JP2005147610A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2005147610A
JP2005147610A JP2003389118A JP2003389118A JP2005147610A JP 2005147610 A JP2005147610 A JP 2005147610A JP 2003389118 A JP2003389118 A JP 2003389118A JP 2003389118 A JP2003389118 A JP 2003389118A JP 2005147610 A JP2005147610 A JP 2005147610A
Authority
JP
Japan
Prior art keywords
defrosting
heat pump
hot water
fluid circulation
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003389118A
Other languages
Japanese (ja)
Other versions
JP3894190B2 (en
Inventor
Yoshikazu Nishihara
義和 西原
Atsushi Takeuchi
淳 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003389118A priority Critical patent/JP3894190B2/en
Publication of JP2005147610A publication Critical patent/JP2005147610A/en
Application granted granted Critical
Publication of JP3894190B2 publication Critical patent/JP3894190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump water heater capable of performing the defrosting operation without changing the flow of a refrigerant circuit in the defrosting operation, shortening a defrosting time as it has high defrosting performance, and further saving the electricity expense by shortening a boiling-up time of a tank. <P>SOLUTION: In this heat pump water heater comprising a heat pump circuit constituted by connecting a compressor, a hot water supply heat exchanger, an expansion valve and an evaporator by pipes, and a fluid circuit constituted by connecting a hot water storage tank, a fluid circulation pump and a fluid circulation switching valve by pipes, further comprising a bypass circuit bypassing the hot water supply heat exchanger, and having the fluid circulation switching valve on the bypass circuit, a defrost start determining means for determining the start of defrosting and a fluid circulation switching valve driving means for driving the fluid circulation switching valve are mounted, and the fluid circulation switching valve is opened before or after determining the start of defrosting. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、圧縮機、給湯用熱交換器、膨張弁、及び蒸発器を配管で接続したヒートポンプ回路と貯湯槽、流体循環ポンプ、流体循環切替弁を配管で接続した流体回路を有したヒートポンプ給湯装置に関する。   The present invention relates to a heat pump hot water supply having a heat pump circuit in which a compressor, a hot water heat exchanger, an expansion valve, and an evaporator are connected by piping, a hot water tank, a fluid circulation pump, and a fluid circuit in which a fluid circulation switching valve is connected by piping. Relates to the device.

従来、この種の除霜方法では、ヒートポンプ回路の冷媒の流れを圧縮機吐出側から給湯用熱交換器を通さずに蒸発器に冷媒が流れるように二方弁等を迂回回路に配置しており、除霜運転時にこの二方弁を開方向に制御して蒸発器の除霜を行うことが提案されている(例えば、特許文献1参照)。またその他の除霜方法として、除霜中に流体循環ポンプを停止する提案が考えられる。   Conventionally, in this type of defrosting method, a two-way valve or the like is arranged in a bypass circuit so that the refrigerant flows in the heat pump circuit from the compressor discharge side to the evaporator without passing through the hot water supply heat exchanger. In addition, it has been proposed to defrost the evaporator by controlling the two-way valve in the opening direction during the defrosting operation (see, for example, Patent Document 1). As another defrosting method, a proposal for stopping the fluid circulation pump during defrosting is conceivable.

除霜時に電磁弁をバイパス回路に設け、室外熱交換器の入口にホットガスを供給することで確実に除霜できる。
特開2001−108256号公報(請求項1、請求項2、請求項3、請求項4)
It is possible to reliably defrost by providing a solenoid valve in the bypass circuit during defrosting and supplying hot gas to the inlet of the outdoor heat exchanger.
JP 2001-108256 A (Claim 1, Claim 2, Claim 3, and Claim 4)

しかしながら、前記従来の構成では、ヒートポンプ回路にバイパス回路を追加することで構造が複雑となり、高圧冷媒に対する電磁弁の信頼性を確保することから高価な電磁弁になってしまう。また冷媒の流れが変わることから、冷媒音が発生してしまうという課題を有していた。   However, in the conventional configuration, the structure is complicated by adding a bypass circuit to the heat pump circuit, and the reliability of the solenoid valve against high-pressure refrigerant is ensured, resulting in an expensive solenoid valve. Moreover, since the flow of the refrigerant changes, there is a problem that refrigerant noise is generated.

また、除霜中に流体循環ポンプを停止すると低外気温時に流体が凍結する可能性があった。   Further, if the fluid circulation pump is stopped during defrosting, the fluid may freeze at a low outside air temperature.

本発明は、前記課題を解決するもので、除霜運転開始時、前記流体循環切替弁を開放に動作させた後、前記膨張弁の開度を開くようにして、給湯用熱交換器での放熱を最小限として除霜を行うようにしたヒートポンプ給湯装置を提供するものである。   The present invention solves the above-described problem. At the start of the defrosting operation, after opening the fluid circulation switching valve, the opening of the expansion valve is opened, and the heat exchanger for hot water supply is used. The present invention provides a heat pump hot water supply apparatus that performs defrosting with minimum heat dissipation.

前記従来の課題を解決するために、圧縮機、給湯用熱交換器、膨張弁、及び蒸発器を配管で接続したヒートポンプ回路と貯湯槽、流体循環ポンプ、流体循環切替弁を配管で接続した流体回路を有し、前記給湯用熱交換器をバイパスするバイパス回路を設け、前記バイパス回路中に流体循環切替弁を設けたヒートポンプ給湯装置であって、除霜運転開始時、前記流体循環切替弁を開放に動作させた後、前記膨張弁の開度を開くことを特徴とする。   In order to solve the conventional problems, a heat pump circuit in which a compressor, a hot water heat exchanger, an expansion valve, and an evaporator are connected by piping, a hot water tank, a fluid circulation pump, and a fluid in which a fluid circulation switching valve is connected by piping. A heat pump water heater having a circuit, provided with a bypass circuit that bypasses the hot water heat exchanger, and provided with a fluid circulation switching valve in the bypass circuit, the fluid circulation switching valve at the start of the defrosting operation After opening, the opening of the expansion valve is opened.

また、本発明のヒートポンプ給湯装置は、前記除霜運転開始の判定は、蒸発器の温度を検知する蒸発器温度検出手段と、前記蒸発器温度と除霜開始判定をする為の蒸発器設定温度との温度差から除霜開始を判定する蒸発器除霜開始判定手段と、外気温度を検知する外気温度検知手段と、前記外気温度と除霜開始判定をする為の外気設定温度との温度差から除霜開始を判定する外気温度除霜開始判定手段と、前記圧縮機運転時間を記憶する圧縮機運転時間記憶手段と、前記圧縮機運転時間の記憶時間と除霜運転開始の設定時間から除霜開始を判定する運転時間除霜開始判定手段とを設け、前記蒸発器除霜開始判定手段と前記外気温除霜開始判定手段と運転時間除霜開始判定手段から判定された各除霜開始判定から除霜開始判定手段で最終判定して、除霜運転を開始することを特徴とする。   Further, in the heat pump water heater of the present invention, the determination of the defrosting operation start is performed by an evaporator temperature detecting means for detecting the temperature of the evaporator, and the evaporator temperature and the evaporator set temperature for determining the defrosting start. The difference in temperature between the evaporator defrost start determining means for determining the start of defrost from the temperature difference between the outside air temperature detecting means for detecting the outside air temperature, and the outside air set temperature for determining the defrost start. From the outside temperature defrosting start determining means for determining the start of defrosting, the compressor operating time storage means for storing the compressor operating time, the storage time of the compressor operating time and the set time for starting the defrosting operation. Each of the defrost start determinations determined from the evaporator defrost start determination means, the outside air temperature defrost start determination means, and the operation time defrost start determination means is provided. From the defrost start determination means , Wherein the defrosting operation is started.

また、本発明のヒートポンプ給湯装置は、前記除霜開始判定手段で除霜運転の開始を判定して、前記圧縮機の容量を可変する圧縮機容量可変手段にて、前記圧縮機容量を同じ容量または増加させることを特徴とする。   In the heat pump hot water supply apparatus of the present invention, the compressor capacity changing means for determining the start of the defrosting operation by the defrosting start determining means and changing the capacity of the compressor has the same capacity. Or it is characterized by increasing.

また、本発明のヒートポンプ給湯装置は、前記流体循環切替弁を三方に接続する接続口を設け、流体循環切替弁の動作により流体の流れを全て切り替えるようにしたことを特徴とする。   The heat pump hot water supply apparatus of the present invention is characterized in that a connection port for connecting the fluid circulation switching valve in three directions is provided, and all the flow of fluid is switched by the operation of the fluid circulation switching valve.

また、本発明のヒートポンプ給湯装置は、前記ヒートポンプ回路を超臨界蒸気圧圧縮式冷凍サイクルで構成し、高圧側の冷媒圧力が冷媒の臨界圧以上となるようにしたことを特徴とする。   The heat pump hot water supply apparatus of the present invention is characterized in that the heat pump circuit is configured by a supercritical vapor pressure compression refrigeration cycle so that the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant.

本発明によれば、除霜運転時、ヒートポンプ給湯運転時の冷媒の流れを変えずに、除霜熱量を給湯用熱交換器に極力放熱することなく、除霜能力として利用でき、圧縮機、膨張弁の制御により、早く除霜を終了させることができる。   According to the present invention, during the defrosting operation, without changing the flow of the refrigerant during the heat pump hot water supply operation, the heat of defrosting can be used as the defrosting capacity without radiating heat to the heat exchanger for hot water supply as much as possible. The defrosting can be completed quickly by controlling the expansion valve.

第1の発明は、圧縮機、給湯用熱交換器、膨張弁、及び蒸発器を配管で接続したヒートポンプ回路と貯湯槽、流体循環ポンプ、流体循環切替弁を配管で接続した流体回路を有し、給湯用熱交換器をバイパスするバイパス回路を設け、その回路に前記流体循環切替弁を設けたヒートポンプ給湯装置であって、除霜運転開始時、前記流体循環切替弁を開放に動作させた後、前記膨張弁の開度を開くことにより、流体の流れの主流が給湯用熱交換器を通過せずにバイパス回路を通過することから、除霜運転において、ヒートポンプ給湯運転中の冷媒の流れを変えることなく、圧縮機の熱量を給湯用熱交換器に放熱することを極力微少にして、蒸発器の除霜に利用できて、冷媒系の耐高圧の機能部品を追加することなく安価に構成できる。   1st invention has the fluid circuit which connected the heat pump circuit which connected the compressor, the hot water heat exchanger, the expansion valve, and the evaporator with piping, the hot water storage tank, the fluid circulation pump, and the fluid circulation switching valve with piping. A heat pump hot water supply apparatus provided with a bypass circuit for bypassing the heat exchanger for hot water supply, and provided with the fluid circulation switching valve in the circuit, after opening the fluid circulation switching valve at the start of the defrosting operation Since the main flow of the fluid flow passes through the bypass circuit without passing through the hot water supply heat exchanger by opening the opening of the expansion valve, the refrigerant flow during the heat pump hot water supply operation is reduced in the defrosting operation. Without changing, the amount of heat of the compressor can be dissipated to the heat exchanger for hot water supply as much as possible, and it can be used for defrosting of the evaporator, and it is inexpensively configured without adding high pressure resistant functional parts of the refrigerant system it can.

第2の発明は、前記除霜運転開始の判定は、蒸発器の温度を検知する蒸発器温度検出手段と、前記蒸発器温度と除霜開始判定をする為の蒸発器設定温度との温度差から除霜開始を判定する蒸発器除霜開始判定手段と、外気温度を検知する外気温度検知手段と、前記外気温度と除霜開始判定をする為の外気設定温度との温度差から除霜開始を判定する外気温度除霜開始判定手段と、前記圧縮機運転時間を記憶する圧縮機運転時間記憶手段と、前記圧縮機運転時間の記憶時間と除霜運転開始の設定時間から除霜開始を判定する運転時間除霜開始判定手段とを設け、前記蒸発器除霜開始判定手段と前記外気温除霜開始判定手段と運転時間除霜開始判定手段から判定された各除霜開始判定から除霜開始判定手段で最終判定して、除霜運転を開始することにより、蒸発器に付着した霜量を認識し、除霜運転開始の判定ができることになる。   According to a second aspect of the present invention, the determination of the defrosting operation start is performed by a temperature difference between the evaporator temperature detecting means for detecting the temperature of the evaporator and the evaporator temperature and the evaporator set temperature for determining the defrosting start. Defrost start from the temperature difference between the evaporator defrost start determining means for determining the start of defrost from the outside air temperature detecting means for detecting the outside air temperature and the outside air temperature and the outside air set temperature for determining the defrost start Determining the start of defrosting based on the outside temperature defrosting start determining means for determining the compressor operating time storage means for storing the compressor operating time, the storage time of the compressor operating time and the set time for starting the defrosting operation Operating time defrosting start determining means to perform defrosting start from each defrosting start determination determined from the evaporator defrosting start determining means, the outside air temperature defrosting start determining means and the operating time defrosting start determining means Final determination is made by the determination means, and the defrosting operation is started. By recognizes the frost amount adhering to the evaporator, so that it is determined start defrosting operation.

第3の発明は、前記除霜開始判定手段で除霜運転の開始を判定して、前記圧縮機の容量を可変する圧縮機容量可変手段にて、前記圧縮機容量を同じ容量または増加させることにより、圧縮機の容量を増加させる場合は、除霜に必要な熱量を圧縮機の容量を可変する事で増加させ、除霜能力をアップできる。また圧縮機の容量を同等で除霜に入る場合は、除霜運転時の騒音発生を抑えた除霜運転を行うことができる。   According to a third aspect of the present invention, the defrosting start determining means determines the start of the defrosting operation, and the compressor capacity changing means for changing the capacity of the compressor causes the compressor capacity to be the same or increased. Thus, when the capacity of the compressor is increased, the amount of heat necessary for defrosting can be increased by changing the capacity of the compressor, thereby improving the defrosting capacity. Moreover, when the capacity | capacitance of a compressor is equivalent and it enters into a defrost, the defrost operation which suppressed the noise generation at the time of a defrost operation can be performed.

第4の発明は、流体循環切替弁を三方に接続する接続口を設け、流体循環切替弁の動作により流体の流れを全て切り替えるようにしたことにより、給湯用熱交換器の流体の流れが止まり、圧縮機の熱量を除霜に全て利用できることから、除霜時間が早く終了することができ、タンクの沸き上がり時間が短縮できる効果がある。またタンクユニットとヒート
ポンプユニットの間をつなげる接続配管に水を通過させることから接続配管の凍結防止の効果もある。
According to a fourth aspect of the present invention, a connection port for connecting the fluid circulation switching valve in three directions is provided, and all the fluid flows are switched by the operation of the fluid circulation switching valve. Since all the heat quantity of the compressor can be used for defrosting, there is an effect that the defrosting time can be completed quickly and the tank boiling time can be shortened. Further, since water is passed through the connecting pipe connecting the tank unit and the heat pump unit, there is an effect of preventing the connecting pipe from freezing.

第5の発明は、ヒートポンプ回路を超臨界蒸気圧圧縮式冷凍サイクルで構成し、高圧側の冷媒圧力が冷媒の臨界圧異常となるようにしたことより、温暖化係数の小さいCO2を利用した自然冷媒として、ヒートポンプ回路を構成できることになる。   According to a fifth aspect of the present invention, the heat pump circuit is constituted by a supercritical vapor pressure compression refrigeration cycle, and the refrigerant pressure on the high pressure side becomes a critical pressure abnormality of the refrigerant. As a refrigerant, a heat pump circuit can be configured.

(実施の形態1)
以下、本発明の一実施例によるヒートポンプ給湯装置について図面を用いて説明する。
(Embodiment 1)
Hereinafter, a heat pump water heater according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施例によるヒートポンプ給湯装置の回路構成図である。   FIG. 1 is a circuit configuration diagram of a heat pump water heater according to an embodiment of the present invention.

まず、本実施例によるヒートポンプ給湯装置のヒートポンプ回路について説明する。   First, the heat pump circuit of the heat pump hot water supply apparatus according to this embodiment will be described.

本実施例によるヒートポンプ回路10は、二酸化炭素を冷媒として用い、高圧側では臨界圧を越える状態で運転することが好ましい。本実施例では二酸化炭素を冷媒として採用しているが、その他の冷媒でヒートポンプ回路を構成しても問題はない。   The heat pump circuit 10 according to the present embodiment preferably uses carbon dioxide as a refrigerant and is operated in a state where the critical pressure is exceeded on the high pressure side. In the present embodiment, carbon dioxide is used as the refrigerant, but there is no problem even if the heat pump circuit is constituted by other refrigerants.

ヒートポンプ回路10は、圧縮機11、給湯用熱交換器12、メイン膨張弁13A、キャピラリーチューブ13B、及び蒸発器14を順に配管で接続して構成されている。ヒートポンプ回路10には、蒸発器14の吸入空気を検出する温度センサ(外気温度検出手段)10D、蒸発器14の出口付近の温度を検知する温度センサ(蒸発器温度検出手段)10Eを備えている。   The heat pump circuit 10 is configured by connecting a compressor 11, a hot water supply heat exchanger 12, a main expansion valve 13A, a capillary tube 13B, and an evaporator 14 in this order by piping. The heat pump circuit 10 includes a temperature sensor (outside air temperature detection means) 10D that detects the intake air of the evaporator 14, and a temperature sensor (evaporator temperature detection means) 10E that detects the temperature near the outlet of the evaporator 14. .

次に、本実施例によるヒートポンプ給湯装置の貯湯回路について説明する。   Next, a hot water storage circuit of the heat pump hot water supply apparatus according to this embodiment will be described.

貯湯タンク20の底部配管から、流量調整弁31を介して水道管等の水供給配管32に接続されている。また貯湯タンク20の底部配管から、循環ポンプ23を介して給湯用熱交換器12の水用配管12Aの流入側と接続されている。この給湯用熱交換器の水の流れをバイパスするように、ヒートポンプユニットの中にバイパス回路25を設け、そのバイパス回路に流体循環切替弁25Aを接続している。また、貯湯タンク20の上部循環用配管24は、水用配管12Aの流出側と接続されている。なお、本実施例による貯湯タンク20は、積層式の貯湯タンクであり、タンク内での撹拌が防止され、上部に高温水が底部に低温水が蓄積されるように構成されている。流体循環切替弁25Aを上記位置に配することにより、接続配管40にも水が流れ凍結が防止できる。   A hot water tank 20 is connected to a water supply pipe 32 such as a water pipe through a flow rate adjusting valve 31 from a bottom pipe. Further, the hot water storage tank 20 is connected to the inflow side of the water piping 12 </ b> A of the hot water supply heat exchanger 12 through the circulation pump 23. A bypass circuit 25 is provided in the heat pump unit so as to bypass the water flow of the hot water supply heat exchanger, and a fluid circulation switching valve 25A is connected to the bypass circuit. The upper circulation pipe 24 of the hot water storage tank 20 is connected to the outflow side of the water pipe 12A. The hot water storage tank 20 according to the present embodiment is a stacked hot water storage tank, and is configured so that stirring in the tank is prevented and high temperature water is accumulated at the top and low temperature water is accumulated at the bottom. By disposing the fluid circulation switching valve 25A at the above position, water can flow into the connection pipe 40 and freeze can be prevented.

一方、貯湯タンク20の上部出湯用配管33は、混合弁34に接続されている。混合弁34の流出側の出湯回路は、キッチン、又は洗面所等の給湯用の蛇口36に接続されている。   On the other hand, the upper hot water supply pipe 33 of the hot water storage tank 20 is connected to the mixing valve 34. The outlet circuit on the outflow side of the mixing valve 34 is connected to a faucet 36 for hot water supply such as a kitchen or a washroom.

なお、貯湯タンクに関しては、本願と直接関係がないため説明は省略する。   Since the hot water storage tank is not directly related to the present application, the description thereof is omitted.

また図2は、この給湯用熱交換器の水の流れをバイパスするように、タンクユニットの中にバイパス回路25を設け、そのバイパス回路に流体循環切替弁25Bを接続している。   In FIG. 2, a bypass circuit 25 is provided in the tank unit so as to bypass the flow of water in the hot water heat exchanger, and a fluid circulation switching valve 25B is connected to the bypass circuit.

この流体循環切替弁の25Aの位置でも除霜性能の効果は図1のヒートポンプユニット側に配置した物と同じである。   Even at the position of the fluid circulation switching valve 25A, the effect of the defrosting performance is the same as that disposed on the heat pump unit side in FIG.

また図3は、この給湯用熱交換器の水の流れをバイパスするように、ヒートポンプユニ
ットの中にバイパス回路25を設け、そのバイパス回路25と給湯用熱交換器に流れる回路の接点部に3方の接続口がある流体循環切替弁25Cを接続している。上記位置に流体循環切替弁25Cを配することにより、給湯用熱交換器12に全く水が流れないため、給湯用熱交換器12で熱ロスが発生せず、また、接続配管40には水が流れるため凍結が防止できる。
Further, FIG. 3 shows that a bypass circuit 25 is provided in the heat pump unit so as to bypass the flow of water in the hot water heat exchanger, and the bypass circuit 25 and a circuit flowing through the hot water heat exchanger are connected at the contact portion 3. The fluid circulation switching valve 25C having the other connection port is connected. By disposing the fluid circulation switching valve 25C at the above position, water does not flow at all in the hot water supply heat exchanger 12, so that no heat loss occurs in the hot water supply heat exchanger 12, and the connection pipe 40 has no water. Freezing can be prevented.

また図4は、この給湯用熱交換器の水の流れをバイパスするように、タンクユニットの中にバイパス回路25を設け、そのバイパス回路25と給湯用熱交換器に流れる回路の接点部に3方の接続口がある流体循環切替弁25Dを接続している。上記位置に流体循環切替弁25Dを配することにより、給湯用熱交換器12に全く水が流れないため、給湯用熱交換器12で熱ロスを防止できる。   Further, FIG. 4 shows that a bypass circuit 25 is provided in the tank unit so as to bypass the flow of water in the hot water heat exchanger, and the bypass circuit 25 and the circuit flowing through the hot water heat exchanger are connected to 3 points. The fluid circulation switching valve 25D having the other connection port is connected. By disposing the fluid circulation switching valve 25D at the above position, water does not flow at all in the hot water supply heat exchanger 12, and thus the heat loss in the hot water supply heat exchanger 12 can prevent heat loss.

以下、本実施例によるヒートポンプ給湯装置の運転動作について説明する。   Hereinafter, the operation of the heat pump water heater according to the present embodiment will be described.

貯湯タンクからの運転信号を受信してヒートポンプユニットの運転が開始される。   The operation signal from the hot water storage tank is received and the operation of the heat pump unit is started.

ヒートポンプ回路10では、圧縮機11で圧縮された冷媒は、給湯用熱交換器12で放熱し、メイン膨張弁13A及びキャピラリーチューブ13Bで減圧された後、蒸発器14にて吸熱し、ガス状態で圧縮機11に吸入される。   In the heat pump circuit 10, the refrigerant compressed by the compressor 11 dissipates heat in the hot water supply heat exchanger 12, is depressurized by the main expansion valve 13A and the capillary tube 13B, then absorbs heat in the evaporator 14, and in a gas state. It is sucked into the compressor 11.

一方、循環ポンプ23の運転により、貯湯タンク20内の水は、底部配管を通って水用配管12Aに導かれ、水用配管12Aで加熱された温水は、上部循環用配管24を通って貯湯タンク20に戻される。   On the other hand, by the operation of the circulation pump 23, the water in the hot water storage tank 20 is led to the water pipe 12A through the bottom pipe, and the hot water heated by the water pipe 12A passes through the upper circulation pipe 24. Returned to the tank 20.

除霜運転の前及び後で流体循環切替弁が動作して開放となり、給湯用熱交換器に水が流れにくいかまたは流れないようにバイパス回路25に水が流れる。   Before and after the defrosting operation, the fluid circulation switching valve operates to be opened, and water flows into the bypass circuit 25 so that the water does not flow easily or does not flow through the hot water heat exchanger.

圧縮機11での能力制御及び膨張弁13での開度制御は、冷媒吐出温度が、あらかじめ設定された温度を維持するように制御される。   The capacity control at the compressor 11 and the opening degree control at the expansion valve 13 are controlled such that the refrigerant discharge temperature maintains a preset temperature.

次に、本実施例によるヒートポンプ給湯装置の貯湯運転起動制御について図5から図8を用いて説明する。   Next, hot water storage operation start control of the heat pump hot water supply apparatus according to the present embodiment will be described with reference to FIGS.

圧縮機11の起動から所定の時間は、起動時に設定した目標周波数にて運転を行う。目標周波数にて所定時間運転した後には、圧縮機11からの吐出冷媒温度が所定の温度を維持するような通常運転モードに切り換える。なお、圧縮機11の運転開始から目標周波数に到達するまでは、周波数を段階的に上昇させる起動制御を行う。   For a predetermined time from the start of the compressor 11, the operation is performed at the target frequency set at the start. After operating for a predetermined time at the target frequency, the operation mode is switched to the normal operation mode in which the refrigerant discharged from the compressor 11 maintains the predetermined temperature. In addition, from the start of operation of the compressor 11 until the target frequency is reached, start-up control is performed to increase the frequency stepwise.

まず、除霜開始判定から機能部品の駆動に至るまでを、図5を用いて説明する。   First, the process from the defrosting start determination to the functional component drive will be described with reference to FIG.

図5は、本実施例によるヒートポンプ給湯装置の除霜開始判定から除霜運転を示すブロック図である。   FIG. 5 is a block diagram illustrating the defrosting operation from the defrosting start determination of the heat pump water heater according to the present embodiment.

除霜開始判定手段48は、大きく、蒸発器除霜開始判定手段45と外気温除霜開始判定手段46と運転時間除霜開始判定手段47の3つの除霜開始判定から構成され、この3つの判定が全て除霜開始となって初めて除霜運転が開始される。蒸発器除霜開始判定手段45では、蒸発器の温度を検知する蒸発器温度検知手段10Eと蒸発器の除霜開始を判定する蒸発器温度設定手段42から除霜判定を行い、蒸発器除霜開始判定手段45で蒸発器温度による除霜開始が決定される。つぎに外気温度除霜開始判定手段46では、外気温度を検知する外気温度検知手段10Dと外気温度の除霜開始を判定する外気温度設定手段43
から除霜判定を行い、外気温度除霜開始判定手段46で外気温度による除霜開始が決定される。つぎに運転時間除霜開始判定手段47では、圧縮機運転時間を記憶する圧縮機運転時間記憶手段41と圧縮機運転時間から除霜開始を判定する圧縮機運転時間設定手段44から除霜判定を行い、運転時間除霜開始判定手段47で圧縮機の運転時間から除霜運転の開始が決定される。
The defrosting start determining means 48 is largely composed of three defrosting start determinations of an evaporator defrosting start determining means 45, an outside air temperature defrosting start determining means 46, and an operating time defrosting start determining means 47. The defrosting operation is started only when all the determinations are made. The evaporator defrosting start determining means 45 performs the defrosting determination from the evaporator temperature detecting means 10E for detecting the temperature of the evaporator and the evaporator temperature setting means 42 for determining the start of the defrosting of the evaporator. Start determination means 45 determines the start of defrosting based on the evaporator temperature. Next, the outside air temperature defrosting start judging means 46 has an outside air temperature detecting means 10D for detecting the outside air temperature and an outside air temperature setting means 43 for judging the start of defrosting of the outside air temperature.
The defrosting determination is performed, and the start of defrosting based on the outside air temperature is determined by the outside air temperature defrosting start determining means 46. Next, the operating time defrosting start determining means 47 performs the defrosting determination from the compressor operating time storage means 41 for storing the compressor operating time and the compressor operating time setting means 44 for determining the defrosting start from the compressor operating time. Then, the start of the defrosting operation is determined from the operation time of the compressor by the operation time defrosting start determining means 47.

つぎに除霜運転開始判定手段による除霜運転が開始信号により圧縮機容量可変手段49、膨張弁開度可変手段50、流体循環ポンプ流量可変手段51、流体循環切替手段52より、圧縮機、膨張弁、流量循環ポンプ、流体循環切替弁が制御される。   Next, the defrosting operation by the defrosting operation start determining means is started by the compressor capacity variable means 49, the expansion valve opening variable means 50, the fluid circulation pump flow rate variable means 51, and the fluid circulation switching means 52 based on the start signal. The valve, the flow circulation pump, and the fluid circulation switching valve are controlled.

図6は、本実施例によるヒートポンプ給湯装置の除霜開始判定から圧縮機、膨張弁、流体循環ポンプ、流体循環切替弁を駆動する流れを示すフローチャートである。   FIG. 6 is a flowchart illustrating a flow of driving the compressor, the expansion valve, the fluid circulation pump, and the fluid circulation switching valve from the defrosting start determination of the heat pump water heater according to the present embodiment.

タンクユニットから圧縮機運転開始の信号を受信して圧縮機運転が開始する。(S51)つぎに運転時間の記憶を行い(S52)、外気温度と設定されている外気温度を比較して設定されている外気温度より低ければ次に移行する。(S53)つぎに蒸発器温度と設定されている蒸発器温度を比較して設定されている蒸発器温度より低ければ次に移行する。(S54)つぎに圧縮機運転時間が経過していれば、除霜開始判定を決定する。(S55,S56)除霜開始判定より圧縮機、膨張弁、流体循環ポンプ、流体循環切替弁を制御する。(S57,S58,S59,S60)。   A compressor operation start signal is received from the tank unit, and the compressor operation starts. (S51) Next, the operation time is stored (S52). If the outside temperature is lower than the set outside temperature by comparing the outside temperature with the set outside temperature, the process proceeds to the next. (S53) Next, the evaporator temperature is compared with the set evaporator temperature, and if it is lower than the set evaporator temperature, the process proceeds to the next. (S54) Next, if the compressor operation time has elapsed, the defrosting start determination is determined. (S55, S56) The compressor, the expansion valve, the fluid circulation pump, and the fluid circulation switching valve are controlled based on the defrosting start determination. (S57, S58, S59, S60).

図7は、本実施例によるヒートポンプ給湯装置の除霜運転開始の開始から除霜中を示すグラフである。   FIG. 7 is a graph showing defrosting from the start of the defrosting operation of the heat pump water heater according to this embodiment.

図7に示すように、除霜開始から、終了まで、圧縮機、膨張弁、外ファン、流体循環ポンプ、流体循環切替弁の動作について説明する。   As shown in FIG. 7, the operation of the compressor, the expansion valve, the external fan, the fluid circulation pump, and the fluid circulation switching valve will be described from the start to the end of the defrosting.

最初に、流体循環切替弁は、除霜開始と同時に開方向に制御される。   First, the fluid circulation switching valve is controlled in the opening direction simultaneously with the start of defrosting.

その後、膨張弁を段階的にステップ2、ステップ3と開度大きくさせてステップ3では、最大開度にて除霜能力を最大限に活かすように制御されている。除霜終了後も段階的に開度を小さくしていく。   After that, the opening of the expansion valve is increased stepwise in steps 2 and 3, and in step 3, the defrosting capacity is controlled to the maximum at the maximum opening. After the defrosting is completed, the opening is gradually reduced.

圧縮機周波数は、除霜運転開始時はその前の通常運転時と同等の周波数で運転した後、ステップ3から高周波数にて運転して除霜能力をアップしている。音の変化が大きくならないためである。   At the start of the defrosting operation, the compressor is operated at a frequency equivalent to that at the previous normal operation, and then is operated at a high frequency from step 3 to increase the defrosting capability. This is because the change in sound does not increase.

外ファンは、除霜開始から停止して除霜運転の弊害とならないように制御されている。   The outer fan is controlled so as not to be harmful to the defrosting operation by stopping from the start of the defrosting.

流体循環ポンプは、1秒の小流量(0.3L/min)と9秒の微少流量(0.01L/min)で制御され、給湯用熱交換器で除霜用の熱量を放熱しないようにして流体循環ポンプを制御している。   The fluid circulation pump is controlled with a small flow rate (0.3 L / min) for 1 second and a minute flow rate (0.01 L / min) for 9 seconds so as not to dissipate heat for defrosting with a heat exchanger for hot water supply. The fluid circulation pump is controlled.

なお、除霜運転の開始判定は、蒸発器温度、外気温度、圧縮機運転時間の全てのパラメータから判定しなくても、その内の一つまたは二つのパラメータから判定してもよい。   In addition, the start determination of a defrost operation may not be determined from all parameters of the evaporator temperature, the outside air temperature, and the compressor operation time, but may be determined from one or two of them.

以上のように、本発明は、ヒートポンプ給湯装置における除霜方法に関するものであり、また本発明のヒートポンプ給湯装置は、給湯機能の他に、例えば、浴槽給湯機能、暖房機能、乾燥機能を有する装置にも適している。   As described above, the present invention relates to a defrosting method in a heat pump hot water supply apparatus, and the heat pump hot water supply apparatus of the present invention has, for example, a bath water supply function, a heating function, and a drying function in addition to the hot water supply function. Also suitable for.

本発明の一実施例によるヒートポンプ給湯装置のヒートポンプユニット側に流体循環切替弁を配置した回路構成図The circuit block diagram which arranged the fluid circulation switching valve in the heat pump unit side of the heat pump hot-water supply apparatus by one Example of this invention 本発明の一実施例によるヒートポンプ給湯装置のタンクユニット側に流体循環切替弁を配置した回路構成図The circuit block diagram which has arrange | positioned the fluid circulation switching valve in the tank unit side of the heat pump hot-water supply apparatus by one Example of this invention 本発明の一実施例によるヒートポンプ給湯装置のヒートポンプユニット側に流体循環切替3方弁を配置した回路構成図The circuit block diagram which has arrange | positioned the fluid circulation switching 3 way valve in the heat pump unit side of the heat pump hot-water supply apparatus by one Example of this invention. 本発明の一実施例によるヒートポンプ給湯装置のタンクユニット側に流体循環切替3方弁を配置した回路構成図The circuit block diagram which has arrange | positioned the fluid circulation switching 3 way valve in the tank unit side of the heat pump hot-water supply apparatus by one Example of this invention 本実施例によるヒートポンプ給湯装置のブロック図Block diagram of a heat pump water heater according to this embodiment 本実施例によるヒートポンプ給湯装置の制御フローチャートControl flow chart of heat pump water heater according to this embodiment 本実施例によるヒートポンプ給湯装置の制御動作を示すグラフThe graph which shows the control action of the heat pump hot-water supply apparatus by a present Example

符号の説明Explanation of symbols

10 ヒートポンプ回路
10D 温度センサ(外気温度検出手段)
11 圧縮機
12 給湯用熱交換器
13A メイン膨張弁
14 蒸発器
20 貯湯タンク
23 流体循環ポンプ
24 上部循環用配管
25A 流体循環切替弁
40 接続配管
10 heat pump circuit 10D temperature sensor (outside air temperature detection means)
DESCRIPTION OF SYMBOLS 11 Compressor 12 Hot water supply heat exchanger 13A Main expansion valve 14 Evaporator 20 Hot water storage tank 23 Fluid circulation pump 24 Upper circulation piping 25A Fluid circulation switching valve 40 Connection piping

Claims (5)

圧縮機、給湯用熱交換器、膨張弁、及び蒸発器を配管で接続したヒートポンプ回路と貯湯槽、流体循環ポンプ、流体循環切替弁を配管で接続した流体回路を有し、前記給湯用熱交換器をバイパスするバイパス回路を設け、前記バイパス回路中に流体循環切替弁を設けたヒートポンプ給湯装置であって、除霜運転開始時、前記流体循環切替弁を開放に動作させた後、前記膨張弁の開度を開くことを特徴とするヒートポンプ給湯装置。 A heat pump circuit in which a compressor, a heat exchanger for hot water supply, an expansion valve, and an evaporator are connected by piping and a hot water tank, a fluid circulation pump, and a fluid circuit in which a fluid circulation switching valve is connected by piping; A heat pump hot water supply apparatus provided with a bypass circuit for bypassing a heater, and provided with a fluid circulation switching valve in the bypass circuit, wherein the expansion valve is operated after opening the fluid circulation switching valve at the start of a defrosting operation. The heat pump hot water supply apparatus characterized by opening the opening degree of. 前記除霜運転開始の判定は、蒸発器の温度を検知する蒸発器温度検出手段と、前記蒸発器温度と除霜開始判定をする為の蒸発器設定温度との温度差から除霜開始を判定する蒸発器除霜開始判定手段と、外気温度を検知する外気温度検知手段と、前記外気温度と除霜開始判定をする為の外気設定温度との温度差から除霜開始を判定する外気温度除霜開始判定手段と、前記圧縮機運転時間を記憶する圧縮機運転時間記憶手段と、前記圧縮機運転時間の記憶時間と除霜運転開始の設定時間から除霜開始を判定する運転時間除霜開始判定手段とを設け、前記蒸発器除霜開始判定手段と前記外気温除霜開始判定手段と運転時間除霜開始判定手段から判定された各除霜開始判定から除霜開始判定手段で最終判定して、除霜運転を開始することを特徴とする請求項1に記載のヒートポンプ給湯装置。 The determination of the start of the defrosting operation is performed by determining the start of defrosting from the temperature difference between the evaporator temperature detecting means for detecting the temperature of the evaporator and the evaporator temperature and the evaporator set temperature for performing the defrosting start determination. The outside defrost start determining means, the outside temperature detecting means for detecting the outside air temperature, and the outside air temperature removal for determining the start of the defrost based on the temperature difference between the outside air temperature and the outside air set temperature for performing the defrost start determination. Defrost start determination means, compressor operation time storage means for storing the compressor operation time, operation time for determining the defrost start from the storage time of the compressor operation time and the set time for defrost operation start Defrost start A determination means, and a final determination is made by the defrost start determination means from each defrost start determination determined from the evaporator defrost start determination means, the outside air temperature defrost start determination means and the operating time defrost start determination means. And starting defrosting operation The heat pump water heater according to Motomeko 1. 前記除霜開始判定手段で除霜運転の開始を判定して、前記圧縮機の容量を可変する圧縮機容量可変手段にて、前記圧縮機容量を同じ容量または増加させることを特徴とする請求項1または2に記載のヒートポンプ給湯装置。 The start of the defrosting operation is determined by the defrosting start determining means, and the compressor capacity is varied by the compressor capacity varying means for varying the capacity of the compressor. The heat pump hot-water supply apparatus of 1 or 2. 前記流体循環切替弁を三方に接続する接続口を設け、流体循環切替弁の動作により流体の流れを全て切り替えるようにしたことを特徴とする請求項1に記載のヒートポンプ給湯装置。 The heat pump hot water supply device according to claim 1, wherein a connection port for connecting the fluid circulation switching valve in three directions is provided, and all the flow of fluid is switched by the operation of the fluid circulation switching valve. 前記ヒートポンプ回路を超臨界蒸気圧圧縮式冷凍サイクルで構成し、高圧側の冷媒圧力が冷媒の臨界圧以上となるようにしたことを特徴とする請求項1、請求項2、請求項3、請求項4に記載のヒートポンプ給湯装置。 The heat pump circuit comprises a supercritical vapor pressure compression refrigeration cycle, and the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant. Item 5. The heat pump hot water supply apparatus according to Item 4.
JP2003389118A 2003-11-19 2003-11-19 Heat pump water heater Expired - Fee Related JP3894190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003389118A JP3894190B2 (en) 2003-11-19 2003-11-19 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003389118A JP3894190B2 (en) 2003-11-19 2003-11-19 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2005147610A true JP2005147610A (en) 2005-06-09
JP3894190B2 JP3894190B2 (en) 2007-03-14

Family

ID=34695962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003389118A Expired - Fee Related JP3894190B2 (en) 2003-11-19 2003-11-19 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP3894190B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183054A (en) * 2006-01-10 2007-07-19 Matsushita Electric Ind Co Ltd Storage type hot water supplier
JP2007333341A (en) * 2006-06-16 2007-12-27 Corona Corp Heat pump hot water supply machine
EP1884648A1 (en) * 2006-07-25 2008-02-06 Lg Electronics Inc. Co-generation unit and control method of the same
WO2009047898A1 (en) * 2007-10-09 2009-04-16 Panasonic Corporation Refrigeration cycle device
WO2009148011A1 (en) * 2008-06-06 2009-12-10 ダイキン工業株式会社 Hot water system
JP2010175107A (en) * 2009-01-28 2010-08-12 Mitsubishi Electric Corp Heat pump type hot water supply device
WO2010109689A1 (en) * 2009-03-27 2010-09-30 日立アプライアンス株式会社 Heat pump type hot water supply device
CN103014880A (en) * 2012-12-20 2013-04-03 天津大学 Novel affinity ligand polypeptide library of immunoglobulin G constructed based on protein A affinity model and application of design method
JP2014105945A (en) * 2012-11-28 2014-06-09 Hitachi Appliances Inc Heat pump type water heater
JP2015021718A (en) * 2013-07-24 2015-02-02 株式会社ノーリツ Hot water storage type hot water supply device
JP2015508885A (en) * 2012-03-01 2015-03-23 ウエスト ヒート リカバリー リミテッド Heat recovery
JP2015197274A (en) * 2014-04-03 2015-11-09 日立アプライアンス株式会社 Heat pump type water heater, and heat pump unit
US20150330662A1 (en) * 2012-12-13 2015-11-19 Robert Bosch Gmbh Heating device and method for operating the same
CN105402896A (en) * 2015-12-08 2016-03-16 小米科技有限责任公司 Control method and device of intelligent water heater and intelligent water heater
JP2018004188A (en) * 2016-07-05 2018-01-11 株式会社コロナ Hot water heating system
EP3640556A4 (en) * 2017-05-24 2020-11-25 Toshiba Carrier Corporation Air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914676A (en) * 1995-06-30 1997-01-17 Tokyo Gas Co Ltd Operation controller in warm water heater
JP2001082802A (en) * 1999-09-13 2001-03-30 Denso Corp Heat pump type hot water apparatus
JP2002235953A (en) * 2001-02-09 2002-08-23 Toshiba Kyaria Kk Heat pump hot water heater
JP2003139392A (en) * 2001-11-05 2003-05-14 Denso Corp Water heater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914676A (en) * 1995-06-30 1997-01-17 Tokyo Gas Co Ltd Operation controller in warm water heater
JP2001082802A (en) * 1999-09-13 2001-03-30 Denso Corp Heat pump type hot water apparatus
JP2002235953A (en) * 2001-02-09 2002-08-23 Toshiba Kyaria Kk Heat pump hot water heater
JP2003139392A (en) * 2001-11-05 2003-05-14 Denso Corp Water heater

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183054A (en) * 2006-01-10 2007-07-19 Matsushita Electric Ind Co Ltd Storage type hot water supplier
JP2007333341A (en) * 2006-06-16 2007-12-27 Corona Corp Heat pump hot water supply machine
EP1884648A1 (en) * 2006-07-25 2008-02-06 Lg Electronics Inc. Co-generation unit and control method of the same
US8245948B2 (en) 2006-07-25 2012-08-21 Lg Electronics Inc. Co-generation and control method of the same
US8590326B2 (en) 2007-10-09 2013-11-26 Panasonic Corporation Refrigeration cycle apparatus
WO2009047898A1 (en) * 2007-10-09 2009-04-16 Panasonic Corporation Refrigeration cycle device
WO2009148011A1 (en) * 2008-06-06 2009-12-10 ダイキン工業株式会社 Hot water system
JP2010175107A (en) * 2009-01-28 2010-08-12 Mitsubishi Electric Corp Heat pump type hot water supply device
JP5378504B2 (en) * 2009-03-27 2013-12-25 日立アプライアンス株式会社 Heat pump water heater
WO2010109689A1 (en) * 2009-03-27 2010-09-30 日立アプライアンス株式会社 Heat pump type hot water supply device
JP2015508885A (en) * 2012-03-01 2015-03-23 ウエスト ヒート リカバリー リミテッド Heat recovery
JP2014105945A (en) * 2012-11-28 2014-06-09 Hitachi Appliances Inc Heat pump type water heater
US20150330662A1 (en) * 2012-12-13 2015-11-19 Robert Bosch Gmbh Heating device and method for operating the same
CN103014880A (en) * 2012-12-20 2013-04-03 天津大学 Novel affinity ligand polypeptide library of immunoglobulin G constructed based on protein A affinity model and application of design method
US10001489B2 (en) 2012-12-20 2018-06-19 Tianjin University Method for constructing a novel affinity peptide library for binding immunoglobulin G based on a protein affinity model of protein A
JP2015021718A (en) * 2013-07-24 2015-02-02 株式会社ノーリツ Hot water storage type hot water supply device
JP2015197274A (en) * 2014-04-03 2015-11-09 日立アプライアンス株式会社 Heat pump type water heater, and heat pump unit
CN105402896A (en) * 2015-12-08 2016-03-16 小米科技有限责任公司 Control method and device of intelligent water heater and intelligent water heater
JP2018004188A (en) * 2016-07-05 2018-01-11 株式会社コロナ Hot water heating system
EP3640556A4 (en) * 2017-05-24 2020-11-25 Toshiba Carrier Corporation Air conditioner

Also Published As

Publication number Publication date
JP3894190B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
JP3783711B2 (en) Heat pump water heater
JP3894190B2 (en) Heat pump water heater
JP4738293B2 (en) Heat pump device and heat pump water heater
JP5343618B2 (en) Refrigeration cycle equipment
EP2102563A1 (en) Air conditioning systems and methods having free-cooling pump-protection sequences
JP4622990B2 (en) Air conditioner
WO2006006578A1 (en) Heat pump-type hot-water supply device
JP5205079B2 (en) Heat pump water heater / heater
JP4507109B2 (en) Heat pump water heater
JP3901192B2 (en) Heat pump water heater
JP3919736B2 (en) Start-up control device and start-up control method for heat pump water heater
JP2009264715A (en) Heat pump hot water system
JP2007139415A (en) Heat pump water heater
JP2011247547A (en) Refrigerating cycle device
JP2010084975A (en) Heating device
JP4254532B2 (en) Heat pump type water heater
JP4021374B2 (en) Heat pump water heater
JP2006317038A (en) Heat pump type water heater
JP2008275199A (en) Heat pump type water heater
JP4372361B2 (en) Heat pump water heater
JP2004308955A (en) Heat pump device
JP2007040555A (en) Heat pump type water heater
JP2009085476A (en) Heat pump water heater
JP7012818B2 (en) Water heater
JP2011153789A (en) Refrigerating cycle device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees