JP5873768B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5873768B2
JP5873768B2 JP2012144934A JP2012144934A JP5873768B2 JP 5873768 B2 JP5873768 B2 JP 5873768B2 JP 2012144934 A JP2012144934 A JP 2012144934A JP 2012144934 A JP2012144934 A JP 2012144934A JP 5873768 B2 JP5873768 B2 JP 5873768B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
hot water
way valve
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012144934A
Other languages
Japanese (ja)
Other versions
JP2014009827A (en
Inventor
俊和 中倉
俊和 中倉
正巳 山口
正巳 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2012144934A priority Critical patent/JP5873768B2/en
Publication of JP2014009827A publication Critical patent/JP2014009827A/en
Application granted granted Critical
Publication of JP5873768B2 publication Critical patent/JP5873768B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、夏期には冷媒循環による冷房運転を、冬期には冷媒循環による暖房運転と床暖房等の温水循環による温水暖房運転を同時に行う空気調和機に関するものである。   The present invention relates to an air conditioner that simultaneously performs a cooling operation by refrigerant circulation in summer and a heating operation by refrigerant circulation and hot water heating operation by hot water circulation such as floor heating in winter.

従来の空気調和機では、室外機を水平仕切板で上下に分割し、この仕切板の下部に冷凍回路室を、上部に温水回路室を形成し、前記冷凍回路室には圧縮機、膨張弁、蒸発器、送風ファン等を備え、前記温水回路室には水−冷媒熱交換器、温水タンク、循環ポンプと温水ヘッダーを備え、この温水ヘッダーと室内熱交換器を備えた室内機を温水連絡配管にて接続し、前記圧縮機、水−冷媒熱交換器、膨張弁、蒸発器等を接続して冷媒循環回路を形成し、前記水−冷媒熱交換器、温水タンク、循環ポンプ、温水連絡配管、室内熱交換器を接続して温水循環回路を形成し、前記冷媒循環回路にて蒸発器から汲み上げた熱を、水−冷媒熱交換器で温水循環経路に伝達し、前記室内熱交換器にて室内へ放熱して暖房を行うヒートポンプ式温水暖房装置に於いて、前記蒸発器をフィンチューブ式の熱交換器で形成し、前記水−冷媒熱交換器と膨張弁の間の冷媒循環回路に放熱器を前記蒸発器と一体に設けると共に、前記放熱器を蒸発器の風下側下端に位置させたことによって、暖房運転時の除霜運転で霜の溶け残りを防止することができ、除霜の効率を向上させることができる。
また、吐出圧力の上昇を抑え、圧縮機の消費電力増加を抑えることができ、高COPを実現できるものだった。(例えば、特許文献1参照)
In a conventional air conditioner, an outdoor unit is divided into upper and lower parts by a horizontal partition plate, a refrigeration circuit chamber is formed at the lower part of this partition plate, and a hot water circuit chamber is formed at the upper part. The hot water circuit room is equipped with a water-refrigerant heat exchanger, a hot water tank, a circulation pump and a hot water header. The indoor unit equipped with the hot water header and the indoor heat exchanger is connected with hot water. Connected by piping, connecting the compressor, water-refrigerant heat exchanger, expansion valve, evaporator, etc. to form a refrigerant circulation circuit, water-refrigerant heat exchanger, hot water tank, circulation pump, hot water communication A pipe and an indoor heat exchanger are connected to form a hot water circulation circuit, and the heat pumped up from the evaporator in the refrigerant circulation circuit is transmitted to the hot water circulation path by the water-refrigerant heat exchanger, and the indoor heat exchanger Heat pump type hot water heating system that heats indoors with heat The evaporator is formed by a fin tube type heat exchanger, and a radiator is provided integrally with the evaporator in a refrigerant circulation circuit between the water-refrigerant heat exchanger and an expansion valve. By being positioned at the lower end on the leeward side of the evaporator, it is possible to prevent frost from remaining in the defrosting operation during the heating operation and to improve the efficiency of the defrosting.
Further, it was possible to suppress an increase in discharge pressure, suppress an increase in power consumption of the compressor, and realize a high COP. (For example, see Patent Document 1)

特開2010-144965号公報JP 2010-144965 A

この従来例のヒートポンプ式温水暖房装置の室外熱交換器は、暖房運転では圧縮機の消費電力増加を抑えることができ、高COPを実現できるものだったが、この冷凍回路を利用して、水−冷媒熱交換器に並列に室内機のを接続する冷媒回路を設け、室内機にて冷房運転を行った場合には、室外熱交換器の熱い上側冷媒流通経路から冷たい下側冷媒流通経路に熱が流れることで、室内機の冷却効果が大幅に損なわれるものだった。   The outdoor heat exchanger of the heat pump type hot water heating apparatus of this conventional example can suppress an increase in power consumption of the compressor in the heating operation, and can realize a high COP. -When a refrigerant circuit that connects the indoor unit in parallel to the refrigerant heat exchanger is provided and cooling operation is performed in the indoor unit, the hot upper refrigerant circulation path of the outdoor heat exchanger is changed to the cold lower refrigerant circulation path. The cooling effect of the indoor unit was greatly impaired by the flow of heat.

この発明はこの点に着目し上記欠点を解決する為、特にその構成を、室外機の下部に冷凍回路室を、上部に温水回路室を形成し、前記冷凍回路室には圧縮機、四方弁、膨張弁、室外熱交換器、冷媒接続バルブ、送風ファン等を備え、前記冷媒接続バルブと冷暖房用熱交換器を備えた室内機を、冷媒連絡配管にて接続して冷媒循環回路を形成し、前記温水回路室には水−冷媒熱交換器、温水タンク、循環ポンプと温水ヘッダー等を備え、この温水ヘッダーと床暖房等の暖房用熱交換器を備えた温水暖房機を温水連絡配管にて接続して温水循環回路を形成し、前記冷媒循環回路の切換によって室内機で冷房運転や暖房運転を行い、前記温水循環回路によって温水暖房を行う空気調和機に於いて、前記冷媒循環回路は四方弁と水−冷媒熱交換器の間に第1三方弁を、水−冷媒熱交換器と室外熱交換器の間に第2三方弁を設け、この第2三方弁と室外熱交換器の間に第1膨張弁を設け、前記室外熱交換器はフィンチューブ式の熱交換器で形成すると共に、冷媒流通経路を上下に分割し、上側冷媒流通経路と下側冷媒流通経路の間に第2膨張弁を設け、暖房運転時には前記第1三方弁と第2三方弁は水−冷媒熱交換器側と室内機側の両方に冷媒を振り分けると共に、第1膨張弁は全開し、第2膨張弁を絞ることで前記上側冷媒流通経路は低温になり、前記下側冷媒流通経路は高温になり、上側冷媒流通経路を加熱して室内機での暖房と温水暖房を同時に行い、冷房運転時には第1三方弁と第2三方弁は室内機側のみに冷媒を流すと共に、第2膨張弁は全開し、第1膨張弁を絞ることで上側冷媒流通経路と下側冷媒流通経路を共に高温にして室内機のみで冷房するものである。 The present invention pays attention to this point and solves the above-mentioned drawbacks. In particular, the configuration is such that a refrigeration circuit chamber is formed in the lower part of the outdoor unit, and a hot water circuit chamber is formed in the upper part. An expansion valve, an outdoor heat exchanger, a refrigerant connection valve, a blower fan, etc., and an indoor unit provided with the refrigerant connection valve and the heat exchanger for air conditioning is connected by a refrigerant communication pipe to form a refrigerant circulation circuit. The hot water circuit room is equipped with a water-refrigerant heat exchanger, a hot water tank, a circulation pump and a hot water header, etc., and the hot water heater equipped with the hot water header and a heating heat exchanger such as floor heating is used as a hot water communication pipe. Connected to each other to form a hot water circulation circuit, an air conditioner that performs cooling operation or heating operation in an indoor unit by switching the refrigerant circulation circuit, and performs hot water heating by the hot water circulation circuit, the refrigerant circulation circuit is Between the four-way valve and the water-refrigerant heat exchanger The first three-way valve is provided with a second three-way valve between the water-refrigerant heat exchanger and the outdoor heat exchanger, and a first expansion valve is provided between the second three-way valve and the outdoor heat exchanger. The exchanger is formed of a fin tube type heat exchanger, and the refrigerant circulation path is divided into upper and lower parts, and a second expansion valve is provided between the upper refrigerant circulation path and the lower refrigerant circulation path, and the first The three-way valve and the second three-way valve distribute the refrigerant to both the water-refrigerant heat exchanger side and the indoor unit side, the first expansion valve is fully opened, and the second expansion valve is throttled to lower the upper refrigerant flow path. The lower refrigerant flow path becomes high temperature, the upper refrigerant flow path is heated to perform heating in the indoor unit and hot water heating at the same time, and during the cooling operation, the first three-way valve and the second three-way valve are on the indoor unit side. The second expansion valve is fully opened and the first expansion valve is throttled so that the upper refrigerant flows. It is to cool only the indoor unit through path and the lower refrigerant flow path together with a high temperature.

この発明によれば、暖房運転では除霜運転での溶け残りを防止することができ、除霜の効率を向上させることができる。吐出圧力の上昇を抑え、圧縮機の消費電力増加を抑えることができ、高COPを実現できる。ものであり、冷房運転では室内機の効率の低下を防止することができるものである。   According to this invention, in the heating operation, it is possible to prevent unmelted residue in the defrosting operation, and it is possible to improve the efficiency of the defrosting. An increase in discharge pressure can be suppressed, an increase in power consumption of the compressor can be suppressed, and a high COP can be realized. Therefore, the cooling operation can prevent a decrease in the efficiency of the indoor unit.

この発明一実施例の概略説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 同要部の説明図。Explanatory drawing of the principal part.

次に、この発明に係る空気調和機を図面に示された一実施例で説明する。
1は空気調和機の室外機で、水平仕切板2にて上下2室に分けられ、下部には冷凍回路室3を、上部には温水回路室4を備え、冷媒連絡配管5によって室内機6と、温水連絡配管7によって床暖房パネル8と接続されている。
前記冷凍回路室3の内部には圧縮機9、四方弁10、
室外熱交換器11、膨張弁12、送風ファン13と冷凍回路制御部14等を設けている。
前記温水回路室4の内部には、水−冷媒熱交換器15、補助ヒータ16、温水タンク17、循環ポンプ18、温水ヘッダー19と温水回路制御部20等を設けている。
前記室内機6内にはフィンチューブ式の室内熱交換器21と室内送風ファン22と室内制御部23を備えている。
Next, an air conditioner according to the present invention will be described with reference to an embodiment shown in the drawings.
Reference numeral 1 denotes an outdoor unit of an air conditioner, which is divided into two upper and lower chambers by a horizontal partition plate 2, which includes a refrigeration circuit chamber 3 at a lower portion and a hot water circuit chamber 4 at an upper portion. Are connected to the floor heating panel 8 by a hot water communication pipe 7.
Inside the refrigeration circuit chamber 3, a compressor 9, a four-way valve 10,
An outdoor heat exchanger 11, an expansion valve 12, a blower fan 13, a refrigeration circuit control unit 14, and the like are provided.
Inside the hot water circuit chamber 4, a water-refrigerant heat exchanger 15, an auxiliary heater 16, a hot water tank 17, a circulation pump 18, a hot water header 19, a hot water circuit control unit 20, and the like are provided.
The indoor unit 6 includes a fin tube type indoor heat exchanger 21, an indoor fan 22, and an indoor controller 23.

24は前記圧縮機9と四方弁10、水−冷媒熱交換器15、膨張弁12、室外熱交換器11を冷媒配管25で連通した冷凍回路で、前記四方弁10と水−冷媒熱交換器15の間には第1三方弁26を、水−冷媒熱交換器15と室外熱交換器11の間に第2三方弁27を設けている。
前記第1三方弁26と第2三方弁27は冷媒接続バルブ28と前記冷媒連絡配管5を介して室内熱交換器21と接続される。
Reference numeral 24 denotes a refrigeration circuit in which the compressor 9, the four-way valve 10, the water-refrigerant heat exchanger 15, the expansion valve 12, and the outdoor heat exchanger 11 are communicated with each other through a refrigerant pipe 25. The four-way valve 10 and the water-refrigerant heat exchanger are connected to each other. 15 is provided with a first three-way valve 26, and a second three-way valve 27 is provided between the water-refrigerant heat exchanger 15 and the outdoor heat exchanger 11.
The first three-way valve 26 and the second three-way valve 27 are connected to the indoor heat exchanger 21 via the refrigerant connection valve 28 and the refrigerant communication pipe 5.

前記室外熱交換器11は多数の薄板状アルミニューム製フィンを銅管で貫通したフィンチューブ式の熱交換器で、冷媒流通経路を上下に分割し、上側冷媒流通経路29は大きく、その下部に比較的小さな下側冷媒流通経路30を設けている。   The outdoor heat exchanger 11 is a fin tube type heat exchanger in which a large number of thin aluminum fins are penetrated by copper pipes, and the refrigerant circulation path is divided into upper and lower parts, the upper refrigerant circulation path 29 is large, and the lower part thereof A relatively small lower refrigerant flow path 30 is provided.

前記第2三方弁27と下側冷媒流通経路30の間には第1膨張弁12aを、前記上側冷媒流通経路29と下側冷媒流通経路30の間には第2膨張弁12bを設け、暖房運転時には第1膨張弁12aは全開され、第2膨張弁12bは圧縮機9の回転数や冷凍回路の状態に応じて冷凍回路制御部14からの指令に応じた開度で絞られ、水−冷媒熱交換15や室内熱交換器21から戻った比較的熱い冷媒が下側冷媒流通経路30を加熱した後、第2膨張弁12bで絞られて減圧することで低温になった冷媒が上側冷媒流通経路29を低温にして空気から吸熱し圧縮機9へ送られる。ここでは、下側冷媒流通経路30によって吐出圧力の上昇を抑えことができるので、圧縮機9の消費電力増加を抑えることができ、高COPを実現できる。また、除霜運転での溶け残りを防止することができ、除霜の効率を向上させることができるものである。   A first expansion valve 12a is provided between the second three-way valve 27 and the lower refrigerant circulation path 30, and a second expansion valve 12b is provided between the upper refrigerant circulation path 29 and the lower refrigerant circulation path 30, for heating. During operation, the first expansion valve 12a is fully opened, and the second expansion valve 12b is throttled at an opening degree according to a command from the refrigeration circuit control unit 14 according to the number of revolutions of the compressor 9 and the state of the refrigeration circuit. After the relatively hot refrigerant returned from the refrigerant heat exchanger 15 and the indoor heat exchanger 21 heats the lower refrigerant flow path 30, the refrigerant that has been cooled down by being squeezed and depressurized by the second expansion valve 12b becomes the upper refrigerant. The flow path 29 is cooled to absorb heat from the air and sent to the compressor 9. Here, since an increase in discharge pressure can be suppressed by the lower refrigerant flow path 30, an increase in power consumption of the compressor 9 can be suppressed, and a high COP can be realized. Further, it is possible to prevent unmelted residue in the defrosting operation and improve the efficiency of defrosting.

冷房運転時には第2膨張弁12bは全開され、第1膨張弁12aは圧縮機9の回転数や冷凍回路の状態に応じて冷凍回路制御部14からの指令に応じた開度で絞られ、圧縮機9から高温の冷媒が上側冷媒流通経路29、第2膨張弁12b、下側冷媒流通経路30へ流れ空気に放熱する、その後第1膨張弁12aで減圧され、第2三方弁27から室内熱交換器21へ流れ、室内機6で室内の冷房が行われる。冷房運転では水−冷媒熱交換器15へは冷媒は流れず、全部の能力は室内機6の冷房運転に使用されるものである。   During the cooling operation, the second expansion valve 12b is fully opened, and the first expansion valve 12a is throttled at an opening degree according to a command from the refrigeration circuit control unit 14 according to the rotational speed of the compressor 9 and the state of the refrigeration circuit, and compressed. A high-temperature refrigerant flows from the machine 9 to the upper refrigerant flow path 29, the second expansion valve 12b, and the lower refrigerant flow path 30 to radiate heat to the air, and is then depressurized by the first expansion valve 12a. After flowing to the exchanger 21, the indoor unit 6 cools the room. In the cooling operation, the refrigerant does not flow to the water-refrigerant heat exchanger 15, and the entire capacity is used for the cooling operation of the indoor unit 6.

31は前記水−冷媒熱交換器15と補助ヒータ16、温水タンク17、循環ポンプ18とを、前記温水ヘッダー19と温水連絡配管7を介して床暖房パネル8に温水配管32で連通した温水回路で、前記循環ポンプ18と温水ヘッダー19の間と、温水ヘッダー19と水−冷媒熱交換器15の間をバイパス回路33で接続して温水の循環量を調整している。   Reference numeral 31 denotes a hot water circuit in which the water-refrigerant heat exchanger 15, the auxiliary heater 16, the hot water tank 17, and the circulation pump 18 are communicated with the floor heating panel 8 through the hot water header 19 and the hot water connection pipe 7 through the hot water pipe 32. Thus, the circulation amount of the warm water is adjusted by connecting the circulation pump 18 and the warm water header 19 and between the warm water header 19 and the water-refrigerant heat exchanger 15 by the bypass circuit 33.

前記室内熱交換器21と水−冷媒熱交換器15は冷凍回路24に対して並列に接続されており、二つの三方弁26・27と四方弁10の切換で、冷房運転時には室内熱交換器21側のみに冷媒を循環させて室内を冷房し、暖房運転時には室内熱交換器21と水−冷媒熱交換器15の両方に冷媒を循環させて室内機6では温風による暖房運転を、床暖房パネル8では温水循環による床暖房運転を同時又はどちらか一方のみで暖房運転を行うものである。   The indoor heat exchanger 21 and the water-refrigerant heat exchanger 15 are connected in parallel to the refrigeration circuit 24. By switching between the two three-way valves 26 and 27 and the four-way valve 10, the indoor heat exchanger is operated during cooling operation. The refrigerant is circulated only to the 21 side to cool the room, and during the heating operation, the refrigerant is circulated to both the indoor heat exchanger 21 and the water-refrigerant heat exchanger 15, and the indoor unit 6 performs the heating operation by warm air, The heating panel 8 performs the floor heating operation by circulating hot water at the same time or only one of them.

前記圧縮機9は冷凍回路制御部14に備えたインバータ駆動回路(図示せず)にて必要な熱量に応じて多段階に回転数を変化するものである。
前記膨張弁12a・12bは電子式の膨張弁で圧縮機9の回転数や冷凍回路の各部温度等によって冷凍回路制御部14にて開度が制御されるものである。
前記送風ファン13は樹脂製のプロペラファンで、回転数可変の送風モータ(図示せず)によって回転し、前記室外熱交換器11に送風して熱交換を行うものである。
The compressor 9 changes the rotational speed in multiple stages according to the amount of heat required by an inverter drive circuit (not shown) provided in the refrigeration circuit control unit 14.
The expansion valves 12a and 12b are electronic expansion valves whose opening degree is controlled by the refrigeration circuit control unit 14 according to the rotational speed of the compressor 9, the temperature of each part of the refrigeration circuit, and the like.
The blower fan 13 is a resin propeller fan, which is rotated by a blower motor (not shown) having a variable number of rotations, and blows air to the outdoor heat exchanger 11 to perform heat exchange.

前記室内機6は室内送風ファン22の駆動で、前面及び上面に備えた吸込口(図示せず)から室内の空気を吸い込んで、前記室内熱交換器21で熱交換した後、前面下部に備えた吹出口(図示せず)から室内へ温度調整された空気を送風するものである。
34は室内機6と冷媒連絡配管5を接続する冷媒接続バルブである。
The indoor unit 6 is driven by an indoor blower fan 22 and sucks indoor air from a suction port (not shown) provided on the front surface and the upper surface, and exchanges heat with the indoor heat exchanger 21, and then is provided at the lower front surface. The air whose temperature is adjusted is blown into the room from the air outlet (not shown).
A refrigerant connection valve 34 connects the indoor unit 6 and the refrigerant communication pipe 5.

前記水−冷媒熱交換器15は、外管の内部に内管を挿入した二重管で構成されている。内管の外表面は、多数のフィンを立設し、内管の内外における熱交換効率を高めるように構成されている。この二重管の内管内部を水が通過する温水経路(図示せず)とし、内管と外管との間を冷媒が通過する冷媒経路(図示せず)とすることにより、冷媒と水との間で熱交換して通過する水を加熱することが可能となる。   The water-refrigerant heat exchanger 15 is composed of a double pipe having an inner pipe inserted into the outer pipe. The outer surface of the inner pipe is configured so that a large number of fins are erected to increase the heat exchange efficiency inside and outside the inner pipe. By making a hot water path (not shown) through which water passes inside the inner pipe of the double pipe and a refrigerant path (not shown) through which refrigerant passes between the inner pipe and the outer pipe, It is possible to heat the water passing through the heat exchange.

35は前記圧縮機9吐出側の冷媒配管に取り付けられた吐出温センサで、圧縮機9の吐出温度を測定し、前記冷凍回路制御部14へ信号を送る。36は冷凍回路室3内の室外送風経路(図示せず)の上流側に設けられた外気温センサで、外気温を測定する。37は前記室外熱交換器11に取り付けられ室外熱交換器11の温度を測定して、除霜運転を制御するための熱交センサである。38は水−冷媒熱交換器15の中程に取り付けられ、冷媒の温度を測定する冷媒中間センサである。   Reference numeral 35 denotes a discharge temperature sensor attached to the refrigerant pipe on the discharge side of the compressor 9, which measures the discharge temperature of the compressor 9 and sends a signal to the refrigeration circuit control unit 14. Reference numeral 36 denotes an outside air temperature sensor provided on the upstream side of an outdoor air flow path (not shown) in the refrigeration circuit chamber 3, and measures the outside air temperature. Reference numeral 37 denotes a heat exchange sensor that is attached to the outdoor heat exchanger 11 and measures the temperature of the outdoor heat exchanger 11 to control the defrosting operation. Reference numeral 38 denotes a refrigerant intermediate sensor that is attached to the middle of the water-refrigerant heat exchanger 15 and measures the temperature of the refrigerant.

39は前記水−冷媒熱交換器15と補助ヒータ16の間の温水配管に取り付けられ配管温度を測定する往き温水センサ。40は前記補助ヒータ16と温水タンク17の間の温水配管に取り付けられ配管温度を測定するヒータ配管センサ。41は床暖房パネル8と水−冷媒熱交換器15の間の温水配管に取り付けられ配管温度を測定する戻り温水センサである。42は補助ヒータ16の過熱を検知する安全サーモで、補助ヒータ16の上面に2つ取り付けられている。43は室内空気の吸込側に設けた室温センサ。   Reference numeral 39 denotes a forward hot water sensor which is attached to a hot water pipe between the water-refrigerant heat exchanger 15 and the auxiliary heater 16 and measures the pipe temperature. A heater pipe sensor 40 is attached to a hot water pipe between the auxiliary heater 16 and the hot water tank 17 and measures the pipe temperature. Reference numeral 41 denotes a return hot water sensor which is attached to a hot water pipe between the floor heating panel 8 and the water-refrigerant heat exchanger 15 and measures the pipe temperature. A safety thermostat 42 detects overheating of the auxiliary heater 16, and two are attached to the upper surface of the auxiliary heater 16. 43 is a room temperature sensor provided on the indoor air suction side.

冷房運転について説明すれば、冷房運転時には第2膨張弁12bは全開され、第1膨張弁12aは圧縮機9の回転数や冷凍回路の状態に応じて冷凍回路制御部14からの指令に応じた開度で絞られ、圧縮機9から四方弁10を経由して高温の冷媒が上側冷媒流通経路29、第2膨張弁12b、下側冷媒流通経路30へ流れ、凝縮器として作用する高温の上側冷媒流通経路29と下側冷媒流通経路30へ送風ファン13にて外気が送られることで放熱する。その後第1膨張弁12aで減圧され、第2三方弁27から室内熱交換器21へ流れ、室内機6では室内熱交換器21が低温になり室内送風ファン22で熱交換された冷たい空気が室内に吹き出され、冷房が行われる。冷房運転では三方弁26・27によって水−冷媒熱交換器15へは冷媒は流れず、全部の能力は室内機6の冷房運転に使用されるものである。   Explaining the cooling operation, the second expansion valve 12b is fully opened during the cooling operation, and the first expansion valve 12a responds to a command from the refrigeration circuit control unit 14 according to the rotational speed of the compressor 9 and the state of the refrigeration circuit. The high-temperature upper side, which is throttled by the opening degree, flows from the compressor 9 via the four-way valve 10 to the upper refrigerant flow path 29, the second expansion valve 12b, and the lower refrigerant flow path 30, and acts as a condenser. Heat is dissipated by the outside air being sent by the blower fan 13 to the refrigerant flow path 29 and the lower refrigerant flow path 30. Thereafter, the pressure is reduced by the first expansion valve 12a and flows from the second three-way valve 27 to the indoor heat exchanger 21. In the indoor unit 6, the indoor heat exchanger 21 becomes a low temperature, and the cold air heat-exchanged by the indoor fan 22 is indoors. The air is blown out. In the cooling operation, the refrigerant does not flow to the water-refrigerant heat exchanger 15 by the three-way valves 26 and 27, and the entire capacity is used for the cooling operation of the indoor unit 6.

暖房運転について説明すれば、圧縮機9から吐出された冷媒は四方弁10で暖房側に切り替えられ、第1三方弁26で水−冷媒熱交換器15側と室内機6側に振り分けられる。水−冷媒熱交換器15によって温水回路31の温水を加熱して床暖房パネル8内に流れる温水で床暖房が行われると同時に、室内熱交換器21にも高温の冷媒が流れ、室内機6にて温風による暖房が行われる。暖房運転時の三方弁26・27における冷媒の配分は、室内機6と床暖房の温度設定によって異なり、例えば暖房運転の開始時には温風による暖房の方が床暖房に比べ室温上昇が速くできるので、室内機6側の冷媒を多くして運転をし、室温が設定温度まで上昇した時に徐々に床暖房の温水側に冷媒量を多くするような制御が行われる。暖房運転時には第1膨張弁12aは全開され、第2膨張弁12bは圧縮機9の回転数や冷凍回路の状態に応じて冷凍回路制御部14からの指令に応じた開度で絞られ、水−冷媒熱交換15や室内熱交換器21から戻った比較的熱い冷媒が下側冷媒流通経路30を加熱した後、第2膨張弁12bで絞られて減圧することで低温になった冷媒が上側冷媒流通経路29を低温にして空気から吸熱し圧縮機9へ送られる。ここでは、下側冷媒流通経路30によって吐出圧力の上昇を抑えことができるので、圧縮機9の消費電力増加を抑えることができ、高COPを実現できる。また、除霜運転での溶け残りを防止することができ、除霜の効率を向上させることができるものである。   Explaining the heating operation, the refrigerant discharged from the compressor 9 is switched to the heating side by the four-way valve 10, and is distributed to the water-refrigerant heat exchanger 15 side and the indoor unit 6 side by the first three-way valve 26. The hot water in the hot water circuit 31 is heated by the water-refrigerant heat exchanger 15 and floor heating is performed with the hot water flowing in the floor heating panel 8. At the same time, a high-temperature refrigerant flows in the indoor heat exchanger 21, and the indoor unit 6 Heating with warm air is performed at The distribution of the refrigerant in the three-way valves 26 and 27 during the heating operation differs depending on the temperature setting of the indoor unit 6 and the floor heating. For example, at the start of the heating operation, heating with warm air can increase the room temperature faster than floor heating. The operation is performed by increasing the refrigerant on the indoor unit 6 side and gradually increasing the refrigerant amount to the hot water side of the floor heating when the room temperature rises to the set temperature. During the heating operation, the first expansion valve 12a is fully opened, and the second expansion valve 12b is throttled at an opening degree according to a command from the refrigeration circuit control unit 14 according to the rotational speed of the compressor 9 and the state of the refrigeration circuit. -After the relatively hot refrigerant returned from the refrigerant heat exchange 15 or the indoor heat exchanger 21 heats the lower refrigerant flow path 30, the refrigerant that has been cooled down by the second expansion valve 12b and depressurized becomes the upper side. The refrigerant flow path 29 is cooled to absorb heat from the air and sent to the compressor 9. Here, since an increase in discharge pressure can be suppressed by the lower refrigerant flow path 30, an increase in power consumption of the compressor 9 can be suppressed, and a high COP can be realized. Further, it is possible to prevent unmelted residue in the defrosting operation and improve the efficiency of defrosting.

このように、暖房運転では除霜運転での溶け残りを防止することができ、除霜の効率を向上させることができる。吐出圧力の上昇を抑え、圧縮機の消費電力増加を抑えることができ、高COPを実現できる。ものであり、冷房運転では室内機の効率の低下を防止することができるものである。   Thus, in heating operation, unmelted residue in the defrosting operation can be prevented, and the efficiency of defrosting can be improved. An increase in discharge pressure can be suppressed, an increase in power consumption of the compressor can be suppressed, and a high COP can be realized. Therefore, the cooling operation can prevent a decrease in the efficiency of the indoor unit.

1 室外機
6 室内機
8 床暖房パネル
9 圧縮機
11 室外熱交換器
12a 第1膨張弁
12b 第2膨張弁
15 水−冷媒熱交換器
21 室内熱交換器
29 上側冷媒流通経路
30 下側冷媒流通経路
1 outdoor unit 6 indoor unit 8 floor heating panel 9 compressor 11 outdoor heat exchanger 12a first expansion valve 12b second expansion valve 15 water-refrigerant heat exchanger 21 indoor heat exchanger 29 upper refrigerant flow path 30 lower refrigerant flow Route

Claims (1)

室外機の下部に冷凍回路室を、上部に温水回路室を形成し、前記冷凍回路室には圧縮機、四方弁、膨張弁、室外熱交換器、冷媒接続バルブ、送風ファン等を備え、前記冷媒接続バルブと冷暖房用熱交換器を備えた室内機を、冷媒連絡配管にて接続して冷媒循環回路を形成し、前記温水回路室には水−冷媒熱交換器、温水タンク、循環ポンプと温水ヘッダー等を備え、この温水ヘッダーと床暖房等の暖房用熱交換器を備えた温水暖房機を温水連絡配管にて接続して温水循環回路を形成し、前記冷媒循環回路の切換によって室内機で冷房運転や暖房運転を行い、前記温水循環回路によって温水暖房を行う空気調和機に於いて、前記冷媒循環回路は四方弁と水−冷媒熱交換器の間に第1三方弁を、水−冷媒熱交換器と室外熱交換器の間に第2三方弁を設け、この第2三方弁と室外熱交換器の間に第1膨張弁を設け、前記室外熱交換器はフィンチューブ式の熱交換器で形成すると共に、冷媒流通経路を上下に分割し、上側冷媒流通経路と下側冷媒流通経路の間に第2膨張弁を設け、暖房運転時には前記第1三方弁と第2三方弁は水−冷媒熱交換器側と室内機側の両方に冷媒を振り分けると共に、第1膨張弁は全開し、第2膨張弁を絞ることで前記上側冷媒流通経路は低温になり、前記下側冷媒流通経路は高温になり、上側冷媒流通経路を加熱して室内機での暖房と温水暖房を同時に行い、冷房運転時には第1三方弁と第2三方弁は室内機側のみに冷媒を流すと共に、第2膨張弁は全開し、第1膨張弁を絞ることで上側冷媒流通経路と下側冷媒流通経路を共に高温にして室内機のみで冷房することを特徴とする空気調和機。 A refrigeration circuit room is formed in the lower part of the outdoor unit, and a hot water circuit room is formed in the upper part.The refrigeration circuit room includes a compressor, a four-way valve, an expansion valve, an outdoor heat exchanger, a refrigerant connection valve, a blower fan, etc. An indoor unit equipped with a refrigerant connection valve and an air conditioner heat exchanger is connected by a refrigerant communication pipe to form a refrigerant circulation circuit. The hot water circuit chamber includes a water-refrigerant heat exchanger, a hot water tank, a circulation pump, A hot water header provided with a hot water header and the like, and a hot water heater equipped with a heat exchanger for heating such as floor heating are connected by a hot water communication pipe to form a hot water circulation circuit, and the indoor unit is switched by switching the refrigerant circulation circuit In the air conditioner that performs cooling operation or heating operation in the air conditioner and performs hot water heating by the hot water circulation circuit, the refrigerant circulation circuit includes a first three-way valve between a four-way valve and a water-refrigerant heat exchanger, The second three-way valve between the refrigerant heat exchanger and the outdoor heat exchanger A first expansion valve is provided between the second three-way valve and the outdoor heat exchanger, and the outdoor heat exchanger is formed of a fin-tube heat exchanger, and the refrigerant flow path is divided vertically, A second expansion valve is provided between the refrigerant flow path and the lower refrigerant flow path, and during the heating operation, the first three-way valve and the second three-way valve distribute the refrigerant to both the water-refrigerant heat exchanger side and the indoor unit side. At the same time, the first expansion valve is fully opened, and the second expansion valve is throttled to lower the temperature of the upper refrigerant flow path, the temperature of the lower refrigerant flow path becomes high, and the upper refrigerant flow path is heated to indoor units. In the cooling operation, the first three-way valve and the second three-way valve flow the refrigerant only to the indoor unit side, the second expansion valve is fully opened, and the first expansion valve is throttled to restrict the upper refrigerant. distribution channels and the lower refrigerant flow path together with the high temperature cooling only indoor unit An air conditioner characterized by and.
JP2012144934A 2012-06-28 2012-06-28 Air conditioner Expired - Fee Related JP5873768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012144934A JP5873768B2 (en) 2012-06-28 2012-06-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012144934A JP5873768B2 (en) 2012-06-28 2012-06-28 Air conditioner

Publications (2)

Publication Number Publication Date
JP2014009827A JP2014009827A (en) 2014-01-20
JP5873768B2 true JP5873768B2 (en) 2016-03-01

Family

ID=50106693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012144934A Expired - Fee Related JP5873768B2 (en) 2012-06-28 2012-06-28 Air conditioner

Country Status (1)

Country Link
JP (1) JP5873768B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6303872B2 (en) * 2013-09-08 2018-04-04 日本軽金属株式会社 Air conditioning system
WO2016002111A1 (en) * 2014-06-30 2016-01-07 正 岡本 Cooling and heating air-conditioning system
CN104807247A (en) * 2015-02-12 2015-07-29 陈志强 Continuous supplying device for hot water of air conditioner
JP7210609B2 (en) * 2018-11-28 2023-01-23 三菱電機株式会社 air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07848Y2 (en) * 1987-04-24 1995-01-11 三菱重工業株式会社 Heat pump type air conditioner
JP2003322387A (en) * 2002-04-26 2003-11-14 Sanyo Electric Co Ltd Air conditioning system
JP2010144965A (en) * 2008-12-17 2010-07-01 Corona Corp Heat pump type hot-water heater

Also Published As

Publication number Publication date
JP2014009827A (en) 2014-01-20

Similar Documents

Publication Publication Date Title
JP5411777B2 (en) Hot water heater
WO2014112322A1 (en) Air conditioner
JP5749210B2 (en) Air conditioner
JP2012030699A5 (en)
JP2012141113A (en) Air conditioning/water heating device system
JP5873768B2 (en) Air conditioner
US20180023818A1 (en) Heat pump system
WO2013157402A1 (en) Air conditioner
JP6092731B2 (en) Air conditioner
JP2014190645A (en) Air conditioner
JP2014040954A (en) Heat pump-type hot water heating device
JP2017089950A (en) Air Conditioning System
JP6907653B2 (en) Air conditioning system
KR20130112335A (en) A air conditioning system without an outside-equipment
JP6039871B2 (en) Air conditioner
JP2013257079A (en) Air conditioner
JP6906865B2 (en) Air conditioning system
KR101794449B1 (en) Air conditioner
JP2010144965A (en) Heat pump type hot-water heater
JP6401622B2 (en) Air conditioner
JP6492580B2 (en) Hot water supply air conditioning system
JP2006017440A (en) Heat pump air conditioner
JP2013117344A (en) Heat-pump heater
JP6363538B2 (en) Air conditioning system
KR102042218B1 (en) Heat Pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R150 Certificate of patent or registration of utility model

Ref document number: 5873768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees