JP5378504B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP5378504B2
JP5378504B2 JP2011505796A JP2011505796A JP5378504B2 JP 5378504 B2 JP5378504 B2 JP 5378504B2 JP 2011505796 A JP2011505796 A JP 2011505796A JP 2011505796 A JP2011505796 A JP 2011505796A JP 5378504 B2 JP5378504 B2 JP 5378504B2
Authority
JP
Japan
Prior art keywords
liquid
temperature
heat exchanger
refrigerant
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011505796A
Other languages
Japanese (ja)
Other versions
JPWO2010109689A1 (en
Inventor
哲也 北村
和生 居山
純一 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011505796A priority Critical patent/JP5378504B2/en
Publication of JPWO2010109689A1 publication Critical patent/JPWO2010109689A1/en
Application granted granted Critical
Publication of JP5378504B2 publication Critical patent/JP5378504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Description

本発明は、圧縮機,液−冷媒熱交換器(水−冷媒熱交換器を含む),膨張弁,蒸発器を冷媒配管で接続したヒートポンプ回路を利用して、液−冷媒熱交換器にて液体(水を含む)を沸上げるヒートポンプ式給湯機に関するものである。   The present invention provides a liquid-refrigerant heat exchanger using a heat pump circuit in which a compressor, a liquid-refrigerant heat exchanger (including a water-refrigerant heat exchanger), an expansion valve, and an evaporator are connected by a refrigerant pipe. The present invention relates to a heat pump type water heater for boiling liquid (including water).

深夜電力等を利用してヒートポンプ回路を駆動し、低温水を加熱して所望温度の湯を貯湯タンクに貯える沸上機能を備えたヒートポンプ式給湯機が知られている。このようなヒートポンプ給湯機は、低外気温時などの条件下で運転した場合、蒸発器に外気中の水分が氷結して着霜し、蒸発器の性能を低下させてしまう。このため、蒸発器の除霜運転を実施して霜取りを行うようになっている。   2. Description of the Related Art A heat pump type hot water heater having a boiling function for driving a heat pump circuit using midnight power or the like and heating low temperature water to store hot water at a desired temperature in a hot water storage tank is known. When such a heat pump water heater is operated under conditions such as a low outside air temperature, moisture in the outside air freezes on the evaporator and forms frost, thereby reducing the performance of the evaporator. For this reason, defrosting operation of an evaporator is implemented and defrosting is performed.

除霜運転を実施する場合には、除霜運転の効率を良くするために、ヒートポンプ回路の水−冷媒熱交換器を通して貯湯タンクの水を循環させる循環ポンプを停止させることが提案されている(例えば、特許文献1)。このようにすれば、ヒートポンプ回路を循環する冷媒が水−冷媒熱交換器を通る際に水−冷媒熱交換器内の水に吸熱される熱量を少なくすることができるため、冷媒の熱を蒸発器での除霜に有効に利用することができる。   When carrying out the defrosting operation, in order to improve the efficiency of the defrosting operation, it is proposed to stop the circulation pump that circulates the water in the hot water storage tank through the water-refrigerant heat exchanger of the heat pump circuit ( For example, Patent Document 1). In this way, the amount of heat absorbed by the water in the water-refrigerant heat exchanger when the refrigerant circulating in the heat pump circuit passes through the water-refrigerant heat exchanger can be reduced, so that the heat of the refrigerant is evaporated. It can be used effectively for defrosting in a vessel.

また、除霜運転の効率を良くするために、ヒートポンプ回路の水−冷媒熱交換器を通して貯湯タンクの水を循環させる循環ポンプの流量を低下させる除霜準備運転を、除霜運転に先立って行うことが提案されている(例えば、特許文献2)。   Further, in order to improve the efficiency of the defrosting operation, the defrosting preparation operation for reducing the flow rate of the circulation pump that circulates the water in the hot water storage tank through the water-refrigerant heat exchanger of the heat pump circuit is performed prior to the defrosting operation. Has been proposed (for example, Patent Document 2).

しかし、特許文献2に記載の発明では、除霜準備運転中に少ない流量ではあるが循環ポンプを駆動させるものであるため、貯湯タンク内の低温の水が水−冷媒熱交換器に導入されてしまい、その分、ヒートポンプ回路を循環する冷媒の熱が水−冷媒熱交換器を通る際に水−冷媒熱交換器内の水に吸熱されてしまうという問題がある。   However, in the invention described in Patent Document 2, since the circulation pump is driven at a low flow rate during the defrost preparation operation, low-temperature water in the hot water storage tank is introduced into the water-refrigerant heat exchanger. Therefore, there is a problem that the heat of the refrigerant circulating in the heat pump circuit is absorbed by the water in the water-refrigerant heat exchanger when passing through the water-refrigerant heat exchanger.

そこで、水−冷媒熱交換器から導出された水を貯湯タンクをバイパスして流すバイパス配管を設け、除霜準備運転中は前記水−冷媒熱交換器から導出された水をバイパス配管を通して循環させ、除霜運転中は循環ポンプを停止させることが提案されている(例えば、特許文献3)。   Therefore, a bypass pipe is provided to flow the water derived from the water-refrigerant heat exchanger bypassing the hot water storage tank, and the water derived from the water-refrigerant heat exchanger is circulated through the bypass pipe during the defrost preparation operation. It has been proposed to stop the circulation pump during the defrosting operation (for example, Patent Document 3).

特許3297657号公報Japanese Patent No. 3297657 特開2008−39360号公報JP 2008-39360 A 特開2008−121923号公報JP 2008-121923 A 特開2004−37011号公報JP 2004-37011 A 特開2007−333340号公報JP 2007-333340 A 特開平5−272812号公報JP-A-5-272812 特開2003−222391号公報JP 2003-222391 A

しかしながら、特許文献3に記載のヒートポンプ式給湯機は、除霜運転中は循環ポンプを停止させるものであるため、外気温度が例えば−15℃以下のような極低温になった環境で運転された場合、循環配管内の凍結が発生してしまい、その後の沸上げ運転が困難となったり不可能となるといった問題の発生する虞があった。   However, since the heat pump type water heater described in Patent Document 3 is for stopping the circulation pump during the defrosting operation, the heat pump type water heater is operated in an environment where the outside air temperature is extremely low such as −15 ° C. or lower. In such a case, there is a risk that the freezing in the circulation pipe may occur and the subsequent boiling operation becomes difficult or impossible.

そこで、本発明は、外気条件が極低温の環境で運転された場合でも、配管内の水の凍結を防止して安定した沸上げ運転を行うことのできるヒートポンプ式給湯機を提供することを目的とする。   Therefore, the present invention has an object to provide a heat pump type water heater that can perform a stable boiling operation by preventing freezing of water in a pipe even when the outside air condition is operated in a cryogenic environment. And

本発明に係るヒートポンプ式給湯機は、冷媒を圧縮する圧縮機と、前記圧縮機から吐出される高温,高圧の冷媒により貯蔵タンクに貯蔵される液体を加熱する液−冷媒熱交換器と、前記液−冷媒熱交換器から膨張弁を介して流入される低温,低圧の冷媒を空気と熱交換させる蒸発器と、液−冷媒熱交換器で加熱された液体を貯蔵する貯蔵タンクと、低温の液体を前記液−冷媒熱交換器に送る往き配管と、前記液−冷媒熱交換器で加熱された液体を前記貯蔵タンクに戻す戻り配管とを備え、前記低温の液体を加熱して前記貯蔵タンクに貯える沸上げ運転を行い、さらに、前記液−冷媒熱交換器から流出した液体が前記貯蔵タンクをバイパスするように前記往き配管及び戻り配管を接続するバイパス配管と、前記液−冷媒熱交換器から流出した液体が貯蔵タンクに送られる経路と貯蔵タンクをバイパスする経路とを切り換える経路切換機構とを備え、高温の冷媒を前記蒸発器に導入して蒸発器に付着した霜を溶かす除霜運転を行うヒートポンプ式給湯機において、除霜運転前に前記低温の液体よりも高温の液体を前記液−冷媒熱交換器に導入する高温液導入動作を行い、除霜運転中は、前記液−冷媒熱交換器から流出した液体を前記沸上げ運転時よりも少ない流量でバイパス配管を通して循環させるバイパス循環動作を行うことを特徴とする。   A heat pump hot water supply apparatus according to the present invention includes a compressor that compresses a refrigerant, a liquid-refrigerant heat exchanger that heats a liquid stored in a storage tank by a high-temperature, high-pressure refrigerant discharged from the compressor, An evaporator for exchanging heat between the low-temperature and low-pressure refrigerant flowing from the liquid-refrigerant heat exchanger through the expansion valve with air, a storage tank for storing the liquid heated by the liquid-refrigerant heat exchanger, A forward pipe for sending liquid to the liquid-refrigerant heat exchanger; and a return pipe for returning the liquid heated by the liquid-refrigerant heat exchanger to the storage tank, and heating the low-temperature liquid to the storage tank. A bypass pipe connecting the forward pipe and the return pipe so that the liquid flowing out from the liquid-refrigerant heat exchanger bypasses the storage tank, and the liquid-refrigerant heat exchanger Liquid spilled from A heat pump type that includes a path switching mechanism that switches between a path that is sent to the storage tank and a path that bypasses the storage tank, and performs a defrosting operation that introduces a high-temperature refrigerant into the evaporator and melts frost adhering to the evaporator In the water heater, a high-temperature liquid introduction operation is performed to introduce a liquid higher in temperature than the low-temperature liquid into the liquid-refrigerant heat exchanger before the defrosting operation, and from the liquid-refrigerant heat exchanger during the defrosting operation. A bypass circulation operation is performed in which the liquid that has flowed out is circulated through the bypass pipe at a lower flow rate than in the boiling operation.

上記構成からなるヒートポンプ式給湯機によれば、除霜運転中であっても液−冷媒熱交換器には温水が導入されるため、除霜運転中の配管内の凍結を防止することができ、しかも、冷媒が液−冷媒熱交換器で温度低下するのを防止して、冷媒の熱を蒸発器での除霜に有効に利用することができ、除霜運転の効率を良くすることができる。   According to the heat pump type water heater having the above configuration, since hot water is introduced into the liquid-refrigerant heat exchanger even during the defrosting operation, it is possible to prevent freezing in the piping during the defrosting operation. In addition, the temperature of the refrigerant can be prevented from decreasing in the liquid-refrigerant heat exchanger, and the heat of the refrigerant can be effectively used for defrosting in the evaporator, thereby improving the efficiency of the defrosting operation. it can.

また、前記ヒートポンプ式給湯機は、外気温度を検知する外気温度検知部をさらに備え、外気温度検知部で検知された温度が所定の温度以下となった場合に前記高温液導入動作を行うことが好ましい。このようにすれば、高温液導入動作を行わなくても配管の凍結が発生しない程度の外気温度である場合には高温液導入動作を行わず、配管の凍結が発生する虞がある外気温度の場合にのみ高温液導入動作を行うことで、エネルギー効率が不必要に低下するのを好適に防止することができる。   The heat pump water heater further includes an outside air temperature detection unit that detects an outside air temperature, and performs the high-temperature liquid introduction operation when the temperature detected by the outside air temperature detection unit becomes a predetermined temperature or less. preferable. In this way, when the outside air temperature is such that the pipe does not freeze even if the high temperature liquid introduction operation is not performed, the high temperature liquid introduction operation is not performed and the outside air temperature at which the pipe may be frozen By performing the high temperature liquid introduction operation only in this case, it is possible to suitably prevent the energy efficiency from being unnecessarily lowered.

また、前記ヒートポンプ式給湯機は、前記高温液導入動作の開始時に前記液−冷媒熱交換器から流出した液体が貯蔵タンクをバイパスする経路となるように前記経路切換機構を切り換えることが好ましい。   Moreover, it is preferable that the said heat pump type water heater switches the said path | route switching mechanism so that the liquid which flowed out of the said liquid-refrigerant heat exchanger may become a path | route which bypasses a storage tank at the time of the start of the said high temperature liquid introduction operation | movement.

また、前記ヒートポンプ式給湯機は、液−冷媒熱交換器に流入する液体の温度を検知する流入液温度検出部をさらに備え、高温液導入動作は、前記流入液温度検出部で検出される温度が所定の温度以上となったこと、又は、所定の時間が経過したことのいずれかを満たす場合に終了することが好ましい。このようにすれば、温水を確実に液−冷媒熱交換器に導入することができる。   The heat pump type water heater further includes an inflow liquid temperature detection unit that detects the temperature of the liquid flowing into the liquid-refrigerant heat exchanger, and the high temperature liquid introduction operation is performed at a temperature detected by the inflow liquid temperature detection unit. It is preferable that the process is terminated when either the temperature reaches a predetermined temperature or the predetermined time has passed. If it does in this way, warm water can be reliably introduced into a liquid-refrigerant heat exchanger.

ところで、上記のような配管内の凍結は、外気温度によっては除霜運転中以外(例えば、通常の沸上げ運転中)にも発生する場合があり、この場合には沸上げ運転が困難となったり不可能となるといった問題の発生する虞があった。その点、上記のような高温液導入動作を行えば凍結の防止を図ることができる。   By the way, depending on the outside air temperature, freezing in the pipe as described above may occur even during defrosting operation (for example, during normal boiling operation). In this case, the boiling operation becomes difficult. There is a risk of problems such as becoming impossible. In that respect, freezing can be prevented by performing the high-temperature liquid introducing operation as described above.

即ち、本発明に係るヒートポンプ式給湯機は、冷媒を圧縮する圧縮機と、前記圧縮機から吐出される高温,高圧の冷媒により貯蔵タンクに貯蔵される液体を加熱する液−冷媒熱交換器と、前記液−冷媒熱交換器から膨張弁を介して流入される低温,低圧の冷媒を空気と熱交換させる蒸発器と、液−冷媒熱交換器で加熱された液体を貯蔵する貯蔵タンクと、低温の液体を前記液−冷媒熱交換器に送り出す往き配管と、前記液−冷媒熱交換器で加熱された液体を前記貯蔵タンクに戻す戻り配管とを備え、前記低温の液体を加熱して前記貯蔵タンクに貯える沸上げ運転を行い、さらに、前記貯蔵タンクをバイパスして前記往き配管及び戻り配管を接続するバイパス配管と、前記液−冷媒熱交換器から流出した液体が貯蔵タンクに送られる経路と貯蔵タンクをバイパスする経路とを切り換える経路切換機構と、前記液−冷媒熱交換器に流入する液体の温度を検知する流入液温度検出部とを備えるヒートポンプ式給湯機において、前記流入液温度検出部で検出される温度が所定の時間に亘って所定の温度以下であった場合、前記液−冷媒熱交換器から流出した液体が貯蔵タンクをバイパスする経路となるように前記経路切換機構を切り換えて、前記低温の液体よりも高温の液体を前記液−冷媒熱交換器に導入し、且つ、前記液−冷媒熱交換器から流出した液体を前記沸上げ運転時よりも少ない流量でバイパス配管を通して循環させ、前記液−冷媒熱交換器へ向かう往き配管の凍結を防止する凍結防止運転を行うことを特徴とする。   That is, a heat pump type hot water heater according to the present invention includes a compressor that compresses a refrigerant, a liquid-refrigerant heat exchanger that heats a liquid stored in a storage tank by a high-temperature and high-pressure refrigerant discharged from the compressor, and An evaporator for exchanging heat with low-temperature, low-pressure refrigerant flowing from the liquid-refrigerant heat exchanger through an expansion valve, and a storage tank for storing liquid heated by the liquid-refrigerant heat exchanger; A forward pipe for sending a low-temperature liquid to the liquid-refrigerant heat exchanger; and a return pipe for returning the liquid heated by the liquid-refrigerant heat exchanger to the storage tank, and heating the low-temperature liquid to A bypass pipe that performs a boiling operation for storing in a storage tank, further connects the forward pipe and the return pipe by bypassing the storage tank, and a path through which the liquid flowing out from the liquid-refrigerant heat exchanger is sent to the storage tank And storage In the heat pump water heater, comprising: a path switching mechanism that switches between a path that bypasses the tank and an inflow liquid temperature detection section that detects the temperature of the liquid flowing into the liquid-refrigerant heat exchanger; When the detected temperature is below a predetermined temperature for a predetermined time, the path switching mechanism is switched so that the liquid flowing out from the liquid-refrigerant heat exchanger becomes a path bypassing the storage tank, A liquid higher in temperature than the low-temperature liquid is introduced into the liquid-refrigerant heat exchanger, and the liquid flowing out from the liquid-refrigerant heat exchanger is circulated through the bypass pipe at a lower flow rate than in the boiling operation. The anti-freezing operation is performed to prevent freezing of the outgoing piping toward the liquid-refrigerant heat exchanger.

また、本発明に係るヒートポンプ式給湯機は、冷媒を圧縮する圧縮機と、前記圧縮機から吐出される高温,高圧の冷媒により貯蔵タンクに貯蔵される液体を加熱する液−冷媒熱交換器と、前記液−冷媒熱交換器から膨張弁を介して流入される低温,低圧の冷媒を空気と熱交換させる蒸発器と、低温の液体を前記液−冷媒熱交換器に送り出す往き配管と、前記液−冷媒熱交換器で加熱された液体を前記貯蔵タンクに戻す戻り配管とを備え、前記低温の液体を加熱して前記貯蔵タンクに貯える沸上げ運転を行い、さらに、前記液−冷媒熱交換器から流出した液体が前記貯蔵タンクをバイパスするように前記往き配管及び戻り配管を接続するバイパス配管と、前記液−冷媒熱交換器から流出した液体が貯蔵タンクに送られる経路と貯蔵タンクをバイパスする経路とを切り換える経路切換機構とを備えるヒートポンプ式給湯機において、前記液−冷媒熱交換器から流出した液体が貯蔵タンクをバイパスする経路となるように前記経路切換機構を切り換えて、前記低温の液体よりも高温の液体を前記液−冷媒熱交換器に導入する高温液導入動作を行った後、高温の冷媒を前記蒸発器に導入する高温冷媒導入動作を行い、且つ、前記液−冷媒熱交換器から流出した液体を前記沸上げ運転時よりも少ない流量でバイパス配管を通して循環させるバイパス循環動作を行うことを特徴とする。   The heat pump type hot water heater according to the present invention includes a compressor that compresses a refrigerant, and a liquid-refrigerant heat exchanger that heats a liquid stored in a storage tank by a high-temperature and high-pressure refrigerant discharged from the compressor. An evaporator for exchanging heat between the low-temperature and low-pressure refrigerant flowing from the liquid-refrigerant heat exchanger via an expansion valve with air, an outgoing pipe for sending a low-temperature liquid to the liquid-refrigerant heat exchanger, A return pipe for returning the liquid heated by the liquid-refrigerant heat exchanger to the storage tank, heating the low-temperature liquid and storing it in the storage tank, and further performing the liquid-refrigerant heat exchange A bypass pipe connecting the forward pipe and the return pipe so that the liquid flowing out from the vessel bypasses the storage tank, and a path through which the liquid flowing out from the liquid-refrigerant heat exchanger is sent to the storage tank and the storage tank. A heat pump type hot water heater having a path switching mechanism for switching between the path to be switched and the path switching mechanism to switch the path switching mechanism so that the liquid flowing out of the liquid-refrigerant heat exchanger bypasses the storage tank; A high-temperature liquid introduction operation for introducing a high-temperature liquid into the liquid-refrigerant heat exchanger, a high-temperature refrigerant introduction operation for introducing a high-temperature refrigerant into the evaporator, and the liquid-refrigerant. A bypass circulation operation is performed in which the liquid flowing out of the heat exchanger is circulated through the bypass pipe at a lower flow rate than in the boiling operation.

本発明によれば、外気条件が極低温になった場合でも、除霜運転中や沸上げ運転中の配管内の水の凍結を防止することができ、安定した沸上げ運転を行うことができる。
本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。
According to the present invention, it is possible to prevent freezing of water in the pipe during the defrosting operation or the boiling operation even when the outside air condition becomes an extremely low temperature, and a stable boiling operation can be performed. .
Other objects, features and advantages of the present invention will become apparent from the following description of embodiments of the present invention with reference to the accompanying drawings.

本発明の一実施形態に係るヒートポンプ式給湯機の系統構成図である。It is a line | wire system block diagram of the heat pump type hot water heater which concerns on one Embodiment of this invention. 本発明の一実施形態に係るヒートポンプ式給湯機の除霜運転制御のフロー図である。It is a flowchart of the defrost operation control of the heat pump type water heater which concerns on one Embodiment of this invention. 本発明の他の実施形態に係るヒートポンプ式給湯機の系統構成図である。It is a system | strain block diagram of the heat pump type water heater which concerns on other embodiment of this invention.

図1に本発明の一実施形態に係るヒートポンプ式給湯機の系統構成図を、図2に本実施形態の特徴部分である除霜運転制御の制御フロー図を示す。   FIG. 1 shows a system configuration diagram of a heat pump type water heater according to an embodiment of the present invention, and FIG. 2 shows a control flow diagram of defrosting operation control which is a characteristic part of the present embodiment.

図1に示すように、本実施形態のヒートポンプ式給湯機は、図面の左側に示す液−冷媒熱交換器(本実施形態では、水−冷媒熱交換器)を含む冷媒サイクルを箱体内部に搭載したヒートポンプユニット1と、図面の右側に示す貯蔵タンクとしての貯湯タンク9を含めた給湯サイクルを箱体内部に搭載したタンクユニット2を備えて構成される。ヒートポンプユニット1及びタンクユニット2は、ヒートポンプ式給湯機の施工現場にて接続配管3を使用して接続する構造となっている。なお、接続配管3は施工時に選定されるため、現地の状況により長さ,曲り数,断熱材の種類が異なる。   As shown in FIG. 1, the heat pump type water heater of the present embodiment has a refrigerant cycle including a liquid-refrigerant heat exchanger (in this embodiment, a water-refrigerant heat exchanger) shown on the left side of the drawing inside the box. A tank unit 2 in which a hot water supply cycle including a mounted heat pump unit 1 and a hot water storage tank 9 as a storage tank shown on the right side of the drawing is mounted inside the box is configured. The heat pump unit 1 and the tank unit 2 are connected to each other using a connection pipe 3 at the construction site of the heat pump type hot water heater. In addition, since the connection piping 3 is selected at the time of construction, the length, the number of bends, and the type of heat insulating material differ depending on the local situation.

冷媒サイクルは、冷媒を圧縮する圧縮機4と、圧縮機4から吐出される高温,高圧の冷媒が貯湯タンク9から導かれた水と熱交換する液−冷媒熱交換器としての水−冷媒熱交換器5と、水−冷媒熱交換器5から流出された冷媒が減圧される減圧弁6と、減圧弁6により減圧された低温・低圧の冷媒が空気と熱交換する蒸発器7とが、冷媒配管によって環状に接続される構成となっている。蒸発器7は、ファン8によって導入された外気と熱交換する構造となっている。   The refrigerant cycle includes a compressor 4 that compresses the refrigerant, and water-refrigerant heat as a liquid-refrigerant heat exchanger that exchanges heat between the high-temperature and high-pressure refrigerant discharged from the compressor 4 and water introduced from the hot water storage tank 9. An exchanger 5, a pressure reducing valve 6 in which the refrigerant flowing out of the water-refrigerant heat exchanger 5 is decompressed, and an evaporator 7 in which the low-temperature and low-pressure refrigerant decompressed by the pressure reducing valve 6 exchanges heat with air. It becomes the structure connected circularly by refrigerant | coolant piping. The evaporator 7 has a structure for exchanging heat with the outside air introduced by the fan 8.

水サイクルは、所定量の湯を貯える貯湯タンク9と、貯湯タンク9の底部の水が導かれる循環ポンプ10と、循環ポンプ10から吐出された水が冷媒と熱交換する水−冷媒熱交換器5とが、循環配管によって環状に接続される構成となっている。水−冷媒熱交換器5から吐出された水は、貯湯タンク9の頂部に戻される。また、貯湯タンク9の底部には、給水配管11を介して水道などの給水源(図示せず)が接続され、頂部には、使用箇所に給湯するための給湯配管12が接続されている。   The water cycle includes a hot water storage tank 9 for storing a predetermined amount of hot water, a circulation pump 10 to which water at the bottom of the hot water storage tank 9 is guided, and a water-refrigerant heat exchanger in which water discharged from the circulation pump 10 exchanges heat with refrigerant. 5 is connected in a ring shape by a circulation pipe. The water discharged from the water-refrigerant heat exchanger 5 is returned to the top of the hot water storage tank 9. Further, a water supply source (not shown) such as a water supply is connected to the bottom of the hot water storage tank 9 via a water supply pipe 11, and a hot water supply pipe 12 for supplying hot water to a place to be used is connected to the top.

また、このヒートポンプ式給湯機には、低温の液体(本実施形態では、貯湯タンク9底部からの低温水)を水−冷媒熱交換器5に送る往き配管3Aと、水−冷媒熱交換器5で加熱された水を貯湯タンク9に戻す戻り配管3Bが設けられる。水−冷媒熱交換器への往き配管3A及び戻り配管3Bは、接続配管3を使用して構成される。往き配管3A及び戻り配管3Bには、水−冷媒熱交換器5から導出された水がタンク9をバイパスするためのバイパス配管13が接続される。   In addition, the heat pump type hot water heater includes a forward pipe 3A for sending a low-temperature liquid (low-temperature water from the bottom of the hot water storage tank 9 in this embodiment) to the water-refrigerant heat exchanger 5, and the water-refrigerant heat exchanger 5 A return pipe 3B is provided for returning the water heated in step 1 to the hot water storage tank 9. The forward piping 3 </ b> A and the return piping 3 </ b> B to the water-refrigerant heat exchanger are configured using the connection piping 3. A bypass pipe 13 is connected to the outgoing pipe 3 </ b> A and the return pipe 3 </ b> B so that water derived from the water-refrigerant heat exchanger 5 bypasses the tank 9.

また、このヒートポンプ式給湯機には、水−冷媒熱交換器5から導出された水が貯湯タンク9に送られる経路と貯湯タンク9をバイパスする経路とを切り換える経路切換機構が設けられる。具体的には、接続配管3とバイパス配管13との接続箇所に、水の経路を切換える経路切換機構としての切換え弁14が設けられている。この切換え弁14は、水−冷媒熱交換器への往き配管3Aとバイパス配管13との接続箇所に設けられている。なお、経路切換機構としては、切換え弁14以外にも、接続配管3及びバイパス配管13にそれぞれ備えられる開閉弁によって構成されるものであってもよい。   In addition, the heat pump type hot water heater is provided with a path switching mechanism that switches between a path through which water derived from the water-refrigerant heat exchanger 5 is sent to the hot water storage tank 9 and a path that bypasses the hot water storage tank 9. Specifically, a switching valve 14 serving as a path switching mechanism that switches the path of water is provided at a connection point between the connection pipe 3 and the bypass pipe 13. The switching valve 14 is provided at a connection point between the outgoing pipe 3 </ b> A to the water-refrigerant heat exchanger and the bypass pipe 13. In addition to the switching valve 14, the path switching mechanism may be constituted by open / close valves provided in the connection pipe 3 and the bypass pipe 13, respectively.

なお、前記バイパス配管13は、タンクユニット2に備えられ、後述するバイパス循環動作(又は、温水循環動作)の際には、ヒートポンプユニット1及びタンクユニット2に跨って温水が循環することとなる。このような構成により、最も凍結しやすい液−冷媒熱交換器への往き配管3Aの凍結を好適に防止することができる。また、循環ポンプ10は、ヒートポンプユニット1に備えられる。   The bypass pipe 13 is provided in the tank unit 2, and hot water circulates across the heat pump unit 1 and the tank unit 2 during a bypass circulation operation (or hot water circulation operation) described later. With such a configuration, freezing of the outgoing pipe 3A to the liquid-refrigerant heat exchanger that is most likely to be frozen can be suitably prevented. The circulation pump 10 is provided in the heat pump unit 1.

ヒートポンプユニット1には、外気温度を検知する外気温度検知部としての外気温度センサ15が設けられており、具体的には、外気温度センサ15は蒸発器7の近傍に設けられている。また、冷媒の蒸発器入口及び出口には、それぞれ蒸発器入口温度センサ16と蒸発器出口温度センサ17とが設けられている。水−冷媒熱交換器5の前後の配管には、水−冷媒熱交換器5に流入する水の温度を検知する流入液温度検出部としての入水温度センサ18と、水−冷媒熱交換器5から流出する水の温度を検知する流出液温度検出部としての出湯温度センサ19とが設けられている。   The heat pump unit 1 is provided with an outside air temperature sensor 15 as an outside air temperature detecting unit that detects the outside air temperature. Specifically, the outside air temperature sensor 15 is provided in the vicinity of the evaporator 7. Further, an evaporator inlet temperature sensor 16 and an evaporator outlet temperature sensor 17 are provided at the refrigerant inlet and outlet, respectively. In the pipes before and after the water-refrigerant heat exchanger 5, an incoming water temperature sensor 18 as an influent temperature sensor for detecting the temperature of the water flowing into the water-refrigerant heat exchanger 5, and the water-refrigerant heat exchanger 5. There is provided a tapping temperature sensor 19 as an effluent temperature detecting section for detecting the temperature of water flowing out of the effluent.

次に、図1に示す様に構成されたヒートポンプ式給湯機における除霜運転制御を図2を用いて詳述する。   Next, the defrosting operation control in the heat pump type water heater configured as shown in FIG. 1 will be described in detail with reference to FIG.

沸上げ運転の際には、切換え弁14を貯湯タンク9側にセットし、水−冷媒熱交換器5で加熱した湯を貯湯タンク9に貯湯する貯湯運転を行う。また、沸上げ運転の際には、除霜運転が必要かの判断を実行し、外気温度センサ15から得られる外気温度、蒸発器に流入する冷媒の温度を検知する流入冷媒温度検出部としての蒸発器入口温度センサ16から得られる蒸発器入口温度、蒸発器から流出する冷媒の温度を検知する流出冷媒温度検出部としての蒸発器出口温度センサ17から得られる蒸発器出口温度に基づいて、除霜運転が必要かの判断を実行する。具体的には、所定の除霜運転開始条件を満たす場合に除霜運転を実行する。所定の除霜運転開始条件は、蒸発器入口温度センサ16から得られる蒸発器入口温度及び蒸発器出口温度センサ17から得られる蒸発器出口温度が所定の温度に達した場合である。   In the boiling operation, the switching valve 14 is set on the hot water storage tank 9 side, and the hot water storage operation is performed in which the hot water heated by the water-refrigerant heat exchanger 5 is stored in the hot water storage tank 9. Further, in the boiling operation, it is determined whether the defrosting operation is necessary, and serves as an inflow refrigerant temperature detection unit that detects the outside air temperature obtained from the outside air temperature sensor 15 and the temperature of the refrigerant flowing into the evaporator. Based on the evaporator inlet temperature obtained from the evaporator inlet temperature sensor 16 and the evaporator outlet temperature obtained from the evaporator outlet temperature sensor 17 serving as a refrigerant outlet temperature sensor for detecting the temperature of the refrigerant flowing out of the evaporator. Determine if frost operation is required. Specifically, the defrosting operation is executed when a predetermined defrosting operation start condition is satisfied. The predetermined defrosting operation start condition is when the evaporator inlet temperature obtained from the evaporator inlet temperature sensor 16 and the evaporator outlet temperature obtained from the evaporator outlet temperature sensor 17 have reached a predetermined temperature.

除霜運転が必要と判断された場合、次に除霜準備運転が必要かの判断を実行する。具体的には、外気温度が除霜準備運転が必要となる所定の温度となった場合に除霜準備運転が必要と判断される。除霜準備運転が必要となる所定の温度は、配管内の水が凍結する恐れがある温度(例えば、−15℃以下)である。除霜準備運転では、低温の水(即ち、低温水)よりも高温の水(即ち、湯)を水−冷媒熱交換器5に導入する高温水導入動作(又は、温水導入動作)を行う。具体的には、ヒートポンプ運転を継続したまま切換え弁14をバイパス配管13側にセットし、接続配管3,バイパス配管13内の水を水−冷媒熱交換器5により加熱して温水とする。   When it is determined that the defrosting operation is necessary, it is next determined whether the defrosting preparation operation is necessary. Specifically, it is determined that the defrost preparation operation is necessary when the outside air temperature reaches a predetermined temperature that requires the defrost preparation operation. The predetermined temperature at which the defrost preparation operation is necessary is a temperature (for example, −15 ° C. or less) at which the water in the pipe may be frozen. In the defrost preparation operation, a high-temperature water introduction operation (or a hot water introduction operation) is performed in which water (that is, hot water) that is hotter than cold water (that is, low-temperature water) is introduced into the water-refrigerant heat exchanger 5. Specifically, the switching valve 14 is set on the bypass pipe 13 side while continuing the heat pump operation, and the water in the connection pipe 3 and the bypass pipe 13 is heated by the water-refrigerant heat exchanger 5 to be hot water.

この除霜準備運転は、所定の除霜準備運転終了条件を満たすまで行われる。所定の除霜準備運転終了条件は、除霜準備運転中に検知される入水温度センサ18の入水温度が所定の温度(例えば70℃)以上となったこと、又は、除霜準備運転開始から所定の時間(例えば3分)が経過したことのいずれかを満たす場合である。ただし、これに限定されるものではなく、どちらか一方であってもよく、これ以外のものであってもよい。例えば、除霜準備運転中に検知される出口温度センサ19が水の温度が所定の温度以上となったのを検出した場合などのように、循環する水の温度の変化によるものでもよい。   This defrost preparation operation is performed until a predetermined defrost preparation operation end condition is satisfied. The predetermined defrosting preparatory operation end condition is that the incoming water temperature of the incoming water temperature sensor 18 detected during the defrosting preparatory operation is equal to or higher than a predetermined temperature (for example, 70 ° C.) or predetermined from the start of the defrosting preparatory operation. This is a case where any one of elapses of time (for example, 3 minutes) is satisfied. However, it is not limited to this, either one may be sufficient and other things may be sufficient. For example, it may be based on a change in the temperature of the circulating water, such as when the outlet temperature sensor 19 detected during the defrost preparation operation detects that the temperature of the water has exceeded a predetermined temperature.

このように除霜準備運転終了条件として入水温度だけでなく除霜準備運転時間を設けているのは、実際の製品では接続配管3の長さや配管断熱の状態等により入水温度が所定の温度まで上がらない可能性があり、その場合には本来必要となる除霜運転とは異なる運転を長く行うこととなり、好ましくないからである。   As described above, the defrosting preparation operation time is provided as the defrosting preparation operation end condition in the actual product in which the incoming water temperature reaches a predetermined temperature depending on the length of the connecting pipe 3 and the state of the pipe insulation. This is because there is a possibility that it will not rise, and in this case, an operation different from the defrosting operation that is originally required will be performed for a long time, which is not preferable.

除霜準備運転の終了後、除霜運転を開始する。除霜運転では、高温の冷媒を蒸発器7に導入する高温冷媒導入動作を行って蒸発器7に付着した霜を溶かす。この方法としては、圧縮機の吐出冷媒を高温のまま蒸発器に導入するホットガス除霜や、ヒートポンプサイクルを逆転させる逆サイクル除霜があり、本実施形態に係るヒートポンプ式給湯機では、減圧弁6として開度調整可能な電磁膨張弁を用い、電磁膨張弁の開度を沸上げ運転時よりも大きくして、沸上げ運転時よりも高温の冷媒を蒸発器7に導入する。   After completion of the defrost preparation operation, the defrost operation is started. In the defrosting operation, a high-temperature refrigerant introduction operation for introducing a high-temperature refrigerant into the evaporator 7 is performed to melt the frost attached to the evaporator 7. As this method, there are hot gas defrosting that introduces refrigerant discharged from the compressor into the evaporator at a high temperature and reverse cycle defrosting that reverses the heat pump cycle. In the heat pump hot water supply apparatus according to this embodiment, the pressure reducing valve 6, an electromagnetic expansion valve whose opening degree can be adjusted is used, the opening degree of the electromagnetic expansion valve is made larger than that during the boiling operation, and refrigerant having a temperature higher than that during the boiling operation is introduced into the evaporator 7.

また、除霜運転中は、水−冷媒熱交換器5から導出された水をバイパス配管13を通して循環させるバイパス循環動作を行う。具体的には、バイパス循環動作では、沸上げ運転時よりも少ない所定の流量で水が流れるように制御される。具体的には、沸上げ運転時の流量は約1.0L/分であるのに対し、バイパス循環動作の前記所定の流量は約0.1〜0.2L/分とされる。   Further, during the defrosting operation, a bypass circulation operation for circulating the water led out from the water-refrigerant heat exchanger 5 through the bypass pipe 13 is performed. Specifically, in the bypass circulation operation, control is performed so that water flows at a predetermined flow rate that is smaller than that in the boiling operation. Specifically, the flow rate during the boiling operation is about 1.0 L / min, whereas the predetermined flow rate of the bypass circulation operation is about 0.1 to 0.2 L / min.

より具体的には、循環ポンプ10の回転数を所定の低速回転数にセットする。ここで、所定の低速回転数は、通常の沸上げ運転時の回転数よりも低く、かつ配管の湯水が循環する回転数とすることが望ましい。ただし、循環ポンプ10の回転数を沸上げ運転時より低下させる以外にも、循環ポンプ10を間欠的(又は、断続的)に駆動させるものであってもよい。   More specifically, the rotational speed of the circulation pump 10 is set to a predetermined low speed rotational speed. Here, it is desirable that the predetermined low-speed rotation speed is lower than the rotation speed during normal boiling operation and is the rotation speed at which the hot and cold water in the pipe circulates. However, the circulating pump 10 may be driven intermittently (or intermittently) in addition to lowering the rotational speed of the circulating pump 10 than during the boiling operation.

この除霜運転は、所定の除霜運転終了条件を満たすまで行われる。ここで、ヒートポンプユニット1が配置される場所の外気温度によっては、既に霜が除去されているにもかかわらず蒸発器出口温度センサ17の蒸発器出口温度が所定の温度まで上昇しない場合がある。この場合は霜が除去されているにもかかわらず除霜運転を継続することになり、無駄な運転を行うことになる。   This defrosting operation is performed until a predetermined defrosting operation end condition is satisfied. Here, depending on the outside air temperature at the place where the heat pump unit 1 is disposed, the evaporator outlet temperature of the evaporator outlet temperature sensor 17 may not rise to a predetermined temperature even though frost has already been removed. In this case, although the frost is removed, the defrosting operation is continued, and a useless operation is performed.

従って、前記所定の除霜運転終了条件は、所定の除霜運転終了温度条件を満たすこと、又は所定の除霜運転終了時間条件を満たすことのいずれかを満たす場合とされる。ただし、これに限定されるものではなく、どちらか一方であってもよく、これ以外のものであってもよい。例えばこれ以外の除霜運転終了条件の例としては、外気温度センサ15の検出値と蒸発器入口温度センサ16の検出値との温度差が所定範囲以内になった場合のように、外気温度を加味した温度変化の条件であってもよい。   Therefore, the predetermined defrosting operation end condition is set to satisfy either a predetermined defrosting operation end temperature condition or a predetermined defrosting operation end time condition. However, it is not limited to this, either one may be sufficient and other things may be sufficient. For example, as an example of other defrosting operation termination conditions, the outside air temperature is set to be the same as when the temperature difference between the detected value of the outside air temperature sensor 15 and the detected value of the evaporator inlet temperature sensor 16 is within a predetermined range. The temperature change condition may be taken into consideration.

まず、所定の除霜運転終了温度条件について説明すると、少なくとも、蒸発器出口温度センサ17の蒸発器出口温度が所定の温度(例えば7℃)以上となった場合である。また、除霜を確実に行うため、蒸発器入口温度センサ16の蒸発器入口温度も利用している。具体的には、前記蒸発器入口温度が所定の温度及び蒸発器出口温度が所定の温度(例えば7℃)以上となった場合を前記除霜運転終了温度条件としている。ただし、これに限定されるものではなく、どちらか一方であってもよく、これ以外のものであってもよい。また、前記所定の除霜運転終了時間条件は、除霜運転開始から所定の時間(例えば10分)が経過した場合である。   First, the predetermined defrosting operation end temperature condition will be described. At least the evaporator outlet temperature of the evaporator outlet temperature sensor 17 is a predetermined temperature (for example, 7 ° C.) or more. Moreover, in order to perform defrosting reliably, the evaporator inlet temperature of the evaporator inlet temperature sensor 16 is also utilized. Specifically, when the evaporator inlet temperature is a predetermined temperature and the evaporator outlet temperature is equal to or higher than a predetermined temperature (for example, 7 ° C.), the defrosting operation end temperature condition is set. However, it is not limited to this, either one may be sufficient and other things may be sufficient. The predetermined defrosting operation end time condition is when a predetermined time (for example, 10 minutes) has elapsed since the start of the defrosting operation.

除霜運転が終了したら、沸上げ運転へ移行する。   When the defrosting operation is completed, the operation proceeds to the boiling operation.

上記制御により、外気温が極低温となった場合でも、除霜運転中の配管内は温水で満たされ、且つ温水を循環させるため配管内における凍結を防止することができ、また高温の温水が循環しているため、水−冷媒熱交換器5を流れる冷媒から除霜のエネルギーを奪うことが無いため、除霜運転への影響を抑えることができる。   With the above control, even when the outside air temperature becomes extremely low, the piping during the defrosting operation is filled with hot water, and the hot water is circulated to prevent freezing in the piping. Since it circulates, the defrosting energy is not deprived from the refrigerant flowing through the water-refrigerant heat exchanger 5, so that the influence on the defrosting operation can be suppressed.

ところで、上記のような配管内の凍結は、外気温度によっては除霜運転中以外(例えば、通常の沸上げ運転中)にも発生する場合があり、この場合には沸上げ運転が困難となったり不可能となるといった問題の発生する虞がある。その点、上記のような温水導入動作を行えば凍結の防止を図ることができる。   By the way, depending on the outside air temperature, freezing in the pipe as described above may occur even during defrosting operation (for example, during normal boiling operation). In this case, the boiling operation becomes difficult. There is a risk of problems such as becoming impossible. In that respect, freezing can be prevented by performing the warm water introduction operation as described above.

即ち、本実施形態に係るヒートポンプ式給湯機は、除霜運転の必要にかかわらず、図2に示すとおり、入水温度センサ18で検出される水−冷媒熱交換器5への入水温度が所定の時間(例えば3分)に亘って所定の温度(例えば3℃)以下であった場合、強制的に上述のバイパス循環動作を行う凍結防止運転を実行する。   That is, the heat pump type water heater according to the present embodiment has a predetermined temperature of water entering the water-refrigerant heat exchanger 5 detected by the water temperature sensor 18 as shown in FIG. 2 regardless of the necessity of the defrosting operation. When the temperature is below a predetermined temperature (for example, 3 ° C.) over a period of time (for example, 3 minutes), the freeze prevention operation for forcibly performing the above-described bypass circulation operation is executed.

凍結防止運転は、具体的には、水−冷媒熱交換器5から流出した水が貯湯タンク9をバイパスする経路となるように経路切換機構を切り換えて、低温の水よりも高温の水を水−冷媒熱交換器5に導入し、且つ、水−冷媒熱交換器5から流出した水をバイパス配管13を通して循環させ、水−冷媒熱交換器5へ向かう往き配管3Aの凍結を防止する。   Specifically, in the freeze prevention operation, the path switching mechanism is switched so that the water flowing out from the water-refrigerant heat exchanger 5 becomes a path that bypasses the hot water storage tank 9, and water having a temperature higher than that of the low temperature water is supplied. -The water introduced into the refrigerant heat exchanger 5 and flowing out of the water-refrigerant heat exchanger 5 is circulated through the bypass pipe 13 to prevent freezing of the outgoing pipe 3A toward the water-refrigerant heat exchanger 5.

この凍結防止運転を実施することにより、沸上げ運転中に配管内の水が凍結していたとしても氷を溶かすことが可能となり、配管凍結による沸上げ運転の不具合を防ぐことができる。   By performing this freeze prevention operation, it becomes possible to melt the ice even if water in the pipe is frozen during the boiling operation, and it is possible to prevent a problem in the boiling operation due to the pipe freezing.

そして、この凍結防止運転を行った場合には、引き続き前記除霜運転を行う。これは、凍結防止運転及び除霜準備運転において行われる動作が同様の温水循環動作であり、水−冷媒熱交換器5やバイパス配管13に温水が導入されるため、そのまま除霜運転へ移行する方が通常の沸上げ運転へ移行するのに比べて水−冷媒熱交換器5やバイパス配管13に導入した温水が無駄とならず、また、仮にこの時点で蒸発器7が着霜していたとしてもこの霜を除去することができるため、エネルギー効率が良くなるからである。   And when this freeze prevention operation is performed, the said defrost operation is performed continuously. This is a warm water circulation operation similar to the operation performed in the freeze prevention operation and the defrost preparation operation, and since the hot water is introduced into the water-refrigerant heat exchanger 5 and the bypass pipe 13, the operation proceeds to the defrost operation as it is. Compared to the normal boiling operation, the hot water introduced into the water-refrigerant heat exchanger 5 and the bypass pipe 13 is not wasted, and the evaporator 7 is frosted at this point. Because this frost can be removed, energy efficiency is improved.

なお、本発明に係るヒートポンプ式給湯機は、上記実施形態の構成に限定されるものではなく、発明の趣旨を逸脱しない範囲内で種々の変更が可能である。   In addition, the heat pump type water heater according to the present invention is not limited to the configuration of the above embodiment, and various modifications can be made without departing from the spirit of the invention.

例えば、上記実施形態においては、ヒートポンプ回路を利用して沸上げられた温水が貯湯タンク9に貯められ、給湯の際にはこの貯湯タンク9から温水が給湯端末で給湯されるものであったが、これに限定されるものではなく、例えば、給湯端末で給湯される温水は、低温水を貯蔵タンクに貯蔵された高温の液体との熱交換によって間接的に加熱されて生成されるものであり、貯蔵タンクは、ヒートポンプ回路によって加熱される液体を貯蔵するものであってもよい。この場合、前記液体は、熱媒体として機能するものであればよく、水であってもよく、ブラインであってもよい。例えば、貯蔵タンクに貯蔵された高温の液体により低温水を水−液熱交換器で間接的に熱交換して加熱し、給湯端末で給湯される温水を生成して給湯端末で給湯するものである。   For example, in the above embodiment, hot water boiled using the heat pump circuit is stored in the hot water storage tank 9, and hot water is supplied from the hot water storage tank 9 at the hot water supply terminal when hot water is supplied. However, the present invention is not limited to this, for example, hot water supplied at a hot water supply terminal is generated by indirectly heating low temperature water by heat exchange with a high temperature liquid stored in a storage tank. The storage tank may store the liquid heated by the heat pump circuit. In this case, the liquid only needs to function as a heat medium, and may be water or brine. For example, hot water stored in a storage tank is heated by indirectly exchanging low-temperature water with a water-liquid heat exchanger to generate hot water to be supplied at a hot water supply terminal, and hot water is supplied at a hot water supply terminal. is there.

これを他の実施形態として、図3に図示する。図3の構成と図1の構成とで実質的に異なるのは、熱媒体の液体を貯えるタンクと給湯端末(図示省略)との間に、水−液熱交換器20を備えることである。その他の構成は、図示のとおり実質的に同じであるが、符号及び呼称を一部変えている。すなわち、タンクに貯えられる加熱された水若しくは水以外の液体で低温水を間接的に加熱することに対応して、液−冷媒熱交換器5′,貯蔵タンク9′,循環液入口配管11′,循環液出口配管12′,入口温度センサ18′,出口温度センサ19′のように変えた。   This is illustrated in FIG. 3 as another embodiment. The configuration of FIG. 3 is substantially different from the configuration of FIG. 1 in that a water-liquid heat exchanger 20 is provided between a tank for storing the liquid of the heat medium and a hot water supply terminal (not shown). Other configurations are substantially the same as shown in the figure, but the reference numerals and names are partially changed. That is, the liquid-refrigerant heat exchanger 5 ', the storage tank 9', and the circulating liquid inlet pipe 11 'correspond to indirectly heating the low-temperature water with heated water or a liquid other than water stored in the tank. The circulating fluid outlet pipe 12 ', the inlet temperature sensor 18', and the outlet temperature sensor 19 'are changed.

この図3の実施形態に係るヒートポンプ式給湯機の除霜運転制御は、図1の実施形態のの除霜運転制御のフロー図と実質的に同じであり、説明を省略する。
上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者に明らかである。
The defrosting operation control of the heat pump type water heater according to the embodiment of FIG. 3 is substantially the same as the flowchart of the defrosting operation control of the embodiment of FIG.
While the above description has been made with reference to exemplary embodiments, it will be apparent to those skilled in the art that the invention is not limited thereto and that various changes and modifications can be made within the spirit of the invention and the scope of the appended claims.

1 ヒートポンプユニット
2 タンクユニット
3 接続配管
4 圧縮機
5 水−冷媒熱交換器
5′ 液−冷媒熱交換器
6 減圧弁
7 蒸発器
8 ファン
9 貯湯タンク
9′ 貯蔵タンク
10 循環ポンプ
11 給水配管
11′ 循環液入口配管
12 給湯配管
12′ 循環液出口配管
13 バイパス配管
14 切換え弁
15 外気温度センサ
16 蒸発器入口温度センサ
17 蒸発器出口温度センサ
18 入水温度センサ
18′ 入口温度センサ
19 出湯温度センサ
19′ 出口温度センサ
20 水−液熱交換器
DESCRIPTION OF SYMBOLS 1 Heat pump unit 2 Tank unit 3 Connection piping 4 Compressor 5 Water-refrigerant heat exchanger 5 'Liquid-refrigerant heat exchanger 6 Pressure reducing valve 7 Evaporator 8 Fan 9 Hot water storage tank 9' Storage tank 10 Circulation pump 11 Water supply piping 11 ' Circulating fluid inlet piping 12 Hot water supply piping 12 'Circulating fluid outlet piping 13 Bypass piping 14 Switching valve 15 Outside air temperature sensor 16 Evaporator inlet temperature sensor 17 Evaporator outlet temperature sensor 18 Incoming water temperature sensor 18' Inlet temperature sensor 19 Hot water temperature sensor 19 ' Outlet temperature sensor 20 Water-liquid heat exchanger

Claims (10)

冷媒を圧縮する圧縮機と、前記圧縮機から吐出される高温,高圧の冷媒により貯蔵タンクに貯蔵される液体を加熱する液−冷媒熱交換器と、前記液−冷媒熱交換器から膨張弁を介して流入される低温,低圧の冷媒を空気と熱交換させる蒸発器と、液−冷媒熱交換器で加熱された液体を貯蔵する貯蔵タンクと、低温の液体を前記液−冷媒熱交換器に送る往き配管と、前記液−冷媒熱交換器で加熱された液体を前記貯蔵タンクに戻す戻り配管とを備え、
前記低温の液体を加熱して前記貯蔵タンクに貯える沸上げ運転を行い、
さらに、前記液−冷媒熱交換器から流出した液体が前記貯蔵タンクをバイパスするように前記往き配管及び戻り配管を接続するバイパス配管と、前記液−冷媒熱交換器から流出した液体が貯蔵タンクに送られる経路と貯蔵タンクをバイパスする経路とを切り換える経路切換機構とを備え、
高温の冷媒を前記蒸発器に導入して蒸発器に付着した霜を溶かす除霜運転を行うヒートポンプ式給湯機において、
除霜運転前に前記低温の液体よりも高温の液体を前記液−冷媒熱交換器に導入する高温液導入動作を行い、
除霜運転中は、前記液−冷媒熱交換器から流出した液体を前記沸上げ運転時よりも少ない流量でバイパス配管を通して循環させるバイパス循環動作を行うことを特徴とするヒートポンプ式給湯機。
A compressor that compresses the refrigerant, a liquid-refrigerant heat exchanger that heats the liquid stored in the storage tank by the high-temperature and high-pressure refrigerant discharged from the compressor, and an expansion valve from the liquid-refrigerant heat exchanger. An evaporator that exchanges heat between low-temperature and low-pressure refrigerant flowing in through air, a storage tank that stores liquid heated by the liquid-refrigerant heat exchanger, and low-temperature liquid into the liquid-refrigerant heat exchanger. A forward pipe for sending, and a return pipe for returning the liquid heated by the liquid-refrigerant heat exchanger to the storage tank,
Performing a boiling operation of heating the low-temperature liquid and storing it in the storage tank;
In addition, a bypass pipe connecting the forward pipe and the return pipe so that the liquid flowing out from the liquid-refrigerant heat exchanger bypasses the storage tank, and the liquid flowing out from the liquid-refrigerant heat exchanger enters the storage tank. A path switching mechanism for switching between a route to be sent and a path to bypass the storage tank;
In a heat pump hot water heater that performs a defrosting operation that introduces a high-temperature refrigerant into the evaporator and dissolves frost adhering to the evaporator,
Before the defrosting operation, perform a high temperature liquid introduction operation to introduce a liquid having a temperature higher than that of the low temperature liquid into the liquid-refrigerant heat exchanger
During the defrosting operation, a heat pump type hot water heater is provided that performs a bypass circulation operation for circulating the liquid flowing out from the liquid-refrigerant heat exchanger through a bypass pipe at a lower flow rate than in the boiling operation.
請求項1に記載のヒートポンプ式給湯機において、
外気温度を検知する外気温度検知部をさらに備え、
外気温度検知部で検知された温度が所定の温度以下となった場合に前記高温液導入動作を行うことを特徴とするヒートポンプ式給湯機。
In the heat pump type water heater according to claim 1,
It further includes an outside air temperature detection unit that detects the outside air temperature,
A heat pump type hot water heater characterized in that the high temperature liquid introduction operation is performed when the temperature detected by the outside air temperature detection unit becomes a predetermined temperature or lower.
請求項1に記載のヒートポンプ式給湯機において、
前記高温液導入動作の開始時に前記液−冷媒熱交換器から流出した液体が貯蔵タンクをバイパスする経路となるように前記経路切換機構を切り換えることを特徴とするヒートポンプ式給湯機。
In the heat pump type water heater according to claim 1,
A heat pump type hot water supply apparatus, wherein the path switching mechanism is switched so that the liquid flowing out from the liquid-refrigerant heat exchanger becomes a path bypassing the storage tank at the start of the high-temperature liquid introduction operation.
請求項2に記載のヒートポンプ式給湯機において、
前記高温液導入動作の開始時に前記液−冷媒熱交換器から流出した液体が貯蔵タンクをバイパスする経路となるように前記経路切換機構を切り換えることを特徴とするヒートポンプ式給湯機。
In the heat pump type water heater according to claim 2,
A heat pump type hot water supply apparatus, wherein the path switching mechanism is switched so that the liquid flowing out from the liquid-refrigerant heat exchanger becomes a path bypassing the storage tank at the start of the high-temperature liquid introduction operation.
請求項1項に記載のヒートポンプ式給湯機において、
液−冷媒熱交換器に流入する液体の温度を検知する流入液温度検出部をさらに備え、
高温液導入動作は、前記流入液温度検出部で検出される温度が所定の温度以上となったこと、又は、所定の時間が経過したことのいずれかを満たす場合に終了することを特徴とするヒートポンプ式給湯機。
In the heat pump type water heater according to claim 1,
An inflow liquid temperature detection unit for detecting the temperature of the liquid flowing into the liquid-refrigerant heat exchanger;
The high-temperature liquid introduction operation is terminated when the temperature detected by the inflow liquid temperature detecting unit is equal to or higher than a predetermined temperature or when a predetermined time has passed. Heat pump water heater.
請求項2項に記載のヒートポンプ式給湯機において、
液−冷媒熱交換器に流入する液体の温度を検知する流入液温度検出部をさらに備え、
高温液導入動作は、前記流入液温度検出部で検出される温度が所定の温度以上となったこと、又は、所定の時間が経過したことのいずれかを満たす場合に終了することを特徴とするヒートポンプ式給湯機。
In the heat pump type water heater according to claim 2,
An inflow liquid temperature detection unit for detecting the temperature of the liquid flowing into the liquid-refrigerant heat exchanger;
The high-temperature liquid introduction operation is terminated when the temperature detected by the inflow liquid temperature detecting unit is equal to or higher than a predetermined temperature or when a predetermined time has passed. Heat pump water heater.
請求項3に記載のヒートポンプ式給湯機において、
液−冷媒熱交換器に流入する液体の温度を検知する流入液温度検出部をさらに備え、
高温液導入動作は、前記流入液温度検出部で検出される温度が所定の温度以上となったこと、又は、所定の時間が経過したことのいずれかを満たす場合に終了することを特徴とするヒートポンプ式給湯機。
In the heat pump type water heater according to claim 3,
An inflow liquid temperature detection unit for detecting the temperature of the liquid flowing into the liquid-refrigerant heat exchanger;
The high-temperature liquid introduction operation is terminated when the temperature detected by the inflow liquid temperature detecting unit is equal to or higher than a predetermined temperature or when a predetermined time has passed. Heat pump water heater.
請求項4に記載のヒートポンプ式給湯機において、
液−冷媒熱交換器に流入する液体の温度を検知する流入液温度検出部をさらに備え、
高温液導入動作は、前記流入液温度検出部で検出される温度が所定の温度以上となったこと、又は、所定の時間が経過したことのいずれかを満たす場合に終了することを特徴とするヒートポンプ式給湯機。
In the heat pump type water heater according to claim 4,
An inflow liquid temperature detection unit for detecting the temperature of the liquid flowing into the liquid-refrigerant heat exchanger;
The high-temperature liquid introduction operation is terminated when the temperature detected by the inflow liquid temperature detecting unit is equal to or higher than a predetermined temperature or when a predetermined time has passed. Heat pump water heater.
冷媒を圧縮する圧縮機と、前記圧縮機から吐出される高温,高圧の冷媒により貯蔵タンクに貯蔵される液体を加熱する液−冷媒熱交換器と、前記液−冷媒熱交換器から膨張弁を介して流入される低温,低圧の冷媒を空気と熱交換させる蒸発器と、液−冷媒熱交換器で加熱された液体を貯蔵する貯蔵タンクと、低温の液体を前記液−冷媒熱交換器に送り出す往き配管と、前記液−冷媒熱交換器で加熱された液体を前記貯蔵タンクに戻す戻り配管とを備え、
前記低温の液体を加熱して前記貯蔵タンクに貯える沸上げ運転を行い、
さらに、前記貯蔵タンクをバイパスして前記往き配管及び戻り配管を接続するバイパス配管と、前記液−冷媒熱交換器から流出した液体が貯蔵タンクに送られる経路と貯蔵タンクをバイパスする経路とを切り換える経路切換機構と、前記液−冷媒熱交換器に流入する液体の温度を検知する流入液温度検出部とを備えるヒートポンプ式給湯機において、
前記流入液温度検出部で検出される温度が所定の時間に亘って所定の温度以下であった場合、
前記液−冷媒熱交換器から流出した液体が貯蔵タンクをバイパスする経路となるように前記経路切換機構を切り換えて、前記低温の液体よりも高温の液体を前記液−冷媒熱交換器に導入し、且つ、前記液−冷媒熱交換器から流出した液体を前記沸上げ運転時よりも少ない流量でバイパス配管を通して循環させ、前記液−冷媒熱交換器へ向かう往き配管の凍結を防止する凍結防止運転を行うことを特徴とするヒートポンプ式給湯機。
A compressor that compresses the refrigerant, a liquid-refrigerant heat exchanger that heats the liquid stored in the storage tank by the high-temperature and high-pressure refrigerant discharged from the compressor, and an expansion valve from the liquid-refrigerant heat exchanger. An evaporator that exchanges heat between low-temperature and low-pressure refrigerant flowing in through air, a storage tank that stores liquid heated by the liquid-refrigerant heat exchanger, and low-temperature liquid into the liquid-refrigerant heat exchanger. A forward pipe for sending out, and a return pipe for returning the liquid heated by the liquid-refrigerant heat exchanger to the storage tank,
Performing a boiling operation of heating the low-temperature liquid and storing it in the storage tank;
Further, a bypass pipe that bypasses the storage tank and connects the forward pipe and the return pipe, and a path through which the liquid flowing out from the liquid-refrigerant heat exchanger is sent to the storage tank and a path that bypasses the storage tank are switched. In a heat pump type water heater comprising a path switching mechanism and an inflow liquid temperature detection unit for detecting the temperature of the liquid flowing into the liquid-refrigerant heat exchanger,
When the temperature detected by the influent temperature detector is below a predetermined temperature over a predetermined time,
The path switching mechanism is switched so that the liquid flowing out from the liquid-refrigerant heat exchanger becomes a path that bypasses the storage tank, and a liquid higher in temperature than the low-temperature liquid is introduced into the liquid-refrigerant heat exchanger. And an anti-freezing operation that circulates the liquid flowing out of the liquid-refrigerant heat exchanger through a bypass pipe at a lower flow rate than that during the boiling operation and prevents freezing of the outgoing pipe toward the liquid-refrigerant heat exchanger. A heat pump type water heater characterized by performing
冷媒を圧縮する圧縮機と、前記圧縮機から吐出される高温,高圧の冷媒により貯蔵タンクに貯蔵される液体を加熱する液−冷媒熱交換器と、前記液−冷媒熱交換器から膨張弁を介して流入される低温,低圧の冷媒を空気と熱交換させる蒸発器と、低温の液体を前記液−冷媒熱交換器に送り出す往き配管と、前記液−冷媒熱交換器で加熱された液体を前記貯蔵タンクに戻す戻り配管とを備え、
前記低温の液体を加熱して前記貯蔵タンクに貯える沸上げ運転を行い、
さらに、前記液−冷媒熱交換器から流出した液体が前記貯蔵タンクをバイパスするように前記往き配管及び戻り配管を接続するバイパス配管と、前記液−冷媒熱交換器から流出した液体が貯蔵タンクに送られる経路と貯蔵タンクをバイパスする経路とを切り換える経路切換機構とを備えるヒートポンプ式給湯機において、
前記液−冷媒熱交換器から流出した液体が貯蔵タンクをバイパスする経路となるように前記経路切換機構を切り換えて、前記低温の液体よりも高温の液体を前記液−冷媒熱交換器に導入する高温液導入動作を行った後、
高温の冷媒を前記蒸発器に導入する高温冷媒導入動作を行い、且つ、前記液−冷媒熱交換器から流出した液体を前記沸上げ運転時よりも少ない流量でバイパス配管を通して循環させるバイパス循環動作を行うことを特徴とするヒートポンプ式給湯機。
A compressor that compresses the refrigerant, a liquid-refrigerant heat exchanger that heats the liquid stored in the storage tank by the high-temperature and high-pressure refrigerant discharged from the compressor, and an expansion valve from the liquid-refrigerant heat exchanger. An evaporator that exchanges heat between the low-temperature and low-pressure refrigerant flowing in through air, an outgoing pipe that sends low-temperature liquid to the liquid-refrigerant heat exchanger, and a liquid heated by the liquid-refrigerant heat exchanger. A return pipe returning to the storage tank,
Performing a boiling operation of heating the low-temperature liquid and storing it in the storage tank;
In addition, a bypass pipe connecting the forward pipe and the return pipe so that the liquid flowing out from the liquid-refrigerant heat exchanger bypasses the storage tank, and the liquid flowing out from the liquid-refrigerant heat exchanger enters the storage tank. In a heat pump type water heater provided with a path switching mechanism that switches between a path to be sent and a path that bypasses the storage tank,
The path switching mechanism is switched so that the liquid flowing out from the liquid-refrigerant heat exchanger becomes a path that bypasses the storage tank, and a liquid higher in temperature than the low-temperature liquid is introduced into the liquid-refrigerant heat exchanger. After performing the high temperature liquid introduction operation,
A bypass circulation operation for performing a high-temperature refrigerant introduction operation for introducing a high-temperature refrigerant into the evaporator and circulating the liquid flowing out from the liquid-refrigerant heat exchanger through a bypass pipe at a lower flow rate than in the boiling operation. A heat pump type water heater characterized by performing.
JP2011505796A 2009-03-27 2009-08-18 Heat pump water heater Active JP5378504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011505796A JP5378504B2 (en) 2009-03-27 2009-08-18 Heat pump water heater

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009078006 2009-03-27
JP2009078006 2009-03-27
JP2011505796A JP5378504B2 (en) 2009-03-27 2009-08-18 Heat pump water heater
PCT/JP2009/064437 WO2010109689A1 (en) 2009-03-27 2009-08-18 Heat pump type hot water supply device

Publications (2)

Publication Number Publication Date
JPWO2010109689A1 JPWO2010109689A1 (en) 2012-09-27
JP5378504B2 true JP5378504B2 (en) 2013-12-25

Family

ID=42780396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011505796A Active JP5378504B2 (en) 2009-03-27 2009-08-18 Heat pump water heater

Country Status (4)

Country Link
JP (1) JP5378504B2 (en)
KR (1) KR20110125234A (en)
CN (1) CN102348938B (en)
WO (1) WO2010109689A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017010148A1 (en) * 2017-11-02 2019-05-02 Stiebel Eltron Gmbh & Co. Kg Heating system and control method for a heating system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5681787B2 (en) * 2011-03-09 2015-03-11 東芝キヤリア株式会社 Two-way refrigeration cycle equipment
JP5573740B2 (en) * 2011-03-18 2014-08-20 三菱電機株式会社 Heat pump water heater
JP2014196849A (en) * 2013-03-29 2014-10-16 パナソニック株式会社 Heat pump water heater
JP6087211B2 (en) * 2013-05-27 2017-03-01 リンナイ株式会社 Heating system
CN104566965B (en) * 2014-12-31 2017-09-01 孙厚永 A kind of air can split type wall-hung boiler
CN104792075A (en) * 2015-04-28 2015-07-22 广东美的暖通设备有限公司 Three-tube multi-split air-conditioning system oil return or defrosting control method and system thereof
CN104792076A (en) * 2015-04-28 2015-07-22 广东美的暖通设备有限公司 Three-tube multi-split air-conditioning system oil return or defrosting control method and system thereof
CN105135689B (en) * 2015-09-25 2018-04-06 广东美的暖通设备有限公司 The antifreeze pre-warning and control method of circulation hot water dispenser and device
ITUB20159146A1 (en) * 2015-12-24 2017-06-24 Cordivari S R L THERMAL EXCHANGE SYSTEM AND THERMAL STRATIFICATION OF THE FLUID CONTAINED IN A TANK AND TANK INCLUDING THE SYSTEM.
JP2019158285A (en) * 2018-03-15 2019-09-19 株式会社デンソー Heat pump type water heater
CN110595122B (en) * 2018-06-12 2022-03-08 浙江盾安机电科技有限公司 Defrosting control method, device and system for heat pump
CN114963528B (en) * 2021-06-29 2023-08-18 青岛海尔新能源电器有限公司 Refrigerant detection method, device, equipment and storage medium
CN114739063A (en) * 2022-04-26 2022-07-12 青岛海尔空调电子有限公司 Heat pump unit and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147610A (en) * 2003-11-19 2005-06-09 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2008039360A (en) * 2006-08-10 2008-02-21 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP2008121923A (en) * 2006-11-09 2008-05-29 Denso Corp Heat pump water heater
JP2009041860A (en) * 2007-08-09 2009-02-26 Toshiba Carrier Corp Control method of heat pump hot water supply device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3742356B2 (en) * 2002-03-20 2006-02-01 株式会社日立製作所 Heat pump water heater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147610A (en) * 2003-11-19 2005-06-09 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2008039360A (en) * 2006-08-10 2008-02-21 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP2008121923A (en) * 2006-11-09 2008-05-29 Denso Corp Heat pump water heater
JP2009041860A (en) * 2007-08-09 2009-02-26 Toshiba Carrier Corp Control method of heat pump hot water supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017010148A1 (en) * 2017-11-02 2019-05-02 Stiebel Eltron Gmbh & Co. Kg Heating system and control method for a heating system

Also Published As

Publication number Publication date
CN102348938B (en) 2015-08-12
WO2010109689A1 (en) 2010-09-30
KR20110125234A (en) 2011-11-18
CN102348938A (en) 2012-02-08
JPWO2010109689A1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
JP5378504B2 (en) Heat pump water heater
JP5809872B2 (en) Heating device
JP2008232576A (en) Hot water supply apparatus
JP2012057869A (en) Air conditioner
JP5144728B2 (en) Air conditioner
WO2003042606A1 (en) Heat pump type hot water supply device
JP2008070013A (en) Heat pump device and heat-pump water heater
JP2008096044A (en) Hot water reservoir type hot-water supply device
JP5501279B2 (en) HEAT PUMP SYSTEM AND HEAT PUMP SYSTEM CONTROL METHOD
JP2003139405A (en) Storage-type hot water supply system
JP2009063246A (en) Heat pump water heater
JP2002048399A (en) Heat pump hot water supply apparatus
JP5333507B2 (en) Heat pump water heater
JP2010091128A (en) Heat exchanger and water heating system
JP6465332B2 (en) Heat pump hot water supply system
JP5682552B2 (en) Heat pump water heater
JP2014031930A (en) Refrigeration cycle device
JP4479836B2 (en) Hot water system
JP2009074736A (en) Heat pump type hot water supply device
JP2012083066A (en) Air conditioning apparatus
JP3919610B2 (en) Freezing prevention device in heat pump type water heater
JP2020165552A (en) Heat pump type water heater
JP2010054145A (en) Heat pump water heater
JP6152689B2 (en) Heat pump water heater
JP2003222416A (en) Heat storage type air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130925

R150 Certificate of patent or registration of utility model

Ref document number: 5378504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350