JP4989756B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP4989756B2
JP4989756B2 JP2010186120A JP2010186120A JP4989756B2 JP 4989756 B2 JP4989756 B2 JP 4989756B2 JP 2010186120 A JP2010186120 A JP 2010186120A JP 2010186120 A JP2010186120 A JP 2010186120A JP 4989756 B2 JP4989756 B2 JP 4989756B2
Authority
JP
Japan
Prior art keywords
cooler
refrigerator
return air
sub
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010186120A
Other languages
Japanese (ja)
Other versions
JP2012042174A (en
Inventor
雄亮 田代
小林  孝
浩 衛藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010186120A priority Critical patent/JP4989756B2/en
Publication of JP2012042174A publication Critical patent/JP2012042174A/en
Application granted granted Critical
Publication of JP4989756B2 publication Critical patent/JP4989756B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Defrosting Systems (AREA)

Description

本発明は、冷蔵庫に関するものであり、特に冷凍機器で使用されている蒸気圧縮式冷凍サイクルにて運転する冷蔵庫に関するものである。   The present invention relates to a refrigerator, and more particularly to a refrigerator that operates in a vapor compression refrigeration cycle used in refrigeration equipment.

従来の冷蔵庫の冷却器では、その表面温度が−30℃近くまで低下するため、冷蔵庫内の水蒸気が冷却器表面で霜となって着霜する。この着霜により冷却器の通風抵抗が増加し、冷蔵庫の冷却性能は低下し消費電力が増加するといった問題があった。そのため冷蔵庫は冷却器の霜を除去するために定期的に霜取り運転を行うが、霜取り運転中は除霜ヒータ等の余分な入力を必要とし消費電力が増加するといった問題があった。   In the refrigerator of the conventional refrigerator, since the surface temperature falls to near -30 degreeC, the water vapor | steam in a refrigerator forms frost on the surface of a cooler, and frosts. Due to this frost formation, there is a problem that the ventilation resistance of the cooler is increased, the cooling performance of the refrigerator is lowered, and the power consumption is increased. Therefore, the refrigerator periodically performs a defrosting operation in order to remove the frost from the cooler. However, during the defrosting operation, there is a problem that an extra input such as a defrosting heater is required and power consumption increases.

これらの問題を解決するため、着霜による冷却器の通風抵抗軽減として、冷却器を構成するフィンアンドチューブ熱交換器と、内部を冷媒が流動する伝熱管と、その外周に螺旋状に巻きつけたフィンとからなるスパイラルチューブ熱交換器とで構成され、前記スパイラルチューブ熱交換器は、前記フィンアンドチューブ熱交換器より風向上流側に配置した構成の熱交換器ユニットが提案されている。   In order to solve these problems, to reduce the draft resistance of the cooler due to frost formation, the fin-and-tube heat exchanger that constitutes the cooler, the heat transfer tube in which the refrigerant flows inside, and the outer periphery are spirally wound There has been proposed a heat exchanger unit having a configuration in which the spiral tube heat exchanger is arranged on the wind improving flow side of the fin-and-tube heat exchanger.

例えば、この熱交換器ユニットでは冷却器への着霜量の低減は可能だが、スパイラルチューブ熱交換器が着霜することで目詰まりが発生し、スパイラルチューブ熱交換器の目詰まりとともに熱交換器ユニットの通風抵抗が増加するため、冷却器の冷却性能増加にはつながらないといった問題があった(例えば、特許文献1参照。)。   For example, in this heat exchanger unit, it is possible to reduce the amount of frost formation on the cooler, but clogging occurs when the spiral tube heat exchanger forms frost, and the heat exchanger together with clogging of the spiral tube heat exchanger Since the ventilation resistance of the unit is increased, there is a problem that the cooling performance of the cooler is not increased (for example, see Patent Document 1).

また霜取り運転時間を短くし消費電力を低減させるため、冷却器の冷媒管につながるパイプと、冷却器の下部に設置された霜取り用熱輻射除霜ヒータより構成され、前記パイプを前記熱輻射除霜ヒータの下部に設置する案が提示されている。   Further, in order to shorten the defrosting operation time and reduce power consumption, the pipe is connected to a refrigerant pipe of a cooler and a heat radiation defrosting heater for defrosting installed at the lower part of the cooler, and the pipe is removed from the heat radiation. There is a proposal to install in the lower part of the frost heater.

また別の構成では、冷却器の風路への投影面上に冷却器の冷媒管につながるパイプが設置されるため、前記パイプが霜により閉塞されると冷却器への風流れが阻害され、霜取り時間は短縮されるが着霜時に通風抵抗が増加するといった問題があった(例えば、特許文献2参照。)。   In another configuration, since a pipe connected to the refrigerant pipe of the cooler is installed on the projection surface to the air path of the cooler, when the pipe is blocked by frost, the wind flow to the cooler is inhibited, Although the defrosting time is shortened, there is a problem that the ventilation resistance increases at the time of frost formation (see, for example, Patent Document 2).

特開2003−314947号公報(第1図)JP 2003-314947 A (FIG. 1) 特開平5−306877号公報(第2図)JP-A-5-306877 (FIG. 2)

従来技術では、冷却器への着霜による通風抵抗軽減のため、この冷却器とは別形態の熱交換器を追加設置し、冷却器への着霜量の低減を試みているが、追加した熱交換器への着霜により通風抵抗が増加し、冷却性能の低下につながるといった問題があった。また霜取り時間短縮のため、冷却器の冷媒管につながるパイプを除霜ヒータの下部に設置する試みがなされているが、追加したパイプへの着霜により冷却器への風流れが阻害され通風抵抗が増加するといった問題があった。   In the prior art, in order to reduce the draft resistance due to frost formation on the cooler, an additional heat exchanger is installed to reduce the amount of frost formation on the cooler. There was a problem that ventilation resistance increased due to frost formation on the heat exchanger, leading to a decrease in cooling performance. In order to shorten the defrosting time, an attempt has been made to install a pipe connected to the refrigerant pipe of the cooler at the bottom of the defrost heater. However, the flow of air to the cooler is hindered by frost formation on the added pipe, and ventilation resistance is reduced. There was a problem that increased.

本発明に係る冷蔵庫は、上記の問題を解決するために、冷蔵室と冷凍室とを有し、冷凍サイクルの冷却器が収納された冷蔵庫において、前記冷却器にて冷却された空気を前記冷蔵室と前記冷凍室のそれぞれへ送り循環させる循環ファンを備え、前記循環ファンにより、前記冷凍室内を循環した冷凍室戻り空気と、前記冷蔵室内を循環して前記冷凍室戻り空気より高温高湿で数倍以上の水分を含有した冷蔵室戻り空気とが、一つの共通の風路から前記冷却器に向かって流れるとともに、前記冷蔵室戻り空気は前記冷凍室戻り空気より下層の庫内背面側を前記循環ファンに向かって前記冷却器を通り、前記冷凍室戻り空気とは前記冷却器に流入して合流するので、前記風路内の前記冷蔵室戻り空気が通過する庫内背面側の位置で前記冷却器よりも風上側に、前記冷凍サイクルの前記冷却器の冷媒流れ下流側となるサブ冷却器を設置し、前記サブ冷却器で前記冷蔵室戻り空気中の水分を除湿して冷媒は過熱ガス状態となるものである。 In order to solve the above problems, a refrigerator according to the present invention has a refrigerator compartment and a freezer compartment, and a refrigerator in which a refrigerator of a refrigeration cycle is housed, the air cooled by the refrigerator is stored in the refrigerator. A circulation fan that sends and circulates to each of the freezer compartment and the freezer compartment, and the circulation fan circulates in the freezer compartment through the freezer compartment and circulates in the refrigerator compartment at a higher temperature and humidity than the freezer compartment return air. an air return refrigerating compartment containing several times more water, one common flow from the wind path toward the cooler Rutotomoni, the refrigerating compartment return air compartment within the rear side of the lower layer from the return air the freezing chamber as the cooler towards the circulation fan, so the the freezer compartment return air merges and flows into the condenser, the location of the refrigerating compartment return the internal rear side air passes through the air passage Than the cooler The upper, set up a sub-cooler serving as a refrigerant flow downstream side of the cooler of the refrigeration cycle, moisture dehumidify refrigerant of the sub-cooler in the refrigerating compartment return air is intended to be a superheated gas state is there.

本発明の冷蔵庫は、冷蔵室と冷凍室とを持つ冷蔵庫で、冷蔵室と冷凍室を一つの冷却器で冷却し、それぞれの戻り空気が一つのファンにより共通の風路で冷却器にながれる冷蔵庫において、冷蔵室の戻り風が通過する位置に、前記冷却器を通過した冷媒が流れるサブ冷却器を設置し、前記サブ冷却器の温度を前記冷却器より高温に若しくは異なる蒸発温度とすることで、前記冷却器への着霜による通風抵抗を軽減させ、冷却性能の高い熱交換器ユニットとし、省スペースで高効率な冷蔵庫を得るものである。さらに、冷蔵庫の冷却器への着霜による通風抵抗が軽減し冷却性能が向上し消費電力の低減が可能となる。また霜取り時間が短縮されることで高効率な冷蔵庫を得ることができる。   The refrigerator of the present invention is a refrigerator having a refrigerator compartment and a freezer compartment, wherein the refrigerator compartment and the freezer compartment are cooled by a single cooler, and each return air is made into a cooler by a common fan by a single fan. , A sub-cooler in which the refrigerant that has passed through the cooler flows is installed at a position where the return air of the refrigerator compartment passes, and the temperature of the sub-cooler is set to a higher temperature than the cooler or a different evaporation temperature. The airflow resistance due to frost formation on the cooler is reduced, and a heat exchanger unit with high cooling performance is obtained, and a space-saving and highly efficient refrigerator is obtained. Furthermore, ventilation resistance due to frost formation on the refrigerator cooler is reduced, cooling performance is improved, and power consumption can be reduced. Moreover, a highly efficient refrigerator can be obtained because defrosting time is shortened.

この発明の実施の形態1における冷蔵庫の全体外形、全体断面の構造を示した図である。It is the figure which showed the whole external shape of the refrigerator in Embodiment 1 of this invention, and the structure of the whole cross section. この発明の実施の形態1における冷蔵庫の冷媒回路図である。It is a refrigerant circuit diagram of the refrigerator in Embodiment 1 of this invention. この発明の実施の形態1における冷蔵庫の冷却器の斜視方向、冷却器正面、及び冷却器断面の構造を示した図である。It is the figure which showed the structure of the perspective direction of the refrigerator of the refrigerator in Embodiment 1 of this invention, a cooler front, and a cooler cross section. この発明の実施の形態1における冷却器内を流れる冷蔵室戻り空気の流れを示した図である。It is the figure which showed the flow of the refrigerator compartment return air which flows through the inside of the cooler in Embodiment 1 of this invention. この発明の実施の形態1におけるサブ冷却器を備えた冷却器周辺の図である。It is a figure of the cooler periphery provided with the subcooler in Embodiment 1 of this invention. この発明の実施の形態1におけるサブ冷却器を含めた冷媒回路図である。It is a refrigerant circuit diagram including the subcooler in Embodiment 1 of this invention. この発明の実施の形態1におけるサブ冷却器内の冷媒状態を表した図である。It is a figure showing the refrigerant | coolant state in the subcooler in Embodiment 1 of this invention. この発明の実施の形態2におけるサブ冷却器を備えた冷却器周辺の図と冷媒回路図である。It is the figure of a cooler periphery provided with the subcooler in Embodiment 2 of this invention, and a refrigerant circuit figure. この発明の実施の形態2における冷却器を表した図である。It is a figure showing the cooler in Embodiment 2 of this invention. この発明の実施の形態2における風路維持を目的としたサブ冷却器を表した図である。It is a figure showing the subcooler aiming at the air path maintenance in Embodiment 2 of this invention. この発明の実施の形態2を示すサブ冷却器を有する冷却器周辺の図である。It is a figure of the cooler periphery which has a subcooler which shows Embodiment 2 of this invention. この発明の実施の形態3におけるサブ冷却器を備えた冷却器周辺の図と冷媒回路図である。It is the figure of a cooler periphery provided with the subcooler in Embodiment 3 of this invention, and a refrigerant circuit figure. この発明の実施の形態3におけるサブ冷却器を備えた冷却器周辺の図と除霜中の冷媒の状態を表した図である。It is the figure of the periphery of the cooler provided with the subcooler in Embodiment 3 of this invention, and the figure showing the state of the refrigerant | coolant during defrosting. この発明の実施の形態4におけるサブ冷却器を備えた冷却器周辺の図と冷媒回路図である。It is the figure of a cooler periphery provided with the subcooler in Embodiment 4 of this invention, and a refrigerant circuit figure.

実施の形態1.
以下本発明の実施の形態について、図を用いて説明する。図1はこの発明の実施の形態における冷蔵庫の構造図であり、(a)は冷蔵庫の扉を前面から見た前面図、(b)は冷蔵庫の内部を説明する断面図を表す。冷蔵庫の庫内11は扉部12、断熱壁13により庫外(外気)から断熱されている。冷蔵庫は、冷蔵または冷凍する個別の部屋を備えており、冷却器15からの冷却された空気を循環ファン16により各庫内に送り庫内が冷却される。庫内11の冷凍室、冷蔵室は、蒸気圧縮式冷凍サイクルを利用して、目標温度まで冷却される。冷蔵庫の扉部の開閉や断熱壁からも多少の熱侵入があるため、冷蔵庫の冷凍サイクルにより冷却運転を行うことで所定の庫内温度に維持する。
Embodiment 1 FIG.
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1A and 1B are structural views of a refrigerator according to an embodiment of the present invention. FIG. 1A is a front view of the refrigerator door as viewed from the front, and FIG. 1B is a cross-sectional view illustrating the inside of the refrigerator. The interior 11 of the refrigerator is insulated from the outside (outside air) by the door 12 and the heat insulation wall 13. The refrigerator is provided with a separate room for refrigeration or freezing, and the cooled air from the cooler 15 is sent into the respective compartments by the circulation fan 16 to cool the interiors. The freezer compartment and the refrigerator compartment in the refrigerator 11 are cooled to a target temperature using a vapor compression refrigeration cycle. Since there is some heat intrusion from the opening / closing of the door part of the refrigerator and the heat insulating wall, the cooling operation is performed by the refrigeration cycle of the refrigerator to maintain a predetermined internal temperature.

冷蔵庫の冷媒回路図を図2に示す。イソブタンなどの冷媒を圧縮機14で圧縮し高温高圧とし、冷蔵庫筐体に設けられた断熱壁13に埋設されている配管群21へと流す。圧縮された高温高圧の冷媒はこの配管群21内で放熱し液冷媒となり、その後、キャピラリーチューブなどの膨張手段22により膨張され気液二相の冷媒となる。冷却器15で、膨張した低温の冷媒は庫内11から流れ込んだ空気23と熱交換をして、冷媒に伝熱することで空気の吸熱を行い、その後冷媒は気体となって圧縮機14へと戻る。冷却器15により吸熱され温度の低下した空気は、循環ファン16により庫内11へと再度送られる。このように冷蔵庫の冷凍サイクル装置は、庫内11の空気を循環して冷却する冷却運転を行っている。   A refrigerant circuit diagram of the refrigerator is shown in FIG. A refrigerant such as isobutane is compressed by the compressor 14 to a high temperature and a high pressure, and flows to the pipe group 21 embedded in the heat insulating wall 13 provided in the refrigerator casing. The compressed high-temperature and high-pressure refrigerant dissipates heat in the pipe group 21 to become a liquid refrigerant, and then expands by an expansion means 22 such as a capillary tube to become a gas-liquid two-phase refrigerant. In the cooler 15, the expanded low-temperature refrigerant exchanges heat with the air 23 that has flowed from the inside 11, and heat is transferred to the refrigerant to absorb the heat. And return. The air whose heat has been absorbed by the cooler 15 and whose temperature has been lowered is sent again to the interior 11 by the circulation fan 16. Thus, the refrigeration cycle apparatus of the refrigerator performs a cooling operation for circulating and cooling the air in the interior 11.

図3に冷却器15周辺の概略図を示す。図3の(a)は冷却器15周辺部斜視図、(b)は冷却器断面図、(c)は(b)の冷却器断面図A−A'を表す。先にも述べたように庫内を冷却して温度が上昇した空気は、循環ファン16(図3には、図示せず。位置のみ示す)によって、冷却器15のフィン33の間を流れ、フィン33と熱交換を行い冷却され冷却器15の出口部から循環ファン16を通過して再度庫内へと戻し循環させる。冷却器15は、一般的にはフィン33と伝熱管34とを持つフィンアンドチューブタイプを用いるが、コルゲートフィンタイプなども用いても良い。   FIG. 3 shows a schematic view around the cooler 15. 3A is a perspective view of the periphery of the cooler 15, FIG. 3B is a cross-sectional view of the cooler, and FIG. 3C is a cross-sectional view AA ′ of the cooler of FIG. As described above, the air whose temperature has risen as a result of cooling the interior flows between the fins 33 of the cooler 15 by the circulation fan 16 (not shown in FIG. 3; only the position is shown). Heat is exchanged with the fins 33, and after cooling, the refrigerant passes through the circulation fan 16 from the outlet of the cooler 15 and is circulated back to the interior again. The cooler 15 is generally a fin-and-tube type having fins 33 and heat transfer tubes 34, but a corrugated fin type or the like may also be used.

上記のように構成された冷却器15において、冷却器15に流入する空気、すなわち冷蔵室内を循環した冷蔵室戻り空気31と冷凍室内を循環した冷凍室戻り空気32とでは空気流入状態(空気温湿度)は大きく異なる。つまり冷蔵室は設定温度が約5℃であるのに対して、冷凍室は約−20℃であること、また冷凍室に比べ冷蔵室は容積が大きくそれに伴い表面積も大きく熱侵入量や外気侵入量も多いためである。発明者らは冷凍室戻り空気32、冷蔵室戻り空気31の温湿度とファン16から吹き出された空気の温湿度を計測し、以下の結果を得た。
流入空気状態
(冷蔵室戻り空気31)Tin=5℃、φin=80%
(冷凍室戻り空気32)Tin=−15℃、φin=60%
流出空気状態
Tout=−30℃、φout=80%
以上の結果と各戻り空気の風量から流入空気の水分量を計算したところ、冷蔵室戻り空気31が冷凍室戻り空気32の7倍以上の水分を有していることが判明した。つまり冷却器15への着霜要因は主に冷蔵室戻り空気31によって生じている。
In the cooler 15 configured as described above, the air flowing into the cooler 15, that is, the refrigerating room return air 31 circulated in the refrigerating room and the freezing room return air 32 circulated in the refrigerating room, is in an air inflow state (air temperature). Humidity) varies greatly. In other words, the set temperature of the refrigerator compartment is about 5 ° C, whereas the freezer compartment is about -20 ° C. Compared to the freezer compartment, the refrigerator compartment has a larger volume and a larger surface area, and the amount of heat penetration and outside air entry. This is because the amount is large. The inventors measured the temperature and humidity of the freezer return air 32 and the refrigerator return air 31 and the temperature and humidity of the air blown from the fan 16, and obtained the following results.
Incoming air condition (refrigeration room return air 31) Tin = 5 ° C., φin = 80%
(Freezer return air 32) Tin = −15 ° C., φin = 60%
Outflow air condition Tout = -30 ° C, φout = 80%
When the moisture content of the inflow air was calculated from the above results and the air volume of each return air, it was found that the refrigerating room return air 31 had more than 7 times the moisture of the freezer room return air 32. That is, the cause of frost formation on the cooler 15 is mainly caused by the return air 31 in the refrigerator compartment.

次に冷却器15内に流入する冷蔵室戻り空気31と冷凍室戻り空気32の可視化試験及び数値流体解析によって得られた結果を図4に示す。図4は冷却器周り41を表し、冷蔵室戻り空気31の流線のみを示した。冷蔵室戻り空気31は冷却器15の背面側を通ってファン16に進むことを発明者らは見出した。また冷凍室戻り空気32と冷蔵室戻り空気31とは図4中の位置A付近にて合流することが判明した。   Next, the result obtained by the visualization test and the numerical fluid analysis of the refrigerator compartment return air 31 and the freezer compartment return air 32 flowing into the cooler 15 is shown in FIG. FIG. 4 shows the periphery 41 of the cooler, and shows only the streamline of the return air 31 of the refrigerator compartment. The inventors have found that the refrigerating room return air 31 passes to the fan 16 through the back side of the cooler 15. Moreover, it turned out that the freezer compartment return air 32 and the refrigerator compartment return air 31 merge in the vicinity of the position A in FIG.

上述の空気流れが生じる冷却器周り41に対して、冷却器15の下部にサブ冷却器51を挿入する。なおサブ冷却器51は図4に示した冷蔵室戻り空気31が通過する位置に設置する。サブ冷却器51を含めた冷却器周りを図5に示す。図5(a)は冷却器周りの側面図、(b)は正面図を表す。図5ではサブ冷却器をフィンアンドチューブ型の熱交換器で示しているが、コルゲートフィンや他の形態の熱交換器でも以下に示す効果は十分に得られる。   A sub-cooler 51 is inserted below the cooler 15 with respect to the cooler periphery 41 where the above-described air flow occurs. The sub cooler 51 is installed at a position through which the return air 31 shown in FIG. 4 passes. FIG. 5 shows the periphery of the cooler including the sub cooler 51. FIG. 5A shows a side view around the cooler, and FIG. 5B shows a front view. Although the subcooler is shown as a fin-and-tube heat exchanger in FIG. 5, the following effects can be sufficiently obtained even with corrugated fins or other types of heat exchangers.

サブ冷却器51を含めた冷媒回路図を図6に示す。なお冷媒流れは図6中の矢印方向である。サブ冷却器51は冷却器15の冷媒流れ方向に下流側に設置する。サブ冷却器は上述したように冷蔵室戻り空気31と熱交換を行う。従来の冷蔵庫中の冷却器では、冷却器出口の冷媒状態は乾き度1以下(つまり二相状態)で流出するが、本実施の形態では冷却器15の冷媒出口側に冷蔵室戻り空気31と熱交換を行うサブ冷却器51を設置することでサブ冷却器出口では過熱ガスで冷媒は流出する。なぜなら冷蔵室戻り空気31は先に示したように空気温度が高く、サブ冷却器51内での冷媒の蒸発温度との温度差が大きいため、熱交換量が大きく、容易に冷媒を過熱ガス状態とするためである。   A refrigerant circuit diagram including the sub-cooler 51 is shown in FIG. The refrigerant flow is in the direction of the arrow in FIG. The sub cooler 51 is installed downstream in the refrigerant flow direction of the cooler 15. As described above, the sub-cooler exchanges heat with the refrigerator return air 31. In the cooler in the conventional refrigerator, the refrigerant state at the cooler outlet flows out with a dryness of 1 or less (that is, a two-phase state), but in this embodiment, the refrigerator 15 returns to the refrigerant outlet side of the cooler 15 and By installing the sub cooler 51 that performs heat exchange, the refrigerant flows out with superheated gas at the sub cooler outlet. Because the refrigerating room return air 31 has a high air temperature as described above and a large temperature difference from the refrigerant evaporation temperature in the subcooler 51, the amount of heat exchange is large, and the refrigerant is easily put into a superheated gas state. This is because.

サブ冷却器51の伝熱管71内の冷媒状態を図7に示す。冷却器15での冷媒温度Tetwo(低圧での気液二相温度)で流入した冷媒は、伝熱管71内で冷蔵室戻り空気31により加熱され、Tetwoより高温のTeg(低圧での過熱ガス温度)となる。これにより伝熱管71の表面温度(伝熱管71に付けられたフィン表面温度)は冷却器15の表面温度より高くなる。サブ冷却器51の熱交換量によるが、サブ冷却器51出口の冷媒温度は最大で冷蔵室戻り空気31の温度(Tin=5℃)まで上昇する。   The refrigerant state in the heat transfer tube 71 of the subcooler 51 is shown in FIG. The refrigerant that flows in at the refrigerant temperature Tetwo (the gas-liquid two-phase temperature at low pressure) in the cooler 15 is heated by the refrigerating chamber return air 31 in the heat transfer pipe 71, and Teg (superheated gas temperature at low pressure) higher than Tetwo. ) As a result, the surface temperature of the heat transfer tube 71 (the surface temperature of the fin attached to the heat transfer tube 71) becomes higher than the surface temperature of the cooler 15. Depending on the heat exchange amount of the sub cooler 51, the refrigerant temperature at the outlet of the sub cooler 51 rises up to the temperature of the refrigerating room return air 31 (Tin = 5 ° C.).

冷却面への着霜量は一般的に流入空気の絶対湿度と冷却面表面の絶対湿度(通常表面温度で飽和とする)で決まる。それゆえ冷却面温度の上昇は着霜量の低減につながる。以上のことから、冷蔵室戻り空気31が通過する位置にサブ冷却器51を設置することで、サブ冷却器51には高温高湿の冷蔵室戻り空気31の水分が着霜するため、サブ冷却器51通過後にはその水分量が減少し、冷却器15への着霜量の低減が可能となる。さらにサブ冷却器51を冷却器15の冷媒流れ下流に設置することで、サブ冷却器51での着霜量が低減でき、冷却器15とサブ冷却器51とを含めた通風抵抗の低減が可能となる。ただし、サブ冷却器51の表面温度は冷蔵室戻り空気31の露点温度より低い(サブ冷却器51内に冷媒温度Tetwoを含むため)ので、必要量だけ冷蔵室戻り空気31中の水分を除湿でき、その温度も低下させる。これらの効果により冷却器15への着霜量低減につながり、冷却性能は向上し冷蔵庫の消費電力を低減でき省エネが得られる。   The amount of frost formation on the cooling surface is generally determined by the absolute humidity of the incoming air and the absolute humidity of the cooling surface (normally saturated at the surface temperature). Therefore, an increase in the cooling surface temperature leads to a reduction in the amount of frost formation. From the above, the subcooler 51 is installed at a position where the refrigerating room return air 31 passes, so that the water in the high temperature and high humidity refrigerating room return air 31 forms frost on the subcooler 51. After passing through the vessel 51, the amount of moisture decreases, and the amount of frost on the cooler 15 can be reduced. Further, by installing the sub cooler 51 downstream of the refrigerant flow of the cooler 15, the amount of frost formation in the sub cooler 51 can be reduced, and the ventilation resistance including the cooler 15 and the sub cooler 51 can be reduced. It becomes. However, since the surface temperature of the sub-cooler 51 is lower than the dew point temperature of the refrigerating room return air 31 (because the refrigerant temperature Tetwo is included in the sub-cooler 51), the moisture in the refrigerating room return air 31 can be dehumidified by a necessary amount. , Also reduce its temperature. These effects lead to a reduction in the amount of frost on the cooler 15, improving the cooling performance, reducing the power consumption of the refrigerator, and saving energy.

実施の形態2.
以下本発明の実施の形態について、図を用いて説明する。図8(a)は実施の形態1で述べたように冷蔵室戻り空気31が通過する位置にサブ冷却器51を設置した冷却器周りの側面図、(b)はその正面図、(c)は本実施の形態における冷媒回路図を表す。本実施の形態ではサブ冷却器51を冷媒回路上で冷却器15の上流側に設置する点が実施の形態1とは異なる。
Embodiment 2. FIG.
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 8A is a side view around the cooler in which the sub-cooler 51 is installed at a position where the return air 31 passes through the refrigerator as described in the first embodiment, FIG. 8B is a front view thereof, and FIG. Represents a refrigerant circuit diagram in the present embodiment. The present embodiment is different from the first embodiment in that the sub cooler 51 is installed on the upstream side of the cooler 15 on the refrigerant circuit.

実施の形態1で述べたように、サブ冷却器51には高温高湿の冷蔵室戻り空気31が流入し熱交換を行う。図8で示したように、冷媒流れ上流側にサブ冷却器51を設置した際、サブ冷却器51の表面温度は冷却器15と同等近くまで低下する。そのためサブ冷却器51の着霜量が増加するため通風抵抗が増加し、冷却器15の冷却能力増加にはつながらない。そのため、本実施の形態ではサブ冷却器51の着霜耐力を向上させる形態とすることで通風抵抗の増加を抑制する。以下にその詳細を述べる。   As described in the first embodiment, the high-temperature and high-humidity return air 31 flows into the sub-cooler 51 to exchange heat. As shown in FIG. 8, when the sub-cooler 51 is installed on the upstream side of the refrigerant flow, the surface temperature of the sub-cooler 51 decreases to nearly the same as that of the cooler 15. Therefore, the amount of frost formation in the sub cooler 51 is increased, so that the ventilation resistance is increased, and the cooling capacity of the cooler 15 is not increased. Therefore, in this Embodiment, the increase in ventilation resistance is suppressed by setting it as the form which improves the frosting yield strength of the subcooler 51. FIG. Details are described below.

冷却器15のフィン構成を図9に示す。図9に示すように冷蔵庫の冷却器15はフィン33と伝熱管34で構成されており、風流れ方向でフィンのピッチ(以下フィンピッチ)が変化している。一般的には風上側のほうが風下側に比べてフィンピッチが広い。例えば風下側がフィンピッチ5mmとすると風上側のフィンピッチは7.5mm〜10mmと1.5〜2倍近く大きい。これは流入空気の水分量が風下に進むにつれフィンとの熱交換により減少するため、主に着霜が風上側で生じ、そのため風上側の着霜による目詰まりを遅延させるためである。   The fin structure of the cooler 15 is shown in FIG. As shown in FIG. 9, the refrigerator cooler 15 is composed of fins 33 and heat transfer tubes 34, and the pitch of the fins (hereinafter referred to as fin pitch) varies in the wind flow direction. Generally, the fin pitch is wider on the leeward side than on the leeward side. For example, if the leeward side has a fin pitch of 5 mm, the leeward fin pitch is 7.5 mm to 10 mm, which is 1.5 to 2 times larger. This is because the amount of moisture in the inflowing air decreases due to heat exchange with the fins as it progresses leeward, so that frost formation mainly occurs on the windward side, and therefore clogging due to frost formation on the windward side is delayed.

本実施の形態ではサブ冷却器51での着霜による目詰まりを遅延させるため、サブ冷却器51のフィンピッチを上記の風上側と同等若しくはそれ以上にすべきである。具体的には冷却器15の風下側のフィンピッチが5mmであれば、風上側が7.5mm〜10mm(風下の1.5〜2倍)となり、サブ冷却器51では10mm若しくは15mm(風下の2〜3倍)とすることでサブ冷却器51の着霜耐力を向上することができる。   In this embodiment, in order to delay clogging due to frost formation in the sub cooler 51, the fin pitch of the sub cooler 51 should be equal to or higher than the above-mentioned windward side. Specifically, if the fin pitch on the leeward side of the cooler 15 is 5 mm, the windward side is 7.5 mm to 10 mm (1.5 to 2 times the leeward), and the subcooler 51 is 10 mm or 15 mm (downwind (2 to 3 times), the frosting resistance of the subcooler 51 can be improved.

ただし、フィンピッチを広げるとサブ冷却器51の伝熱面積が減少する。伝熱面積の減少によりサブ冷却器51の熱交換量Q(Q=AKΔT A:伝熱面積、K:熱通過率、ΔT:温度差)は減少する(フィンピッチが広がるとAは小さくなる。K、ΔTは同等)。そのため例えばフィンピッチを広げるとともに、スリットを設けるなどすることで熱交換量を維持して着霜耐力を向上できる(Aは減少するがKを大きくする)。また、例えば図10に示すようにサブ冷却器51をサブ冷却器付近風路102に対して小さくし、風路を残す形状101にすることで、サブ冷却器に着霜が生じても通風抵抗の増加につながらない構造となる。   However, when the fin pitch is increased, the heat transfer area of the sub-cooler 51 is reduced. As the heat transfer area decreases, the heat exchange amount Q (Q = AKΔT A: heat transfer area, K: heat passage rate, ΔT: temperature difference) of the subcooler 51 decreases (A decreases as the fin pitch increases). K and ΔT are equivalent). Therefore, for example, by widening the fin pitch and providing slits, the amount of heat exchange can be maintained and the frost resistance can be improved (A decreases but K increases). Further, for example, as shown in FIG. 10, the subcooler 51 is made smaller than the airflow path 102 near the subcooler, and the airflow path is left, so that the airflow resistance is maintained even if frosting occurs in the subcooler. It becomes a structure that does not lead to an increase in.

また例えばサブ冷却器51の着霜時の通風抵抗を抑制する構造として、図11に示すように冷却器15の下部112の壁面にサブ冷却器51を密着させた構造111を設置してもよい。これは図4に示したように冷蔵室戻り空気31が下部112の壁面に沿って流れていくためである。壁面の曲面に沿ったフィン形状とすればサブ冷却器111の伝熱面積増加にもつながり、熱交換量はさらに増加する。   Further, for example, as a structure for suppressing the ventilation resistance when the sub cooler 51 is frosted, a structure 111 in which the sub cooler 51 is closely attached to the wall surface of the lower portion 112 of the cooler 15 may be installed as shown in FIG. . This is because the refrigerating room return air 31 flows along the wall surface of the lower part 112 as shown in FIG. The fin shape along the curved surface of the wall surface leads to an increase in the heat transfer area of the sub-cooler 111 and further increases the amount of heat exchange.

以上のようにサブ冷却器51を冷却器15の冷媒流れで上流側に設置し、サブ冷却器の着霜耐力を向上させることで、通風抵抗を軽減して冷却器15の却性能が向上し冷蔵庫の消費電力を低減でき省エネが得られる。   As described above, the sub cooler 51 is installed on the upstream side in the refrigerant flow of the cooler 15 to improve the frosting resistance of the sub cooler, thereby reducing the ventilation resistance and improving the rejection performance of the cooler 15. Energy consumption can be reduced by reducing the power consumption of the refrigerator.

実施の形態3.
以下本発明の実施の形態について、図を用いて説明する。図12(a)は実施の形態1で述べたように冷蔵室戻り空気31が通過する位置にサブ冷却器51を設置した冷却器周りの側面図、(b)はその正面図、(c)は本実施の形態における冷媒回路図を表す。本実施の形態ではサブ冷却器51を冷媒回路上で冷却器15の途中に設置する。つまり膨張手段22を通過した冷媒は冷却器15に流入し、冷却器15の途中からサブ冷却器51に流れて行き、サブ冷却器51を流出した後、再び冷却器15に流入する。
Embodiment 3 FIG.
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 12A is a side view around the cooler in which the sub-cooler 51 is installed at the position where the return air 31 passes through the refrigerator as described in the first embodiment, FIG. 12B is a front view thereof, and FIG. Represents a refrigerant circuit diagram in the present embodiment. In the present embodiment, the sub cooler 51 is installed in the middle of the cooler 15 on the refrigerant circuit. That is, the refrigerant that has passed through the expansion means 22 flows into the cooler 15, flows from the middle of the cooler 15 to the subcooler 51, flows out of the subcooler 51, and then flows into the cooler 15 again.

冷却器の下部には冷却器15の着霜を除去する目的で除霜用ヒータ121が設置されている。通常の冷蔵庫では除霜ヒータに電圧を印加してヒータを加熱し、加熱されたヒータ周りの空気を加熱し対流によって、また加熱したヒータにより発せられる赤外線による輻射によって冷却器15の霜を融解する。対流と輻射を利用することから通常の冷蔵庫の除霜効率(=霜の融解熱量/ヒータ入力)は20%程度である。   A defrosting heater 121 is installed in the lower part of the cooler for the purpose of removing frost from the cooler 15. In a normal refrigerator, a voltage is applied to the defrosting heater to heat the heater, and the air around the heated heater is heated to melt the frost in the cooler 15 by convection or by infrared radiation emitted by the heated heater. . Since convection and radiation are used, the defrosting efficiency (= frost melting heat amount / heater input) of a normal refrigerator is about 20%.

一方で冷蔵室戻り空気位置にサブ冷却器51が設置されている本実施の形態では、サブ冷却器51の位置は除霜用ヒータ121の近傍に設置されている。図12に示した冷媒回路構成にて除霜を行う際のサブ冷却器51の効果を図13に示す。図13(a)はサブ冷却器51を備えた冷却器周辺側面図、(b)は除霜中の伝熱管の冷媒の挙動を表している。図13に示すようにサブ冷却器51はヒータ121の近傍に設置されているため、サブ冷却器51では冷却器15に比べて早く霜が融解する。サブ冷却器51の除霜が終了すると、サブ冷却器51ではその伝熱管内の冷媒が暖められる。サブ冷却器51と冷却器15とは図11で示したように冷媒回路上でサブ冷却器51が途中に設置されている。つまりサブ冷却器51と冷却器15とは冷媒回路ではループ構造をしている。そのためサブ冷却51内の単位質量あたりの冷媒は、除霜終了後からその圧力での潜熱分の熱量をヒータから受け取ることで気体となる。気体となった単位質量冷媒は密度変化により上部に上昇する。ループ上部には冷却器15があり、冷却器15にはサブ冷却器51の霜が融解後にも霜が存在し、除霜が続いている。このときにサブ冷却器51から上昇した単位質量の気体冷媒は、ヒータで加熱されて0℃以上若しくは霜の温度以上であるため、冷却器15に上昇後、霜に放熱し再び二相若しくは液体となる。密度変化により放熱した単位質量の冷媒は下部に戻り再度ヒータで加熱される。このように本実施の形態での冷媒回路構成により、除霜時に冷媒を利用したヒートパイプ効果を付与することができ、除霜効率の向上につながる。発明者らは実際にこの効果を確認するため同一着霜量の冷却器に対してサブ冷却器51があるときとないときとで除霜時間を比較したところ、サブ冷却器51を設置することで除霜時間が25分から23分に短縮することを確認した。以上のことから本実施の形態により除霜効率が向上し、除霜時間の短縮が可能となり冷蔵庫の消費電力の低減が可能となる。   On the other hand, in the present embodiment in which the sub cooler 51 is installed at the refrigerating room return air position, the position of the sub cooler 51 is installed in the vicinity of the defrosting heater 121. FIG. 13 shows the effect of the subcooler 51 when defrosting is performed with the refrigerant circuit configuration shown in FIG. FIG. 13A is a side view of the periphery of the cooler provided with the sub cooler 51, and FIG. 13B shows the behavior of the refrigerant in the heat transfer tube during defrosting. As shown in FIG. 13, since the sub cooler 51 is installed in the vicinity of the heater 121, frost is melted earlier in the sub cooler 51 than in the cooler 15. When the defrosting of the sub cooler 51 is completed, the refrigerant in the heat transfer tube is warmed in the sub cooler 51. As shown in FIG. 11, the sub cooler 51 and the cooler 15 are installed in the middle of the sub cooler 51 on the refrigerant circuit. That is, the subcooler 51 and the cooler 15 have a loop structure in the refrigerant circuit. Therefore, the refrigerant per unit mass in the sub-cooling 51 becomes a gas by receiving the amount of heat of the latent heat at that pressure from the heater after the completion of the defrosting. The unit mass refrigerant that has become a gas rises upward due to the density change. There is a cooler 15 in the upper part of the loop, and frost is present in the cooler 15 even after the frost of the sub-cooler 51 is melted, and defrosting continues. At this time, the unit mass of the gaseous refrigerant rising from the subcooler 51 is heated by the heater and is at 0 ° C. or higher or the frost temperature or higher. It becomes. The unit mass refrigerant that has dissipated heat due to the density change returns to the lower part and is heated again by the heater. As described above, the refrigerant circuit configuration according to the present embodiment can provide a heat pipe effect using the refrigerant at the time of defrosting, leading to an improvement in defrosting efficiency. In order to actually confirm this effect, the inventors compared the defrosting time with and without the subcooler 51 with respect to the cooler having the same frost amount, and installing the subcooler 51. It was confirmed that the defrosting time was reduced from 25 minutes to 23 minutes. From the above, this embodiment improves the defrosting efficiency, shortens the defrosting time, and reduces the power consumption of the refrigerator.

実施の形態4.
以下本発明の実施の形態について、図を用いて説明する。図14(a)は実施の形態1で述べたように冷蔵室戻り空気31が通過する位置にサブ冷却器51を設置した冷却器周りの側面図、(b)はその正面図、(c)は本実施の形態における冷媒回路図を表す。本実施の形態ではサブ冷却器51を冷媒回路上で冷却器15と並列に設置する。それに伴い、膨張手段22の上部に3方弁などの流路切り替え部141が設置されており、この流路切り替え部141と冷却器15およびサブ冷却器51との間には、冷却器15の冷媒流れ上流には膨張手段22を、サブ冷却器51の冷媒流れ上流には新たな膨張手段142を設置する。
Embodiment 4 FIG.
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 14A is a side view around the cooler in which the sub-cooler 51 is installed at the position where the refrigeration room return air 31 passes as described in the first embodiment, FIG. 14B is a front view thereof, and FIG. Represents a refrigerant circuit diagram in the present embodiment. In the present embodiment, the sub cooler 51 is installed in parallel with the cooler 15 on the refrigerant circuit. Along with this, a flow path switching unit 141 such as a three-way valve is installed at the upper part of the expansion means 22, and between the flow path switching unit 141, the cooler 15 and the sub cooler 51, The expansion means 22 is installed upstream of the refrigerant flow, and the new expansion means 142 is installed upstream of the refrigerant flow of the subcooler 51.

これらの機能を以下に述べる。始めに冷却器15とサブ冷却器51だが、上記で述べたようにサブ冷却器51は冷蔵室戻り空気31が通過する位置に設置されており、サブ冷却器51は冷蔵室戻り空気31と熱交換を行う。   These functions are described below. First, the cooler 15 and the subcooler 51 are installed at a position through which the refrigerating room return air 31 passes as described above, and the subcooler 51 has the refrigerating room return air 31 and the heat. Exchange.

次に流路切り替え部141は冷媒流れ方向下流に設置された膨張手段22、新たな膨張手段142に冷媒を流すまたは切り替える動作を行う。その開度構成は以下の4通りである。ここでA、B、Cは図14に示した流路切り替え部141における方向への流れを表す。
第1切替:A→B開・A→C開(冷却器とサブ冷却器の両方に冷媒を流す)
第2切替:A→B開・A→C閉(冷却器のみ冷媒を流す)
第3切替:A→B閉・A→C開(サブ冷却器のみ冷媒を流す)
第4切替:A→B閉・A→C閉(冷却器とサブ冷却器の両方に冷媒を流さない)
Next, the flow path switching unit 141 performs an operation of flowing or switching the refrigerant to the expansion means 22 and the new expansion means 142 installed downstream in the refrigerant flow direction. The opening configuration is as follows. Here, A, B, and C represent flows in the direction in the flow path switching unit 141 shown in FIG.
First switch: A → B open / A → C open (flowing refrigerant to both cooler and sub-cooler)
Second switching: A → B open / A → C closed (coolant flows only in the cooler)
3rd switching: A → B closed / A → C open (only subcooler flows refrigerant)
Fourth switch: A → B closed / A → C closed (refrigerant does not flow to both cooler and sub-cooler)

以下に流路切り替え部141の動作を述べる。先にも述べたがサブ冷却器51は冷蔵室戻り空気31と熱交換を行うのだが、冷蔵室への風路には通常ダンパーが設置されており、冷蔵室温度が設定温度以上であるときにダンパーを開けて冷却器15からの吹き出し空気を冷蔵室へと送風し、その温度を目標温度に低下させる。つまり冷蔵室へのダンパーが閉じているとき、サブ冷却器51には冷蔵室戻り空気31は流れない。そのためサブ冷却器51へ冷媒の供給は必要ない。以上のことから冷蔵室のダンパーが閉じているとき、流路切り替え部141は上記第2切替を動作する。一方で冷蔵室ダンパーが開いた時、流路切り替え部141は上記第1切替を動作する。なおダンパーの開閉状態は冷蔵庫の制御盤からの出力により判別可能である。   The operation of the flow path switching unit 141 will be described below. As described above, the sub cooler 51 exchanges heat with the return air 31 of the refrigerator compartment, but a damper is usually installed in the air passage to the refrigerator compartment, and the refrigerator compartment temperature is equal to or higher than the set temperature. Then, the damper is opened and the air blown from the cooler 15 is blown to the refrigerator compartment, and the temperature is lowered to the target temperature. That is, when the damper to the refrigerating room is closed, the refrigerating room return air 31 does not flow through the sub-cooler 51. Therefore, it is not necessary to supply the refrigerant to the sub cooler 51. From the above, when the damper of the refrigerator compartment is closed, the flow path switching unit 141 operates the second switching. On the other hand, when the refrigerator compartment damper is opened, the flow path switching unit 141 operates the first switching. The open / close state of the damper can be determined by the output from the control panel of the refrigerator.

次に除霜中若しくは冷蔵庫の冷媒回路内で冷媒回収が必要となったとき、または冷媒回路内で冷媒圧力の高圧・低圧維持が必要となったとき(例えば圧縮機14が停止した時)には上記第4切替を動作する。冷蔵室への負荷が大きい、若しくは冷凍室にもダンパーが設置されているときは、冷凍室温度等が十分に目標温度以下であるとき、冷蔵室のみに送風を行うので、流路切り替え部141を上記第3切替で動作する。   Next, when refrigerant recovery is necessary during defrosting or in the refrigerant circuit of the refrigerator, or when it is necessary to maintain high or low refrigerant pressure in the refrigerant circuit (for example, when the compressor 14 is stopped) Operates the fourth switching. When the load on the refrigerating room is large or the damper is also installed in the freezer room, when the freezer room temperature or the like is sufficiently below the target temperature, air is blown only to the refrigerating room, so the flow path switching unit 141 Is operated by the third switching.

上記の一連の流路切り替え部141の動作は開または閉のみとしているが、例えば開度調節が可能であれば各方向(例えば図14中のBまたはC)への流量を調節することで負荷にあった冷媒量を供給できることから上記の効果をさらに高めることが可能となる。   The series of flow path switching units 141 are only opened or closed. For example, if the opening degree can be adjusted, the load can be adjusted by adjusting the flow rate in each direction (for example, B or C in FIG. 14). Therefore, the above-described effect can be further enhanced.

次にサブ冷却器51に接続する膨張手段142について述べる。冷却器15に接続する膨張手段22は、冷却器15を目標温度に低下させるため、その流路内径及び長さが適正化されている。一方で本実施の形態で設置する新たな膨張手段142は冷蔵室戻り空気31を冷却し、且つ着霜のよる目詰まりを極力抑制する必要がある。そのため冷却器15の表面温度に比べてサブ冷却器51の表面温度を高温に且つ冷蔵室戻り空気31の水分を除湿(または着霜により取り除く)する必要がある。これらを満たすためには開度を適切に調節する必要がある。冷蔵室および冷凍室にはそれぞれ庫内温度を検知する温度センサを備え、さらに冷蔵室からの冷蔵室戻り空気31が流れる風路には冷蔵室戻り空気用の温湿度検知センサを配設するとともに、膨張手段142に適切な装置として例えばLEVなどの電子膨張弁を設けることが考えられる。LEVを利用することにより冷蔵室戻り空気31の温湿度を計測することで必要冷却温度を判別でき、それに基づいて膨張手段142の開度調節を行うことが可能となる。また冷蔵室・冷凍室の負荷を各室温から判断し、必要開度の調節を行うことでサブ冷却器51と冷却器15とを適切な熱交換量とすることができ、望ましい形態となる。   Next, the expansion means 142 connected to the subcooler 51 will be described. The expansion means 22 connected to the cooler 15 has an appropriate flow path inner diameter and length in order to lower the cooler 15 to the target temperature. On the other hand, the new expansion means 142 installed in this embodiment needs to cool the return air 31 in the refrigerator compartment and suppress clogging due to frost formation as much as possible. Therefore, it is necessary to make the surface temperature of the subcooler 51 higher than the surface temperature of the cooler 15 and to dehumidify (or remove frost) the moisture in the return air 31 of the refrigerator compartment. In order to satisfy these, it is necessary to adjust the opening degree appropriately. Each of the refrigerator compartment and the freezer compartment is provided with a temperature sensor for detecting the internal temperature, and a temperature / humidity detection sensor for the refrigerator compartment return air is disposed in the air passage through which the refrigerator compartment return air 31 from the refrigerator compartment flows. It is conceivable to provide an electronic expansion valve such as LEV as a suitable device for the expansion means 142. By using the LEV, the required cooling temperature can be determined by measuring the temperature and humidity of the return air 31 in the refrigerator compartment, and the opening degree of the expansion means 142 can be adjusted based on the required cooling temperature. Moreover, the load of the refrigerator compartment / freezer compartment is judged from each room temperature, and the necessary opening degree is adjusted, whereby the sub-cooler 51 and the cooler 15 can have an appropriate heat exchange amount, which is a desirable mode.

以上の構成によりサブ冷却器51を設置することで冷却器15への着霜による通風抵抗を抑制でき冷蔵庫の消費電力を抑えることができる。   By installing the sub cooler 51 with the above configuration, ventilation resistance due to frost on the cooler 15 can be suppressed, and power consumption of the refrigerator can be suppressed.

なお以上の実施の形態1から4で示したサブ冷却器は、冷凍空調装置の熱交換器だけではなく例えばカーエアコンにも本実施の形態は適用可能である。   The subcoolers shown in the first to fourth embodiments can be applied not only to the heat exchanger of the refrigeration air conditioner but also to, for example, a car air conditioner.

なお以上の実施の形態1から4で示した冷凍空調機器のデフロスト装置は、ヒータなど外部熱源による場合や冷媒を逆に流したり吐出ガスを利用したホットガス方式でも同様の効果は得られる。   The defrost apparatus for the refrigeration and air-conditioning apparatus shown in the first to fourth embodiments can achieve the same effect even when an external heat source such as a heater is used or a hot gas system using a reverse flow of a refrigerant or a discharge gas.

11 庫内、12 扉部、13 断熱壁、14 圧縮機、15 冷却器、16 ファン、21 配管群、22 膨張手段、23 庫内戻り空気、31 冷蔵室戻り空気、32 冷凍室戻り空気、33 フィン、34 伝熱管、41 冷却器周り、51 サブ冷却器、71 サブ冷却器伝熱管、101 風路を残したサブ冷却器、102 サブ冷却器付近風路、111 冷却器下部に密着させたサブ冷却器、112 冷却器下部位置、121 除霜用ヒータ、141 流路切り替え部、142 サブ冷却器用膨張手段。   11 Chamber, 12 Door, 13 Heat insulation wall, 14 Compressor, 15 Cooler, 16 Fan, 21 Piping group, 22 Expansion means, 23 Return air in the chamber, 31 Return air in the refrigerator compartment, 32 Return air in the freezer compartment, 33 Fin, 34 Heat transfer tube, 41 Around the cooler, 51 Sub-cooler, 71 Sub-cooler heat transfer tube, 101 Sub-cooler leaving the air path, 102 Sub-cooler near air path, 111 Sub close to the lower part of the cooler Cooler, 112 cooler lower position, 121 defrost heater, 141 flow path switching unit, 142 sub-cooler expansion means.

Claims (1)

冷蔵室と冷凍室とを有し、冷凍サイクルの冷却器が収納された冷蔵庫において、前記冷却器にて冷却された空気を前記冷蔵室と前記冷凍室のそれぞれへ送り循環させる循環ファンを備え、前記循環ファンにより、前記冷凍室内を循環した冷凍室戻り空気と、前記冷蔵室内を循環して前記冷凍室戻り空気より高温高湿で数倍以上の水分を含有した冷蔵室戻り空気とが、一つの共通の風路から前記冷却器に向かって流れるとともに、前記冷蔵室戻り空気は前記冷凍室戻り空気より下層の庫内背面側を前記循環ファンに向かって前記冷却器を通り、前記冷凍室戻り空気とは前記冷却器に流入して合流するので、前記風路内の前記冷蔵室戻り空気が通過する庫内背面側の位置で前記冷却器よりも風上側に、前記冷凍サイクルの前記冷却器の冷媒流れ下流側となるサブ冷却器を設置し、前記サブ冷却器で前記冷蔵室戻り空気中の水分を除湿して冷媒は過熱ガス状態となることを特徴とする冷蔵庫。 In a refrigerator having a refrigerator compartment and a freezer compartment, in which a cooler for a refrigeration cycle is housed, a circulation fan is provided for circulating the air cooled by the cooler to each of the refrigerator compartment and the freezer compartment, The circulating fan circulates in the freezer compartment circulated through the freezer compartment, and the refrigerator compartment return air that circulates in the refrigerator compartment and contains water several times or more at a higher temperature and higher humidity than the freezer compartment return air. One common flow from the wind path toward the cooler Rutotomoni, the refrigerating compartment return air passes through the cooler toward the storage room back side of the lower layer from the return air the freezing chamber to the circulation fan, the freezing chamber Since the return air flows into and merges with the cooler, the cooling of the refrigeration cycle is placed on the windward side of the cooler at the position on the rear side of the refrigerator through which the return air of the refrigerator compartment passes. Under refrigerant flow Established a sub cooler the side, moisture dehumidify refrigerant of the sub-cooler in return the refrigerating chamber in the air, characterized in that a superheated gas state refrigerator.
JP2010186120A 2010-08-23 2010-08-23 refrigerator Active JP4989756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010186120A JP4989756B2 (en) 2010-08-23 2010-08-23 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010186120A JP4989756B2 (en) 2010-08-23 2010-08-23 refrigerator

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2011115551A Division JP5267614B2 (en) 2011-05-24 2011-05-24 refrigerator
JP2011115552A Division JP5447438B2 (en) 2011-05-24 2011-05-24 refrigerator

Publications (2)

Publication Number Publication Date
JP2012042174A JP2012042174A (en) 2012-03-01
JP4989756B2 true JP4989756B2 (en) 2012-08-01

Family

ID=45898711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010186120A Active JP4989756B2 (en) 2010-08-23 2010-08-23 refrigerator

Country Status (1)

Country Link
JP (1) JP4989756B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115437Y2 (en) * 1971-09-20 1976-04-23
JPS61192280U (en) * 1985-05-20 1986-11-29

Also Published As

Publication number Publication date
JP2012042174A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5997060B2 (en) Air conditioner
JP5357418B2 (en) Heat pump air conditioner
JP5619295B2 (en) Refrigeration cycle equipment
JP2005249254A (en) Refrigerator-freezer
US20130219943A1 (en) Outdoor heat exchanger and air conditioner comprising the same
JP5178771B2 (en) Freezer refrigerator
KR101737365B1 (en) Air conditioner
JP2013104623A (en) Refrigeration cycle device and air conditioner with the same
JPWO2018078800A1 (en) Heat exchanger and refrigeration cycle device
JP5447438B2 (en) refrigerator
JP5492845B2 (en) refrigerator
JP6524670B2 (en) Air conditioner
KR101899220B1 (en) Air Conditioner
JP6045204B2 (en) Heat exchange system
JP5511897B2 (en) Refrigeration cycle apparatus and refrigerator, low-temperature apparatus, and air conditioner using this refrigeration cycle apparatus
JP5267614B2 (en) refrigerator
JP2008121997A (en) Air conditioner
JP2013253726A5 (en)
KR101392856B1 (en) an air conditioner with water-cooled heat exchange without an outside-equipment
JP2020153604A (en) Refrigeration cycle device
JPWO2016166873A1 (en) Heat pump system
JP4989756B2 (en) refrigerator
JP2011012844A (en) Refrigerating cycle device
JP5501094B2 (en) Refrigeration cycle apparatus and refrigerator, low-temperature apparatus, and air conditioner using this refrigeration cycle apparatus
JP7341341B2 (en) air conditioner

Legal Events

Date Code Title Description
A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20111202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120427

R151 Written notification of patent or utility model registration

Ref document number: 4989756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250