expansion valve 3 substantially constant, a stable amount of heat can be supplied to the water-refrigerant heat exchanger 2. The cycle in the Moriel diagram in this case is drawn by a solid line connected by quadrangular plot points in FIG.
However, when the operation of the thermal cycle is continued, the evaporator 4 that exchanges heat with the outside air continues to maintain the temperature below the freezing point, so that it gradually frosts and is covered with frost.

(着霜時の運転)
蒸発器4の着霜量が増加すると、蒸発器4の外気との接触面積が減少するため、蒸発器4を通じて冷媒に与えられるエンタルピー量が減少する。このため、着霜するにつれて、蒸発過程におけるモリエル線図は右側に遷移していく。すなわち、サイクルで囲まれる面積が減少することから、1サイクルにおける仕事量が減少していくことがわかる。
(Operation at the time of frost)
When the amount of frost formed on the evaporator 4 increases, the contact area of the evaporator 4 with the outside air decreases, so that the amount of enthalpy given to the refrigerant through the evaporator 4 decreases. Therefore, as the frost forms, the Moriel diagram in the evaporation process shifts to the right. That is, since the area surrounded by the cycle decreases, it can be seen that the amount of work in one cycle decreases.

一方、蒸発器4にて冷媒を蒸発させることで得られる吸熱量Qは、外気との接触風量Fと、熱交換による吸熱で生じる蒸発器4の温度差ΔTとの積で得られる。蒸発による相転移に必要な吸熱量は一定であることから、接触面積の減少に伴う風量Fの低下に伴い、温度差ΔTが増大することになる。これは、蒸発過程開始時における圧力が低下することを示すため、蒸発過程開始時におけるモリエル線図上の点は下に遷移する。これにより、1サイクルにおける仕事量は増加するものの、一般的には、着霜による冷媒へのエンタルピー供給量よりは低い。このときのサイクルを図2中、三角形のプロット点で結んだ破線で描いている。 On the other hand, the endothermic amount Q obtained by evaporating the refrigerant in the evaporator 4 is obtained by multiplying the contact air amount F with the outside air and the temperature difference ΔT of the evaporator 4 generated by the endothermic heat by heat exchange. Since the amount of heat absorbed for the phase transition due to evaporation is constant, the temperature difference ΔT increases as the air volume F decreases as the contact area decreases. This indicates that the pressure at the start of the evaporation process decreases, so the points on the Moriel diagram at the start of the evaporation process transition downward. This increases the amount of work in one cycle, but is generally lower than the amount of enthalpy supplied to the refrigerant by frost formation. The cycle at this time is drawn by a broken line connected by triangular plot points in FIG.

したがって、着霜の進行につれてサイクル効率が低下していき、水−冷媒熱交換器2において貯湯タンク12側の水の吸熱量が減少する。したがって本実施例では、まず、通常運転への遷移後、出湯温度センサ10の温度低下を検知したら、サイクル効率が低下してきていると判断して、圧縮機1の回転数を増加させる。これにより冷媒流量が増えるため、水−冷媒熱交換器2における単位流量あたりのエンタルピ減少量が小さくなるので、放熱器出口温度センサ20が検知する冷媒の温度は上昇していく。また、貯湯タンク12下部から供給される水は比較的温度一定であるため、放熱器出口温度センサ20と入水温度センサ9の温度差が大きくなる。 Therefore, the cycle efficiency decreases as the frost formation progresses, and the amount of heat absorbed by the water on the hot water storage tank 12 side in the water-refrigerant heat exchanger 2 decreases. Therefore, in this embodiment, first, when the temperature drop of the hot water temperature sensor 10 is detected after the transition to the normal operation, it is determined that the cycle efficiency is decreasing, and the rotation speed of the compressor 1 is increased. As a result, the flow rate of the refrigerant increases, so that the amount of decrease in enthalpy per unit flow rate in the water-refrigerant heat exchanger 2 decreases, so that the temperature of the refrigerant detected by the radiator outlet temperature sensor 20 rises. Further, since the temperature of the water supplied from the lower part of the hot water storage tank 12 is relatively constant, the temperature difference between the radiator outlet temperature sensor 20 and the water inlet temperature sensor 9 becomes large.

すなわち本実施例は、熱サイクルの駆動開始後、膨張弁3を閉塞していくことで放熱器出口温度センサ20の検知温度が低下していく。その後膨張弁3の閉塞を所定の目標値で停止し、圧縮機回転数を好ましくは略一定にすることで通常運転に移行し、放熱器出口温度センサ20の検知温度の変化が小さくなる。その後、着霜につれて出湯温度センサ10の温度低下を検知したら、圧縮機1回転数を増加させるため放熱器出口温度センサ20の検知温度が上昇し、貯湯タンク12から供給される入水温度センサ9の検知温度との差が大きくなる。 That is, in this embodiment, the detection temperature of the radiator outlet temperature sensor 20 decreases by closing the expansion valve 3 after the start of driving the thermal cycle. After that, the blockage of the expansion valve 3 is stopped at a predetermined target value, and the compressor rotation speed is preferably substantially constant to shift to normal operation, and the change in the detection temperature of the radiator outlet temperature sensor 20 becomes small. After that, when the temperature drop of the hot water temperature sensor 10 is detected as the frost is formed, the detection temperature of the radiator outlet temperature sensor 20 rises in order to increase the number of revolutions of the compressor, and the water inlet temperature sensor 9 supplied from the hot water storage tank 12 increases. The difference from the detected temperature becomes large.

なお、圧縮機1回転数を上昇させることに代えて又は追加して、ポンプ5の駆動を弱めて水の供給量を少なくさせても良い。 Instead of or in addition to increasing the number of revolutions of the compressor, the drive of the pump 5 may be weakened to reduce the amount of water supplied.

(除霜時の運転)
本実施例では、放熱器出口温度センサ20の検知温度が下降し、入水温度センサ9の検知温度との温度差が小さくなり、その下降が緩やかになった、すなわち、放熱器出口温度と入水温度との温度差が最小(または極小)になった後、放熱器出口温度が上昇し、入水温度との温度差が所定の値(おおよそ4℃〜5℃)に拡大した場合に除霜が必要と判断して、除霜運転を開始する。
(Operation during defrosting)
In this embodiment, the detection temperature of the radiator outlet temperature sensor 20 drops, the temperature difference from the detection temperature of the water entry temperature sensor 9 becomes small, and the drop becomes gradual, that is, the radiator outlet temperature and the water entry temperature. Defrosting is required when the temperature difference from the radiator outlet rises after the temperature difference with the water enters is minimized (or minimized), and the temperature difference from the water entry temperature expands to a predetermined value (approximately 4 ° C to 5 ° C). Judging that, the defrosting operation is started.

除霜運転時は、圧縮機1の回転数を例えば最大にし、膨張弁3を例えば全開にすることで、比較的高温の冷媒を蒸発器4に供給することで、除霜運転を行う。
除霜が進行すると吸込み側の冷媒温度も上昇することから、放熱器出口温度センサ20の検知温度が上昇する。本実施例では、この上昇を検知し、所定時間経過した場合除霜を終了させる。
During the defrosting operation, the defrosting operation is performed by supplying a relatively high temperature refrigerant to the evaporator 4 by maximizing the rotation speed of the compressor 1, for example, and opening the expansion valve 3 fully, for example.
As the defrosting progresses, the temperature of the refrigerant on the suction side also rises, so that the temperature detected by the radiator outlet temperature sensor 20 rises. In this embodiment, this increase is detected, and defrosting is terminated when a predetermined time elapses.

(復帰運転)
除霜終了後は、圧縮機1の回転数および膨張弁3の弁開度を初期運転時程度にまで低下させ、再び初期運転から通常運転までの動作を行う。
(Return operation)
After the defrosting is completed, the rotation speed of the compressor 1 and the valve opening degree of the expansion valve 3 are reduced to about the initial operation, and the operation from the initial operation to the normal operation is performed again.

[制御フローチャート]
図4は本実施例の制御フローチャートである。運転開始後、放熱器出口温度センサ20の検知温度と貯湯タンク12から供給される入水温度との差分ΔTnowを所定時間毎に計算する(ステップS11)。その後、ΔTnowよりも1つ前の放熱器出口温度センサ20の検知温度と貯湯タンク12から供給される入水温度との差分ΔTnow-1との比較を行い(ステップS12)、ΔTnowがΔTnow-1よりも大きいかどうかを判断する(ステップS12’)。もし、ΔTnowがΔTnow-1よりも小さい場合はステップS11に戻る。
[Control flowchart]
FIG. 4 is a control flowchart of this embodiment. After the start of operation, the difference ΔT now between the detection temperature of the radiator outlet temperature sensor 20 and the incoming water temperature supplied from the hot water storage tank 12 is calculated at predetermined time intervals (step S11). After that, the difference between the detected temperature of the radiator outlet temperature sensor 20 one before ΔT now and the incoming water temperature supplied from the hot water storage tank 12 is compared with ΔT now-1 (step S12), and ΔT now is ΔT. Determine if it is greater than now-1 (step S12'). If ΔT now is smaller than ΔT now-1 , the process returns to step S11.

図3の温度チャートに示すように、放熱器出口温度はヒートポンプユニット起動後、高温冷媒が水−冷媒熱交換器2を通過するため、放熱器出口温度センサ20の温度が急激に上昇し始める。そのため、貯湯タンク12から供給される入水温度との差分ΔTnowは大きいが、その後、その差分は小さくなり、通常運転時にはその差分は概ね最小となる。つまり、初期運転から、通常運転への切り替わりを放熱器出口温度と入水温度の差分で判断する。 As shown in the temperature chart of FIG. 3, since the high temperature refrigerant passes through the water-refrigerant heat exchanger 2 after the heat pump unit is started, the temperature of the radiator outlet temperature sensor 20 starts to rise sharply. Therefore, the difference ΔT now from the incoming water temperature supplied from the hot water storage tank 12 is large, but after that, the difference becomes small, and the difference becomes almost the minimum during normal operation. That is, the switching from the initial operation to the normal operation is determined by the difference between the radiator outlet temperature and the water entry temperature.

放熱器出口温度と入水温度との差分が最小となったときのΔTnow-1をΔTminと置き換え(ステップS13)、補正値αをΔTmin+βとして設定する(但し、β>0)(ステップS14)。その後、放熱器出口冷媒温度と入水温度の差分がステップS14で設定した補正値α以上かどうかを判断する(ステップS15)。蒸発器4にて着霜が進行し、霜詰まりが起こっていれば、先に述べたように、放熱器出口冷媒温度が上昇し、放熱器出口冷媒温度と入水温度の差分が大きくなり、補正値α以上となる。放熱器出口冷媒温度と入水温度の差分が補正値α以上でないときは、除霜運転が必要ないと判断し(ステップS15、No)、ステップS15の判断を繰り返し行う。ステップS15にて放熱器出口冷媒温度と入水温度との差分が補正値α以上の場合、除霜運転が必要と判断し、除霜運転を行う(ステップS16) Replace ΔT now-1 with ΔT min when the difference between the radiator outlet temperature and the water entry temperature is minimized (step S13), and set the correction value α as ΔT min + β (however, β> 0) ( Step S14). After that, it is determined whether or not the difference between the radiator outlet refrigerant temperature and the incoming water temperature is equal to or greater than the correction value α set in step S14 (step S15). If frost formation progresses in the evaporator 4 and frost clogging occurs, as described above, the radiator outlet refrigerant temperature rises, and the difference between the radiator outlet refrigerant temperature and the incoming water temperature becomes large, which is corrected. The value is α or more. When the difference between the radiator outlet refrigerant temperature and the incoming water temperature is not equal to or greater than the correction value α, it is determined that the defrosting operation is not necessary (steps S15 and No), and the determination in step S15 is repeated. If the difference between the radiator outlet refrigerant temperature and the water entry temperature is the correction value α or more in step S15, it is determined that defrosting operation is necessary, and defrosting operation is performed (step S16).

除霜運転中は、圧縮機1からの高温冷媒が放熱器2に流入するため、放熱器出口温度は上昇し、設定値δ以上を所定時間経過した場合、十分に除霜が行えたと判断し(S17)し、除霜運転を終了する。 During the defrosting operation, the high-temperature refrigerant from the compressor 1 flows into the radiator 2, so the radiator outlet temperature rises, and when the set value δ or more elapses for a predetermined time, it is determined that sufficient defrosting has been performed. (S17) and end the defrosting operation.

本実施例では、放熱器出口温度センサ20の検知温度と貯湯タンク12から供給される入水温度との差分ΔTnowを利用して除霜の必要性を判断したが、放熱器出口温度センサ20の検知温度に代えても良い。尤も、放熱器出口温度センサ20の検知温度は、ポンプ5から送水される水温度の影響を受けるから、貯湯タンク12内の水の例えば全量を湧き上げようとした場合、その終盤では水温度も上昇しており、放熱器出口温度センサ20の検知温度も上昇する。したがって、除霜すべきタイミングとは別に、沸き上がり終盤でも除霜が必要と誤検知してしまう虞があるので、本実施例のように差分値を用いる方が好ましい。 In this embodiment, the necessity of defrosting was determined by using the difference ΔT now between the detection temperature of the radiator outlet temperature sensor 20 and the incoming water temperature supplied from the hot water storage tank 12, but the radiator outlet temperature sensor 20 It may be replaced with the detected temperature. However, since the detection temperature of the radiator outlet temperature sensor 20 is affected by the temperature of the water sent from the pump 5, for example, when the entire amount of water in the hot water storage tank 12 is to be pumped up, the water temperature is also affected at the final stage. The temperature is rising, and the temperature detected by the radiator outlet temperature sensor 20 is also rising. Therefore, apart from the timing of defrosting, there is a risk of erroneously detecting that defrosting is necessary even at the end of boiling, so it is preferable to use the difference value as in this embodiment.

1 圧縮機
2 水−冷媒熱交換器(放熱器)
3 膨張弁
4 蒸発器(空気熱交換器)
5 送水ポンプ
6 蒸発器ファン
7 吐出温度センサ
9 外気温度センサ
10 出湯温度サーミスタ
11 制御装置
12 貯湯タンク
20 放熱器出口温度センサ
100 ヒートポンプ
101 湯水作成部
1 Compressor 2 Water-refrigerant heat exchanger (heat sink)
3 Expansion valve 4 Evaporator (air heat exchanger)
5 Water supply pump 6 Evaporator fan 7 Discharge temperature sensor 9 Outside air temperature sensor 10 Outflow temperature thermistor 11 Control device 12 Hot water storage tank 20 Dissipator outlet temperature sensor 100 Heat pump 101 Hot water preparation unit

Claims (3)

貯湯タンクと、該貯湯タンクに両端が繋がる管と、該管の一端側から他端側に向かう方向に冷水を送り出すポンプと、を有する湯水作成部と、
冷媒を圧縮する圧縮機と、圧縮された冷媒を前記冷水と熱交換させる水−冷媒熱交換器と、熱交換された冷媒を減圧させる減圧部と、減圧した冷媒を空気と熱交換させる空気熱交換器と、を有するサイクルと、
前記水−冷媒熱交換器の出口温度を検知する放熱器出口温度センサと、を有する給湯装置であって、
前記放熱器出口温度センサの検知温度が下降を開始し、下降速度が低下した後、上昇に転じたことを検知すると、前記放熱器出口温度センサの検知温度の推移に基づいて前記空気熱交換器の除霜を実行することを特徴とする給湯装置。
A hot water preparation unit having a hot water storage tank, a pipe connecting both ends to the hot water storage tank, and a pump for sending cold water from one end side to the other end side of the pipe.
A compressor that compresses the refrigerant, a water-refrigerant heat exchanger that exchanges heat with the cold water, a decompression unit that decompresses the heat-exchanged refrigerant, and air heat that exchanges the decompressed refrigerant with air. With a switch, with a cycle,
A hot water supply device including a radiator outlet temperature sensor that detects the outlet temperature of the water-refrigerant heat exchanger.
When it is detected that the detection temperature of the radiator outlet temperature sensor starts to decrease, the decrease speed decreases, and then the temperature starts to increase, the air heat exchanger is based on the transition of the detection temperature of the radiator outlet temperature sensor. performing a defrosting hot water supply apparatus it said.
貯湯タンクと、該貯湯タンクに両端が繋がる管と、該管の一端側から他端側に向かう方向に冷水を送り出すポンプと、を有する湯水作成部と、
冷媒を圧縮する圧縮機と、圧縮された冷媒を前記冷水と熱交換させる水−冷媒熱交換器と、熱交換された冷媒を減圧させる減圧部と、減圧した冷媒を空気と熱交換させる空気熱交換器と、を有するサイクルと、
前記水−冷媒熱交換器の出口温度を検知する放熱器出口温度センサと、を有する給湯装置であって、
前記冷水の温度を検知する入水温度センサを有し、
前記放熱器出口温度センサの検知温度と前記入水温度センサの検知温度との差分が下降を開始し、下降速度が低下した後、上昇に転じたことを検知すると、前記放熱器出口温度センサの検知温度の推移に基づいて前記空気熱交換器の除霜を実行することを特徴とする給湯装置。
A hot water preparation unit having a hot water storage tank, a pipe connecting both ends to the hot water storage tank, and a pump for sending cold water from one end side to the other end side of the pipe.
A compressor that compresses the refrigerant, a water-refrigerant heat exchanger that exchanges heat with the cold water, a decompression unit that decompresses the heat-exchanged refrigerant, and air heat that exchanges the decompressed refrigerant with air. With a switch, with a cycle,
A hot water supply device including a radiator outlet temperature sensor that detects the outlet temperature of the water-refrigerant heat exchanger.
It has an incoming water temperature sensor that detects the temperature of the cold water.
When it is detected that the difference between the detection temperature of the radiator outlet temperature sensor and the detection temperature of the water inlet temperature sensor starts to decrease and then starts to increase after the decrease speed decreases, the radiator outlet temperature sensor hot water supply apparatus you and the client performs defrosting of the air heat exchanger based on the transition of the detected temperature.
前記除霜の実行は、前記放熱器出口温度センサの検知温度が上昇した後に終了することを特徴とする請求項又はに記載の給湯装置。 The hot water supply device according to claim 1 or 2 , wherein the execution of defrosting ends after the detection temperature of the radiator outlet temperature sensor rises.
JP2018143098A 2018-07-31 2018-07-31 Hot water supply device and control method of hot water supply device Active JP6959194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018143098A JP6959194B2 (en) 2018-07-31 2018-07-31 Hot water supply device and control method of hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018143098A JP6959194B2 (en) 2018-07-31 2018-07-31 Hot water supply device and control method of hot water supply device

Publications (2)

Publication Number Publication Date
JP2020020505A JP2020020505A (en) 2020-02-06
JP6959194B2 true JP6959194B2 (en) 2021-11-02

Family

ID=69588471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018143098A Active JP6959194B2 (en) 2018-07-31 2018-07-31 Hot water supply device and control method of hot water supply device

Country Status (1)

Country Link
JP (1) JP6959194B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4784288B2 (en) * 2005-12-02 2011-10-05 株式会社デンソー Heat pump type hot water supply apparatus and control device for heat pump type hot water supply apparatus
JP5032284B2 (en) * 2007-12-05 2012-09-26 株式会社コロナ Heat pump water heater
JP2010216751A (en) * 2009-03-18 2010-09-30 Daikin Ind Ltd Heat pump type water heater
JP5701084B2 (en) * 2011-02-02 2015-04-15 東芝キヤリア株式会社 Heating system
JP2013053834A (en) * 2011-09-06 2013-03-21 Corona Corp Heat pump type water heater
JP2013119954A (en) * 2011-12-06 2013-06-17 Panasonic Corp Heat pump hot water heater
JP5948709B2 (en) * 2012-11-28 2016-07-06 日立アプライアンス株式会社 Heat pump water heater
JP6465332B2 (en) * 2014-07-24 2019-02-06 株式会社ノーリツ Heat pump hot water supply system

Also Published As

Publication number Publication date
JP2020020505A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP6346122B2 (en) Hot water heating system
JP6580149B2 (en) Refrigeration cycle equipment
JP4836212B2 (en) Air conditioner
JP3783711B2 (en) Heat pump water heater
JP2019049393A (en) Hot water heating system
KR101275184B1 (en) Control method of refrigerating system
JP7135493B2 (en) heat pump water heater
JP5457861B2 (en) Defrosting operation method of heat pump device
JP3659197B2 (en) Heat pump water heater
JP2005147610A (en) Heat pump water heater
JP5589607B2 (en) Heat pump cycle equipment
JP6639677B2 (en) Heat source system
JP3632645B2 (en) Heat pump water heater
JP2007333341A (en) Heat pump hot water supply machine
JPH0849930A (en) Heat pump equipment
JP6959194B2 (en) Hot water supply device and control method of hot water supply device
JP3937715B2 (en) Heat pump water heater
JP3755422B2 (en) Heat pump water heater
JP2008224067A (en) Heat pump hot water supply device
JP4021374B2 (en) Heat pump water heater
JP6465332B2 (en) Heat pump hot water supply system
JP3900186B2 (en) Heat pump water heater
JP3703995B2 (en) Heat pump water heater
KR20070064908A (en) Air conditioner and driving method thereof
JP5381749B2 (en) Refrigeration cycle equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210308

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211007

R150 Certificate of patent or registration of utility model

Ref document number: 6959194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150