JP2008039360A - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP2008039360A
JP2008039360A JP2006218087A JP2006218087A JP2008039360A JP 2008039360 A JP2008039360 A JP 2008039360A JP 2006218087 A JP2006218087 A JP 2006218087A JP 2006218087 A JP2006218087 A JP 2006218087A JP 2008039360 A JP2008039360 A JP 2008039360A
Authority
JP
Japan
Prior art keywords
hot water
flow rate
pump
refrigerant
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006218087A
Other languages
Japanese (ja)
Other versions
JP4910559B2 (en
Inventor
Hiroshi Arashima
博 荒島
Kenji Shirai
健二 白井
Bunji Hayashi
文次 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006218087A priority Critical patent/JP4910559B2/en
Publication of JP2008039360A publication Critical patent/JP2008039360A/en
Application granted granted Critical
Publication of JP4910559B2 publication Critical patent/JP4910559B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump type water heater capable of shortening a defrosting time. <P>SOLUTION: As this heat pump type water heater is provided with a heat pump circuit constituted by circularly connecting a compressor 11, a water-refrigerant heat exchanger 12, pressure reducing devices 13A, 13B and an evaporator 14 by refrigerant piping, a hot water supply circuit constituted by circularly connecting a hot water storage tank 20 for storing hot water, a pump 23 for circulating hot water in the hot water storage tank 20, and the water-refrigerant heat exchanger 12 by piping, and a defrost preliminary interval for performing an operation in a state of reducing a flow rate of the pump 23 by a specific flow rate for a specific time before starting a defrosting operation to defrost the evaporator 14, a flow rate of the water flowing into the water-refrigerant heat exchanger 12 before starting the defrosting can be lowered, heat radiation of the refrigerant in the water-refrigerant heat exchanger can be reduced, and the heat of high temperature of the refrigerant can be used in the defrosting operation of the evaporator 14, thus the defrosting time can be shortened. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、圧縮機、水―冷媒熱交換器、減圧装置、蒸発器を冷媒配管で接続したヒートポンプ回路と、貯湯タンク、ポンプ、水−冷媒熱交換器を配管で接続した給湯回路とを有したヒートポンプ式給湯機に関する。   The present invention has a heat pump circuit in which a compressor, a water-refrigerant heat exchanger, a decompressor, and an evaporator are connected by refrigerant piping, and a hot water supply circuit in which a hot water storage tank, a pump, and a water-refrigerant heat exchanger are connected by piping. The present invention relates to a heat pump water heater.

従来、除霜運転中にポンプ流量を下限値に近いところまで低下させるか、もしくはポンプを停止させて、水−冷媒熱交換器に貯えられた熱を利用して除霜していた(例えば、特許文献1参照)。
特開2005−147609号公報
Conventionally, during the defrosting operation, the pump flow rate is reduced to a position close to the lower limit value, or the pump is stopped, and the defrosting is performed using the heat stored in the water-refrigerant heat exchanger (for example, Patent Document 1).
JP-A-2005-147609

しかしながら、従来の除霜方法では、一般的に高圧の抑制、冷媒音対策の観点から除霜運転を開始する前に、圧縮機の周波数を低下させたり、膨張弁開度を通常運転時よりも開くため水−冷媒熱交換器に高温の熱を貯えることができず、除霜時間が長くなってしまうという課題を有していた。   However, in the conventional defrosting method, in general, before starting the defrosting operation from the viewpoint of suppression of high pressure and countermeasures against refrigerant noise, the frequency of the compressor is reduced or the expansion valve opening is set to be lower than that during normal operation. Since it opens, high temperature heat cannot be stored in a water-refrigerant heat exchanger, and it had the subject that defrost time will become long.

本発明は、前記従来の課題を解決するもので、除霜時間を短くすることができるヒートポンプ式給湯機を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the heat pump type water heater which can shorten defrost time.

前記従来の課題を解決するために、本発明のヒートポンプ式給湯機は、圧縮機、水―冷媒熱交換器、減圧装置、蒸発器を冷媒配管により環状に接続して構成されるヒートポンプ回路と、湯水を貯える貯湯タンク、前記貯湯タンク内の湯水を循環させるポンプ、水―冷媒熱交換器を配管により環状に接続して構成される給湯回路と、前記蒸発器の除霜を行う除霜運転開始前に、前記ポンプの流量を一定時間、一定流量減少させて運転する除霜準備区間を設けることにより、除霜開始前に水−冷媒熱交換器に流入する水の流量を低下させることができ、水−冷媒熱交換器での冷媒の方熱量を抑え、冷媒の持っている高温の熱を蒸発器の除霜運転に使用することができるので、除霜時間を短くすることができる。   In order to solve the above-mentioned conventional problems, the heat pump type hot water heater of the present invention includes a heat pump circuit configured by connecting a compressor, a water-refrigerant heat exchanger, a decompression device, and an evaporator in an annular shape by a refrigerant pipe, Hot water storage tank that stores hot water, a pump that circulates the hot water in the hot water storage tank, a hot water supply circuit that is formed by connecting water-refrigerant heat exchangers in a ring shape, and a defrosting operation that starts defrosting the evaporator Before, the flow rate of the water flowing into the water-refrigerant heat exchanger can be lowered before the start of the defrosting by providing a defrost preparation section that operates by reducing the flow rate of the pump for a certain time. Since the heat quantity of the refrigerant in the water-refrigerant heat exchanger is suppressed and the high-temperature heat of the refrigerant can be used for the defrosting operation of the evaporator, the defrosting time can be shortened.

本発明のヒートポンプ式給湯機は、除霜時間を短くすることができるヒートポンプ式給湯機を提供することができる。   The heat pump water heater of the present invention can provide a heat pump water heater that can shorten the defrosting time.

第1の発明のヒートポンプ式給湯機は、圧縮機、水―冷媒熱交換器、減圧装置、蒸発器を冷媒配管により環状に接続して構成されるヒートポンプ回路と、湯水を貯える貯湯タンク、前記貯湯タンク内の湯水を循環させるポンプ、水―冷媒熱交換器を配管により環状に接続して構成される給湯回路と、前記蒸発器の除霜を行う除霜運転開始前に、前記ポンプの流量を一定時間、一定流量減少させて運転する除霜準備区間を設けることにより、除霜開始前に水−冷媒熱交換器に流入する水の流量を低下させることができ、水−冷媒熱交換器での冷媒の方熱量を抑え、冷媒の持っている高温の熱を蒸発器の除霜運転に使用することができるので、除霜時間を短くすることができる。   A heat pump type hot water supply apparatus according to a first aspect of the present invention includes a compressor, a water-refrigerant heat exchanger, a decompression device, a heat pump circuit configured by connecting an evaporator in a ring shape with a refrigerant pipe, a hot water storage tank for storing hot water, and the hot water storage Before starting the defrosting operation for defrosting the evaporator, the pump for circulating hot water in the tank, the hot water supply circuit configured by connecting the water-refrigerant heat exchanger in a ring shape with piping, and the flow rate of the pump By providing a defrost preparation section that operates with a constant flow decrease for a certain period of time, the flow rate of water flowing into the water-refrigerant heat exchanger can be reduced before the start of defrosting. The amount of heat of the refrigerant can be suppressed, and the high-temperature heat of the refrigerant can be used for the defrosting operation of the evaporator, so the defrosting time can be shortened.

第2の発明のヒートポンプ式給湯機は、特に第1の発明において、除霜準備区間において、ポンプの流量に下限値を設けることにより、圧縮機の吐出冷媒圧力の異常上昇を防止
することができる。これは、通常運転時のポンプの流量が極めて低い時に、除霜準備区間に入ってポンプの流量を一定流量を減少させたときには、流量がゼロになってしまい、高圧が異常上昇してしまうため、これを防ぐものである。
In the heat pump hot water heater of the second invention, particularly in the first invention, in the defrost preparation section, by providing a lower limit value for the flow rate of the pump, it is possible to prevent an abnormal increase in the refrigerant pressure discharged from the compressor. . This is because when the flow rate of the pump during normal operation is extremely low and the pump flow rate is reduced by a fixed flow rate when entering the defrost preparation section, the flow rate becomes zero and the high pressure rises abnormally. To prevent this.

第3の発明のヒートポンプ式給湯機は、特に第1または第2の発明において、除霜準備区間において、ポンプの流量の下限値を、沸き上げ運転時に設定している沸き上げ下限値以上とすることにより、簡単な制御を実現することができる。通常、沸き上げ運転時には、ポンプ流量に沸き上げ下限値が設定されており、それ以上のポンプ流量で運転するように制御されている。沸き上げ運転時において、沸き上げ下限値以上でポンプ流量を制御すると、圧縮機の吐出冷媒圧力が異常上昇することがない。しかしながら、除霜運転に入る際は外気温度が低く、ポンプ流量が低下していることが多いため、一定流量ポンプ流量を減少させると、沸き上げ下限値、つまり問題なく運転できる下限値よりも低くなってしまい、吐出冷媒圧力が異常上昇してしまう。そこで、沸き上げ運転時の下限値よりも高く除霜運転準備区間の下限値を設定することで、通常沸き上げ運転時から除霜運転準備区間に入ってポンプ流量を一定流量減少させても、吐出冷媒圧力が問題なく運転することができる。本来ならば高圧の異常上昇を防ぐために、除霜運転準備区間に入る前の圧縮機の吐出冷媒圧力の状態(高圧の状態)などに基づいて流量を適宜決定し、制御する(下げる)必要があるが、複雑な制御となりコストも上昇してしまうため、本発明のように制御することで簡単な制御を実現することができる。   In the heat pump type hot water heater of the third invention, particularly in the first or second invention, the lower limit value of the pump flow rate is set to be equal to or higher than the lower limit value of boiling set during the heating operation in the defrost preparation section. Thus, simple control can be realized. Usually, at the time of boiling operation, a boiling lower limit value is set for the pump flow rate, and control is performed so as to operate at a pump flow rate higher than that. When the pump flow rate is controlled at the boiling lower limit value or more during the boiling operation, the discharge refrigerant pressure of the compressor does not rise abnormally. However, when the defrosting operation is started, the outside air temperature is low and the pump flow rate is often lowered. Therefore, when the constant flow pump flow rate is decreased, the boiling lower limit value, that is, the lower limit value that can be operated without problems is lower. As a result, the discharged refrigerant pressure rises abnormally. Therefore, by setting the lower limit value of the defrosting operation preparation section higher than the lower limit value during the boiling operation, even if the pump flow rate is reduced by a constant flow rate after entering the defrosting operation preparation section from the normal boiling operation, The discharged refrigerant pressure can be operated without any problem. Originally, in order to prevent an abnormal increase in high pressure, it is necessary to appropriately determine and control (decrease) the flow rate based on the discharge refrigerant pressure state (high pressure state) of the compressor before entering the defrosting operation preparation section. However, since the control is complicated and the cost is increased, simple control can be realized by performing the control as in the present invention.

第4の発明のヒートポンプ式給湯機は、特に第1〜第3の発明において、高圧側の冷媒圧力が、臨界圧力以上となることにより、水に熱を奪われて冷媒温度が低下しても、凝縮することがないため、水―冷媒熱交換器全域で冷媒と水との間に温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換率を高くできる。   In the heat pump type hot water heater of the fourth invention, in particular in the first to third inventions, even if the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure, water is deprived of heat and the refrigerant temperature decreases. Since it does not condense, it becomes easy to form a temperature difference between the refrigerant and water in the entire water-refrigerant heat exchanger, so that hot water can be obtained and the heat exchange rate can be increased.

第5の発明のヒートポンプ式給湯機は、特に第4の発明において、使用する冷媒が二酸化炭素であることにより、比較的安価でかつ安定な二酸化炭素を冷媒に使用することにより、製品コストを抑えるとともに、信頼性を向上させることができる。また、二酸化炭素はオゾン破壊係数がゼロであり、地球温暖化係数も代替冷媒HFC−407Cの約1700分の1と非常に小さいため、地球環境に優しい製品を提供できる。   In the heat pump type hot water heater of the fifth invention, particularly in the fourth invention, since the refrigerant to be used is carbon dioxide, the use of carbon dioxide which is relatively inexpensive and stable is used as the refrigerant, thereby suppressing the product cost. At the same time, reliability can be improved. In addition, carbon dioxide has an ozone depletion coefficient of zero and a global warming coefficient of about 1/700 of the alternative refrigerant HFC-407C, which is very small.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本実施の形態におけるヒートポンプ式給湯機の構成図である。図1において、本実施の形態におけるヒートポンプ式給湯機のヒートポンプ回路10は、インバータ式圧縮機11、水―冷媒熱交換器12、メイン膨張弁13A、キャピラリチューブ13B、蒸発器14を冷媒配管により順次環状に接続して構成されている。また蒸発器14に空気を送る送風機15が蒸発器14の風下側に設置されており、マイクロコンピュータなどの送風機制御手段(図示せず)により制御されて送風機15が動作することで、蒸発器14に空気を流通させる。また、ヒートポンプ回路10には、圧縮機11の温度を検出するサーミスタ10A、圧縮機11から吐出する冷媒の温度を検出するサーミスタ10B、圧縮機11から吐出する冷媒の圧力を検出する圧力センサ10C、蒸発器14に流通する空気の温度(外気温度)を検出するサーミスタ(外気温度検出手段)10D、蒸発器14の温度を検出するサーミスタ(蒸発器温度検出手段)10Eが配設されている。サーミスタ10Aはコールドスタートの検出を、圧力センサ10Cは圧縮機11またはヒートポンプ回路10の異常検出を主に行うために配設されている。なお、インバータ式圧縮機11は、アキュームレータのない構成にすると、ヒートポンプ式給湯機の小型化、軽量化を図ることができるが、本発明はこれに限定することは無く、アキュームレータのある構成の圧縮機
を用いたとしても問題はない。また、ヒートポンプ回路を流通する冷媒には、高圧側が臨界圧力を超える二酸化炭素を用いているので、水―冷媒熱交換器12内を流通する水に熱を奪われて温度が低下しても凝縮することがなく、水―冷媒熱交換器で冷媒と水との間で温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高くすることができる。
(Embodiment 1)
FIG. 1 is a configuration diagram of a heat pump type water heater in the present embodiment. In FIG. 1, the heat pump circuit 10 of the heat pump type water heater in this embodiment includes an inverter type compressor 11, a water-refrigerant heat exchanger 12, a main expansion valve 13A, a capillary tube 13B, and an evaporator 14 in order by refrigerant piping. It is configured to be connected in a ring shape. A blower 15 for sending air to the evaporator 14 is installed on the leeward side of the evaporator 14, and the blower 15 operates by being controlled by a blower control means (not shown) such as a microcomputer. Allow air to circulate. Further, the heat pump circuit 10 includes a thermistor 10A that detects the temperature of the compressor 11, a thermistor 10B that detects the temperature of the refrigerant discharged from the compressor 11, a pressure sensor 10C that detects the pressure of the refrigerant discharged from the compressor 11, A thermistor (outside air temperature detecting means) 10D for detecting the temperature of the air flowing through the evaporator 14 (outside air temperature) and a thermistor (evaporator temperature detecting means) 10E for detecting the temperature of the evaporator 14 are provided. The thermistor 10 </ b> A is provided for detecting cold start, and the pressure sensor 10 </ b> C is provided mainly for detecting abnormality of the compressor 11 or the heat pump circuit 10. Note that, if the inverter compressor 11 is configured without an accumulator, the heat pump water heater can be reduced in size and weight, but the present invention is not limited to this, and the compressor with the accumulator is compressed. There is no problem even if the machine is used. In addition, since the refrigerant flowing through the heat pump circuit uses carbon dioxide whose high pressure side exceeds the critical pressure, it is condensed even if the temperature drops due to heat deprived from the water flowing through the water-refrigerant heat exchanger 12. Therefore, a water-refrigerant heat exchanger can easily form a temperature difference between the refrigerant and water, high-temperature hot water can be obtained, and heat exchange efficiency can be increased.

一方、本実施の形態におけるヒートポンプ式給湯機の給湯回路は、湯水を貯える貯湯タンク20、貯湯タンク20内の湯水を水―冷媒熱交換器12に流入させ、給湯回路内を循環させるポンプ23、水―冷媒熱交換器12を液体配管により順次環状に接続して構成されている。また、貯湯タンク20に給水をする底部配管21は、水が供給される水供給配管32に減圧弁31を介して接続されている。貯湯タンク20の上部には出湯配管33が接続されており、水供給配管32から減圧弁31を介して水が供給される出水用配管35と混合弁34にて湯水が混合され、混合された湯水は給湯端末36へ供給される構成となっている。また、貯湯タンク20には貯湯タンク20内の湯量を検出するための複数のサーミスタ20A、20B、20Cが配設され、給湯回路には、水―冷媒熱交換器12に流入する湯水の温度を検出するサーミスタ(入水温度検出手段)20D、水―冷媒熱交換器12から流出する湯水の温度を検出するサーミスタ(出湯温度検出手段)20Eが配設されている。また混合弁34と給湯端末36との間には、流量を検出する流量センサ30A、出湯温度を検出するサーミスタ30Bを備えている。なお、本実施の形態における貯湯タンク20は、積層式の貯湯タンクであり、タンク内での攪拌が防止され、上部に高温水が底部に低温水が蓄積されるように構成されている。   On the other hand, the hot water supply circuit of the heat pump type water heater in the present embodiment includes a hot water storage tank 20 for storing hot water, a pump 23 for causing hot water in the hot water storage tank 20 to flow into the water-refrigerant heat exchanger 12 and circulating in the hot water supply circuit. The water-refrigerant heat exchanger 12 is sequentially connected in an annular shape by a liquid pipe. The bottom pipe 21 for supplying water to the hot water storage tank 20 is connected to a water supply pipe 32 to which water is supplied via a pressure reducing valve 31. A hot water supply pipe 33 is connected to the upper part of the hot water storage tank 20, and hot water is mixed and mixed in the water supply pipe 35 through which the water is supplied from the water supply pipe 32 through the pressure reducing valve 31 and the mixing valve 34. Hot water is supplied to the hot water supply terminal 36. The hot water storage tank 20 is provided with a plurality of thermistors 20A, 20B, 20C for detecting the amount of hot water in the hot water storage tank 20, and the hot water supply circuit is provided with the temperature of the hot water flowing into the water-refrigerant heat exchanger 12. A thermistor (incoming water temperature detecting means) 20D for detecting and a thermistor (outlet temperature detecting means) 20E for detecting the temperature of hot water flowing out from the water-refrigerant heat exchanger 12 are provided. Between the mixing valve 34 and the hot water supply terminal 36, a flow rate sensor 30A for detecting the flow rate and a thermistor 30B for detecting the hot water temperature are provided. The hot water storage tank 20 in the present embodiment is a stacked hot water storage tank, and is configured so that stirring in the tank is prevented and high temperature water is accumulated at the top and low temperature water is accumulated at the bottom.

以上のように構成されたヒートポンプ式給湯装置において、以下、その動作を説明する。時刻が所定時刻になるか、もしくは貯湯タンク20内の湯量を検出するための複数のサーミスタ20A、20B、20Cによって、貯湯タンク20内の湯量が所定量以下となったことを検出すると、ヒートポンプ回路10を動作させて貯湯運転を開始する。   The operation of the heat pump type hot water supply apparatus configured as described above will be described below. When the time reaches a predetermined time or when the plurality of thermistors 20A, 20B, and 20C for detecting the amount of hot water in the hot water storage tank 20 detects that the amount of hot water in the hot water storage tank 20 has become a predetermined amount or less, the heat pump circuit 10 is operated to start the hot water storage operation.

ヒートポンプ回路10において、インバータ式圧縮機11で圧縮され、インバータ式圧縮機11から吐出された冷媒が、水―冷媒熱交換器12で放熱し、メイン膨張弁13Aおよびキャピラリチューブ13Bで減圧された後、蒸発器14で送風機15を動作することにより送られる空気から熱を吸収し、ガス状態で再びインバータ式圧縮機11に吸入される。インバータ式圧縮機11の能力制御および膨張弁13Aの開度制御は、サーミスタ10Bで検出される圧縮機11から吐出される冷媒の温度が予め設定された温度を維持するように制御される。   In the heat pump circuit 10, after the refrigerant compressed by the inverter compressor 11 and discharged from the inverter compressor 11 radiates heat by the water-refrigerant heat exchanger 12 and is depressurized by the main expansion valve 13A and the capillary tube 13B. Then, heat is absorbed from the air sent by operating the blower 15 in the evaporator 14 and is sucked into the inverter compressor 11 again in a gas state. The capacity control of the inverter type compressor 11 and the opening degree control of the expansion valve 13A are controlled such that the temperature of the refrigerant discharged from the compressor 11 detected by the thermistor 10B maintains a preset temperature.

一方、給湯回路においては、ポンプ23の運転により貯湯タンク20内の湯水を給湯回路に循環させ、水―冷媒熱交換器12にて冷媒と熱交換を行い、再び貯湯タンク20に戻り積層状態で上部に高温の湯が貯湯される。また、サーミスタ(出湯温度検出手段)20Eの値が、サーミスタ(入水温度検出手段)20Dによって検出される入水温度と、貯湯タンク20が決定する所望の沸き上げ温度とにより決定される目標出湯温度になるように、ポンプ23が制御される。以上のように構成されたヒートポンプ式給湯機の除霜運転に関して、以下、説明する。   On the other hand, in the hot water supply circuit, hot water in the hot water storage tank 20 is circulated to the hot water supply circuit by the operation of the pump 23, heat exchange with the refrigerant is performed in the water-refrigerant heat exchanger 12, and returned to the hot water storage tank 20 again in a stacked state. Hot water is stored at the top. Further, the value of the thermistor (hot water temperature detecting means) 20E becomes a target hot water temperature determined by the incoming water temperature detected by the thermistor (incoming water temperature detecting means) 20D and the desired boiling temperature determined by the hot water storage tank 20. Thus, the pump 23 is controlled. Hereinafter, the defrosting operation of the heat pump type water heater configured as described above will be described.

図2は、本実施の形態における制御ブロック図である。まず、ポンプの流量を制御するポンプ流量制御手段40の構成を説明する。ポンプ流量制御手段40の流量決定は、通常沸き上げ運転時、除霜準備区間時、除霜運転時の3つの区間で異なる。   FIG. 2 is a control block diagram in the present embodiment. First, the configuration of the pump flow rate control means 40 that controls the flow rate of the pump will be described. The determination of the flow rate of the pump flow rate control means 40 is different in three sections during the normal boiling operation, the defrost preparation section, and the defrost operation.

ポンプ流量制御手段40は、通常沸き上げ運転時のポンプ流量を決定する沸き上げ運転時ポンプ流量決定手段48、水−冷媒熱交換器から出湯する湯の目標温度を設定する目標出湯温度設定手段42、沸き上げ運転時のポンプ流量の下限値(沸き上げ下限値)を設定
する沸き上げ運転時ポンプ流量下限設定手段43を有し、沸き上げ運転時においては、サーミスタ(出湯温度検出手段)20Eで検出された出湯温度が、目標出湯温度設定手段42により設定された目標出湯温度になるようにポンプ23の流量を決定している。ただし、出湯温度が目標出湯温度に至らなくても、ポンプの流量は、沸き上げ運転時ポンプ流量下限設定手段43にて設定された沸き上げ下限値を下回らないように制御される。
The pump flow rate control means 40 is a pump flow rate determining means 48 for determining the pump flow rate during the normal boiling operation, and a target hot water temperature setting means 42 for setting the target temperature of the hot water discharged from the water-refrigerant heat exchanger. The pump has a pump flow lower limit setting means 43 for setting the lower limit value (boiling lower limit value) of the pump flow rate during the boiling operation, and the thermistor (the hot water temperature detection means) 20E is used during the boiling operation. The flow rate of the pump 23 is determined so that the detected hot water temperature becomes the target hot water temperature set by the target hot water temperature setting means 42. However, even if the hot water temperature does not reach the target hot water temperature, the flow rate of the pump is controlled so as not to fall below the boiling lower limit value set by the pump flow rate lower limit setting means 43 during the boiling operation.

また、ポンプ流量制御手段40は、除霜準備区間時のポンプ流量を決定する除霜準備区間運転時ポンプ流量決定手段49、通常沸き上げ運転時におけるポンプ流量を記憶する沸き上げ運転時ポンプ流量記憶手段44、除霜準備区間時にポンプ流量から下げる一定流量を設定する除霜準備区間運転時ポンプ低下流量設定手段45、除霜準備区間時のポンプ流量の下限値を設定する除霜準備区間時ポンプ流量下限設定手段46を有し、除霜準備区間時においては、外気温度や蒸発器の温度などにより除霜開始検知手段41で除霜開始と検知されたときに、沸き上げ運転時ポンプ流量記憶手段44で記憶された沸き上げ運転時のポンプ流量から、除霜準備区間運転時ポンプ低下流量設定手段45によって設定されたポンプ低下量を引き、その結果が、除霜準備区間ポンプ流量下限設定手段46で設定された下限値以上であれば、その値をポンプ23の流量として決定し、下限値未満であれば、下限値をポンプ23の流量として決定される。   Further, the pump flow rate control means 40 is a pump flow rate determining means 49 for determining the pump flow rate at the time of the defrost preparation section, and a pump flow rate storage at the time of boiling operation for storing the pump flow rate at the time of normal boiling operation. Means 44, defrost preparation section operation pump lowering flow setting means 45 for setting a constant flow rate to be reduced from the pump flow rate during the defrost preparation section, defrost preparation section pump for setting a lower limit value of the pump flow rate during the defrost preparation section The flow rate lower limit setting means 46 is provided, and during the defrost preparation section, when the defrost start is detected by the defrost start detection means 41 due to the outside air temperature, the evaporator temperature, etc., the pump flow rate memory during the boiling operation is stored. The pump lowering amount set by the pump lowering flow rate setting means 45 during the defrost preparation section operation is subtracted from the pump flow rate during the boiling operation stored in the means 44, and the result is If it is not less than the lower limit value set by the defrost preparation section pump flow rate lower limit setting means 46, the value is determined as the flow rate of the pump 23, and if it is less than the lower limit value, the lower limit value is determined as the flow rate of the pump 23. .

また、ポンプ流量制御手段40は、除霜運転時のポンプ流量を設定する除霜運転時ポンプ流量設定手段47、除霜運転時におけるポンプの流量を決定する除霜運転時ポンプ流量決定手段50を有し、除霜開始検知手段41によって除霜開始と検知されたときには、除霜準備区間終了後、除霜運転時ポンプ流量設定手段47によって設定されたポンプ流量に除霜運転時ポンプ流量決定手段50でポンプの流量を決定する。   The pump flow rate control means 40 includes a defrosting operation pump flow rate setting means 47 for setting the pump flow rate during the defrosting operation, and a defrosting operation pump flow rate determination means 50 for determining the pump flow rate during the defrosting operation. And when the defrosting start detecting means 41 detects that the defrosting is started, the defrosting operation pump flow rate determining means is set to the pump flow rate set by the defrosting operation pump flow rate setting means 47 after the completion of the defrost preparation section. 50 determines the flow rate of the pump.

また、ポンプ流量制御手段40は、ポンプの流量を制御するポンプ流量可変手段51を有し、沸き上げ運転時ポンプ流量決定手段48、除霜準備区間運転時ポンプ流量決定手段49、除霜運転時ポンプ流量決定手段50で決定されたポンプの流量になるように、ポンプ23を制御する。   The pump flow rate control means 40 has a pump flow rate variable means 51 for controlling the flow rate of the pump. The pump flow rate determination means 48 at the time of boiling operation, the pump flow rate determination means 49 at the time of defrost preparation section operation, and the time at the time of defrost operation. The pump 23 is controlled so that the pump flow rate determined by the pump flow rate determining means 50 is obtained.

図3は、本実施の形態におけるポンプ流量制御フローチャートである。図3を用いて、ポンプの流量を決定する流れを説明する。   FIG. 3 is a flow chart of pump flow rate control in the present embodiment. The flow for determining the flow rate of the pump will be described with reference to FIG.

(ステップ1)
沸き上げ運転開始後ステップ2に進む。
(Step 1)
Proceed to step 2 after starting the boiling operation.

(ステップ2)
サーミスタ(出湯温度検出手段)20Eで出湯温度を検出し、ステップ3に進む。
(Step 2)
The thermistor (hot water temperature detection means) 20E detects the hot water temperature and proceeds to step 3.

(ステップ3)
沸き上げ運転開始直後かどうかを判断し、開始直後であればステップ4に進み、開始直後でなければステップ5に進む。
(Step 3)
It is determined whether or not it is immediately after the start of the boiling operation. If it is immediately after the start, the process proceeds to step 4; otherwise, the process proceeds to step 5.

(ステップ4)
ポンプの初期流量を決定し、ステップ19に進む。
(Step 4)
Determine the initial flow rate of the pump and proceed to step 19.

(ステップ5)
除霜運転開始条件が成立しているかどうかを判断し、成立していなければステップ6に進み、成立していればステップ13に進む。
(Step 5)
It is determined whether or not the defrosting operation start condition is satisfied. If not satisfied, the process proceeds to step 6, and if satisfied, the process proceeds to step 13.

(ステップ6)
サーミスタ(出湯温度検出手段)20Eで検出した出湯温度と目標出湯温度とを比較し、目標出湯温度に達していなければステップ9に進み、目標出湯温度に達していればステップ7に進む。
(Step 6)
The hot water temperature detected by the thermistor (hot water temperature detecting means) 20E is compared with the target hot water temperature, and if the target hot water temperature has not been reached, the process proceeds to step 9, and if the target hot water temperature has been reached, the process proceeds to step 7.

(ステップ7)
ポンプの流量を低下させるように(出湯温度を高くするように)制御し、ステップ8に進む。
(Step 7)
Control is performed to decrease the flow rate of the pump (to increase the temperature of the hot water), and the process proceeds to step 8.

(ステップ8)
低下させた後のポンプの流量が、沸き上げ運転時の下限値(沸き上げ下限値)よりも低ければ、沸き上げ下限値をポンプの流量と設定し、ステップ12に進む。
(Step 8)
If the flow rate of the pump after the reduction is lower than the lower limit value (boiling lower limit value) during the boiling operation, the boiling lower limit value is set as the pump flow rate, and the process proceeds to step 12.

(ステップ9)
出湯温度が目標出湯温度よりも高ければステップ10に進み、出湯温度と目標出湯温度が略等しければステップ11に進む。
(Step 9)
If the tapping temperature is higher than the target tapping temperature, the process proceeds to step 10, and if the tapping temperature is substantially equal to the target tapping temperature, the process proceeds to step 11.

(ステップ10)
ポンプの流量を現状維持し、ステップ12に進む。
(Step 10)
Maintain the current flow rate of the pump and proceed to Step 12.

(ステップ11)
ポンプの流量をアップし、ステップ12に進む。
(Step 11)
Increase the pump flow rate and proceed to Step 12.

(ステップ12)
ポンプの流量を決定し、ステップ19に進む。
(Step 12)
Determine the pump flow rate and proceed to step 19.

(ステップ13)
沸き上げ運転時のポンプの流量Qを記憶し、ステップ14に進む。
(Step 13)
The flow rate Q of the pump during the boiling operation is stored, and the process proceeds to step 14.

(ステップ14)
除霜準備区間かどうかを判断し、除霜準備区間である場合にはステップ15に進み、除霜準備区間でない場合(すなわち除霜運転中)にはステップ18に進む。
(Step 14)
It is determined whether it is a defrost preparation section. If it is a defrost preparation section, the process proceeds to step 15, and if it is not a defrost preparation section (that is, during the defrost operation), the process proceeds to step 18.

(ステップ15)
除霜準備区間時のポンプ流量を、Qから除霜準備区間運転時ポンプ低下流量設定手段45によって設定された低下量を差し引いた値に設定し、ステップ16に進む。
(Step 15)
The pump flow rate during the defrost preparation section is set to a value obtained by subtracting the decrease amount set by the pump decrease flow rate setting means 45 during the defrost preparation section operation, and the process proceeds to step 16.

(ステップ16)
ステップ15にて求めた除霜準備区間時のポンプ流量が、除霜準備区間ポンプ流量下限設定手段46で設定されている下限値よりも低ければ、ポンプ流量を下限値に設定し、下限値よりも低くなれば求められたポンプ流量とし、ステップ17に進む。
(Step 16)
If the pump flow rate in the defrost preparation section obtained in step 15 is lower than the lower limit value set by the defrost preparation section pump flow rate lower limit setting means 46, the pump flow rate is set to the lower limit value, and the lower limit value is set. If it becomes lower, the pump flow rate is obtained and the process proceeds to step 17.

(ステップ17)
除霜準備区間のポンプ流量を決定し、ステップ19に進む。
(Step 17)
The pump flow rate in the defrost preparation section is determined, and the process proceeds to step 19.

(ステップ18)
除霜運転中のポンプ流量を決定し、ステップ19に進む。
(Step 18)
The pump flow rate during the defrosting operation is determined, and the process proceeds to step 19.

(ステップ19)
決定されたポンプ流量になるように、ポンプを制御する。
(Step 19)
The pump is controlled so that the determined pump flow rate is obtained.

以上のように、除霜運転開始前に、前記ポンプの流量を一定時間、一定流量減少させて運転する除霜準備区間を設けることにより除霜時間を短くすることができる。   As described above, the defrosting time can be shortened by providing the defrosting preparation section in which the flow rate of the pump is decreased for a certain period of time before starting the defrosting operation.

以上のように、本発明にかかるヒートポンプ式給湯機における沸き上げ制御は、貯湯タンクとヒートポンプサイクルが一体に構成された一体型ヒートポンプ式給湯機、水―冷媒熱交換器で加熱した湯をそのまま出湯する瞬間湯沸し運転にも適用できる。   As described above, the boiling control in the heat pump type hot water heater according to the present invention includes the integrated heat pump type hot water heater in which the hot water storage tank and the heat pump cycle are integrated, and the hot water heated by the water-refrigerant heat exchanger is directly discharged. It can also be applied to instantaneous water heating operation.

実施の形態1におけるヒートポンプ式給湯機の構成図Configuration diagram of heat pump water heater in Embodiment 1 実施の形態1における運転制御のブロック図Block diagram of operation control in the first embodiment 実施の形態1における制御フローチャートControl flowchart in Embodiment 1

符号の説明Explanation of symbols

10A サーミスタ(圧縮機温度検出手段)
10B サーミスタ(吐出温度検出手段)
10C 圧力センサ(吐出圧力検出手段)
10D サーミスタ(外気温度検出手段)
10E サーミスタ(蒸発器温度検出手段)
11 インバータ式圧縮機
12 水―冷媒熱交換器
13 減圧装置
14 蒸発器
20 貯湯タンク
20A サーミスタ(湯量検出手段)
20B サーミスタ(湯量検出手段)
20C サーミスタ(湯量検出手段)
20D サーミスタ(入水温度検出手段)
20E サーミスタ(出湯温度検出手段)
23 ポンプ
10A thermistor (compressor temperature detection means)
10B thermistor (discharge temperature detection means)
10C Pressure sensor (Discharge pressure detection means)
10D thermistor (outside temperature detection means)
10E thermistor (evaporator temperature detection means)
DESCRIPTION OF SYMBOLS 11 Inverter type compressor 12 Water-refrigerant heat exchanger 13 Pressure reducing device 14 Evaporator 20 Hot water storage tank 20A Thermistor (hot water amount detection means)
20B thermistor (hot water detection means)
20C thermistor (hot water detection means)
20D thermistor (incoming water temperature detection means)
20E Thermistor (Tapping temperature detection means)
23 Pump

Claims (5)

圧縮機、水―冷媒熱交換器、減圧装置、蒸発器を冷媒配管により環状に接続して構成されるヒートポンプ回路と、湯水を貯える貯湯タンク、前記貯湯タンク内の湯水を循環させるポンプ、水―冷媒熱交換器を配管により環状に接続して構成される給湯回路と、前記蒸発器の除霜を行う除霜運転開始前に、前記ポンプの流量を一定時間、一定流量減少させて運転する除霜運転準備区間を設けることを特徴とするヒートポンプ式給湯機。 Compressor, water-refrigerant heat exchanger, decompression device, heat pump circuit constructed by connecting the evaporators in an annular shape through refrigerant piping, a hot water storage tank for storing hot water, a pump for circulating hot water in the hot water storage tank, water Before the start of the defrosting operation for defrosting the evaporator, and the hot water supply circuit configured by connecting the refrigerant heat exchangers in a ring shape, the pump is operated by reducing the flow rate of the pump for a certain period of time. A heat pump type hot water heater characterized by providing a frost operation preparation section. 除霜運転準備区間において、ポンプの流量に下限値を設けることを特徴とする請求項1に記載のヒートポンプ式給湯機。 The heat pump type hot water heater according to claim 1, wherein a lower limit value is provided for a flow rate of the pump in the defrosting operation preparation section. 除霜運転準備区間において、ポンプの流量の下限値を、通常沸き上げ運転時に設定している沸き上げ下限値以上とすることを特徴とする請求項2に記載のヒートポンプ式給湯機。 The heat pump type hot water heater according to claim 2, wherein the lower limit value of the flow rate of the pump is set to be equal to or higher than the lower limit value of the boiling set during the normal heating operation in the defrosting operation preparation section. 高圧側の冷媒圧力が、臨界圧力以上となることを特徴とする請求項1〜3のいずれか1項に記載のヒートポンプ式給湯機。 The heat pump type hot water heater according to any one of claims 1 to 3, wherein the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure. 使用する冷媒が二酸化炭素であることを特徴とする請求項4に記載のヒートポンプ式給湯機。 The heat pump type hot water heater according to claim 4, wherein the refrigerant to be used is carbon dioxide.
JP2006218087A 2006-08-10 2006-08-10 Heat pump water heater Active JP4910559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006218087A JP4910559B2 (en) 2006-08-10 2006-08-10 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006218087A JP4910559B2 (en) 2006-08-10 2006-08-10 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2008039360A true JP2008039360A (en) 2008-02-21
JP4910559B2 JP4910559B2 (en) 2012-04-04

Family

ID=39174573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006218087A Active JP4910559B2 (en) 2006-08-10 2006-08-10 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP4910559B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109689A1 (en) * 2009-03-27 2010-09-30 日立アプライアンス株式会社 Heat pump type hot water supply device
DE102017010148A1 (en) * 2017-11-02 2019-05-02 Stiebel Eltron Gmbh & Co. Kg Heating system and control method for a heating system
CN115479393A (en) * 2021-06-16 2022-12-16 江苏金通灵光核能源科技有限公司 Hidden heat exchange type carbon dioxide heat pump water heating all-in-one machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082802A (en) * 1999-09-13 2001-03-30 Denso Corp Heat pump type hot water apparatus
JP2002372326A (en) * 2001-06-18 2002-12-26 Harman Kikaku:Kk Heat pump type hot water spply device
JP2004317080A (en) * 2003-04-18 2004-11-11 Akira Fukushima Ventilation exhaust heat collection device
JP2005147609A (en) * 2003-11-19 2005-06-09 Matsushita Electric Ind Co Ltd Heat pump water heater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082802A (en) * 1999-09-13 2001-03-30 Denso Corp Heat pump type hot water apparatus
JP2002372326A (en) * 2001-06-18 2002-12-26 Harman Kikaku:Kk Heat pump type hot water spply device
JP2004317080A (en) * 2003-04-18 2004-11-11 Akira Fukushima Ventilation exhaust heat collection device
JP2005147609A (en) * 2003-11-19 2005-06-09 Matsushita Electric Ind Co Ltd Heat pump water heater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109689A1 (en) * 2009-03-27 2010-09-30 日立アプライアンス株式会社 Heat pump type hot water supply device
JP5378504B2 (en) * 2009-03-27 2013-12-25 日立アプライアンス株式会社 Heat pump water heater
DE102017010148A1 (en) * 2017-11-02 2019-05-02 Stiebel Eltron Gmbh & Co. Kg Heating system and control method for a heating system
CN115479393A (en) * 2021-06-16 2022-12-16 江苏金通灵光核能源科技有限公司 Hidden heat exchange type carbon dioxide heat pump water heating all-in-one machine

Also Published As

Publication number Publication date
JP4910559B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP5034367B2 (en) Heat pump water heater
JP2005134070A (en) Heat pump water heater
JP4552836B2 (en) Heat pump type water heater
JP2005098546A (en) Heat pump type water heater
JP4513760B2 (en) Heat pump type hot water supply apparatus and control device for heat pump type hot water supply apparatus
JP4910559B2 (en) Heat pump water heater
JP2005147542A (en) Heat pump water heater
JP2008039289A (en) Heat pump type water heater
JP5115283B2 (en) Heat pump type water heater
JP5151626B2 (en) Heat pump water heater
JP4784288B2 (en) Heat pump type hot water supply apparatus and control device for heat pump type hot water supply apparatus
JP2010071603A (en) Heat pump water heater
JP2006317038A (en) Heat pump type water heater
JP5843642B2 (en) Heat pump type liquid heating device
JP2006132888A (en) Heat pump hot water supply apparatus
JP2008261557A (en) Heat pump water heater
JP5401913B2 (en) Heat pump water heater
JP4867925B2 (en) Heat pump type water heater
JP2005188923A (en) Heat pump water heater
JP2009085476A (en) Heat pump water heater
JP5840062B2 (en) Heat pump type liquid heating device and heat pump type water heater
JP2010133598A (en) Heat pump type water heater
JP4811185B2 (en) Heat pump water heater
JP2009121704A (en) Heat pump type water heater
JP6208633B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090427

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R151 Written notification of patent or utility model registration

Ref document number: 4910559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3