WO2014112322A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2014112322A1
WO2014112322A1 PCT/JP2013/085080 JP2013085080W WO2014112322A1 WO 2014112322 A1 WO2014112322 A1 WO 2014112322A1 JP 2013085080 W JP2013085080 W JP 2013085080W WO 2014112322 A1 WO2014112322 A1 WO 2014112322A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
preliminary
air conditioner
refrigerant
outdoor heat
Prior art date
Application number
PCT/JP2013/085080
Other languages
French (fr)
Japanese (ja)
Inventor
円 上野
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201380069758.4A priority Critical patent/CN104903656B/en
Publication of WO2014112322A1 publication Critical patent/WO2014112322A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air

Definitions

  • the present invention relates to a heat pump type air conditioner.
  • Home air conditioners adopt a heat pump system and are separated into outdoor units and indoor units.
  • the indoor heat exchanger becomes hot while the outdoor heat exchanger becomes cold.
  • frost formation in the outdoor heat exchanger cannot be avoided. Accordingly, various measures have been taken to solve the problem of frost formation on the outdoor heat exchanger during heating operation.
  • an outdoor heat exchanger, a connecting portion of a pressure reducing device, and a discharge portion of a compressor are connected by a refrigerant path having an on-off valve.
  • the on-off valve opens when the pressure of the high-pressure side refrigerant path during heating or the temperature of the indoor heat exchanger exceeds a predetermined value.
  • the on-off valve is opened, part of the high-temperature and high-pressure refrigerant discharged from the compressor flows into the outdoor heat exchanger while being reduced in pressure in the refrigerant path, and is liquefied in the indoor heat exchanger and depressurized in the pressure reducing device. Then, it merges with the low-temperature and low-pressure refrigerant.
  • coolant pressure and temperature of an outdoor heat exchanger become higher than usual, and the advancing speed of the frost formation to an outdoor heat exchanger surface falls.
  • defrosting is performed as follows. That is, at the time of defrosting, the valve opening of the decompression device is fully opened or almost fully opened, the forced ventilation of the condenser / evaporator is stopped, and the compressor is operated.
  • the indoor unit is configured as a radiation panel, and the room is cooled or heated by heat radiation without using a fan.
  • An example of this can be seen in US Pat.
  • the air conditioner described in Patent Document 3 includes a radiation panel disposed on the ceiling of the building. Inside the radiation panel, refrigerant piping is arranged in a meandering manner. At the time of cooling operation, heat is absorbed by the radiant panel and radiant cooling is performed. During heating operation, heat is radiated from the radiant panel and radiant heating is performed. Radiant air conditioning is free from air agitation and noise from indoor fans, and can perform quiet and comfortable air conditioning.
  • JP-A-1-260266 Japanese Patent Application Laid-Open No. 60-50352 Japanese Patent Laid-Open No. 10-205802
  • the air conditioner according to the present invention is configured as follows. That is, the air conditioner includes an outdoor heat exchanger, an indoor heat exchanger, an expansion valve disposed between the outdoor heat exchanger and the indoor heat exchanger, the outdoor heat exchanger, A compressor that circulates refrigerant in a refrigeration cycle including the indoor heat exchanger and the expansion valve, and refrigerant circulation by the compressor, the refrigerant discharged from the compressor is the outdoor heat exchanger first. A switching valve that switches between circulation during cooling entering and circulation during heating when refrigerant discharged from the compressor first enters the indoor heat exchanger, and a controller of the air conditioner. The controller increases a first preliminary defrosting operation for reducing the opening degree of the expansion valve or an opening degree of the expansion valve at a stage before the defrosting step of the outdoor heat exchanger during the heating operation. The second preliminary defrosting operation can be performed.
  • control unit may perform a defrosting step of the outdoor heat exchanger after performing the first preliminary defrosting operation or the second preliminary defrosting operation a predetermined number of times. preferable.
  • control unit performs the first preliminary defrosting operation when the outside air temperature is equal to or higher than a predetermined temperature, and performs the second preliminary defrosting operation when the outside air temperature is lower than the predetermined temperature. It is preferable to carry out.
  • control unit switches the heating circulation to the cooling circulation in the defrosting step.
  • control unit executes the first preliminary defrosting operation and the second preliminary defrosting operation when triggered by a frost determination on the outdoor heat exchanger.
  • the control unit performs the frost determination by detecting a change in temperature detected by a temperature detector attached to the outdoor heat exchanger, or an outdoor fan attached to the outdoor heat exchanger.
  • Current change, measurement result of an air flow meter that measures the air volume of the airflow passing through the outdoor heat exchanger, or the length of time that the first preliminary defrosting operation or the second preliminary defrosting operation was not executed It is preferable to carry out based on the above.
  • control unit increases the rotational speed of the outdoor blower during execution of the first preliminary defrosting operation or the second preliminary defrosting operation.
  • control unit decreases the rotation speed of the compressor during the execution of the first preliminary defrosting operation, and increases the rotation speed of the compressor during the execution of the second preliminary defrosting operation. It is preferable to make it.
  • an execution time of the preliminary defrosting operation is 1 minute or less per time.
  • the outdoor heat exchanger is configured by a parallel flow heat exchanger.
  • the heating operation can be continued for a long time until the normal defrosting step.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. It is a control block diagram of the air conditioner of 1st Embodiment. It is a graph explaining the conventional defrost cycle. It is a graph explaining the defrost cycle of this invention. It is a flowchart explaining preliminary defrosting.
  • FIG. 16 is a graph of the table of FIG.
  • the air conditioner 1 according to the embodiment of the present invention will be described.
  • a side flow parallel flow type heat exchanger is used as a heat exchanger.
  • Fig. 3 shows the basic structure of the side flow parallel flow heat exchanger.
  • the upper side of the paper is the upper side of the heat exchanger
  • the lower side of the paper is the lower side of the heat exchanger.
  • the parallel flow heat exchanger 50 includes two vertical header pipes 51 and 52 and a plurality of horizontal flat tubes 53 disposed therebetween.
  • the header pipes 51 and 52 are arranged in parallel at intervals in the horizontal direction.
  • the flat tubes 53 are arranged at a predetermined pitch in the vertical direction.
  • the heat exchanger 50 is installed at various angles according to design requirements. Accordingly, the “vertical direction” and “horizontal direction” in the present specification should not be strictly interpreted. It should be understood as a mere measure of direction.
  • the flat tube 53 is an elongated molded product obtained by extruding a metal.
  • a refrigerant passage 54 for circulating a refrigerant is formed inside the flat tube 53. Since the flat tube 53 is arranged so that the extrusion molding direction, which is the longitudinal direction, is horizontal, the refrigerant flow direction of the refrigerant passage 54 is also horizontal.
  • a plurality of refrigerant passages 54 having the same cross-sectional shape and the same cross-sectional area are arranged in the left-right direction of FIG. Each refrigerant passage 54 communicates with the header pipes 51 and 52.
  • a fin 55 is attached to the flat surface of the flat tube 53.
  • corrugated fins are used as the fins 55, but plate fins may also be used.
  • side plates 56 are arranged outside the uppermost and lowermost fins.
  • the header pipes 51 and 52, the flat tubes 53, the fins 55, and the side plates 56 are all made of a metal having good thermal conductivity such as aluminum.
  • the flat tube 53 is fixed to the header pipes 51 and 52, the fin 55 is fixed to the flat tube 53, and the side plate 56 is fixed to the fin 55 by brazing or welding.
  • the inside of the header pipe 51 is partitioned into two sections S1 and S2 by a single partition P1.
  • the partition part P1 divides the plurality of flat tubes 53 into a plurality of flat tube groups.
  • a flat tube group consisting of 12 out of a total of 24 flat tubes 53 is connected to the section S1.
  • a flat tube group consisting of 12 flat tubes 53 is also connected to the section S2.
  • the number of the flat tubes 53 shown here is an example, and is not limited to this.
  • the interior of the header pipe 52 is partitioned into three sections S3, S4, and S5 by two partition portions P2 and P3.
  • the partition parts P2 and P3 divide the plurality of flat tubes 53 into a plurality of flat tube groups.
  • a flat tube group consisting of four of the total 24 flat tubes 53 is connected to the section S3.
  • a flat tube group consisting of 15 flat tubes 53 is connected to the section S4.
  • a flat tube group consisting of five flat tubes 53 is connected to the section S5.
  • the total number of the flat tubes 53 described above, the number of partition portions inside each header pipe and the number of partitions partitioned thereby, and the number of flat tubes 53 for each flat tube group divided by the partition portions are merely examples. Yes, it does not limit the invention.
  • a refrigerant access pipe 57 is connected to the compartment S3.
  • a refrigerant inlet / outlet pipe 58 is connected to the section S5.
  • the function of the heat exchanger 50 is as follows.
  • the refrigerant is supplied to the compartment S3 through the refrigerant inlet / outlet pipe 57.
  • the refrigerant that has entered the compartment S3 travels through the four flat tubes 53 connecting the compartment S3 and the compartment S1 to the compartment S1.
  • the flat tube group formed by the four flat tubes 53 constitutes the refrigerant path A.
  • the refrigerant path A is symbolized by a block arrow. Other refrigerant paths are also symbolized by block arrows.
  • the refrigerant that has entered the compartment S1 turns back and passes through the eight flat tubes 53 that connect the compartment S1 and the compartment S4 to the compartment S4.
  • the flat tube group formed by the eight flat tubes 53 constitutes the refrigerant path B.
  • the refrigerant that has entered the compartment S4 is turned back and passes through the seven flat tubes 53 connecting the compartment S4 and the compartment S2 toward the compartment S2.
  • the flat tube group formed by the seven flat tubes 53 constitutes the refrigerant path C.
  • the refrigerant that has entered the compartment S2 is turned back there, and travels to the compartment S3 through the five flat tubes 53 that connect the compartment S2 and the compartment S5.
  • the flat tube group formed by the five flat tubes 53 constitutes the refrigerant path D.
  • the refrigerant entering the compartment S5 flows out from the refrigerant inlet / outlet pipe 58.
  • the refrigerant is supplied to the section S5 through the refrigerant inlet / outlet pipe 58. Subsequent refrigerant flows follow the refrigerant path when the heat exchanger 50 is used as a condenser. That is, the refrigerant enters the section S ⁇ b> 1 through the route of the refrigerant path D ⁇ refrigerant path C ⁇ refrigerant path B ⁇ refrigerant path A and flows out from the refrigerant inlet / outlet pipe 57.
  • FIG. 1 shows a schematic configuration of a separate air conditioner 1 using the heat exchanger 50 as a component of a heat pump cycle.
  • the air conditioner 1 includes an outdoor unit 10 and an indoor unit 30.
  • the outdoor unit 10 houses a compressor 12, a switching valve 13, an outdoor heat exchanger 14, an expansion valve 15, an outdoor blower 16, and the like in a housing 11 made of sheet metal parts and synthetic resin parts. is doing.
  • the switching valve 13 is a four-way valve.
  • a heat exchanger 50 is used as the outdoor heat exchanger 14.
  • the outdoor blower is a combination of a motor and a propeller fan.
  • the outdoor unit 10 is connected to the indoor unit 30 through two refrigerant pipes 17 and 18.
  • the refrigerant pipe 17 is intended to flow a liquid refrigerant, and a pipe that is thinner than the refrigerant pipe 18 is used. Therefore, the refrigerant pipe 17 may be referred to as “liquid pipe”, “narrow pipe”, or the like.
  • the refrigerant pipe 18 is intended to flow a gaseous refrigerant, and is thicker than the refrigerant pipe 17. Therefore, the refrigerant pipe 18 may be referred to as “gas pipe”, “thick pipe”, or the like.
  • HFC R410A or R32 is used as the refrigerant.
  • a two-way valve 19 is provided in the refrigerant pipe connected to the refrigerant pipe 17 in the refrigerant pipe inside the outdoor unit 10.
  • a three-way valve 20 is provided in the refrigerant pipe connected to the refrigerant pipe 18. The two-way valve 19 and the three-way valve 20 are closed when the refrigerant pipes 17 and 18 are removed from the outdoor unit 10 to prevent the refrigerant from leaking from the outdoor unit 10 to the outside. When it is necessary to release the refrigerant from the outdoor unit 10 or from the entire refrigeration cycle including the indoor unit 30, the refrigerant is discharged through the three-way valve 20.
  • the indoor unit 30 houses an indoor heat exchanger 32, an indoor blower 33, and the like inside a casing 31 made of synthetic resin parts.
  • the indoor heat exchanger 32 is a combination of three heat exchangers 32 ⁇ / b> A, 32 ⁇ / b> B, and 32 ⁇ / b> C like a roof that covers the indoor blower 33. Any or all of the heat exchangers 32 ⁇ / b> A, 32 ⁇ / b> B, and 32 ⁇ / b> C can be configured by the heat exchanger 50.
  • the indoor blower 33 is a combination of a motor and a cross flow fan.
  • temperature detectors are arranged in the outdoor unit 10 and the indoor unit 30.
  • a temperature detector 21 is disposed in the outdoor heat exchanger 14.
  • a temperature detector 22 is disposed in the discharge pipe 12 a serving as a discharge portion of the compressor 12.
  • a temperature detector 23 is disposed in the suction pipe 12 b serving as a suction portion of the compressor 12.
  • a temperature detector 24 is disposed in the refrigerant pipe between the expansion valve 15 and the two-way valve 19.
  • a temperature detector 25 for measuring the outside air temperature is disposed at a predetermined location inside the housing 11.
  • a temperature detector 34 is disposed in the indoor heat exchanger 32.
  • Each of the temperature detectors 21, 22, 23, 24, 25, and 34 is formed of a thermistor.
  • the control unit 40 shown in FIG. 5 is responsible for overall control of the air conditioner 1.
  • the control unit 40 performs control so that the room temperature reaches a target value set by the user.
  • the control unit 40 issues operation commands to the compressor 12, the switching valve 13, the expansion valve 15, the outdoor blower 16, and the indoor blower 33.
  • the control unit 40 receives output signals of the detected temperatures from the temperature detectors 21 to 25 and the temperature detector 34, respectively.
  • the controller 40 issues operation commands to the compressor 12, the outdoor blower 16, and the indoor blower 33 while referring to output signals from the temperature detectors 21 to 25 and the temperature detector 34.
  • the control unit 40 issues a state switching command to the switching valve 13 and the expansion valve 15.
  • FIG. 1 shows a state where the air conditioner 1 is performing a cooling operation or a defrosting operation.
  • the compressor 12 circulates the refrigerant in a cooling mode, that is, a circulation mode in which the refrigerant discharged from the compressor 12 first enters the outdoor heat exchanger 14.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 12 enters the outdoor heat exchanger 14 where heat exchange with outdoor air is performed.
  • the refrigerant dissipates heat to the outdoor air and condenses.
  • the refrigerant that is condensed to become liquid enters the expansion valve 15 from the outdoor heat exchanger 14 and is decompressed there.
  • the decompressed refrigerant is sent to the indoor heat exchanger 32, expands to a low temperature and low pressure, and lowers the surface temperature of the indoor heat exchanger 32.
  • the indoor side heat exchanger 32 whose surface temperature has been lowered absorbs heat from the indoor air, thereby cooling the room. After the heat absorption, the low-temperature gaseous refrigerant returns to the compressor 12.
  • the airflow generated by the outdoor fan 16 promotes heat dissipation from the outdoor heat exchanger 14.
  • the airflow generated by the indoor fan 33 promotes heat absorption of the indoor heat exchanger 32.
  • FIG. 2 shows a state where the air conditioner 1 is performing a heating operation.
  • the switching valve 13 is switched to reverse the refrigerant flow during the cooling operation.
  • the compressor 12 circulates the refrigerant in a circulation mode during heating, that is, in a circulation mode in which the refrigerant discharged from the compressor 12 first enters the indoor heat exchanger 32.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 12 enters the indoor heat exchanger 32 where heat exchange with the indoor air is performed.
  • the refrigerant dissipates heat to the room air and warms the room.
  • the refrigerant that has dissipated heat and has become liquid by condensing enters the expansion valve 15 from the indoor heat exchanger 32 and is decompressed there.
  • the decompressed refrigerant is sent to the outdoor heat exchanger 14 and expands to a low temperature and low pressure, thereby lowering the surface temperature of the outdoor heat exchanger 14.
  • the outdoor heat exchanger 14 whose surface temperature has dropped absorbs heat from outdoor air. After the heat absorption, the low-temperature gaseous refrigerant returns to the compressor 12.
  • the airflow generated by the outdoor blower 33 promotes heat radiation from the indoor heat exchanger 33.
  • the airflow generated by the outdoor fan 16 promotes heat absorption by the outdoor heat exchanger 14.
  • the present invention is characterized in that preliminary defrosting is performed before the defrosting step. Hereinafter, what the preliminary defrosting is will be described with reference to FIGS. 6 to 14.
  • the vertical axis indicates the heating capacity and the horizontal axis indicates the time.
  • the heating capacity increases after the start of the heating operation, and the high heating capacity is maintained until a certain point.
  • the heating operation is stopped and the defrosting process is entered. After the defrosting process is completed, the heating operation is resumed.
  • defrosting requires a certain amount of time. To do. Therefore, the user had to put up with the room temperature going down during that time.
  • FIG. 7 shows the concept of the preliminary defrosting system according to the present invention.
  • the preliminary defrosting Prior to the normal full-scale defrosting process (hereinafter referred to as “normal defrosting” in the present specification), the preliminary defrosting is repeated to extend the heating operation period until the normal defrosting as much as possible. Is.
  • step # 101 the control unit 40 determines whether or not the normal defrosting condition is satisfied. If the determination is NO, the process proceeds to step 102, and if YES, the process proceeds to step # 109.
  • step # 109 the control unit 40 performs normal defrosting.
  • the circulation at the time of heating is switched to the circulation at the time of cooling, and the high-temperature and high-pressure refrigerant flows into the outdoor heat exchanger 14 so that the outdoor heat exchanger 14 is defrosted.
  • the normal defrosting is completed and the operation returns to the heating operation. The flow returns to step # 101.
  • step # 102 the control unit 40 determines whether the preliminary defrosting condition is satisfied. If the determination is YES, the process proceeds to step # 103, and if NO, the process returns to step # 101.
  • step # 102 the control unit 40 determines whether or not the frosting on the outdoor heat exchanger 14 has progressed until the qualifying conditions for the preliminary defrosting are satisfied (hereinafter referred to as “frosting determination” in this specification). Do.
  • the frost formation determination is to determine that the outdoor heat exchanger 14 is slightly frosted, and can be performed according to various determination criteria described below.
  • the first criterion for determining frost formation is a change in the detected temperature of the temperature detector 21 attached to the outdoor heat exchanger 14.
  • the control unit 40 determines “frosting”.
  • the second criterion for determining frost formation is a change in the current of the outdoor fan 16.
  • the ventilation resistance of the outdoor heat exchanger 14 increases, and the current flowing through the outdoor blower 16 changes.
  • the control unit 40 determines “frosting”.
  • the third criterion for determining frost formation is the air volume of the airflow passing through the outdoor heat exchanger 14.
  • an air flow meter (not shown) is arranged in the airflow passing through the outdoor heat exchanger 14.
  • the ventilation resistance of the outdoor heat exchanger 14 increases, and the amount of air passing through the outdoor heat exchanger 14 decreases.
  • the control unit 40 determines “frosting”.
  • the fourth criterion for determining frost formation is time.
  • a first preliminary defrosting operation or a second preliminary defrosting operation which will be described later, has been executed for a predetermined time since the heating operation has been started for a predetermined time or since the previous first preliminary defrosting operation or the second preliminary defrosting operation. If not, the control unit 40 determines “frosting”.
  • step # 103 the control unit 40 determines the outside air temperature. That is, it is determined whether the outside air temperature is higher or lower than a predetermined temperature (for example, + 2 ° C.). Thereafter, the process proceeds to step # 104. Preliminary defrosting is started from here.
  • step # 104 the control unit 40 changes the opening degree of the expansion valve 15.
  • the control unit 40 performs a first preliminary defrosting operation for reducing the opening degree of the expansion valve 15. If the outside air temperature measured in step # 103 is less than the predetermined temperature, the control unit 40 performs a second preliminary defrosting operation for increasing the opening degree of the expansion valve 15.
  • the control unit 40 executes a second preliminary defrosting operation for increasing the opening degree of the expansion valve 15.
  • the opening degree of the expansion valve 15 increases, a large amount of the refrigerant that has passed through the indoor heat exchanger 32 flows through the outdoor heat exchanger 14, and the heat of the refrigerant is transferred to the outdoor heat exchanger 14. The attached frost melts.
  • This second defrosting operation is suitable when the outside air temperature is low.
  • FIGS. show the results of an experiment conducted using a separate air conditioner having an average heating capacity of about 2400 W under conditions of an outdoor dry bulb temperature of 2 ° C., an outdoor wet bulb temperature of 1 ° C., and an indoor dry bulb temperature of 20 ° C.
  • normal defrosting is a heating operation mode in which only normal defrosting is performed without performing preliminary defrosting operation.
  • “Expansion valve fully closed” is a heating operation mode with a first preliminary defrosting operation, and is a heating operation mode in which the opening degree of the expansion valve is “fully closed”.
  • “Expansion valve fully open” is a heating operation mode with a second preliminary defrosting operation, and is a heating operation mode in which the opening of the expansion valve is “fully open”.
  • Average heating capacity is a numerical value obtained by dividing the heating capacity in the time (1 cycle) from the start of heating operation to the end of normal defrosting performed immediately after the heating operation by the time of the 1 cycle, The unit is kW or W.
  • the “heating time” is the time of the one cycle.
  • the table of FIG. 9 summarizes the results of the three experiments, “normal defrosting”, “expansion valve fully closed”, and “expansion valve fully open”.
  • “frosting” was determined using time as a criterion.
  • the average heating capacity was 2384, and the heating time was 32 minutes and 35 seconds.
  • the first preliminary defrosting operation was executed a total of 7 times, the average heating capacity was 2497, and the heating time was 58 minutes and 50 seconds.
  • the second preliminary defrosting operation was executed four times in total, the average heating capacity was 2528, and the heating time was 55 minutes and 50 seconds.
  • FIG. 10 is a graph of the average heating capacity data in the table of Fig. 9.
  • FIG. 11 is a graph of heating time data in the table of FIG.
  • the expansion valve change time for reducing or increasing the opening of the expansion valve 15 is not long.
  • the preliminary defrosting operation for reducing the opening degree of the expansion valve brings about an effect of improving the average heating capacity if the expansion valve change time is up to about 50 seconds. Is small. Therefore, the length of the first preliminary defrosting operation is up to about 50 seconds.
  • the preliminary defrosting operation for increasing the opening degree of the expansion valve brings about an effect of improving the average heating capacity if the expansion valve change time is up to about 30 seconds, but there is no effect of improving the average heating capacity in the time longer than that. Therefore, the length of the second preliminary defrosting operation is preferably up to about 30 seconds.
  • the execution time of the preliminary defrosting operation including the first preliminary defrosting operation and the second preliminary defrosting operation is 1 minute or less per time It is desirable that
  • step # 105 the control unit 40 changes the rotational speed of the outdoor blower 16.
  • step # 105 the rotational speed of the outdoor blower 16 is increased.
  • the rotational speed of the outdoor blower 16 is increased only during the execution of the first defrosting operation or the second defrosting operation.
  • step # 106 the control unit 40 changes the rotational speed of the compressor 12.
  • the rotational speed of the compressor 12 is decreased in order to reduce the flow of the refrigerant.
  • the rotational speed of the compressor 12 is increased. The rotation speed of the compressor 12 is changed only during execution of the first defrosting operation or the second defrosting operation.
  • step # 107 the control unit 40 checks whether the time set as the time for the first preliminary defrosting operation or the time set as the time for the second preliminary defrosting operation has elapsed. When the time set as the time of the first preliminary defrosting operation or the time set as the time of the second preliminary defrosting operation has elapsed, the process proceeds to step # 108.
  • step # 108 the control unit 40 restores the rotational speeds of the outdoor blower 16 and the compressor 12. Further, the opening degree of the expansion valve 15 is returned to the vicinity of the original opening degree. The reason why the width of the vicinity of the original opening is given is that the frost is applied to the outdoor heat exchanger 14 before and after the preliminary defrosting. Because it is different. Therefore, the opening degree of the expansion valve 15 is returned so that the optimum opening degree after the preliminary defrosting is obtained. After step # 108, the process returns to step # 101.
  • Preliminary defrosting enables the outdoor heat exchanger 14 to be kept in a state of good heat exchange efficiency with little frost formation for a long time, and thus also brings about an energy saving effect.
  • FIG. 15 shows the results of an experiment in which it is determined whether the effect of the frost control on the outdoor heat exchanger by performing preliminary defrosting during the heating operation, that is, the effect of the difficult frost control varies depending on the type of the heat exchanger.
  • F & T indicates a fin-and-tube heat exchanger
  • A-PFC indicates an all-aluminum side-flow parallel-flow heat exchanger.
  • the average heating capacity did not increase so much in the fin-and-tube heat exchanger even when the hard frost control was performed.
  • the average heating capacity was improved by 6% by the hard frost control. From this, it can be seen that the effect of the present invention is particularly great when a parallel flow heat exchanger having high heat exchange efficiency is used as the outdoor heat exchanger. This is due to the following reason. That is, the parallel flow type heat exchanger has a high fin efficiency, so that the surface temperature of the fin approaches the refrigerant temperature and becomes a lower temperature.
  • the air conditioner targeted by the present invention is not limited to one using a parallel flow heat exchanger or a fin-and-tube heat exchanger as a heat exchanger.
  • the present invention can also be applied to a defrosting of an outdoor unit of a radiation type air conditioner, that is, an air conditioner in which the indoor unit circulates indoor air by natural convection without using a blower.
  • the present invention is widely applicable to heat pump type air conditioners.

Abstract

An air conditioner (1) comprises: an outdoor heat exchanger (14); an indoor heat exchanger (32); an expansion valve (15) which is disposed between the outdoor heat exchanger and the indoor heat exchanger; a compressor (12) which circulates a refrigerant through a refrigeration cycle; and a switching valve (13) which switches the circulation of the refrigerant by the compressor between circulation for cooling, in which the refrigerant discharged from the compressor first enters the outdoor heat exchanger, and circulation for heating, in which the refrigerant discharged from the compressor first enters the indoor heat exchanger. During heating operation, at a stage prior to a step for defrosting the outdoor heat exchanger, a control unit (40) can perform either first preliminary defrosting operation in which the degree of opening of the expansion valve is reduced or a second preliminary defrosting operation in which the degree of opening of the expansion valve is increased.

Description

空気調和機Air conditioner
 本発明はヒートポンプ方式の空気調和機に関する。 The present invention relates to a heat pump type air conditioner.
 家屋用の空気調和機は、ヒートポンプ方式を採用し、また室外機と室内機に分かれるセパレート型としたものが主流となっている。このような空気調和機で暖房運転を行うと、室内側熱交換器が高温になる一方で室外側熱交換器は低温になる。その結果として室外側熱交換器に着霜が生じるという問題を避けることができない。そこで、暖房運転時の室外側熱交換器の着霜の問題を解決するため、様々な対策が講じられてきた。 Home air conditioners adopt a heat pump system and are separated into outdoor units and indoor units. When heating operation is performed with such an air conditioner, the indoor heat exchanger becomes hot while the outdoor heat exchanger becomes cold. As a result, the problem of frost formation in the outdoor heat exchanger cannot be avoided. Accordingly, various measures have been taken to solve the problem of frost formation on the outdoor heat exchanger during heating operation.
 特許文献1に記載された空気調和機では、室外熱交換器と減圧装置の接続部と、圧縮機の吐出部とを開閉弁を有する冷媒路で接続している。開閉弁は、暖房時の高圧側冷媒路の圧力または室内熱交換器の温度が所定値以上になると開く。開閉弁が開状態になった場合は、圧縮機から吐出された高温高圧の冷媒の一部が冷媒路で減圧されながら室外熱交換器に流入し、室内熱交換器で液化され減圧装置で減圧されて低温低圧となった冷媒に合流する。これにより、室外熱交換器の冷媒圧力及び温度は通常より高くなり、室外熱交換器表面への着霜の進行速度が低下する。 In the air conditioner described in Patent Document 1, an outdoor heat exchanger, a connecting portion of a pressure reducing device, and a discharge portion of a compressor are connected by a refrigerant path having an on-off valve. The on-off valve opens when the pressure of the high-pressure side refrigerant path during heating or the temperature of the indoor heat exchanger exceeds a predetermined value. When the on-off valve is opened, part of the high-temperature and high-pressure refrigerant discharged from the compressor flows into the outdoor heat exchanger while being reduced in pressure in the refrigerant path, and is liquefied in the indoor heat exchanger and depressurized in the pressure reducing device. Then, it merges with the low-temperature and low-pressure refrigerant. Thereby, the refrigerant | coolant pressure and temperature of an outdoor heat exchanger become higher than usual, and the advancing speed of the frost formation to an outdoor heat exchanger surface falls.
 特許文献2に記載された除霜装置では次のように除霜が行われる。すなわち除霜時には減圧装置の弁開度を全開もしくはほぼ全開とし、凝縮器・蒸発器の強制通風を停止して、圧縮機を運転する。 In the defrosting apparatus described in Patent Document 2, defrosting is performed as follows. That is, at the time of defrosting, the valve opening of the decompression device is fully opened or almost fully opened, the forced ventilation of the condenser / evaporator is stopped, and the compressor is operated.
 同じセパレート型の空気調和機であっても次のようなタイプのものも存在する。すなわち室内機を輻射パネルとして構成し、ファンを用いることなく、熱の輻射により室内の冷房または暖房を行うのである。その例を特許文献3に見ることができる。 There are the following types of air conditioners of the same separate type. That is, the indoor unit is configured as a radiation panel, and the room is cooled or heated by heat radiation without using a fan. An example of this can be seen in US Pat.
 特許文献3に記載された空気調和機は建屋の天井に配設される輻射パネルを備える。輻射パネルの内部には冷媒配管が蛇行状に配置されている。冷房運転時には輻射パネルで吸熱がなされて輻射式冷房が行われる。暖房運転時には輻射パネルで放熱がなされて輻射式暖房が行われる。輻射式冷暖房は室内ファンによる空気の攪拌や騒音と無縁であり、静粛で快適な冷暖房を行うことができる。 The air conditioner described in Patent Document 3 includes a radiation panel disposed on the ceiling of the building. Inside the radiation panel, refrigerant piping is arranged in a meandering manner. At the time of cooling operation, heat is absorbed by the radiant panel and radiant cooling is performed. During heating operation, heat is radiated from the radiant panel and radiant heating is performed. Radiant air conditioning is free from air agitation and noise from indoor fans, and can perform quiet and comfortable air conditioning.
特開平1-260266号公報JP-A-1-260266 特開昭60-50352号公報Japanese Patent Application Laid-Open No. 60-50352 特開平10-205802号公報Japanese Patent Laid-Open No. 10-205802
 暖房運転中の室外機の除霜工程は、不可避であるとは言え、暖房の一時中断により使用者に不便を強いる。本発明はこの点に鑑みなされたものであり、除霜工程の実施時期をできるだけ遅らせることを目的とする。 Although the defrosting process of the outdoor unit during heating operation is inevitable, it temporarily inconveniences the user due to temporary interruption of heating. This invention is made | formed in view of this point, and aims at delaying the implementation time of a defrost process as much as possible.
 本発明に係る空気調和機は以下の通り構成される。すなわち空気調和機は、室外側熱交換器と、室内側熱交換器と、前記室外側熱交換器と前記室内側熱交換器の間に配置された膨張弁と、前記室外側熱交換器、前記室内側熱交換器、及び前記膨張弁を含む冷凍サイクル中に冷媒を循環させる圧縮機と、前記圧縮機による冷媒循環を、前記圧縮機から吐出された冷媒が先に前記室外側熱交換器に入る冷房時循環と、前記圧縮機から吐出された冷媒が先に前記室内側熱交換器に入る暖房時循環とに切り替える切替弁と、当該空気調和機の制御部とを備える。前記制御部は、暖房運転時、前記室外側熱交換器の除霜工程前の段階で、前記膨張弁の開度を小さくする第1予備除霜運転、または前記膨張弁の開度を大きくする第2予備除霜運転を実行可能である。 The air conditioner according to the present invention is configured as follows. That is, the air conditioner includes an outdoor heat exchanger, an indoor heat exchanger, an expansion valve disposed between the outdoor heat exchanger and the indoor heat exchanger, the outdoor heat exchanger, A compressor that circulates refrigerant in a refrigeration cycle including the indoor heat exchanger and the expansion valve, and refrigerant circulation by the compressor, the refrigerant discharged from the compressor is the outdoor heat exchanger first. A switching valve that switches between circulation during cooling entering and circulation during heating when refrigerant discharged from the compressor first enters the indoor heat exchanger, and a controller of the air conditioner. The controller increases a first preliminary defrosting operation for reducing the opening degree of the expansion valve or an opening degree of the expansion valve at a stage before the defrosting step of the outdoor heat exchanger during the heating operation. The second preliminary defrosting operation can be performed.
 上記構成の空気調和機において、前記制御部は、前記第1予備除霜運転または前記第2予備除霜運転を所定回数実行した後、前記室外側熱交換器の除霜工程を実行することが好ましい。 In the air conditioner having the above configuration, the control unit may perform a defrosting step of the outdoor heat exchanger after performing the first preliminary defrosting operation or the second preliminary defrosting operation a predetermined number of times. preferable.
 上記構成の空気調和機において、前記制御部は、外気温が所定温度以上のときは前記第1予備除霜運転を実行し、外気温が所定温度未満のときは前記第2予備除霜運転を実行することが好ましい。 In the air conditioner configured as described above, the control unit performs the first preliminary defrosting operation when the outside air temperature is equal to or higher than a predetermined temperature, and performs the second preliminary defrosting operation when the outside air temperature is lower than the predetermined temperature. It is preferable to carry out.
 上記構成の空気調和機において、前記制御部は、前記除霜工程では前記暖房時循環を前記冷房時循環に切り替えることが好ましい。 In the air conditioner having the above configuration, it is preferable that the control unit switches the heating circulation to the cooling circulation in the defrosting step.
 上記構成の空気調和機において、前記制御部は、前記第1予備除霜運転と前記第2予備除霜運転を、前記室外側熱交換器に対する着霜判定を契機として実行することが好ましい。 In the air conditioner having the above-described configuration, it is preferable that the control unit executes the first preliminary defrosting operation and the second preliminary defrosting operation when triggered by a frost determination on the outdoor heat exchanger.
 上記構成の空気調和機において、前記制御部は、前記着霜判定を、前記室外側熱交換器に付設した温度検出器の検出温度の変化、または前記室外側熱交換器に付設した室外側送風機の電流変化、または前記室外側熱交換器を通過する気流の風量を計測する風量計の計測結果、または前記第1予備除霜運転または前記第2予備除霜運転が実行されなかった時間の長さに基づき行うことが好ましい。 In the air conditioner having the above-described configuration, the control unit performs the frost determination by detecting a change in temperature detected by a temperature detector attached to the outdoor heat exchanger, or an outdoor fan attached to the outdoor heat exchanger. Current change, measurement result of an air flow meter that measures the air volume of the airflow passing through the outdoor heat exchanger, or the length of time that the first preliminary defrosting operation or the second preliminary defrosting operation was not executed It is preferable to carry out based on the above.
 上記構成の空気調和機において、前記制御部は、前記第1予備除霜運転または前記第2予備除霜運転実行中は前記室外側送風機の回転数を上昇させることが好ましい。 In the air conditioner having the above-described configuration, it is preferable that the control unit increases the rotational speed of the outdoor blower during execution of the first preliminary defrosting operation or the second preliminary defrosting operation.
 上記構成の空気調和機において、前記制御部は、前記第1予備除霜運転実行中は前記圧縮機の回転数を下げ、前記第2予備除霜運転実行中は前記圧縮機の回転数を上昇させることが好ましい。 In the air conditioner having the above configuration, the control unit decreases the rotation speed of the compressor during the execution of the first preliminary defrosting operation, and increases the rotation speed of the compressor during the execution of the second preliminary defrosting operation. It is preferable to make it.
 上記構成の空気調和機において、前記予備除霜運転の実行時間は1回あたり1分以下であることが好ましい。 In the air conditioner configured as described above, it is preferable that an execution time of the preliminary defrosting operation is 1 minute or less per time.
 上記構成の空気調和機において、前記室外側熱交換器がパラレルフロー型熱交換器により構成されていることが好ましい。 In the air conditioner configured as described above, it is preferable that the outdoor heat exchanger is configured by a parallel flow heat exchanger.
 本発明によると、通常の除霜工程の前段階で予備除霜を行うことにより、通常の除霜が必要となる時期を遅らせることができる。従って、通常の除霜工程まで、暖房運転を長時間継続することができる。 According to the present invention, it is possible to delay the time when the normal defrosting is necessary by performing the preliminary defrosting before the normal defrosting process. Therefore, the heating operation can be continued for a long time until the normal defrosting step.
本発明の第1実施形態に係る空気調和機の概略構成図で、冷房運転時の状態を示すものである。It is a schematic block diagram of the air conditioner which concerns on 1st Embodiment of this invention, and shows the state at the time of air_conditionaing | cooling operation. 本発明の第1実施形態に係る空気調和機の概略構成図で、暖房運転時の状態を示すものである。It is a schematic block diagram of the air conditioner which concerns on 1st Embodiment of this invention, and shows the state at the time of heating operation. パラレルフロー型熱交換器の概略構成図である。It is a schematic block diagram of a parallel flow type heat exchanger. 図3のIV-IV線に沿った断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. 第1実施形態の空気調和機の制御ブロック図である。It is a control block diagram of the air conditioner of 1st Embodiment. 従来の除霜サイクルを説明するグラフである。It is a graph explaining the conventional defrost cycle. 本発明の除霜サイクルを説明するグラフである。It is a graph explaining the defrost cycle of this invention. 予備除霜について説明するフローチャートである。It is a flowchart explaining preliminary defrosting. 予備除霜を行わなかった場合と行った場合の暖房能力に関する実験結果の表である。It is a table | surface of the experimental result regarding the heating capability at the time of performing the case where it does not perform preliminary defrosting. 図9の表の中で、平均暖房能力の部分のグラフである。It is a graph of the part of average heating capacity in the table | surface of FIG. 図9の表の中で、暖房時間の部分のグラフである。It is a graph of the part of heating time in the table | surface of FIG. 膨張弁開度変更時間が平均暖房能力に及ぼす影響を調べた実験結果のグラフである。It is a graph of the experimental result which investigated the influence which the expansion valve opening change time has on average heating capacity. 予備除霜の繰り返し回数が平均暖房能力に及ぼす影響を調べた実験結果のグラフである。It is a graph of the experimental result which investigated the influence which the repetition frequency of preliminary defrost has on average heating capacity. 室外側送風機の回転数が平均暖房能力に及ぼす影響を調べた実験結果のグラフである。It is a graph of the experimental result which investigated the influence which the rotation speed of an outdoor side fan has on average heating capacity. 予備除霜のもたらす効果が熱交換器の形式によって異なるかどうかを調べた実験結果の表である。It is a table | surface of the experimental result which investigated whether the effect which preliminary | backup defrost brings about changes with types of heat exchangers. 図15の表をグラフ化したものであるである。FIG. 16 is a graph of the table of FIG.
 図1から図14に基づき本発明の実施形態に係る空気調和機1についての説明を行う。空気調和機1では、熱交換器としてサイドフロー方式のパラレルフロー型熱交換器が用いられる。 1 to 14, the air conditioner 1 according to the embodiment of the present invention will be described. In the air conditioner 1, a side flow parallel flow type heat exchanger is used as a heat exchanger.
 サイドフロー方式のパラレルフロー型熱交換器の基本構造を図3に示す。図3では紙面上側が熱交換器の上側、紙面下側が熱交換器の下側となる。パラレルフロー型熱交換器50は、2本の垂直方向ヘッダパイプ51、52と、その間に配置される複数の水平方向偏平チューブ53を備える。ヘッダパイプ51、52は水平方向に間隔を置いて平行に配置されている。偏平チューブ53は垂直方向に所定ピッチで配置されている。実際に機器に搭載する段階では、熱交換器50は設計の要請に従って様々な角度に据え付けられる。従って、本明細書における「垂直方向」「水平方向」は厳格に解釈されるべきものではない。単なる方向の目安として理解されるべきである。 Fig. 3 shows the basic structure of the side flow parallel flow heat exchanger. In FIG. 3, the upper side of the paper is the upper side of the heat exchanger, and the lower side of the paper is the lower side of the heat exchanger. The parallel flow heat exchanger 50 includes two vertical header pipes 51 and 52 and a plurality of horizontal flat tubes 53 disposed therebetween. The header pipes 51 and 52 are arranged in parallel at intervals in the horizontal direction. The flat tubes 53 are arranged at a predetermined pitch in the vertical direction. In the actual mounting stage, the heat exchanger 50 is installed at various angles according to design requirements. Accordingly, the “vertical direction” and “horizontal direction” in the present specification should not be strictly interpreted. It should be understood as a mere measure of direction.
 偏平チューブ53は金属を押出成型した細長い成型品である。図4に示す通り、偏平チューブ53の内部には冷媒を流通させる冷媒通路54が形成されている。偏平チューブ53は長手方向である押出成型方向を水平にする形で配置されるので、冷媒通路54の冷媒流通方向も水平になる。冷媒通路54は断面形状及び断面面積の等しいものが図4の左右方向に複数個並び、そのため偏平チューブ53の垂直断面はハーモニカ状を呈している。各冷媒通路54はヘッダパイプ51、52の内部に連通する。 The flat tube 53 is an elongated molded product obtained by extruding a metal. As shown in FIG. 4, a refrigerant passage 54 for circulating a refrigerant is formed inside the flat tube 53. Since the flat tube 53 is arranged so that the extrusion molding direction, which is the longitudinal direction, is horizontal, the refrigerant flow direction of the refrigerant passage 54 is also horizontal. A plurality of refrigerant passages 54 having the same cross-sectional shape and the same cross-sectional area are arranged in the left-right direction of FIG. Each refrigerant passage 54 communicates with the header pipes 51 and 52.
 偏平チューブ53の偏平面にはフィン55が取り付けられる。フィン55として、ここではコルゲートフィンを用いているが、プレートフィンでも構わない。上下に並ぶフィン55のうち、最上段のものと最下段のものの外側にはサイドプレート56が配置される。 A fin 55 is attached to the flat surface of the flat tube 53. Here, corrugated fins are used as the fins 55, but plate fins may also be used. Of the fins 55 arranged vertically, side plates 56 are arranged outside the uppermost and lowermost fins.
 ヘッダパイプ51、52、偏平チューブ53、フィン55、及びサイドプレート56はいずれもアルミニウム等熱伝導の良い金属からなる。偏平チューブ53はヘッダパイプ51、52に対し、フィン55は偏平チューブ53に対し、サイドプレート56はフィン55に対し、それぞれロウ付けまたは溶着で固定される。 The header pipes 51 and 52, the flat tubes 53, the fins 55, and the side plates 56 are all made of a metal having good thermal conductivity such as aluminum. The flat tube 53 is fixed to the header pipes 51 and 52, the fin 55 is fixed to the flat tube 53, and the side plate 56 is fixed to the fin 55 by brazing or welding.
 ヘッダパイプ51の内部は、1個の仕切部P1により2個の区画S1、S2に仕切られている。仕切部P1は複数の偏平チューブ53を複数の偏平チューブグループに区分する。区画S1には合計24本の偏平チューブ53のうち12本からなる偏平チューブグループが接続される。区画S2にも12本の偏平チューブ53からなる偏平チューブグループが接続される。なおここに示した偏平チューブ53の数は一例であり、これに限定されるものではない。 The inside of the header pipe 51 is partitioned into two sections S1 and S2 by a single partition P1. The partition part P1 divides the plurality of flat tubes 53 into a plurality of flat tube groups. A flat tube group consisting of 12 out of a total of 24 flat tubes 53 is connected to the section S1. A flat tube group consisting of 12 flat tubes 53 is also connected to the section S2. In addition, the number of the flat tubes 53 shown here is an example, and is not limited to this.
 ヘッダパイプ52の内部は、2個の仕切部P2、P3により3個の区画S3、S4、S5に仕切られている。仕切部P2、P3は複数の偏平チューブ53を複数の偏平チューブグループに区分する。区画S3には合計24本の偏平チューブ53のうち4本からなる偏平チューブグループが接続される。区画S4には15本の偏平チューブ53からなる偏平チューブグループが接続される。区画S5には5本の偏平チューブ53からなる偏平チューブグループが接続される。 The interior of the header pipe 52 is partitioned into three sections S3, S4, and S5 by two partition portions P2 and P3. The partition parts P2 and P3 divide the plurality of flat tubes 53 into a plurality of flat tube groups. A flat tube group consisting of four of the total 24 flat tubes 53 is connected to the section S3. A flat tube group consisting of 15 flat tubes 53 is connected to the section S4. A flat tube group consisting of five flat tubes 53 is connected to the section S5.
 上記した偏平チューブ53の総数、各ヘッダパイプ内部の仕切部の数とそれによって仕切られる区画の数、及び仕切部によって区分される偏平チューブグループ毎の偏平チューブ53の数は、いずれも単なる例示であり、発明を限定するものではない。 The total number of the flat tubes 53 described above, the number of partition portions inside each header pipe and the number of partitions partitioned thereby, and the number of flat tubes 53 for each flat tube group divided by the partition portions are merely examples. Yes, it does not limit the invention.
 区画S3には冷媒出入パイプ57が接続される。区画S5には冷媒出入パイプ58が接続される。 A refrigerant access pipe 57 is connected to the compartment S3. A refrigerant inlet / outlet pipe 58 is connected to the section S5.
 熱交換器50の機能は次の通りである。熱交換器50が凝縮器として用いられるとき、冷媒は冷媒出入パイプ57を通じて区画S3に供給される。区画S3に入った冷媒は区画S3と区画S1を連結する4本の偏平チューブ53を通って区画S1に向かう。この4本の偏平チューブ53で編成される偏平チューブグループが冷媒パスAを構成する。冷媒パスAはブロック矢印で象徴されている。それ以外の冷媒パスもブロック矢印で象徴させる。 The function of the heat exchanger 50 is as follows. When the heat exchanger 50 is used as a condenser, the refrigerant is supplied to the compartment S3 through the refrigerant inlet / outlet pipe 57. The refrigerant that has entered the compartment S3 travels through the four flat tubes 53 connecting the compartment S3 and the compartment S1 to the compartment S1. The flat tube group formed by the four flat tubes 53 constitutes the refrigerant path A. The refrigerant path A is symbolized by a block arrow. Other refrigerant paths are also symbolized by block arrows.
 区画S1に入った冷媒はそこで折り返し、区画S1と区画S4を連結する8本の偏平チューブ53を通って区画S4に向かう。この8本の偏平チューブ53で編成される偏平チューブグループが冷媒パスBを構成する。 The refrigerant that has entered the compartment S1 turns back and passes through the eight flat tubes 53 that connect the compartment S1 and the compartment S4 to the compartment S4. The flat tube group formed by the eight flat tubes 53 constitutes the refrigerant path B.
 区画S4に入った冷媒はそこで折り返し、区画S4と区画S2を連結する7本の偏平チューブ53を通って区画S2に向かう。この7本の偏平チューブ53で編成される偏平チューブグループが冷媒パスCを構成する。 The refrigerant that has entered the compartment S4 is turned back and passes through the seven flat tubes 53 connecting the compartment S4 and the compartment S2 toward the compartment S2. The flat tube group formed by the seven flat tubes 53 constitutes the refrigerant path C.
 区画S2に入った冷媒はそこで折り返し、区画S2と区画S5を連結する5本の偏平チューブ53を通って区画S3に向かう。この5本の偏平チューブ53で編成される偏平チューブグループが冷媒パスDを構成する。区画S5に入った冷媒は冷媒出入パイプ58より流出する。 The refrigerant that has entered the compartment S2 is turned back there, and travels to the compartment S3 through the five flat tubes 53 that connect the compartment S2 and the compartment S5. The flat tube group formed by the five flat tubes 53 constitutes the refrigerant path D. The refrigerant entering the compartment S5 flows out from the refrigerant inlet / outlet pipe 58.
 熱交換器50が蒸発器として用いられるときは、冷媒は冷媒出入パイプ58を通じて区画S5に供給される。それ以後の冷媒の流れは、熱交換器50が凝縮器として用いられるときの冷媒パスを逆に辿る。すなわち冷媒パスD→冷媒パスC→冷媒パスB→冷媒パスAのルートで冷媒は区画S1に入り、冷媒出入パイプ57より流出する。 When the heat exchanger 50 is used as an evaporator, the refrigerant is supplied to the section S5 through the refrigerant inlet / outlet pipe 58. Subsequent refrigerant flows follow the refrigerant path when the heat exchanger 50 is used as a condenser. That is, the refrigerant enters the section S <b> 1 through the route of the refrigerant path D → refrigerant path C → refrigerant path B → refrigerant path A and flows out from the refrigerant inlet / outlet pipe 57.
 上記熱交換器50をヒートポンプサイクルの構成要素として用いたセパレート型空気調和機1の概略構成を図1に示す。空気調和機1は室外機10と室内機30により構成される。 FIG. 1 shows a schematic configuration of a separate air conditioner 1 using the heat exchanger 50 as a component of a heat pump cycle. The air conditioner 1 includes an outdoor unit 10 and an indoor unit 30.
 室外機10は、板金製部品と合成樹脂製部品により構成される筐体11の内部に、圧縮機12、切替弁13、室外側熱交換器14、膨張弁15、室外側送風機16などを収納している。切替弁13は四方弁である。室外側熱交換器14として熱交換器50が用いられる。膨張弁15には開度制御の可能なものが用いられる。室外側送風機はモータにプロペラファンを組み合わせたものである。 The outdoor unit 10 houses a compressor 12, a switching valve 13, an outdoor heat exchanger 14, an expansion valve 15, an outdoor blower 16, and the like in a housing 11 made of sheet metal parts and synthetic resin parts. is doing. The switching valve 13 is a four-way valve. A heat exchanger 50 is used as the outdoor heat exchanger 14. As the expansion valve 15, a valve whose opening degree can be controlled is used. The outdoor blower is a combination of a motor and a propeller fan.
 室外機10は2本の冷媒配管17、18で室内機30に接続される。冷媒配管17は液体の冷媒を流すことを目的としており、冷媒配管18に比較して細い管が用いられている。そのため冷媒配管17は「液管」「細管」などと称されることがある。冷媒配管18は気体の冷媒を流すことを目的としており、冷媒配管17に比較して太い管が用いられている。そのため冷媒配管18は「ガス管」「太管」などと称されることがある。冷媒には例えばHFC系のR410AやR32等が用いられる。 The outdoor unit 10 is connected to the indoor unit 30 through two refrigerant pipes 17 and 18. The refrigerant pipe 17 is intended to flow a liquid refrigerant, and a pipe that is thinner than the refrigerant pipe 18 is used. Therefore, the refrigerant pipe 17 may be referred to as “liquid pipe”, “narrow pipe”, or the like. The refrigerant pipe 18 is intended to flow a gaseous refrigerant, and is thicker than the refrigerant pipe 17. Therefore, the refrigerant pipe 18 may be referred to as “gas pipe”, “thick pipe”, or the like. For example, HFC R410A or R32 is used as the refrigerant.
 室外機10の内部の冷媒配管で、冷媒配管17に接続される冷媒配管には二方弁19が設けられる。冷媒配管18に接続される冷媒配管には三方弁20が設けられる。二方弁19と三方弁20は、室外機10から冷媒配管17、18が取り外されるときに閉じられ、室外機10から外部に冷媒が漏れることを防ぐ。室外機10から、あるいは室内機30を含めた冷凍サイクル全体から、冷媒を放出する必要があるときは、三方弁20を通じて放出が行われる。 A two-way valve 19 is provided in the refrigerant pipe connected to the refrigerant pipe 17 in the refrigerant pipe inside the outdoor unit 10. A three-way valve 20 is provided in the refrigerant pipe connected to the refrigerant pipe 18. The two-way valve 19 and the three-way valve 20 are closed when the refrigerant pipes 17 and 18 are removed from the outdoor unit 10 to prevent the refrigerant from leaking from the outdoor unit 10 to the outside. When it is necessary to release the refrigerant from the outdoor unit 10 or from the entire refrigeration cycle including the indoor unit 30, the refrigerant is discharged through the three-way valve 20.
 室内機30は、合成樹脂製部品により構成される筐体31の内部に、室内側熱交換器32、室内側送風機33などを収納している。室内側熱交換器32は、3個の熱交換器32A、32B、32Cを、室内側送風機33を覆う屋根のように組み合わせたものである。熱交換器32A、32B、32Cのいずれかまたは全部を熱交換器50で構成することができる。室内側送風機33はモータにクロスフローファンを組み合わせたものである。 The indoor unit 30 houses an indoor heat exchanger 32, an indoor blower 33, and the like inside a casing 31 made of synthetic resin parts. The indoor heat exchanger 32 is a combination of three heat exchangers 32 </ b> A, 32 </ b> B, and 32 </ b> C like a roof that covers the indoor blower 33. Any or all of the heat exchangers 32 </ b> A, 32 </ b> B, and 32 </ b> C can be configured by the heat exchanger 50. The indoor blower 33 is a combination of a motor and a cross flow fan.
 空気調和機1の運転制御を行う上で、各所の温度を知ることが不可欠である。この目的のため、室外機10と室内機30に温度検出器が配置される。室外機10においては、室外側熱交換器14に温度検出器21が配置される。圧縮機12の吐出部となる吐出管12aには温度検出器22が配置される。圧縮機12の吸入部となる吸入管12bには温度検出器23が配置される。膨張弁15と二方弁19の間の冷媒配管には温度検出器24が配置される。筐体11の内部の所定箇所には外気温測定用の温度検出器25が配置される。室内機30においては、室内側熱交換器32に温度検出器34が配置される。温度検出器21、22、23、24、25、34はいずれもサーミスタにより構成される。 知 る It is essential to know the temperature of each place in order to control the operation of the air conditioner 1. For this purpose, temperature detectors are arranged in the outdoor unit 10 and the indoor unit 30. In the outdoor unit 10, a temperature detector 21 is disposed in the outdoor heat exchanger 14. A temperature detector 22 is disposed in the discharge pipe 12 a serving as a discharge portion of the compressor 12. A temperature detector 23 is disposed in the suction pipe 12 b serving as a suction portion of the compressor 12. A temperature detector 24 is disposed in the refrigerant pipe between the expansion valve 15 and the two-way valve 19. A temperature detector 25 for measuring the outside air temperature is disposed at a predetermined location inside the housing 11. In the indoor unit 30, a temperature detector 34 is disposed in the indoor heat exchanger 32. Each of the temperature detectors 21, 22, 23, 24, 25, and 34 is formed of a thermistor.
 空気調和機1の全体制御を司るのは図5に示す制御部40である。制御部40は室内温度が使用者によって設定された目標値に達するように制御を行う。 The control unit 40 shown in FIG. 5 is responsible for overall control of the air conditioner 1. The control unit 40 performs control so that the room temperature reaches a target value set by the user.
 制御部40は圧縮機12、切替弁13、膨張弁15、室外側送風機16、及び室内側送風機33に対し動作指令を発する。また制御部40は温度検出器21~25、及び温度検出器34からそれぞれの検出温度の出力信号を受け取る。制御部40は温度検出器21~25及び温度検出器34からの出力信号を参照しつつ、圧縮機12、室外側送風機16、及び室内側送風機33に対し運転指令を発する。制御部40は切替弁13と膨張弁15に対しては状態切り替えの指令を発する。 The control unit 40 issues operation commands to the compressor 12, the switching valve 13, the expansion valve 15, the outdoor blower 16, and the indoor blower 33. The control unit 40 receives output signals of the detected temperatures from the temperature detectors 21 to 25 and the temperature detector 34, respectively. The controller 40 issues operation commands to the compressor 12, the outdoor blower 16, and the indoor blower 33 while referring to output signals from the temperature detectors 21 to 25 and the temperature detector 34. The control unit 40 issues a state switching command to the switching valve 13 and the expansion valve 15.
 図1は空気調和機1が冷房運転あるいは除霜運転を行っている状態を示す。この時圧縮機12は冷房時循環、すなわち圧縮機12から吐出された冷媒が先に室外側熱交換器14に入る循環様式で冷媒を循環させる。 FIG. 1 shows a state where the air conditioner 1 is performing a cooling operation or a defrosting operation. At this time, the compressor 12 circulates the refrigerant in a cooling mode, that is, a circulation mode in which the refrigerant discharged from the compressor 12 first enters the outdoor heat exchanger 14.
 圧縮機12から吐出された高温高圧の冷媒は室外側熱交換器14に入り、そこで室外空気との熱交換が行われる。冷媒は室外空気に対し放熱を行い、凝縮する。凝縮して液状となった冷媒は室外側熱交換器14から膨張弁15に入り、そこで減圧される。減圧後の冷媒は室内側熱交換器32に送られ、膨張して低温低圧となり、室内側熱交換器32の表面温度を下げる。表面温度の下がった室内側熱交換器32は室内空気から吸熱し、これにより室内は冷やされる。吸熱後、低温の気体状の冷媒は圧縮機12に戻る。室外側送風機16によって生成された気流が室外側熱交換器14からの放熱を促進する。室内側送風機33によって生成された気流が室内側熱交換器32の吸熱を促進する。 The high-temperature and high-pressure refrigerant discharged from the compressor 12 enters the outdoor heat exchanger 14 where heat exchange with outdoor air is performed. The refrigerant dissipates heat to the outdoor air and condenses. The refrigerant that is condensed to become liquid enters the expansion valve 15 from the outdoor heat exchanger 14 and is decompressed there. The decompressed refrigerant is sent to the indoor heat exchanger 32, expands to a low temperature and low pressure, and lowers the surface temperature of the indoor heat exchanger 32. The indoor side heat exchanger 32 whose surface temperature has been lowered absorbs heat from the indoor air, thereby cooling the room. After the heat absorption, the low-temperature gaseous refrigerant returns to the compressor 12. The airflow generated by the outdoor fan 16 promotes heat dissipation from the outdoor heat exchanger 14. The airflow generated by the indoor fan 33 promotes heat absorption of the indoor heat exchanger 32.
 図2は空気調和機1が暖房運転を行っている状態を示す。この時は切替弁13が切り替えられて冷房運転時と冷媒の流れが逆になる。圧縮機12は暖房時循環、すなわち圧縮機12から吐出された冷媒が先に室内側熱交換器32に入る循環様式で冷媒を循環させる。 FIG. 2 shows a state where the air conditioner 1 is performing a heating operation. At this time, the switching valve 13 is switched to reverse the refrigerant flow during the cooling operation. The compressor 12 circulates the refrigerant in a circulation mode during heating, that is, in a circulation mode in which the refrigerant discharged from the compressor 12 first enters the indoor heat exchanger 32.
 圧縮機12から吐出された高温高圧の冷媒は室内側熱交換器32に入り、そこで室内空気との熱交換が行われる。冷媒は室内空気に対し放熱を行い、室内は暖められる。放熱し、凝縮して液状となった冷媒は室内側熱交換器32から膨張弁15に入り、そこで減圧される。減圧後の冷媒は室外側熱交換器14に送られ、膨張して低温低圧となり、室外側熱交換器14の表面温度を下げる。表面温度の下がった室外側熱交換器14は室外空気から吸熱する。吸熱後、低温の気体状の冷媒は圧縮機12に戻る。室外側送風機33によって生成された気流が室内側熱交換器33からの放熱を促進する。室外側送風機16によって生成された気流が室外側熱交換器14による吸熱を促進する。 The high-temperature and high-pressure refrigerant discharged from the compressor 12 enters the indoor heat exchanger 32 where heat exchange with the indoor air is performed. The refrigerant dissipates heat to the room air and warms the room. The refrigerant that has dissipated heat and has become liquid by condensing enters the expansion valve 15 from the indoor heat exchanger 32 and is decompressed there. The decompressed refrigerant is sent to the outdoor heat exchanger 14 and expands to a low temperature and low pressure, thereby lowering the surface temperature of the outdoor heat exchanger 14. The outdoor heat exchanger 14 whose surface temperature has dropped absorbs heat from outdoor air. After the heat absorption, the low-temperature gaseous refrigerant returns to the compressor 12. The airflow generated by the outdoor blower 33 promotes heat radiation from the indoor heat exchanger 33. The airflow generated by the outdoor fan 16 promotes heat absorption by the outdoor heat exchanger 14.
 暖房運転時に室外側熱交換器14が吸熱を行うと、屋外の空気に含まれる水分が霜となって室外側熱交換器14に付着する。霜は室外側熱交換器14を通る風量を低下させ、熱交換効率も低下させるので、除霜工程で取り除かねばならない。本発明は、除霜工程の前に予備除霜が行われることを特徴とする。以下、予備除霜とはどのようなものであるかを図6から図14を参照しつつ説明する。 When the outdoor heat exchanger 14 absorbs heat during the heating operation, moisture contained in outdoor air becomes frost and adheres to the outdoor heat exchanger 14. Since frost reduces the amount of air passing through the outdoor heat exchanger 14 and also reduces the heat exchange efficiency, it must be removed in the defrosting process. The present invention is characterized in that preliminary defrosting is performed before the defrosting step. Hereinafter, what the preliminary defrosting is will be described with reference to FIGS. 6 to 14.
 図6、7のグラフにおいて、縦軸は暖房能力、横軸は時間を示す。図6に示す従来の制御方式では、暖房運転開始後暖房能力が上昇し、ある時点までは高い暖房能力を保つ。しかしながらある時点で着霜により暖房能力が急激に低下するので、暖房運転を停止して除霜工程に入り、除霜工程を済ませた後に暖房運転を再開していた。除霜工程でリバース除霜(冷媒の流れを冷房運転時と同様にすることで、室外機を凝縮器側にする除霜)を行う場合、除霜にはある程度の時間の長さを必要とする。そのため、その間使用者は室温が降下して行くのを我慢しなければならなかった。 In the graphs of FIGS. 6 and 7, the vertical axis indicates the heating capacity and the horizontal axis indicates the time. In the conventional control method shown in FIG. 6, the heating capacity increases after the start of the heating operation, and the high heating capacity is maintained until a certain point. However, since the heating capacity suddenly decreases due to frost formation at a certain point in time, the heating operation is stopped and the defrosting process is entered. After the defrosting process is completed, the heating operation is resumed. When performing reverse defrosting in the defrosting process (defrosting the outdoor unit to the condenser side by making the refrigerant flow the same as during cooling operation), defrosting requires a certain amount of time. To do. Therefore, the user had to put up with the room temperature going down during that time.
 図7に示すのが本発明による予備除霜方式の概念である。通常の本格的な除霜工程(本明細書では以後「通常除霜」と称する)の前に、予備除霜を繰り返すことにより、通常除霜に至るまでの暖房運転の期間をできるだけ延長しようというものである。 FIG. 7 shows the concept of the preliminary defrosting system according to the present invention. Prior to the normal full-scale defrosting process (hereinafter referred to as “normal defrosting” in the present specification), the preliminary defrosting is repeated to extend the heating operation period until the normal defrosting as much as possible. Is.
 制御部40による予備除霜運転の制御は図8のフローチャートのように遂行される。暖房運転開始後、ステップ#101で制御部40は、通常除霜条件が満たされているかどうかを判定する。判定がNOであればステップ102に進み、YESであればステップ#109に進む。 The control of the preliminary defrosting operation by the control unit 40 is performed as shown in the flowchart of FIG. After starting the heating operation, in step # 101, the control unit 40 determines whether or not the normal defrosting condition is satisfied. If the determination is NO, the process proceeds to step 102, and if YES, the process proceeds to step # 109.
 ステップ#109に進んだ場合、制御部40は通常除霜を実行する。ここでは暖房時循環が冷房時循環に切り替えられ、高温高圧の冷媒が室外側熱交換器14に流入することで室外側熱交換器14の除霜が行われる。所定時間経過後通常除霜は終了し、暖房運転に復帰する。フローはステップ#101に戻る。 When the process proceeds to step # 109, the control unit 40 performs normal defrosting. Here, the circulation at the time of heating is switched to the circulation at the time of cooling, and the high-temperature and high-pressure refrigerant flows into the outdoor heat exchanger 14 so that the outdoor heat exchanger 14 is defrosted. After a predetermined time has elapsed, the normal defrosting is completed and the operation returns to the heating operation. The flow returns to step # 101.
 ステップ#102で制御部40は、予備除霜条件が満たされているかどうかを判定する。判定がYESであればステップ#103に進み、NOであればステップ#101に戻る。 In step # 102, the control unit 40 determines whether the preliminary defrosting condition is satisfied. If the determination is YES, the process proceeds to step # 103, and if NO, the process returns to step # 101.
 ステップ#102で制御部40は、室外側熱交換器14への着霜が予備除霜の適格条件を満たすまでに進んだかどうかの判定(本明細書では以後「着霜判定」と称する)を行う。着霜判定は室外側熱交換器14にうっすらと霜がついたと判定するものであり、以下に述べる様々な判定基準をもって行うことができる。 In step # 102, the control unit 40 determines whether or not the frosting on the outdoor heat exchanger 14 has progressed until the qualifying conditions for the preliminary defrosting are satisfied (hereinafter referred to as “frosting determination” in this specification). Do. The frost formation determination is to determine that the outdoor heat exchanger 14 is slightly frosted, and can be performed according to various determination criteria described below.
 着霜判定の第1の判定基準は室外側熱交換器14に付設した温度検出器21の検出温度の変化である。温度検出器21の検出温度が所定値以下となったとき、制御部40は「着霜」と判定する。 The first criterion for determining frost formation is a change in the detected temperature of the temperature detector 21 attached to the outdoor heat exchanger 14. When the detected temperature of the temperature detector 21 becomes a predetermined value or less, the control unit 40 determines “frosting”.
 着霜判定の第2の判定基準は室外側送風機16の電流変化である。室外側熱交換器14への着霜が進むと室外側熱交換器14の通気抵抗が増し、室外側送風機16に流れる電流が変化する。室外側送風機16の電流が所定値以上変化したとき、制御部40は「着霜」と判定する。 The second criterion for determining frost formation is a change in the current of the outdoor fan 16. When frosting on the outdoor heat exchanger 14 proceeds, the ventilation resistance of the outdoor heat exchanger 14 increases, and the current flowing through the outdoor blower 16 changes. When the current of the outdoor blower 16 changes by a predetermined value or more, the control unit 40 determines “frosting”.
 着霜判定の第3の判定基準は室外側熱交換器14を通過する気流の風量である。この目的のため、室外側熱交換器14を通過する気流中に風量計(図示せず)を配置する。室外側熱交換器14への着霜が進むと室外側熱交換器14の通気抵抗が増し、室外側熱交換器14を通過する風量が低下する。風量が所定値以上低下したとき、制御部40は「着霜」と判定する。 The third criterion for determining frost formation is the air volume of the airflow passing through the outdoor heat exchanger 14. For this purpose, an air flow meter (not shown) is arranged in the airflow passing through the outdoor heat exchanger 14. When frosting on the outdoor heat exchanger 14 proceeds, the ventilation resistance of the outdoor heat exchanger 14 increases, and the amount of air passing through the outdoor heat exchanger 14 decreases. When the air volume decreases by a predetermined value or more, the control unit 40 determines “frosting”.
 着霜判定の第4の判定基準は時間である。後述する第1予備除霜運転または第2予備除霜運転が、暖房運転開始以来所定時間実行されなかったとき、あるいは前回の第1予備除霜運転または第2予備除霜運転以来所定時間実行されなかったとき、制御部40は「着霜」と判定する。 The fourth criterion for determining frost formation is time. A first preliminary defrosting operation or a second preliminary defrosting operation, which will be described later, has been executed for a predetermined time since the heating operation has been started for a predetermined time or since the previous first preliminary defrosting operation or the second preliminary defrosting operation. If not, the control unit 40 determines “frosting”.
 制御部40が着霜判定を行ったらステップ#103に進む。ステップ#103で制御部
40は、外気温判定を行う。すなわち外気温が所定温度(例えば+2℃)に対して高いか、低いかを判定する。その後、ステップ#104に進む。ここから予備除霜が開始される。
If the control part 40 performs frost determination, it will progress to step # 103. In step # 103, the control unit 40 determines the outside air temperature. That is, it is determined whether the outside air temperature is higher or lower than a predetermined temperature (for example, + 2 ° C.). Thereafter, the process proceeds to step # 104. Preliminary defrosting is started from here.
 ステップ#104で制御部40は膨張弁15の開度を変更する。ステップ#103で測定した外気温が所定温度以上だった場合、制御部40は膨張弁15の開度を小さくする第1予備除霜運転を実行する。ステップ#103で測定した外気温が所定温度未満であれば、制御部40は膨張弁15の開度を大きくする第2予備除霜運転を実行する。 In step # 104, the control unit 40 changes the opening degree of the expansion valve 15. When the outside air temperature measured in step # 103 is equal to or higher than the predetermined temperature, the control unit 40 performs a first preliminary defrosting operation for reducing the opening degree of the expansion valve 15. If the outside air temperature measured in step # 103 is less than the predetermined temperature, the control unit 40 performs a second preliminary defrosting operation for increasing the opening degree of the expansion valve 15.
 第1予備除霜運転では、膨張弁15の開度を小さくすることにより冷媒を流れにくくし、その状態で室外側熱交換器14の中を所定温度以上の温度の気流が通過することにより、室外側熱交換器14に付着した霜が融解する。この第1除霜運転は外気温が高い場合に好適する。 In the first preliminary defrosting operation, it is difficult for the refrigerant to flow by reducing the opening degree of the expansion valve 15, and in that state, an air flow having a temperature equal to or higher than a predetermined temperature passes through the outdoor heat exchanger 14, The frost adhering to the outdoor heat exchanger 14 is melted. This first defrosting operation is suitable when the outside air temperature is high.
 ステップ#103で測定した外気温が所定温度未満だった場合、制御部40は膨張弁15の開度を大きくする第2予備除霜運転を実行する。膨張弁15の開度が大きくなることにより、室内側熱交換器32を通ってきた冷媒が大量に室外側熱交換器14の中を流れ、その冷媒の持つ熱で室外側熱交換器14に付着した霜が融解する。この第2除霜運転は外気温が低い場合に好適する。 When the outside air temperature measured in step # 103 is lower than the predetermined temperature, the control unit 40 executes a second preliminary defrosting operation for increasing the opening degree of the expansion valve 15. As the opening degree of the expansion valve 15 increases, a large amount of the refrigerant that has passed through the indoor heat exchanger 32 flows through the outdoor heat exchanger 14, and the heat of the refrigerant is transferred to the outdoor heat exchanger 14. The attached frost melts. This second defrosting operation is suitable when the outside air temperature is low.
 第1予備除霜運転と第2予備除霜運転の効果を図9から図11に基づき説明する。一例として、平均暖房能力が約2400Wのセパレート型空気調和機を用い、室外乾球温度2℃、室外湿球温度1℃、室内乾球温度20℃という条件の下に行った実験結果を図9に示す。 The effects of the first preliminary defrosting operation and the second preliminary defrosting operation will be described with reference to FIGS. As an example, the results of an experiment conducted using a separate air conditioner having an average heating capacity of about 2400 W under conditions of an outdoor dry bulb temperature of 2 ° C., an outdoor wet bulb temperature of 1 ° C., and an indoor dry bulb temperature of 20 ° C. are shown in FIG. Shown in
 図9の表において、「通常除霜」は予備除霜運転を行わないで通常除霜のみ行う暖房運転モードである。「膨張弁全閉」とは第1予備除霜運転を伴う暖房運転モードであって、膨張弁の開度が「全閉」とされた暖房運転モードである。「膨張弁全開」とは第2予備除霜運転を伴う暖房運転モードであって、膨張弁の開度が「全開」とされた暖房運転モードである。「平均暖房能力」とは、暖房運転開始からその暖房運転の直後に実行される通常除霜の終了までの時間(1サイクル)における暖房能力を、前記1サイクルの時間で除した数値であり、単位はkWまたはWである。「暖房時間」とは前記1サイクルの時間である。 In the table of FIG. 9, “normal defrosting” is a heating operation mode in which only normal defrosting is performed without performing preliminary defrosting operation. “Expansion valve fully closed” is a heating operation mode with a first preliminary defrosting operation, and is a heating operation mode in which the opening degree of the expansion valve is “fully closed”. “Expansion valve fully open” is a heating operation mode with a second preliminary defrosting operation, and is a heating operation mode in which the opening of the expansion valve is “fully open”. "Average heating capacity" is a numerical value obtained by dividing the heating capacity in the time (1 cycle) from the start of heating operation to the end of normal defrosting performed immediately after the heating operation by the time of the 1 cycle, The unit is kW or W. The “heating time” is the time of the one cycle.
 上記「通常除霜」「膨張弁全閉」「膨張弁全開」の3通りの実験結果をまとめたものが図9の表である。ここでは時間を判定基準として「着霜」の判定を行った。「通常除霜」の実験では平均暖房能力は2384、暖房時間は32分35秒であった。「膨張弁全閉」の実験では第1予備除霜運転が計7回実行され、平均暖房能力は2497、暖房時間は58分50秒であった。「膨張弁全開」の実験では第2予備除霜運転が計4回実行され、平均暖房能力は2528、暖房時間は55分50秒であった。 The table of FIG. 9 summarizes the results of the three experiments, “normal defrosting”, “expansion valve fully closed”, and “expansion valve fully open”. Here, “frosting” was determined using time as a criterion. In the “normal defrosting” experiment, the average heating capacity was 2384, and the heating time was 32 minutes and 35 seconds. In the experiment of “expansion valve fully closed”, the first preliminary defrosting operation was executed a total of 7 times, the average heating capacity was 2497, and the heating time was 58 minutes and 50 seconds. In the experiment of “expansion valve fully open”, the second preliminary defrosting operation was executed four times in total, the average heating capacity was 2528, and the heating time was 55 minutes and 50 seconds.
 図9の表の中で平均暖房能力のデータをグラフ化したものが図10である。同じく図9の表の中で暖房時間のデータをグラフ化したものが図11である。 Fig. 10 is a graph of the average heating capacity data in the table of Fig. 9. Similarly, FIG. 11 is a graph of heating time data in the table of FIG.
 図9~図11からは、第1予備除霜運転または第2予備除霜運転が所定回数実行された後に通常除霜が実行される設定とすることにより、平均暖房能力が向上するとともに、暖房時間も長くなることがわかる。 From FIG. 9 to FIG. 11, by setting the normal defrosting to be performed after the first preliminary defrosting operation or the second preliminary defrosting operation is performed a predetermined number of times, the average heating capacity is improved and the heating is performed. It can be seen that the time will be longer.
 膨張弁15の開度を小さくまたは大きくする膨張弁変更時間は長時間としないことが望ましい。図12に示す通り、膨張弁開度を小さくする予備除霜運転は、膨張弁変更時間が50秒程度までなら平均暖房能力向上の効果をもたらすが、それ以上の時間では平均暖房能力向上の効果は小さい。従って第1予備除霜運転の長さは50秒程度までとする。また膨張弁開度を大きくする予備除霜運転は、膨張弁変更時間が30秒程度までなら平均暖房能力向上の効果をもたらすが、それ以上の時間では平均暖房能力向上の効果はない。従って第2予備除霜運転の長さは30秒程度までであるのがよい。着霜状態や熱交換器の種類によりばらつきがあることを考慮すると、第1予備除霜運転と第2予備除霜運転を含めての予備除霜運転の実行時間は、1回あたり1分以下であることが望ましい。 It is desirable that the expansion valve change time for reducing or increasing the opening of the expansion valve 15 is not long. As shown in FIG. 12, the preliminary defrosting operation for reducing the opening degree of the expansion valve brings about an effect of improving the average heating capacity if the expansion valve change time is up to about 50 seconds. Is small. Therefore, the length of the first preliminary defrosting operation is up to about 50 seconds. Further, the preliminary defrosting operation for increasing the opening degree of the expansion valve brings about an effect of improving the average heating capacity if the expansion valve change time is up to about 30 seconds, but there is no effect of improving the average heating capacity in the time longer than that. Therefore, the length of the second preliminary defrosting operation is preferably up to about 30 seconds. Considering that there is variation depending on the frosting condition and the type of heat exchanger, the execution time of the preliminary defrosting operation including the first preliminary defrosting operation and the second preliminary defrosting operation is 1 minute or less per time It is desirable that
 予備除霜運転の回数もむやみに多くしない。図13(弁全閉)に示す通り、第1予備除霜運転の繰り返し回数が6回程度までは平均暖房能力が向上する。従って、これと余り変わらない回数を第1予備除霜運転の繰り返し回数として設定する。第2予備除霜運転の繰り返し回数も第1予備除霜運転の繰り返し回数と同様に設定する。 し な い Do not increase the number of preliminary defrost operations. As shown in FIG. 13 (valve fully closed), the average heating capacity is improved until the first preliminary defrosting operation is repeated six times. Therefore, the number of times that is not much different from this is set as the number of repetitions of the first preliminary defrosting operation. The number of repetitions of the second preliminary defrosting operation is set similarly to the number of repetitions of the first preliminary defrosting operation.
 図8のフローチャートに戻って説明を続ける。ステップ#104からステップ#105に進む。ステップ#105では制御部40は室外側送風機16の回転数を変更する。 Referring back to the flowchart of FIG. The process proceeds from step # 104 to step # 105. In step # 105, the control unit 40 changes the rotational speed of the outdoor blower 16.
 図14のグラフ(弁全開)に見られるように、一般的に室外側送風機16の回転数が上昇すると平均暖房能力が向上する。そこでステップ#105では室外側送風機16の回転数を上昇させる。室外側送風機16の回転数を上昇させるのは第1除霜運転または第2除霜運転の実行中のみとする。 As shown in the graph of FIG. 14 (valve fully opened), the average heating capacity generally improves as the rotational speed of the outdoor blower 16 increases. Therefore, in step # 105, the rotational speed of the outdoor blower 16 is increased. The rotational speed of the outdoor blower 16 is increased only during the execution of the first defrosting operation or the second defrosting operation.
 ステップ#105からステップ106に進む。ステップ#106では制御部40は圧縮機12の回転数を変更する。第1予備除霜運転では、冷媒の流動を少なくするため、圧縮機12の回転数を低下させる。第2予備除霜運転では、熱量を持った冷媒を大量に室外側熱交換器14に流すため、圧縮機12の回転数を上昇させる。圧縮機12の回転数を変更するのは第1除霜運転または第2除霜運転の実行中のみとする。 The process proceeds from step # 105 to step 106. In step # 106, the control unit 40 changes the rotational speed of the compressor 12. In the first preliminary defrosting operation, the rotational speed of the compressor 12 is decreased in order to reduce the flow of the refrigerant. In the second preliminary defrosting operation, in order to flow a large amount of heat-bearing refrigerant to the outdoor heat exchanger 14, the rotational speed of the compressor 12 is increased. The rotation speed of the compressor 12 is changed only during execution of the first defrosting operation or the second defrosting operation.
 ステップ#107で制御部40は、第1予備除霜運転の時間として設定された時間または第2予備除霜運転の時間として設定された時間が経過したか、どうかを調べる。第1予備除霜運転の時間として設定された時間または第2予備除霜運転の時間として設定された時間が経過したらステップ#108に進む。 In step # 107, the control unit 40 checks whether the time set as the time for the first preliminary defrosting operation or the time set as the time for the second preliminary defrosting operation has elapsed. When the time set as the time of the first preliminary defrosting operation or the time set as the time of the second preliminary defrosting operation has elapsed, the process proceeds to step # 108.
 ステップ#108で制御部40は、室外側送風機16と圧縮機12の回転数を元に戻す。また膨張弁15の開度を元の開度近傍に戻す。「元の開度近傍」と幅を持たせたのは、予備除霜前と予備除霜後では室外側熱交換器14への霜の付き方が異なり、そのため膨張弁15の最適開度が異なるからである。そこで、予備除霜後の最適開度となるように膨張弁15の開度を戻す。ステップ#108の後、ステップ#101に戻る。 In step # 108, the control unit 40 restores the rotational speeds of the outdoor blower 16 and the compressor 12. Further, the opening degree of the expansion valve 15 is returned to the vicinity of the original opening degree. The reason why the width of the vicinity of the original opening is given is that the frost is applied to the outdoor heat exchanger 14 before and after the preliminary defrosting. Because it is different. Therefore, the opening degree of the expansion valve 15 is returned so that the optimum opening degree after the preliminary defrosting is obtained. After step # 108, the process returns to step # 101.
 予備除霜により、室外側熱交換器14を着霜の少ない熱交換効率の良い状態に長時間保つことができるから、省エネルギーの効果ももたらされる。 Preliminary defrosting enables the outdoor heat exchanger 14 to be kept in a state of good heat exchange efficiency with little frost formation for a long time, and thus also brings about an energy saving effect.
 暖房運転時に予備除霜を行って室外側熱交換器に霜がつきにくくする制御、すなわち難着霜制御のもたらす効果が、熱交換器の形式によって異なるかどうかを調べた実験の結果を図15の表と図16のグラフに示す。表及びグラフにおいて、「F&T」はフィンアンドチューブ型熱交換器であることを示し、「AL-PFC」はオールアルミニウムのサイドフロー方式パラレルフロー型熱交換器であることを示す。 FIG. 15 shows the results of an experiment in which it is determined whether the effect of the frost control on the outdoor heat exchanger by performing preliminary defrosting during the heating operation, that is, the effect of the difficult frost control varies depending on the type of the heat exchanger. And the graph of FIG. In the tables and graphs, “F & T” indicates a fin-and-tube heat exchanger, and “AL-PFC” indicates an all-aluminum side-flow parallel-flow heat exchanger.
 実験の結果、フィンアンドチューブ型熱交換器では難着霜制御を行っても平均暖房能力はあまり上昇しなかった。それに対しオールアルミニウムのサイドフロー方式パラレルフロー型熱交換器では、難着霜制御により平均暖房能力が6%向上した。ここから、熱交換効率の高いパラレルフロー型熱交換器が室外側熱交換器として用いられている場合に、本発明の効果が特に大きいことがわかる。これは次の理由による。すなわちパラレルフロー型熱交換器はフィン効率が高いことによりフィンの表面温度が冷媒温度に近づき、より低温となる。その結果、室外雰囲気と室外側熱交換器の表面温度との温度差が大きくなり、室外側熱交換器に着霜が生じやすくなる。一方で、フィン効率が高いと霜を溶かす場合には逆に溶かしやすくなる。また、パラレルフロー型熱交換器はフィン間が狭いために霜により通風が妨げられやすく、難着霜制御による通風の妨げの抑制効果を他形式の熱交換器以上に享受できるからである。 As a result of the experiment, the average heating capacity did not increase so much in the fin-and-tube heat exchanger even when the hard frost control was performed. On the other hand, in the all-aluminum side flow parallel flow type heat exchanger, the average heating capacity was improved by 6% by the hard frost control. From this, it can be seen that the effect of the present invention is particularly great when a parallel flow heat exchanger having high heat exchange efficiency is used as the outdoor heat exchanger. This is due to the following reason. That is, the parallel flow type heat exchanger has a high fin efficiency, so that the surface temperature of the fin approaches the refrigerant temperature and becomes a lower temperature. As a result, the temperature difference between the outdoor atmosphere and the surface temperature of the outdoor heat exchanger increases, and frost formation is likely to occur in the outdoor heat exchanger. On the other hand, when fin efficiency is high, when melting frost, it becomes easy to melt | dissolve conversely. Moreover, since the parallel flow type heat exchanger has a narrow gap between the fins, it is easy to prevent ventilation due to frost, and the effect of suppressing the obstruction of ventilation by the difficult frost control can be enjoyed more than other types of heat exchangers.
 本発明が対象とする空気調和機は、熱交換器としてパラレルフロー型熱交換器やフィンアンドチューブ型熱交換器を使用するものに限定されない。輻射式空気調和機、すなわち室内機が送風機によらず自然対流で室内空気を循環させる形式の空気調和機の室外機の除霜にも適用可能である。 The air conditioner targeted by the present invention is not limited to one using a parallel flow heat exchanger or a fin-and-tube heat exchanger as a heat exchanger. The present invention can also be applied to a defrosting of an outdoor unit of a radiation type air conditioner, that is, an air conditioner in which the indoor unit circulates indoor air by natural convection without using a blower.
 以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではない。発明の主旨を逸脱しない限り、種々の変更を加えて実施することができる。 As mentioned above, although the embodiment of the present invention has been described, the scope of the present invention is not limited to this. Various modifications can be made without departing from the spirit of the invention.
 本発明はヒートポンプ方式の空気調和機に広く利用可能である。 The present invention is widely applicable to heat pump type air conditioners.
   1  空気調和機
   10 室外機
   11 筐体
   12 圧縮機
   13 切替弁
   14 室外側熱交換器
   15 膨張弁
   16 室外側送風機
   17、18 冷媒配管
   21 温度検出器
   30 室内機
   31 筐体
   32 室内側熱交換器
   33 室内側送風機
   40 制御部
DESCRIPTION OF SYMBOLS 1 Air conditioner 10 Outdoor unit 11 Case 12 Compressor 13 Switching valve 14 Outdoor heat exchanger 15 Expansion valve 16 Outdoor blower 17, 18 Refrigerant piping 21 Temperature detector 30 Indoor unit 31 Case 32 Indoor side heat exchanger 33 Indoor Blower 40 Control Unit

Claims (6)

  1.  空気調和機であって、以下の通り構成されるもの:
     室外側熱交換器と、
     室内側熱交換器と、
     前記室外側熱交換器と前記室内側熱交換器の間に配置された膨張弁と、
     前記室外側熱交換器、前記室内側熱交換器、及び前記膨張弁を含む冷凍サイクル中に冷媒を循環させる圧縮機と、
     前記圧縮機による冷媒循環を、前記圧縮機から吐出された冷媒が先に前記室外側熱交換器に入る冷房時循環と、前記圧縮機から吐出された冷媒が先に前記室内側熱交換器に入る暖房時循環とに切り替える切替弁と、
     当該空気調和機の制御部とを備え、
     前記制御部は、暖房運転時、前記室外側熱交換器の除霜工程前の段階で、前記膨張弁の開度を小さくする第1予備除霜運転、または前記膨張弁の開度を大きくする第2予備除霜運転を実行可能である。
    An air conditioner comprising the following:
    An outdoor heat exchanger,
    An indoor heat exchanger,
    An expansion valve disposed between the outdoor heat exchanger and the indoor heat exchanger;
    A compressor for circulating a refrigerant in a refrigeration cycle including the outdoor heat exchanger, the indoor heat exchanger, and the expansion valve;
    Refrigerant circulation by the compressor, cooling-time circulation in which refrigerant discharged from the compressor first enters the outdoor heat exchanger, and refrigerant discharged from the compressor first in the indoor heat exchanger A switching valve that switches between entering heating circulation,
    A controller of the air conditioner,
    The controller increases a first preliminary defrosting operation for reducing the opening degree of the expansion valve or an opening degree of the expansion valve at a stage before the defrosting step of the outdoor heat exchanger during the heating operation. The second preliminary defrosting operation can be performed.
  2.  請求項1の空気調和機であって、以下の通り構成されるもの:
     前記制御部は、前記第1予備除霜運転または前記第2予備除霜運転を所定回数実行した後、前記室外側熱交換器の除霜工程を実行する。
    The air conditioner of claim 1, wherein the air conditioner is configured as follows:
    The said control part performs the defrost process of the said outdoor heat exchanger, after performing the said 1st preliminary | backup defrost operation or the said 2nd preliminary | backup defrost operation predetermined times.
  3.  請求項1または2の空気調和機であって、以下の通り構成されるもの:
     前記制御部は、外気温が所定温度以上のときは前記第1予備除霜運転を実行し、外気温が所定温度未満のときは前記第2予備除霜運転を実行する。
    The air conditioner according to claim 1 or 2, wherein the air conditioner is configured as follows:
    The control unit executes the first preliminary defrosting operation when the outside air temperature is equal to or higher than a predetermined temperature, and executes the second preliminary defrosting operation when the outside air temperature is lower than the predetermined temperature.
  4.  請求項1から3のいずれかの空気調和機であって、以下の通り構成されるもの:
     前記制御部は、前記除霜工程では前記暖房時循環を前記冷房時循環に切り替える。
    The air conditioner according to any one of claims 1 to 3, wherein the air conditioner is configured as follows:
    In the defrosting step, the control unit switches the heating circulation to the cooling circulation.
  5.  請求項1から4のいずれかの空気調和機であって、以下の通り構成されるもの:
     前記制御部は、前記第1予備除霜運転と前記第2予備除霜運転を、前記室外側熱交換器に対する着霜判定を契機として実行する。
    The air conditioner according to any one of claims 1 to 4, which is configured as follows:
    The said control part performs the said 1st preliminary | backup defrost operation and the said 2nd preliminary | backup defrost operation by the frost formation determination with respect to the said outdoor heat exchanger.
  6.  請求項5の空気調和機であって、以下の通り構成されるもの:
     前記制御部は、前記着霜判定を、前記室外側熱交換器に付設した温度検出器の検出温度の変化、または前記室外側熱交換器に付設した室外側送風機の電流変化、または前記室外側熱交換器を通過する気流の風量を計測する風量計の計測結果、または前記第1予備除霜運転または前記第2予備除霜運転が実行されなかった時間の長さに基づき行う。
    6. The air conditioner according to claim 5, which is configured as follows:
    The control unit performs the frost determination by measuring a change in temperature detected by a temperature detector attached to the outdoor heat exchanger, a change in current of an outdoor fan attached to the outdoor heat exchanger, or the outdoor side. This is performed based on the measurement result of the air flow meter that measures the air volume of the airflow passing through the heat exchanger, or the length of time during which the first preliminary defrosting operation or the second preliminary defrosting operation is not executed.
PCT/JP2013/085080 2013-01-16 2013-12-27 Air conditioner WO2014112322A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380069758.4A CN104903656B (en) 2013-01-16 2013-12-27 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013005248A JP5997060B2 (en) 2013-01-16 2013-01-16 Air conditioner
JP2013-005248 2013-01-16

Publications (1)

Publication Number Publication Date
WO2014112322A1 true WO2014112322A1 (en) 2014-07-24

Family

ID=51209424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/085080 WO2014112322A1 (en) 2013-01-16 2013-12-27 Air conditioner

Country Status (3)

Country Link
JP (1) JP5997060B2 (en)
CN (1) CN104903656B (en)
WO (1) WO2014112322A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113203243A (en) * 2021-05-24 2021-08-03 珠海格力电器股份有限公司 Defrosting detection method and system, storage medium and defrosting device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105157117B (en) * 2015-10-20 2018-10-26 珠海格力电器股份有限公司 A kind of air-conditioning system and its control method
JP6621025B2 (en) * 2016-08-09 2019-12-18 パナソニックIpマネジメント株式会社 Air conditioner
CN109564036A (en) * 2016-08-12 2019-04-02 夏普株式会社 Air regulator
CN108444047A (en) * 2018-02-14 2018-08-24 青岛海尔空调器有限总公司 Air conditioner defrosting control method
CN110836481B (en) * 2018-08-17 2021-11-23 青岛海尔空调器有限总公司 Defrosting control method for air conditioner
CN110836447B (en) * 2018-08-17 2021-08-31 重庆海尔空调器有限公司 Defrosting control method for air conditioner
CN110836446B (en) * 2018-08-17 2021-08-31 重庆海尔空调器有限公司 Defrosting control method for air conditioner
CN110836498B (en) * 2018-08-17 2021-11-23 青岛海尔空调器有限总公司 Defrosting control method for air conditioner
WO2020235071A1 (en) * 2019-05-23 2020-11-26 三菱電機株式会社 Refrigeration cycle apparatus, refrigeration cycle control system, and refrigeration cycle control method
KR20210096521A (en) 2020-01-28 2021-08-05 엘지전자 주식회사 Air conditioning apparatus
CN114688607B (en) * 2020-12-31 2023-09-01 宁波奥克斯电气股份有限公司 Air conditioner control method and device and air conditioner
CN117581075A (en) * 2021-07-07 2024-02-20 三菱电机株式会社 Heat exchanger and refrigeration cycle device
CN114543264A (en) * 2022-01-24 2022-05-27 青岛海尔空调器有限总公司 Air conditioner and defrosting control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281299A (en) * 1993-03-30 1994-10-07 Toshiba Corp Defrosting control system for air conditioner
JP2005147609A (en) * 2003-11-19 2005-06-09 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2009063246A (en) * 2007-09-07 2009-03-26 Hitachi Appliances Inc Heat pump water heater

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236346A (en) * 2008-03-26 2009-10-15 Daikin Ind Ltd Refrigerating device
CN201327258Y (en) * 2008-11-07 2009-10-14 山东奇威特人工环境有限公司 Device capable of improving defrosting speed of air conditioning unit
CN102062504A (en) * 2010-12-24 2011-05-18 中国扬子集团滁州扬子空调器有限公司 Split type heat pump frequency conversion air conditioner which is defrosting nonstop machine and defrosting control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281299A (en) * 1993-03-30 1994-10-07 Toshiba Corp Defrosting control system for air conditioner
JP2005147609A (en) * 2003-11-19 2005-06-09 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2009063246A (en) * 2007-09-07 2009-03-26 Hitachi Appliances Inc Heat pump water heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113203243A (en) * 2021-05-24 2021-08-03 珠海格力电器股份有限公司 Defrosting detection method and system, storage medium and defrosting device
CN113203243B (en) * 2021-05-24 2022-04-08 珠海格力电器股份有限公司 Defrosting detection method and system, storage medium and defrosting device

Also Published As

Publication number Publication date
JP2014137165A (en) 2014-07-28
CN104903656B (en) 2017-10-24
JP5997060B2 (en) 2016-09-21
CN104903656A (en) 2015-09-09

Similar Documents

Publication Publication Date Title
JP5997060B2 (en) Air conditioner
JP7096117B2 (en) Air conditioner
JP5709993B2 (en) Refrigeration air conditioner
JP4975076B2 (en) Defrosting device and defrosting method
JP6071648B2 (en) Air conditioner
JP5474024B2 (en) Refrigeration cycle equipment
EP2623873B1 (en) Outdoor heat exchanger and air conditioner comprising the same
JP7034254B2 (en) Air conditioner
JP4623083B2 (en) Heat pump equipment
JP5178771B2 (en) Freezer refrigerator
KR101737365B1 (en) Air conditioner
CN104204690A (en) Air-conditioning device
JP2002372320A (en) Refrigerating device
JP5447438B2 (en) refrigerator
WO2020189586A1 (en) Refrigeration cycle device
JP5873768B2 (en) Air conditioner
JP2012063033A (en) Air conditioner
JP5627635B2 (en) Air conditioner
WO2016166873A1 (en) Heat pump system
JP2007247997A (en) Air conditioner
JP2015224799A (en) Air conditioner
WO2019008742A1 (en) Refrigeration cycle device
JP5267614B2 (en) refrigerator
JP4774858B2 (en) Air conditioner
JP4989756B2 (en) refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13872009

Country of ref document: EP

Kind code of ref document: A1