JP2009063246A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2009063246A
JP2009063246A JP2007232153A JP2007232153A JP2009063246A JP 2009063246 A JP2009063246 A JP 2009063246A JP 2007232153 A JP2007232153 A JP 2007232153A JP 2007232153 A JP2007232153 A JP 2007232153A JP 2009063246 A JP2009063246 A JP 2009063246A
Authority
JP
Japan
Prior art keywords
defrosting
hot water
heat pump
evaporator
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007232153A
Other languages
Japanese (ja)
Inventor
Taichi Tanaami
太一 店網
Yoshihiko Kenmori
仁彦 権守
Yutaka Enokitsu
豊 榎津
Junichi Takagi
純一 高木
Koichi Fukushima
功一 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2007232153A priority Critical patent/JP2009063246A/en
Publication of JP2009063246A publication Critical patent/JP2009063246A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To resolve problems in conventional defrosting methods in a heat pump water heater wherein an electric expansion valve is fully opened to carry out defrosting after hot water storage tank boiling is finished, and a solenoid valve for defrosting is opened to carry out defrosting during hot water storage tank boiling, in a method of fully opening the electric expansion valve to carry out defrosting and using the solenoid valve for defrosting other than the electric solenoid valve, but in the former, it takes a long defrosting time when a defrosting amount is large, in the latter, cost becomes high, and in both, a large amount of waterdrops of molten frost after defrosting adheres to an evaporator, and when the evaporator is driven again in a short time, the waterdrops freeze again and heat exchange performance of air and a coolant in the evaporator is deteriorated. <P>SOLUTION: Three or more defrosting levels are provided corresponding to outside air temperatures or defrosting degrees of the evaporator during defrosting operation of the heat pump water heater, and it has defrosting operation modes corresponding to each level. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ヒートポンプ給湯機の蒸発器の除霜に関するものである。   The present invention relates to defrosting of an evaporator of a heat pump water heater.

従来のヒートポンプ給湯機は電気温水器と同様に大容量の貯湯タンクを設け、夜間割引の安価な電力を使って夜中にヒートポンプ回路で湯を沸き上げて貯湯タンクに貯蔵しておき、上記貯蔵した湯を日中に使う貯湯方式のものが一般的であった。   A conventional heat pump water heater has a large-capacity hot water storage tank, just like an electric water heater, and uses low-cost electricity at night discount to boil hot water in the heat pump circuit and store it in the hot water storage tank. A hot water storage system that uses hot water during the day was common.

前記貯湯式ヒートポンプ給湯機は、夜間に長時間連続運転して貯湯するため、外気温度の低い冬期には蒸発器に霜が付着して性能が低下するため、除霜運転が必要になる。除霜運転としては、冷媒の減圧及び流量調整用の膨張弁を全開にして高温高圧の冷媒を蒸発器に送って除霜を行う方法が一般的であるが、膨張弁の他に除霜用電磁弁を用いて高温高圧の冷媒を直接蒸発器に送り除霜時間の短縮を図ったものが提案されている。   Since the hot water storage type heat pump water heater is operated continuously for a long time at night to store hot water, frost adheres to the evaporator and the performance deteriorates in winter when the outside air temperature is low. As the defrosting operation, a method of performing defrosting by fully opening the expansion valve for refrigerant decompression and flow rate adjustment and sending a high-temperature and high-pressure refrigerant to the evaporator is used for defrosting in addition to the expansion valve. An electromagnetic valve has been proposed in which a high-temperature and high-pressure refrigerant is directly sent to an evaporator to reduce the defrosting time.

前記除霜用電磁弁を備えた貯湯式ヒートポンプ給湯機の例としては、特許文献1に示されたものがある。   An example of a hot water storage type heat pump water heater provided with the defrosting solenoid valve is disclosed in Patent Document 1.

前記特許文献1によれば、圧縮機,水熱交換器,電動膨張弁,除霜用電磁弁及び蒸発用熱交換器を有したヒートポンプサイクル構成において、蒸発用熱交換器の除霜方法としては、貯湯タンクが全量沸き上がっている場合は電動膨張弁を全開して除霜を行い、貯湯タンクが沸き上げ途中の場合は除霜用電磁弁を開にして除霜を行うものであった。   According to Patent Document 1, in a heat pump cycle configuration having a compressor, a water heat exchanger, an electric expansion valve, a defrosting electromagnetic valve, and an evaporation heat exchanger, the defrosting method for the evaporation heat exchanger is as follows. When the hot water storage tank is fully heated, the electric expansion valve is fully opened to perform defrosting, and when the hot water storage tank is being heated, the defrosting electromagnetic valve is opened to perform defrosting.

特開2001−263800号公報JP 2001-263800 A

前記従来のヒートポンプ給湯機における蒸発器の除霜方法のうち、単に電動膨張弁を全開して除霜を行う方法は、着霜量が多いときに除霜時間が長くかかってしまう。   Of the methods for defrosting the evaporator in the conventional heat pump water heater, the method of simply performing the defrosting by fully opening the electric expansion valve takes a long time for defrosting when the amount of frost formation is large.

また、特許文献1に示される電動膨張弁の他に除霜用電磁弁を備えて除霜時間の短縮を図ったものは、除霜用電磁弁を追加しなければならず、除霜のための配管も必要とするためコスト高になっていた。   Further, in addition to the electric expansion valve shown in Patent Document 1, a defrosting electromagnetic valve is provided to reduce the defrosting time, and therefore a defrosting electromagnetic valve must be added. Cost was also high because of the need for piping.

また、何れの方法においても除霜後は霜の融けた水滴が蒸発器に多量付着しており、短時間のうちに再運転すると、この水滴が再度凍結してしまい蒸発器内の冷媒と空気との熱交換性能が低下する虞があった。   In any of the methods, a large amount of frost-melted water droplets adheres to the evaporator after defrosting, and when the operation is restarted within a short time, the water droplets freeze again, and the refrigerant and air in the evaporator. There was a possibility that the heat exchanging performance with would decrease.

さらに、近年は貯湯タンクを小形化し、夜間に限らず昼間も短時間貯湯運転を行うものや、給湯使用する時にヒートポンプ運転を行い、給水した水を冷媒で加熱して温水をつくり、直接、使用端末に給湯する直接給湯回路を有する瞬間式ヒートポンプ給湯機などが提案され、ヒートポンプの運転時間も様々な場合があり、蒸発器の着霜量もまちまちな状態となるため、従来の高温冷媒のみによる除霜運転は必ずしも最適とは言えず、木目細かな除霜手段(除霜運転モード)が課題となってきた。   Furthermore, in recent years, hot water storage tanks have been downsized, and those that store hot water for a short time during the day as well as at night, or heat pump operation when using hot water, heat the supplied water with refrigerant to create hot water, and use it directly. Instant heat pump water heaters with a direct hot water supply circuit for supplying hot water to the terminal have been proposed, the operation time of the heat pump may vary, and the amount of frost formation on the evaporator will also vary, so only with conventional high-temperature refrigerant The defrosting operation is not necessarily optimal, and fine defrosting means (defrosting operation mode) has been an issue.

本発明の目的は、除霜効率の向上を図ったヒートポンプ給湯機を提供することにある。   An object of the present invention is to provide a heat pump water heater that improves defrosting efficiency.

上記本発明の目的は、
圧縮機と、給水源から給水した水と冷媒との熱交換を行う水冷媒熱交換器と、膨張弁と、蒸発器とを冷媒配管を介して順次接続したヒートポンプ冷媒回路と、
前記蒸発器に外気を通風させるための送風ファンと、
前記圧縮機,前記膨張弁,前記送風ファンを制御する運転制御手段と、
を備えたヒートポンプ給湯機であって、
前記運転制御手段は、前記蒸発器に着霜した霜を取り除く除霜運転時に、
前記圧縮機を運転し、
前記膨張弁を全開し、
前記送風ファンを運転する
ヒートポンプ給湯機
によって達成される。
The object of the present invention is as follows.
A heat pump refrigerant circuit in which a compressor, a water refrigerant heat exchanger that performs heat exchange between water supplied from a water supply source and a refrigerant, an expansion valve, and an evaporator are sequentially connected via a refrigerant pipe;
A blower fan for passing outside air through the evaporator;
Operation control means for controlling the compressor, the expansion valve, and the blower fan;
A heat pump water heater equipped with
The operation control means is in a defrosting operation to remove frost formed on the evaporator,
Operating the compressor,
Fully open the expansion valve;
This is achieved by a heat pump water heater that operates the blower fan.

また、前記運転制御手段は、前記除霜運転時には、前記膨張弁を全開後、所定時間経過後に前記送風ファンの運転を開始することとしてもよい。   Moreover, the said operation control means is good also as starting the driving | operation of the said ventilation fan after predetermined time progress, after opening the said expansion valve fully at the time of the said defrost operation.

また、前記運転制御手段は、前記除霜運転時には、前記膨張弁を全開後、前記蒸発器の表面温度が所定温度に達した後に前記送風ファンの運転を開始することとしてもよい。   Moreover, the said operation control means is good also as starting the operation | movement of the said ventilation fan after the surface temperature of the said evaporator reaches predetermined temperature after opening the said expansion valve fully at the time of the said defrost operation.

上記本発明の目的は、
圧縮機,水と冷媒との熱交換を行う水冷媒熱交換器,膨張弁、及び蒸発器とを冷媒配管を介して順次接続したヒートポンプ冷媒回路と、
前記蒸発器を介して外気を取り入れる送風ファンと、
給水金具,前記水冷媒熱交換器,貯湯タンク,給湯混合弁,湯水混合弁,流量調整弁、及び出湯金具とを水配管を介して接続した給湯回路と、
前記圧縮機,膨張弁,給湯混合弁,湯水混合弁,流量調整弁等の動作を制御する運転制御手段とを備え、
前記運転制御手段は、外気温度または前記蒸発器の着霜程度によって三段階以上の着霜レベルを設け、各レベルに対応した除霜運転モードを有するヒートポンプ給湯機
によって達成される。
The object of the present invention is as follows.
A heat pump refrigerant circuit in which a compressor, a water-refrigerant heat exchanger that performs heat exchange between water and the refrigerant, an expansion valve, and an evaporator are sequentially connected via a refrigerant pipe;
A blower fan that takes outside air through the evaporator;
A hot water supply circuit in which a water supply fitting, the water refrigerant heat exchanger, a hot water storage tank, a hot water supply mixing valve, a hot water mixing valve, a flow rate adjusting valve, and a hot water supply fitting are connected via a water pipe;
Operation control means for controlling the operation of the compressor, expansion valve, hot water mixing valve, hot water mixing valve, flow rate adjustment valve, and the like,
The operation control means is achieved by a heat pump water heater having three or more frost levels according to the outside air temperature or the frost level of the evaporator and having a defrost operation mode corresponding to each level.

また、前記運転制御手段は、前記除霜運転モードは、前記圧縮機の運転の有無,前記膨張弁の全開の有無,前記送風ファンの運転の有無の組合わせからなることとしてもよい。   Further, the operation control means may be configured such that the defrosting operation mode includes a combination of whether or not the compressor is operated, whether or not the expansion valve is fully opened, and whether or not the blower fan is operated.

また、前記運転制御手段は、前記除霜運転モードとして、前記膨張弁の全開の有と、前記送風ファンの運転の有と、を組合わせた除霜運転モードを有することとしてもよい。   Moreover, the said operation control means is good also as having the defrost operation mode which combined the presence or absence of the opening of the said expansion valve, and the presence or absence of the operation of the said ventilation fan as said defrost operation mode.

本発明によれば、除霜効率の向上したヒートポンプ給湯機を実現することができる。   According to the present invention, a heat pump water heater with improved defrosting efficiency can be realized.

以下、図面を参照しながら本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず、直接給湯回路を有する瞬間式ヒートポンプ給湯機に適用した場合の実施例1について説明する。   First, Example 1 when applied to an instantaneous heat pump water heater having a direct hot water supply circuit will be described.

図1は本発明を適用した瞬間式ヒートポンプ給湯機の部品構成の一実施例を示す。   FIG. 1 shows an embodiment of a component configuration of an instantaneous heat pump water heater to which the present invention is applied.

ヒートポンプ給湯機はヒートポンプ冷媒回路40,給湯回路45、及び運転制御手段50を備えて構成されている。   The heat pump water heater includes a heat pump refrigerant circuit 40, a hot water supply circuit 45, and an operation control means 50.

ヒートポンプ冷媒回路40は第一ヒートポンプ冷媒回路40a及び第二ヒートポンプ冷媒回路40bからなり、各部品を2個ずつ有する2サイクル方式で、圧縮機1a,1b、水冷媒熱交換器2に配置される冷媒側伝熱管2a,2b、膨張弁3a,3b、蒸発器4a,4bを、それぞれ冷媒配管を介して順次接続して構成されており、その中に冷媒としての二酸化炭素が封入されている。   The heat pump refrigerant circuit 40 includes a first heat pump refrigerant circuit 40a and a second heat pump refrigerant circuit 40b, and is a refrigerant disposed in the compressors 1a and 1b and the water refrigerant heat exchanger 2 in a two-cycle system having two components. The side heat transfer tubes 2a and 2b, the expansion valves 3a and 3b, and the evaporators 4a and 4b are sequentially connected via refrigerant piping, respectively, and carbon dioxide as a refrigerant is enclosed therein.

圧縮機1a,1bは容量制御が可能で、多量の給湯を行う場合には大きな容量で運転される。ここで、圧縮機1a,1bはPWM制御、電圧制御(例えばPAM制御)及びこれらの組合わせ制御により、低速(例えば700回転/分)から高速(例えば7000回転/分)まで回転数制御できるようになっている。   The compressors 1a and 1b are capable of capacity control, and are operated with a large capacity when supplying a large amount of hot water. Here, the compressors 1a and 1b can control the rotational speed from a low speed (for example, 700 rotations / minute) to a high speed (for example, 7000 rotations / minute) by PWM control, voltage control (for example, PAM control) and a combination control thereof. It has become.

水冷媒熱交換器2は冷媒側伝熱管2a,2b及び給水側伝熱管2c,2dを備えており、冷媒側伝熱管2a,2bと給水側伝熱管2c,2dとの間で熱交換を行うように構成されている。   The water refrigerant heat exchanger 2 includes refrigerant side heat transfer tubes 2a and 2b and water supply side heat transfer tubes 2c and 2d, and performs heat exchange between the refrigerant side heat transfer tubes 2a and 2b and the water supply side heat transfer tubes 2c and 2d. It is configured as follows.

膨張弁3a,3bとしては一般に電磁膨張弁が使用され、水冷媒熱交換器2を経て送られてくる中温高圧冷媒を減圧し、蒸発し易い低圧冷媒として蒸発器4a,4bへ送る。また、膨張弁3a,3bは冷媒通路の絞り量を変えてヒートポンプ回路内の冷媒循環量を調節する働きや、前記絞り量を全開(開放)して中温冷媒を蒸発器4a,4bに多量に送って霜を解かす除霜装置の役目も行う。   In general, electromagnetic expansion valves are used as the expansion valves 3a and 3b, and the medium temperature and high pressure refrigerant sent through the water refrigerant heat exchanger 2 is depressurized and sent to the evaporators 4a and 4b as low pressure refrigerant that is easily evaporated. The expansion valves 3a and 3b function to adjust the refrigerant circulation amount in the heat pump circuit by changing the throttle amount of the refrigerant passage, or to fully open (open) the throttle amount so that the medium temperature refrigerant is supplied to the evaporators 4a and 4b in a large amount. It also plays the role of a defrosting device that sends it to defrost.

また、蒸発器4a,4bはフィン及び冷媒配管で構成されている空気冷媒熱交換器で、送風ファン6a,6b(ファンを回転するためのファンモータを含む)を運転することにより外気が通過し、空気と冷媒との熱交換を行う。蒸発器用サーミスタ5a,5bは蒸発器表面温度や着霜量の検知を行う。   The evaporators 4a and 4b are air-refrigerant heat exchangers composed of fins and refrigerant pipes. By operating the blower fans 6a and 6b (including a fan motor for rotating the fan), outside air passes through. And heat exchange between air and refrigerant. The evaporator thermistors 5a and 5b detect the evaporator surface temperature and the amount of frost formation.

給湯回路45はタンク貯湯,タンク給湯,直接給湯,風呂湯張り,風呂追焚きなどを行うための水循環回路から構成されている。   The hot water supply circuit 45 includes a water circulation circuit for performing tank hot water storage, tank hot water supply, direct hot water supply, bath hot water filling, bath reheating, and the like.

タンク貯湯回路は、貯湯タンク17,タンク循環ポンプ18,水熱交流量センサ11,給水側伝熱管2c,2d、給湯混合弁12,貯湯タンク17が水配管を介して順次接続され構成されている。   The tank hot water storage circuit is configured by sequentially connecting a hot water storage tank 17, a tank circulation pump 18, a water heat AC amount sensor 11, water supply side heat transfer pipes 2c and 2d, a hot water supply mixing valve 12, and a hot water storage tank 17 via a water pipe. .

直接給湯回路は、給水金具7,減圧弁8,給水水量センサ9,給水逆止弁10,水熱交流量センサ11,給水側伝熱管2c,2d、給湯混合弁12,湯水混合弁13,流量調整弁14,台所出湯金具15が水配管を介して順次接続され構成されている。   The direct hot water supply circuit includes a water supply fitting 7, a pressure reducing valve 8, a water supply water amount sensor 9, a water supply check valve 10, a water heat AC amount sensor 11, water supply side heat transfer tubes 2c and 2d, a hot water supply mixing valve 12, a hot water mixing valve 13, and a flow rate. An adjustment valve 14 and a kitchen tapping metal fitting 15 are sequentially connected via a water pipe.

なお、給水金具7は水道などの給水源に接続され、台所出湯金具15は使用端末の一つである台所蛇口16などに接続されている。   The water supply fitting 7 is connected to a water supply source such as a water supply, and the kitchen tap fitting 15 is connected to a kitchen faucet 16 that is one of the terminals used.

タンク給湯回路は、給水金具7,減圧弁8,給水水量センサ9,給水逆止弁10,貯湯タンク17,給湯混合弁12,湯水混合弁13,流量調整弁14,台所出湯金具15が水配管を介して順次接続され構成されている。   The tank hot water supply circuit has a water supply fitting 7, a pressure reducing valve 8, a water supply water amount sensor 9, a water supply check valve 10, a hot water storage tank 17, a hot water supply mixing valve 12, a hot water mixing valve 13, a flow rate adjusting valve 14, and a kitchen tapping metal fitting 15. Are sequentially connected through the network.

風呂湯張り回路は、給水金具7,減圧弁8,給水水量センサ9,給水逆止弁10,水熱交流量センサ11,給水側伝熱管2c,2d、給湯混合弁12,湯水混合弁13,流量調整弁14,風呂注湯弁19,フロースイッチ20,風呂循環ポンプ21,水位センサ22,風呂入出湯金具23,風呂循環アダプター24,浴槽25が水配管を介して順次接続され構成されている。また、風呂入出湯金具23からは浴槽25と共に風呂蛇口29やシャワー(図示せず)にも給湯できるよう接続されている。   The bath hot water circuit includes a water supply fitting 7, a pressure reducing valve 8, a water supply water amount sensor 9, a water supply check valve 10, a water heat AC amount sensor 11, water supply side heat transfer tubes 2c and 2d, a hot water supply mixing valve 12, a hot water mixing valve 13, A flow rate adjustment valve 14, a bath pouring valve 19, a flow switch 20, a bath circulation pump 21, a water level sensor 22, a bath inlet / outlet fitting 23, a bath circulation adapter 24, and a bathtub 25 are sequentially connected via a water pipe. . Moreover, it connects so that hot water can be supplied from the bath entry / exit metal fitting 23 to the bath faucet 29 and the shower (not shown) together with the bathtub 25.

なお、風呂湯張り時には、上記風呂湯張り回路による直接給湯と共に、貯湯タンク17内の湯量が最小必要量以下にならない範囲において貯湯タンク17から浴槽25へのタンク給湯も行う。   During bath hot water filling, hot water supply from the hot water storage tank 17 to the bathtub 25 is performed within a range where the amount of hot water in the hot water storage tank 17 does not fall below the minimum required amount, together with direct hot water supply by the bath hot water filling circuit.

風呂追焚回路は、浴槽25,風呂循環アダプター24,風呂入出湯金具23,水位センサ22,風呂循環ポンプ21,フロースイッチ20,風呂用熱交換器27の風呂水伝熱管27b,風呂出湯金具28,風呂循環アダプター24,浴槽25が水配管を介して順次接続され構成されている。   The bath memory circuit includes a bathtub 25, a bath circulation adapter 24, a bath inlet / outlet fitting 23, a water level sensor 22, a bath circulation pump 21, a flow switch 20, a bath heat transfer pipe 27b of a bath heat exchanger 27, and a bath outlet fitting 28. The bath circulation adapter 24 and the bathtub 25 are sequentially connected via a water pipe.

なお、風呂追焚き時には、上記風呂追焚回路による浴槽水の水循環と共に、ヒートポンプ及びタンク循環ポンプ18を運転し、かつ、温水開閉弁26を全開して、水冷媒熱交換器2で加熱された温水を風呂用熱交換器27に設けられた温水伝熱管27aに循環させ、温水伝熱管27aと風呂水伝熱管27bとの間で熱交換することにより、風呂追焚きを行うものである。   At the time of bathing, the water circulation of the bath water by the bath chasing circuit was operated, the heat pump and the tank circulation pump 18 were operated, and the hot water on / off valve 26 was fully opened to be heated by the water / refrigerant heat exchanger 2. Hot water is circulated through a hot water heat transfer tube 27a provided in the bath heat exchanger 27, and heat is exchanged between the hot water heat transfer tube 27a and the bath water heat transfer tube 27b, thereby performing bath renewal.

次に、運転制御手段50は、台所リモコン51及び風呂リモコン52の設定・操作により、ヒートポンプ冷媒回路40の運転・停止及び圧縮機1a,1bの回転数制御を行うと共に、膨張弁3a,3bの冷媒絞り量調整または全開、送風ファン6a,6b、タンク循環ポンプ18,風呂循環ポンプ21の運転・停止、及び給湯混合弁12,湯水混合弁13,流量調整弁14,風呂注湯弁19,温水開閉弁26を制御することにより、貯湯運転,タンク給湯運転,直接給湯運転,除霜運転,風呂湯張り運転,風呂追焚運転を行うものである。   Next, the operation control means 50 performs the operation / stop of the heat pump refrigerant circuit 40 and the rotation speed control of the compressors 1a, 1b by the setting / operation of the kitchen remote controller 51 and the bath remote controller 52, and the expansion valves 3a, 3b. Adjustment or full opening of refrigerant throttle amount, operation / stop of blower fans 6a, 6b, tank circulation pump 18, bath circulation pump 21, hot water mixing valve 12, hot water mixing valve 13, flow rate adjustment valve 14, bath pouring valve 19, hot water By controlling the on-off valve 26, hot water storage operation, tank hot water supply operation, direct hot water supply operation, defrosting operation, bath hot water operation, and bath chasing operation are performed.

また、運転制御手段50は、圧縮機1a,1bの回転数を制御し、運転開始直後には加熱立上げ時間を早めるため所定の高速回転数で運転し、比較的熱負荷の軽い風呂追焚運転の時は加熱温度に見合った回転数で運転するよう制御する。   Further, the operation control means 50 controls the rotation speed of the compressors 1a and 1b, and immediately after the start of operation, the operation control means 50 operates at a predetermined high speed rotation speed in order to shorten the heating start-up time. At the time of operation, control is performed so as to operate at a rotation speed corresponding to the heating temperature.

また、運転制御手段50は、低温時に着霜した場合、ヒートポンプ冷媒回路の運転・停止,膨張弁3a,3bの絞り量調整または全開、送風ファン6a,6bの運転停止を制御する。   Further, the operation control means 50 controls operation / stop of the heat pump refrigerant circuit, adjustment of the throttle amount of the expansion valves 3a, 3b or full open, and operation stop of the blower fans 6a, 6b when frost is formed at a low temperature.

さらに、ヒートポンプ給湯機には、蒸発器4a,4bの表面温度を検知する蒸発器用サーミスタ5a,5bの他に、各部の温度を検知する温度サーミスタ(図示せず)や圧縮機1a,1bの吐出圧力を検知する圧力センサ(図示せず)、浴槽25内の水位を検出する水位センサ20等が設けられている。各検出信号は運転制御手段50に入力されるように構成されており、運転制御手段50はこれらの信号に基づいて各機器を制御するものである。   Further, in the heat pump water heater, in addition to the thermistors for evaporators 5a and 5b for detecting the surface temperature of the evaporators 4a and 4b, temperature thermistors (not shown) for detecting the temperatures of the respective parts and the discharges of the compressors 1a and 1b. A pressure sensor (not shown) for detecting pressure, a water level sensor 20 for detecting the water level in the bathtub 25, and the like are provided. Each detection signal is configured to be input to the operation control means 50, and the operation control means 50 controls each device based on these signals.

また、温水開閉弁26は、水冷媒熱交換器2と風呂用熱交換器27との間に設けられ、風呂追焚き時以外は水回路を閉じて水冷媒熱交換器2から風呂用熱交換器27への熱の漏洩を防ぐためのものである。   The hot water on / off valve 26 is provided between the water refrigerant heat exchanger 2 and the bath heat exchanger 27, and closes the water circuit and exchanges heat for the bath from the water refrigerant heat exchanger 2 except when bathing. This is to prevent heat leakage to the container 27.

図2は、実施例1における風呂湯張り運転及びその後の着霜により除霜運転を行う場合の動作を示すフローチャートである。   FIG. 2 is a flowchart showing an operation in the case where the defrosting operation is performed by the bath hot water operation and the subsequent frost formation in the first embodiment.

瞬間式ヒートポンプ給湯機において、除霜を必要とする場合は冬期で周囲温度が低く、且つヒートポンプ冷媒回路40を長時間運転したときである。また、ヒートポンプ給湯機の運転用途としては、タンク貯湯,洗面給湯,台所給湯,風呂湯張り,風呂追焚き,シャワーなどであるが、瞬間式の場合貯湯タンク17の容量が小さいため、風呂湯張り時間が最も長く除霜の必要性が高いため、図2では風呂湯張り運転後の除霜運転について説明する。   In the instantaneous heat pump water heater, defrosting is necessary when the ambient temperature is low in winter and the heat pump refrigerant circuit 40 is operated for a long time. The operation of the heat pump water heater is tank hot water, wash water, kitchen hot water, hot water bathing, bathing, showering, etc. In the case of the instantaneous type, the hot water storage tank 17 has a small capacity, so Since the time is the longest and the necessity of defrosting is high, FIG. 2 demonstrates the defrosting operation after bath hot water filling operation.

先ず、湯水使用として風呂湯張りが開始される(ステップ60)と、ヒートポンプ冷媒回路40が運転され、圧縮機1a,1bの回転数制御と共に膨張弁3a,3bの絞り量が調整され、風呂湯張り温度に合わせた給湯運転が開始される(ステップ61)。前述したように、風呂湯張り時には、上記風呂湯張り回路による直接給湯と共に、貯湯タンク17内の湯量が最小必要量以下にならない範囲において貯湯タンク17から浴槽25へのタンク給湯も行う。   First, when hot water filling is started using hot water (step 60), the heat pump refrigerant circuit 40 is operated, and the throttle amounts of the expansion valves 3a and 3b are adjusted together with the rotation speed control of the compressors 1a and 1b. A hot water supply operation in accordance with the tension temperature is started (step 61). As described above, at the time of bath hot water filling, tank hot water supply from the hot water storage tank 17 to the bathtub 25 is performed in addition to the direct hot water supply by the bath hot water filling circuit as long as the amount of hot water in the hot water storage tank 17 does not fall below the minimum required amount.

やがて風呂湯張り量が規定量に達し、湯水使用(風呂湯張り)が終了する(ステップ62)と、給湯運転を停止する(ステップ63)と共に、蒸発器用サーミスタ5a,5bによる蒸発器の着霜量または蒸発器温度の検知が行われ、除霜要否の判定が行われる(ステップ64)。   Eventually, when the amount of hot water in the bath reaches a specified amount and the use of hot water (bath hot water) ends (step 62), the hot water supply operation is stopped (step 63), and the evaporator thermistors 5a and 5b form frost. The amount or the evaporator temperature is detected, and the necessity of defrosting is determined (step 64).

除霜要否の判定(ステップ64)において、着霜量が多く除霜の必要があると判断された場合は、膨張弁を全開し、ヒートポンプ冷媒回路及びファンを運転して除霜運転を行い(ステップ65)、さらに除霜終了の判定を行い(ステップ66)、除霜が終了したことを確認してから除霜運転を終了する(ステップ67)。   In the defrosting necessity determination (step 64), when it is determined that the amount of frost formation is large and defrosting is necessary, the expansion valve is fully opened and the heat pump refrigerant circuit and the fan are operated to perform the defrosting operation. (Step 65) Further, the end of the defrosting is determined (step 66), and after confirming that the defrosting is completed, the defrosting operation is ended (step 67).

また、除霜要否の判定(ステップ64)において、着霜していないか又は着霜量が少なく除霜の必要がないと判断された場合は、除霜運転(ステップ65)を行わずに除霜運転終了(ステップ67)状態に制御する。   Further, in the determination of the necessity of defrosting (step 64), if it is determined that frost is not formed or the amount of frost formation is small and defrosting is not necessary, the defrosting operation (step 65) is not performed. Control is made so that the defrosting operation is completed (step 67).

前記除霜運転(ステップ65)においてはヒートポンプ冷媒回路を運転すると共に膨張弁3a,3bを全開にし、且つ送風ファン6a,6bを運転するので、霜が融けて蒸発器4a,4bに付着した水滴を排除し、順次新たな外気を蒸発器4a,4b表面の霜に吹き付けることができるので、外気温がプラス温度の場合は、蒸発器4a,4b表面の除霜を促進することができ、低温時においても除霜後の水滴の再結露を防止する効果を有する。   In the defrosting operation (step 65), the heat pump refrigerant circuit is operated, the expansion valves 3a and 3b are fully opened, and the blower fans 6a and 6b are operated, so that water droplets adhering to the evaporators 4a and 4b are melted. Since fresh outside air can be sequentially blown onto the frost on the surfaces of the evaporators 4a and 4b, when the outside air temperature is a positive temperature, the defrosting on the surfaces of the evaporators 4a and 4b can be promoted. Even at times, it has the effect of preventing re-condensation of water drops after defrosting.

また、除霜運転開始から霜が融け始まるまでには数分間かかるので、送風ファン6a,6bの運転をヒートポンプ冷媒回路の運転よりも時間的に遅らせる。すなわちヒートポンプ冷媒回路の運転開始から所定時間経過後に送風ファン6a,6bの運転を開始する。または、蒸発器の表面温度が所定温度に達した後に送風ファン6a,6bの運転を開始する。   Further, since it takes several minutes from the start of the defrosting operation until the frost starts to melt, the operation of the blower fans 6a and 6b is delayed in time from the operation of the heat pump refrigerant circuit. That is, the operation of the blower fans 6a and 6b is started after a predetermined time has elapsed from the start of operation of the heat pump refrigerant circuit. Alternatively, the operation of the blower fans 6a and 6b is started after the surface temperature of the evaporator reaches a predetermined temperature.

これらにより、送風ファン6a,6bの運転時間を短くし、エネルギを節約する。膨張弁の全開と送風ファンの運転開始時間をずらして、或る程度霜が融けて水滴となってから送風ファンの運転を開始することで水滴排除を行うので、除霜効果が期待できなかった、外気温度が低い時でも適切な除霜運転を行うことができる。   Thus, the operation time of the blower fans 6a and 6b is shortened and energy is saved. The defrosting effect could not be expected because the expansion valve is fully opened and the start time of the blower fan is shifted so that the frost melts to some extent and water drops are eliminated by starting the blower fan. Appropriate defrosting operation can be performed even when the outside air temperature is low.

以上、実施例1によれば、除霜用電磁弁を使用せず、ヒートポンプ回路にとって必要構成要素である膨張弁と送風ファンを用い、除霜時には、ヒートポンプを運転しながら膨張弁を全開すると共に送風ファンの運転を行うので、外気温度が0℃以上の場合は外気温による除霜効果を得ることができ、霜が融けて蒸発器に付着した水滴を送風により払い落とし、除霜の促進及び除霜後運転時の再凍結防止効果を有し、低コストで除霜効率の向上を図ることができる。   As described above, according to the first embodiment, the defrosting solenoid valve is not used, the expansion valve and the blower fan, which are necessary components for the heat pump circuit, are used, and at the time of defrosting, the expansion valve is fully opened while operating the heat pump. Since the operation of the blower fan is performed, when the outside air temperature is 0 ° C. or higher, the defrosting effect by the outside air temperature can be obtained. It has the effect of preventing refreezing during operation after defrosting, and can improve defrosting efficiency at low cost.

次に、直接給湯回路を有する瞬間式ヒートポンプ給湯機に適用した場合の実施例2について説明する。瞬間式ヒートポンプ給湯機の部品構成は、実施例1で説明した図1と全く同じ構成であるので、説明を省略する。   Next, Example 2 when applied to an instantaneous heat pump water heater having a direct hot water supply circuit will be described. The component configuration of the instantaneous heat pump water heater is the same as that shown in FIG.

図3は、実施例2における風呂湯張り運転及びその後の着霜状態の対応した除霜運転を行う場合の動作を示すフローチャートである。   FIG. 3 is a flowchart showing an operation in the case of performing a bath hot water operation and a subsequent defrosting operation corresponding to a frosting state in the second embodiment.

先ず、湯水使用として風呂湯張りが開始される(ステップ70)と、ヒートポンプ冷媒回路40が運転され、圧縮機1a,1bの回転数制御と共に膨張弁3a,3bの絞り量が調整され、風呂湯張り温度に合わせた給湯運転が開始される(ステップ71)。前述したように、風呂湯張り時には、上記風呂湯張り回路による直接給湯と共に、貯湯タンク17内の湯量が最小必要量以下にならない範囲において貯湯タンク17から浴槽25へのタンク給湯も行う。   First, when hot water filling is started using hot water (step 70), the heat pump refrigerant circuit 40 is operated, and the throttle amounts of the expansion valves 3a and 3b are adjusted together with the rotation speed control of the compressors 1a and 1b. A hot water supply operation in accordance with the tension temperature is started (step 71). As described above, at the time of bath hot water filling, tank hot water supply from the hot water storage tank 17 to the bathtub 25 is performed in addition to the direct hot water supply by the bath hot water filling circuit as long as the amount of hot water in the hot water storage tank 17 does not fall below the minimum required amount.

やがて風呂湯張り量が規定量に達し、湯水使用(風呂湯張り)が終了する(ステップ72)と、給湯運転を停止する(ステップ73)と共に、外気温度測定及び蒸発器用サーミスタ5a,5bによる蒸発器の着霜量又は蒸発器温度の検知が行われ、着霜レベルの判定が行われる(ステップ74)。   When the amount of hot water in the bath reaches a specified amount and the use of hot water (bath bathing) ends (step 72), the hot water supply operation is stopped (step 73), and the outside temperature measurement and evaporation by the thermistors 5a and 5b for the evaporator are performed. The amount of frost formation or the evaporator temperature is detected and the frost formation level is determined (step 74).

ここで、着霜レベルの設定例を図4によって説明する。   Here, a setting example of the frost level will be described with reference to FIG.

図4は、着霜レベルの要因として外気温度と着霜量としたが、外気温度と蒸発器温度、または外気温度のみ乃至着霜量のみとしても良い。   In FIG. 4, the outside air temperature and the amount of frost formation are used as factors of the frost formation level, but the outside air temperature and the evaporator temperature, or only the outside air temperature or the amount of frost formation may be used.

なお、図4の着霜レベル設定において着霜量は冬期のうち外気温度が約−7℃〜+7℃でヒートポンプが30〜40分位連続運転された場合を想定している。   In addition, in the frost level setting of FIG. 4, the amount of frost assumes the case where the outside temperature is about −7 ° C. to + 7 ° C. and the heat pump is continuously operated for about 30 to 40 minutes in winter.

着霜レベルは例えば四段階に設定し、着霜レベルに対応した除霜手段(除霜運転モード)としては、ヒートポンプ冷媒回路40の運転・停止(運転の有無)、膨張弁3a,3bの通常絞り量と全開(全開の有無)、送風ファン6a,6bの運転・停止(運転の有無)の組合わせにより、ABCDの四段階に設定する。   The frosting level is set, for example, in four stages, and the defrosting means (defrosting operation mode) corresponding to the frosting level is operated / stopped (presence / absence of operation) of the heat pump refrigerant circuit 40, and the expansion valves 3a, 3b are normally operated. The ABCD is set in four stages according to the combination of the throttle amount, full open (presence of full open), and operation / stop of the blower fans 6a and 6b (presence of operation).

着霜レベルAは外気温度が+7℃程度以上の場合で、着霜していないか又は着霜量が極僅かで除霜運転の必要性が最も低く、ヒートポンプ冷媒回路40及び送風ファン6a,6bは運転させず、膨張弁3a,3bも通常絞り量のままとする。即ち、除霜運転は行わずヒートポンプ停止により霜が自然に融けるような場合である。   The frosting level A is the case where the outside air temperature is about + 7 ° C. or higher, the frost is not formed or the amount of frost formation is very small and the necessity of the defrosting operation is the lowest, and the heat pump refrigerant circuit 40 and the blower fans 6a and 6b Is not operated, and the expansion valves 3a and 3b are also kept at the normal throttle amount. That is, the defrosting operation is not performed and the frost naturally melts by stopping the heat pump.

着霜レベルBは、外気温度が+2℃〜+7℃程度の場合で、着霜はするが比較的少量であり、ヒートポンプ冷媒回路40は運転せず、膨張弁3a,3bを全開すると共に送風ファン6a,6bを運転させる。即ち、ヒートポンプの運転を停止して節電を図り、給湯停止により水循環がなく水熱交換器2での放熱が少なくなった高温冷媒熱を全開された膨張弁3a,3bを通して蒸発器4a,4bに伝熱させ除霜を行う。また、送風ファン6a,6bを運転することにより、+2℃〜+7℃の温度の外気を取り込み蒸発器4a,4bの着霜を解かす手段で省エネとして最適な方法である。   The frosting level B is a case where the outside air temperature is about + 2 ° C. to + 7 ° C., frost is formed but is relatively small amount, the heat pump refrigerant circuit 40 is not operated, the expansion valves 3a and 3b are fully opened, and the blower fan 6a and 6b are operated. That is, the operation of the heat pump is stopped to save power, and the high-temperature refrigerant heat whose heat is dissipated in the water heat exchanger 2 due to the stoppage of hot water supply is reduced to the evaporators 4a and 4b through the fully opened expansion valves 3a and 3b. Conduct heat to defrost. Further, by operating the blower fans 6a and 6b, it is an optimum method for saving energy by means of taking in outside air at a temperature of + 2 ° C. to + 7 ° C. and defrosting the evaporators 4a and 4b.

着霜レベルCは、外気温度が−5℃〜+2℃程度の場合で、一般的着霜状態であり、ヒートポンプ冷媒回路40を運転し、膨張弁3a,3bを全開して高温冷媒を蒸発器4a,4bに送り、本格的に除霜を行う。また、送風ファン6a,6bも運転を行うが、外気温を取り込むためではなく、冷媒熱で融けた蒸発器4a,4b表面の水滴を除去して除霜を促進させるため及び除霜後に再運転した場合の水滴の再凍結を防ぐためである。従って、送風ファン6a,6bの運転は、実施例1のように、除霜用ヒートポンプ冷媒回路40の運転よりも時間的に遅らせて行うことがより効果的である。   The frosting level C is a general frosting state when the outside air temperature is about −5 ° C. to + 2 ° C., operates the heat pump refrigerant circuit 40, fully opens the expansion valves 3a and 3b, and evaporates the high-temperature refrigerant. It sends to 4a and 4b and performs defrosting in earnest. The fans 6a and 6b are also operated, but not for taking in the outside air temperature but for removing water droplets on the surfaces of the evaporators 4a and 4b melted by the refrigerant heat to promote defrosting and restarting after defrosting. This is in order to prevent re-freezing of the water droplets in the event of failure. Therefore, it is more effective that the operation of the blower fans 6a and 6b is delayed with respect to time than the operation of the defrosting heat pump refrigerant circuit 40 as in the first embodiment.

着霜レベルDは、外気温度が−5℃程度未満の場合で、冬期でも特に低温時であり、絶対湿度が低いため着霜量は余り多くならないが、外気温度が低いため除霜に時間が掛かる。除霜手段としては着霜レベルCと同様にヒートポンプ冷媒回路40を運転し膨張弁3a,3bを全開して高温冷媒を蒸発器4a,4bに送り本格的に除霜を行う。しかし、外気温度が低いため送風ファン6a,6bは除霜中運転せず、除霜終了前後にのみ運転して蒸発器4a,4b表面の水滴除去を行う。   The frosting level D is when the outside air temperature is less than about −5 ° C., and even during the winter, especially at low temperatures, and the absolute humidity is low, so the amount of frosting does not increase so much. It takes. As the defrosting means, similarly to the frost level C, the heat pump refrigerant circuit 40 is operated, the expansion valves 3a and 3b are fully opened, the high-temperature refrigerant is sent to the evaporators 4a and 4b, and defrosting is performed in earnest. However, since the outside air temperature is low, the blower fans 6a and 6b are not operated during defrosting, but are operated only before and after the defrosting to remove water droplets on the surfaces of the evaporators 4a and 4b.

以上の除霜レベル設定及びそれに対応した除霜手段は一例であるが、除霜手段としては少なくとも、ヒートポンプ冷媒回路40の運転・停止、膨張弁3a,3bの全開度、送風ファン6a,6bの運転・停止の三項目があり、除霜運転の最適化を図るためには着霜レベルとしても三段階以上必要である。   The above defrosting level setting and the corresponding defrosting means are examples, but as the defrosting means, at least the operation / stop of the heat pump refrigerant circuit 40, the full opening of the expansion valves 3a, 3b, and the blower fans 6a, 6b. There are three items of operation and stop, and in order to optimize the defrosting operation, three or more frost levels are required.

このように、外気温度または蒸発器の着霜程度によって三段階以上の着霜レベルを設け、各レベルに対応して膨張弁及び送風ファンを制御し三種類以上の除霜手段を行うことにより、着霜量に対応した木目細かな除霜運転を行うことができ、特に貯湯タンクの小形化を図り短時間運転を繰り返すタイプのヒートポンプ給湯機などに適し、多様化に対応した低コスト,省エネ化を図った除霜手段を提供することができる。   In this way, by providing three or more frost levels according to the outside air temperature or the degree of frost formation on the evaporator, by controlling the expansion valve and the blower fan corresponding to each level and performing three or more types of defrosting means, Detailed defrosting operation corresponding to the amount of frost formation can be performed, especially suitable for heat pump water heaters of the type that repeats short-time operation by reducing the size of the hot water storage tank, low cost and energy saving corresponding to diversification The defrosting means which aimed at can be provided.

図3に戻って、着霜レベルの判定が行われる(ステップ74)と、前記図4において詳細説明したように、着霜レベルに対応した除霜手段(ステップ75a〜75d)により除霜を行う。また、除霜を行った場合は送風ファン6a,6bを運転して蒸発器4a,4b表面の水滴除去を行うので、除霜後運転した場合の水滴の凍結を防止することができる。   Returning to FIG. 3, when the frost level is determined (step 74), defrosting is performed by the defrosting means (steps 75a to 75d) corresponding to the frost level as described in detail in FIG. . In addition, when defrosting is performed, the blower fans 6a and 6b are operated to remove water droplets on the surfaces of the evaporators 4a and 4b, so that the water droplets can be prevented from freezing when operated after defrosting.

次に蒸発器用サーミスタ5a,5bにより、蒸発器4a,4bの除霜終了判定(ステップ76)を行い、残霜があれば除霜運転を継続し、除霜終了と判定されればヒートポンプ冷媒回路40の運転及び送風ファン6a,6bの運転を停止し、膨張弁3a,3bを通常開度に戻して除霜運転を終了する(ステップ67)。   Next, the evaporator thermistors 5a and 5b perform defrosting completion determination (step 76) of the evaporators 4a and 4b. If there is residual frost, the defrosting operation is continued, and if it is determined that defrosting is complete, the heat pump refrigerant circuit. The operation of 40 and the operation of the blower fans 6a and 6b are stopped, the expansion valves 3a and 3b are returned to the normal opening, and the defrosting operation is ended (step 67).

このように、膨張弁全開と送風ファン運転を併用した除霜運転を行うので、外気温度が0℃以上の場合は外気温による除霜効果を得ることができ、霜が融けて蒸発器に付着した水滴を送風により払い落とすことにより、除霜の促進及び除霜後再運転時の凍結防止効果を有し、低コストで除霜性能の向上を図ることができる。   As described above, since the defrosting operation using both the expansion valve fully opened and the blower fan operation is performed, the defrosting effect by the outside air temperature can be obtained when the outside air temperature is 0 ° C. or more, and the frost melts and adheres to the evaporator. By removing the water droplets by blowing air, defrosting is promoted and freezing is prevented at the time of re-operation after defrosting, and the defrosting performance can be improved at low cost.

以上説明したように、これら実施例によれば、除霜用電磁弁を設けず、ヒートポンプ回路にとって必要構成要素である膨張弁と送風ファンの組合わせ運転制御により、さまざまな着霜状態に対応して木目細かな除霜運転を行い、低コストで除霜効率の向上を図ることができる。更に言えば、多様化するヒートポンプ給湯機の使用条件によるさまざまな着霜状態に対応して最適除霜手段を用い、省エネを図るとともに除霜後の再凍結を防ぐことができる等、多大の効果を奏することができる。   As described above, according to these embodiments, a defrosting solenoid valve is not provided, and various frost conditions are supported by combined operation control of the expansion valve and the blower fan, which are necessary components for the heat pump circuit. It is possible to perform defrosting operation finely and improve defrosting efficiency at low cost. Furthermore, it is possible to save energy and prevent refreezing after defrosting by using optimal defrosting means corresponding to various frosting conditions depending on diversified use conditions of heat pump water heaters. Can be played.

以上の除霜運転では、瞬間式ヒートポンプ給湯機に適用した場合について説明したが、瞬間式ヒートポンプ給湯機に限らず、貯湯式ヒートポンプ給湯機においても同様に適用することができ、同様の効果を奏することができる。   In the above defrosting operation, the case where the present invention is applied to an instantaneous heat pump water heater has been described. However, the present invention can be applied not only to an instantaneous heat pump water heater but also to a hot water storage heat pump water heater, and has the same effect. be able to.

ヒートポンプ冷媒回路,給湯回路,運転制御手段、及び部品の概略構成の一実施例を示す模式図である。It is a schematic diagram which shows one Example of schematic structure of a heat pump refrigerant circuit, a hot water supply circuit, an operation control means, and components. 給湯運転及びその後の除霜運転制御を示すフローチャートである。It is a flowchart which shows a hot water supply operation and subsequent defrost operation control. 給湯運転及びその後の除霜運転制御を示すフローチャートである。It is a flowchart which shows a hot water supply operation and subsequent defrost operation control. 着霜レベル設定の一例を示す。An example of frost formation level setting is shown.

符号の説明Explanation of symbols

1a,1b 圧縮機
2 水冷媒熱交換器
3a,3b 膨張弁
4a,4b 蒸発器
5a,5b 蒸発器用サーミスタ
6a,6b 送風ファン
8 減圧弁
12 給湯混合弁
13 湯水混合弁
14 流量調整弁
17 貯湯タンク
18 タンク循環ポンプ
19 風呂注湯弁
21 風呂循環ポンプ
25 浴槽
27 風呂用熱交換器
40 ヒートポンプ冷媒回路
40a 第一ヒートポンプ冷媒回路
40b 第二ヒートポンプ冷媒回路
45 給湯回路
50 運転制御手段
51 台所リモコン
52 風呂リモコン
DESCRIPTION OF SYMBOLS 1a, 1b Compressor 2 Water refrigerant | coolant heat exchanger 3a, 3b Expansion valve 4a, 4b Evaporator 5a, 5b Evaporator thermistor 6a, 6b Blower fan 8 Pressure reducing valve 12 Hot water mixing valve 13 Hot water mixing valve 14 Flow rate adjustment valve 17 Hot water storage tank 18 Tank circulation pump 19 Bath pouring valve 21 Bath circulation pump 25 Bath 27 Heat exchanger 40 for bath Heat pump refrigerant circuit 40a First heat pump refrigerant circuit 40b Second heat pump refrigerant circuit 45 Hot water supply circuit 50 Operation control means 51 Kitchen remote control 52 Bath remote control

Claims (6)

圧縮機と、給水源から給水した水と冷媒との熱交換を行う水冷媒熱交換器と、膨張弁と、蒸発器とを冷媒配管を介して順次接続したヒートポンプ冷媒回路と、
前記蒸発器に外気を通風させるための送風ファンと、
前記圧縮機,前記膨張弁,前記送風ファンを制御する運転制御手段と、
を備えたヒートポンプ給湯機であって、
前記運転制御手段は、前記蒸発器に着霜した霜を取り除く除霜運転時に、
前記ヒートポンプ冷媒回路を運転し、
前記膨張弁を全開し、
前記送風ファンを運転する
ヒートポンプ給湯機。
A heat pump refrigerant circuit in which a compressor, a water refrigerant heat exchanger that performs heat exchange between water supplied from a water supply source and a refrigerant, an expansion valve, and an evaporator are sequentially connected via a refrigerant pipe;
A blower fan for passing outside air through the evaporator;
Operation control means for controlling the compressor, the expansion valve, and the blower fan;
A heat pump water heater equipped with
The operation control means is in a defrosting operation to remove frost formed on the evaporator,
Operating the heat pump refrigerant circuit;
Fully open the expansion valve;
A heat pump water heater for operating the blower fan.
請求項1において、
前記運転制御手段は、前記除霜運転時には、前記膨張弁を全開後、所定時間経過後に前記送風ファンの運転を開始することを特徴とするヒートポンプ給湯機。
In claim 1,
In the defrosting operation, the operation control means starts the operation of the blower fan after a predetermined time has elapsed after fully opening the expansion valve.
請求項1において、
前記運転制御手段は、前記除霜運転時には、前記膨張弁を全開後、前記蒸発器の表面温度が所定温度に達した後に前記送風ファンの運転を開始することを特徴とするヒートポンプ給湯機。
In claim 1,
In the defrosting operation, the operation control means starts the operation of the blower fan after the expansion valve is fully opened and then the surface temperature of the evaporator reaches a predetermined temperature.
圧縮機,水と冷媒との熱交換を行う水冷媒熱交換器,膨張弁、及び蒸発器とを冷媒配管を介して順次接続したヒートポンプ冷媒回路と、
前記蒸発器を介して外気を取り入れる送風ファンと、
給水金具,前記水冷媒熱交換器,貯湯タンク,給湯混合弁,湯水混合弁,流量調整弁、及び出湯金具とを水配管を介して接続した給湯回路と、
前記圧縮機,膨張弁,給湯混合弁,湯水混合弁,流量調整弁等の動作を制御する運転制御手段とを備え、
前記運転制御手段は、外気温度または前記蒸発器の着霜程度によって三段階以上の着霜レベルを設け、各レベルに対応した除霜運転モードを有するヒートポンプ給湯機。
A heat pump refrigerant circuit in which a compressor, a water-refrigerant heat exchanger that performs heat exchange between water and the refrigerant, an expansion valve, and an evaporator are sequentially connected via a refrigerant pipe;
A blower fan for taking in outside air through the evaporator;
A hot water supply circuit in which a water supply fitting, the water refrigerant heat exchanger, a hot water storage tank, a hot water supply mixing valve, a hot water mixing valve, a flow rate adjusting valve, and a hot water supply fitting are connected via a water pipe;
Operation control means for controlling the operation of the compressor, expansion valve, hot water mixing valve, hot water mixing valve, flow rate adjustment valve, and the like,
The operation control means is a heat pump water heater having a defrosting operation mode corresponding to each level by providing three or more frosting levels according to the outside air temperature or the frosting degree of the evaporator.
請求項4において、
前記運転制御手段は、前記除霜運転モードは、前記ヒートポンプ冷媒回路の運転の有無,前記膨張弁の全開の有無,前記送風ファンの運転の有無の組み合わせからなることを特徴とするヒートポンプ給湯機。
In claim 4,
The operation control means is characterized in that the defrosting operation mode comprises a combination of whether or not the heat pump refrigerant circuit is operated, whether or not the expansion valve is fully opened, and whether or not the blower fan is operated.
請求項5において、
前記運転制御手段は、前記除霜運転モードとして、前記膨張弁の全開の有と、前記送風ファンの運転の有と、を組合わせた除霜運転モードを有することを特徴とするヒートポンプ給湯機。
In claim 5,
The operation control means has, as the defrosting operation mode, a defrosting operation mode in which the expansion valve is fully opened and the blower fan is operated.
JP2007232153A 2007-09-07 2007-09-07 Heat pump water heater Withdrawn JP2009063246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007232153A JP2009063246A (en) 2007-09-07 2007-09-07 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007232153A JP2009063246A (en) 2007-09-07 2007-09-07 Heat pump water heater

Publications (1)

Publication Number Publication Date
JP2009063246A true JP2009063246A (en) 2009-03-26

Family

ID=40557972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007232153A Withdrawn JP2009063246A (en) 2007-09-07 2007-09-07 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP2009063246A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229828A (en) * 2011-04-25 2012-11-22 Zeneral Heat Pump Kogyo Kk Heat pump water heater system, and control device and control program for heat pump water heater system
WO2014112322A1 (en) * 2013-01-16 2014-07-24 シャープ株式会社 Air conditioner
CN104019593A (en) * 2013-02-28 2014-09-03 广东美的制冷设备有限公司 Defrosting method of air conditioner
JP2016095107A (en) * 2014-11-17 2016-05-26 ダイキン工業株式会社 Heat pump device
CN105928199A (en) * 2016-04-26 2016-09-07 广东美的暖通设备有限公司 Heat pump water heater and defrosting control method and device thereof
CN107525334A (en) * 2016-06-15 2017-12-29 三电控股株式会社 The control device of showcase
KR101873419B1 (en) * 2016-12-22 2018-07-02 엘지전자 주식회사 Refrigeration cycle apparatus for air conditioner
DE112014005287B4 (en) 2013-11-20 2021-10-14 Denso Corporation Heat pump cycle device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229828A (en) * 2011-04-25 2012-11-22 Zeneral Heat Pump Kogyo Kk Heat pump water heater system, and control device and control program for heat pump water heater system
WO2014112322A1 (en) * 2013-01-16 2014-07-24 シャープ株式会社 Air conditioner
CN104019593A (en) * 2013-02-28 2014-09-03 广东美的制冷设备有限公司 Defrosting method of air conditioner
CN104019593B (en) * 2013-02-28 2016-06-29 广东美的制冷设备有限公司 The Defrost method of air-conditioning
DE112014005287B4 (en) 2013-11-20 2021-10-14 Denso Corporation Heat pump cycle device
JP2016095107A (en) * 2014-11-17 2016-05-26 ダイキン工業株式会社 Heat pump device
CN105928199A (en) * 2016-04-26 2016-09-07 广东美的暖通设备有限公司 Heat pump water heater and defrosting control method and device thereof
CN105928199B (en) * 2016-04-26 2019-03-12 广东美的暖通设备有限公司 Heat pump water-heating machine and its defrosting control method and device
CN107525334A (en) * 2016-06-15 2017-12-29 三电控股株式会社 The control device of showcase
KR101873419B1 (en) * 2016-12-22 2018-07-02 엘지전자 주식회사 Refrigeration cycle apparatus for air conditioner

Similar Documents

Publication Publication Date Title
JP5378504B2 (en) Heat pump water heater
JP2009063246A (en) Heat pump water heater
CN100443822C (en) Heat-pump hot water supply apparatus
JPWO2016001980A1 (en) Hot water system
JP2003139392A (en) Water heater
JP2008241173A (en) Heat pump water heater
JP2008096044A (en) Hot water reservoir type hot-water supply device
JP6428373B2 (en) Heat pump type hot water heater
JP7135493B2 (en) heat pump water heater
JP2008241175A (en) Heat pump water heater
JP3901192B2 (en) Heat pump water heater
JP4231863B2 (en) Heat pump water heater bathroom heating dryer
JP2010032063A (en) Outdoor unit and heat pump device
JP2010054145A (en) Heat pump water heater
JP2008224070A (en) Heat pump water heater
JP2007333340A (en) Heat pump type hot water supply apparatus
JP2009097826A (en) Heat pump hot water supply device
JP2006003077A (en) Heat pump type hot water supply apparatus
JP2007322084A (en) Heat pump water heater
JP5682552B2 (en) Heat pump water heater
JP2010032150A (en) Heat pump water heater
JP2016023921A (en) Heat pump hot water supply system
JP5081050B2 (en) Heat pump water heater
JP2006266592A (en) Heat pump water heater
JP2005121283A (en) Heat pump water heater

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101207