JP2009074736A - Heat pump type hot water supply device - Google Patents

Heat pump type hot water supply device Download PDF

Info

Publication number
JP2009074736A
JP2009074736A JP2007243583A JP2007243583A JP2009074736A JP 2009074736 A JP2009074736 A JP 2009074736A JP 2007243583 A JP2007243583 A JP 2007243583A JP 2007243583 A JP2007243583 A JP 2007243583A JP 2009074736 A JP2009074736 A JP 2009074736A
Authority
JP
Japan
Prior art keywords
hot water
heat pump
water supply
pipe
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007243583A
Other languages
Japanese (ja)
Inventor
Motoi Abe
基 阿部
Yuukai Matsumoto
悠介 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2007243583A priority Critical patent/JP2009074736A/en
Publication of JP2009074736A publication Critical patent/JP2009074736A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently perform an antifreezing operation, with respect to a heat pump type hot water supply device comprising a hot water storage tank for storing the hot water produced by a heat pump unit and supplying hot water to a prescribed hot water supply spot. <P>SOLUTION: This heat pump type hot water supply device comprises a heat pump going pipe 9 connecting a lower portion of the hot water storage tank 2 and a refrigerant-water heat exchanger 5, a heat pump returning pipe 12 connecting the refrigerant-water heat exchanger and an upper portion of the hot water storage tank, a water supply pipe 11 connecting a lower portion of the hot water storage tank and a water line, and a circulation pump 10 disposed in the heat pump going pipe. A heat pump circulation circuit is formed by connecting the hot water storage tank, the heat pump going pipe, the refrigerant-water heat exchanger and the heat pump returning pipe, a three-way valve 13 is disposed in the heat pump returning pipe, an antifreezing bypass circuit is formed by connecting the three-way valve and the water supply pipe by a bypass pipe 14, and the heat pump circulation circuit, the antifreezing bypass circuit and a circuit for making the heat pump circulation circuit and the antifreezing bypass circuit simultaneously communicate, are switchable by the three-way valve. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、ヒートポンプユニットで生成された温水を貯留すると共に、所定の給湯箇所に給湯するための貯湯タンクを備えたヒートポンプ式給湯装置に関するもので、特にヒートポンプユニットおよび貯湯タンクを環状に接続する配管等の凍結防止に関するものである。   The present invention relates to a heat pump hot water supply apparatus that stores hot water generated by a heat pump unit and includes a hot water storage tank for supplying hot water to a predetermined hot water supply location, and in particular, a pipe that connects the heat pump unit and the hot water storage tank in an annular shape This is related to the prevention of freezing.

従来よりこの種の給湯装置では、熱量を供給するヒーポンユニットと、このヒートポンプユニットで生成された温水を貯留すると共に、所定の給湯箇所に給湯するための貯湯タンクと、前記ヒートポンプユニットで生成された温水を、前記貯湯タンクに循環供給する循環ポンプと、前記ヒートポンプユニットより流出した温水を、前記貯湯タンクを経て再び前記ヒートポンプユニットに戻すための第1温水循環経路と、前記ヒートポンプユニットより流出した温水を、前記貯湯タンクを迂回して再び前記ヒートポンプユニットに戻すための第2温水循環経路と、前記第1温水循環経路と前記第2温水循環経路とを切り替える三方弁と、外気温度または循環水温度を検出する温度検出手段を有し、沸き上げ運転の停止中に前記第2温水循環経路に切り替えるように前記経路切替手段を制御すると共に、前記温度検出手段によって検出される温度が所定値以下の時には、少なくとも前記循環ポンプの運転を開始する運転制御装置とを備えることで、沸き上げ運転の停止中で低外気温時における温水循環経路の凍結を防止するものであった。(例えば、特許文献1参照)
特開2003−139405号公報
Conventionally, in this type of hot water supply device, a heat pump unit for supplying heat, hot water generated by the heat pump unit, and a hot water storage tank for supplying hot water to a predetermined hot water location, are generated by the heat pump unit. A circulation pump that circulates and supplies hot water to the hot water storage tank, a first hot water circulation path for returning hot water flowing out from the heat pump unit to the heat pump unit again through the hot water storage tank, and hot water flowing out from the heat pump unit , Bypassing the hot water storage tank and returning to the heat pump unit again, a three-way valve for switching between the first hot water circulation path and the second hot water circulation path, the outside air temperature or the circulating water temperature Temperature detecting means for detecting the second hot water circulation path while the boiling operation is stopped The path switching means is controlled to switch, and when the temperature detected by the temperature detection means is equal to or lower than a predetermined value, at least an operation control device that starts the operation of the circulation pump is provided. It was intended to prevent the hot water circulation path from freezing when the outside air temperature was low and the outside was stopped. (For example, see Patent Document 1)
JP 2003-139405 A

ところでこの従来のものでは、第2温水循環経路での凍結防止運転が一定時間継続した場合、三方弁を第1温水循環経路側切り換えて凍結防止運転を行った場合、貯湯タンク上部から冷水が流入されるのでタンク高温部が混合され内部温度が低下する問題があった。そして上部に冷水が貯まることで出湯温度が変動するおそれがあった。
また貯湯タンク上部へに冷水の流入を抑えるために、循環ポンプの流量を落として流入速度を極端に低下した場合にはヒートポンプユニットと貯湯タンクユニットを接続し、外気に直接接する配管部分が凍結するおそれが有った。
また第1第2温水循環経路を交互に凍結防止運転を行った場合には、循環ポンプの駆動時間が多くなり循環ポンプの耐久性が低下する問題があった。
By the way, in this conventional system, when the freeze prevention operation in the second hot water circulation path continues for a certain period of time, when the three-way valve is switched to the first hot water circulation path side to perform the freeze prevention operation, cold water flows from the upper part of the hot water storage tank. Therefore, there is a problem that the high temperature part of the tank is mixed and the internal temperature is lowered. And there was a possibility that the temperature of the hot water fluctuated due to cold water stored in the upper part.
In addition, in order to suppress the inflow of cold water to the upper part of the hot water storage tank, when the flow rate of the circulation pump is reduced and the inflow speed is extremely reduced, the heat pump unit and the hot water storage tank unit are connected, and the piping part directly in contact with the outside air is frozen. There was a fear.
In addition, when the freeze prevention operation is alternately performed on the first and second hot water circulation paths, there is a problem that the drive time of the circulation pump is increased and the durability of the circulation pump is lowered.

この発明はこの点に着目し上記欠点を解決する為、特にその構成を、ヒートポンプユニット内に圧縮機、冷媒対水熱交換器、減圧器、蒸発器を有する冷凍回路を備え、タンクユニット内に前記冷凍回路の冷媒対水熱交換器で加熱された水を貯留可能に循環させる貯湯タンクとを備えたヒートポンプ式給湯装置に於いて、前記貯湯タンクの下部と冷媒対水熱交換器とを接続するヒーポン往き管と、前記冷媒対水熱交換器と貯湯タンクの上部とを接続するヒーポン戻り管と、貯湯タンクの下部と水道を接続する給水管と、前記ヒーポン往き管に循環ポンプを備え、前記貯湯タンクとヒーポン往き管と冷媒対水熱交換器とヒーポン戻り管を連通してヒーポン循環回路を形成し、前記ヒーポン戻り管に三方弁を設け、この三方弁と給水管をバイパス管にて接続することで凍結防止バイパス回路を形成し、前記三方弁にてヒーポン循環回路と、凍結防止バイパス回路と、ヒーポン循環回路と凍結防止バイパス回路を同時に連通する回路を切り換え可能としたものである。   The present invention pays attention to this point and solves the above-mentioned drawbacks. In particular, the configuration includes a refrigeration circuit having a compressor, a refrigerant-to-water heat exchanger, a decompressor, and an evaporator in the heat pump unit, and the tank unit includes In a heat pump type hot water supply apparatus having a hot water storage tank for circulating the water heated by the refrigerant to water heat exchanger of the refrigeration circuit, the lower part of the hot water storage tank and the refrigerant to water heat exchanger are connected to each other A heat pump return pipe, a heat pump return pipe connecting the refrigerant to water heat exchanger and the upper part of the hot water storage tank, a water supply pipe connecting the lower part of the hot water storage tank and the water supply, and a circulation pump in the heat pump forward pipe, The hot water storage tank, the heat pump forward pipe, the refrigerant-to-water heat exchanger, and the heat pump return pipe are connected to form a heat pump circulation circuit, and a three-way valve is provided in the heat pump return pipe, and the three-way valve and the water supply pipe are connected to the bypass pipe. Are connected to each other to form a freeze prevention bypass circuit, and the three-way valve allows switching between the heat pump circulation circuit, the freeze prevention bypass circuit, and the circuit that simultaneously connects the heat pump circulation circuit and the freeze prevention bypass circuit. .

この発明によれば、低外気温時における沸き上げ運転の停止中にヒートポンプ式給湯装置のヒーポン循環回路や凍結防止バイパス回路の各配管の効率的な凍結防止、および凍結防止運転時の貯湯タンク上部への冷水の入り込みを最小限に抑え、出湯温度の変動を少なくするものである。   According to the present invention, the heat pump circulation circuit of the heat pump type hot water supply apparatus and the antifreeze bypass circuit in each pipe in the heat pump hot water supply apparatus during the stoppage of the boiling operation at low outside air temperature are effectively prevented from freezing and the upper part of the hot water storage tank during the freezing operation. This minimizes the entry of cold water into the water and reduces the fluctuation of the hot water temperature.

次にこの発明の一実施形態を図面に基づいて説明する。
1は湯水を貯湯する貯湯タンク2等を収納する貯湯タンクユニット、3は貯湯タンク2内の湯水を加熱する加熱手段としてのヒートポンプユニットで、内部には圧縮機4と凝縮器としての冷媒−水熱交換器5と減圧装置としての電子膨張弁6と強制空冷式の蒸発器7とで構成され、このヒートポンプユニット3の冷凍サイクルには冷媒として二酸化炭素が用いられて超臨界ヒートポンプサイクルを構成しているものである。また、前記圧縮機4や電子膨張弁6等によりヒートポンプサイクルを駆動制御するヒーポン制御部8を設けている。
Next, an embodiment of the present invention will be described with reference to the drawings.
Reference numeral 1 denotes a hot water storage tank unit for storing a hot water storage tank 2 or the like for storing hot water, and 3 denotes a heat pump unit as a heating means for heating the hot water in the hot water storage tank 2. The compressor 4 and the refrigerant-water as a condenser are contained therein. A heat exchanger 5, an electronic expansion valve 6 as a decompression device, and a forced air-cooled evaporator 7 are used. The refrigeration cycle of the heat pump unit 3 uses carbon dioxide as a refrigerant to constitute a supercritical heat pump cycle. It is what. Further, a heat pump control unit 8 for driving and controlling the heat pump cycle by the compressor 4 and the electronic expansion valve 6 is provided.

9は前記貯湯タンク2の下部と冷媒−水熱交換器5を接続するヒーポン往き管で、循環ポンプ10が取り付けられている。
11は前記貯湯タンク1の下部に水道を接続し、水道水を供給する給水管である。
12は前記冷媒−水熱交換器5と貯湯タンク2の上部とを接続するヒーポン戻り管で、タンクユニット1内の前記ヒーポン戻り管12には三方弁13を設け、この三方弁13と前記給水管11を接続してバイパス管14を備えている。
A heat pump forward pipe 9 connects the lower part of the hot water storage tank 2 and the refrigerant / water heat exchanger 5 to which a circulation pump 10 is attached.
Reference numeral 11 denotes a water supply pipe for connecting a water supply to the lower part of the hot water storage tank 1 to supply tap water.
A heat pump return pipe 12 connects the refrigerant-water heat exchanger 5 and the upper part of the hot water storage tank 2. The heat pump return pipe 12 in the tank unit 1 is provided with a three-way valve 13, and the three-way valve 13 and the water supply A pipe 11 is connected and a bypass pipe 14 is provided.

前記三方弁13はヒートポンプユニット3側の戻り管12aと接続される上流側接続口13aと、貯湯タンク2上部側の戻り管12bと接続される下流側接続口13bと、前記バイパス管14と接続されるバイパス側接続口13cを備え、深夜に行われる沸き上げ運転時には上流側接続口13aと下流側接続口13bを連通して、貯湯タンク1→循環ポンプ10→ヒーポン往き管9→冷媒−水熱交換器5→戻り管12a→三方弁13→戻り管12b→貯湯タンク2のヒーポン循環回路15によって沸き上げ運転を行うものである。   The three-way valve 13 is connected to the upstream connection port 13 a connected to the return pipe 12 a on the heat pump unit 3 side, the downstream connection port 13 b connected to the return pipe 12 b on the hot water storage tank 2 upper side, and the bypass pipe 14. In the boiling operation performed at midnight, the upstream side connection port 13a and the downstream side connection port 13b are communicated with each other to connect the hot water storage tank 1 → the circulation pump 10 → the heat pump forward pipe 9 → refrigerant-water. The heating operation is performed by the heat exchanger circuit 15 of the heat exchanger 5 → the return pipe 12 a → the three-way valve 13 → the return pipe 12 b → the hot water storage tank 2.

16は凍結防止バイパス回路で、三方弁13の上流側接続口13aとバイパス側接続口13cを連通して、貯湯タンク1→循環ポンプ10→ヒーポン往き管9→冷媒−水熱交換器5→戻り管12a→三方弁13→バイパス管14→給水管11→貯湯タンク2の順番で貯湯タンク2下部の水を循環することで、タンクユニット1とヒートポンプユニット3の間のヒーポン往き管9、ヒーポン戻り管12で一番温度が低下して凍結のおそれが大きい部分の凍結防止を行うものである。   Reference numeral 16 denotes an antifreezing bypass circuit, which connects the upstream side connection port 13a and the bypass side connection port 13c of the three-way valve 13, and connects the hot water storage tank 1 → the circulation pump 10 → the heat pump forward pipe 9 → the refrigerant-water heat exchanger 5 → return. By circulating water in the lower part of the hot water storage tank 2 in the order of the pipe 12a → the three-way valve 13 → the bypass pipe 14 → the water supply pipe 11 → the hot water storage tank 2, the heat pump forward pipe 9 between the tank unit 1 and the heat pump unit 3 is returned. In the pipe 12, the portion where the temperature is most lowered and the possibility of freezing is large is prevented from freezing.

前記三方弁13は上流側接続口13aと下流側接続口13bとバイパス側接続口13cの3方向を同時に連通する機能を備えるものである。外気温が低くいとき配管の凍結は、まず温水循環経路の一番温度の低いところから凍結するので、ヒーポン往き管9とヒーポン戻り管12の外気に直接接する部分の温度が低くなるので通常の凍結防止運転では、凍結防止バイパス回路16に貯湯タンク1下部の水を循環することでバイパス回路16の凍結防止を行う。   The three-way valve 13 has a function of simultaneously communicating the three directions of the upstream connection port 13a, the downstream connection port 13b, and the bypass connection port 13c. When the outside air temperature is low, the piping freezes first from the lowest temperature of the hot water circulation path, so the temperature of the portion directly in contact with the outside air of the heatpone return pipe 9 and the heatpone return pipe 12 is lowered, so that normal In the freeze prevention operation, the bypass circuit 16 is prevented from freezing by circulating the water below the hot water storage tank 1 to the freeze prevention bypass circuit 16.

タンクユニット1内は外気よりも約5℃温度が高いために、外気と直接接する配管よりは凍結の可能性は低くなる。そこで三方弁13の3方向の接続口を同時に連通することで、温度の低い配管部分は大きな流量で、比較的温度の高いタンクユニット1内の配管は約半分の流量で水を流す事によって効率的に配管の凍結防止を行うことができるものである。   Since the temperature inside the tank unit 1 is about 5 ° C. higher than that of the outside air, the possibility of freezing is lower than that of the pipe that directly contacts the outside air. Therefore, by connecting the three-way connection ports of the three-way valve 13 at the same time, the pipe portion in the low temperature has a large flow rate, and the pipe in the tank unit 1 having a relatively high temperature is made to flow efficiently at about half the flow rate. In particular, the piping can be prevented from freezing.

17は前記貯湯タンク2の上部に接続され貯湯されている高温水を出湯する出湯管。18は前記給水管11から出湯側へ水道水を導く給水バイパス管。19は前記出湯管17からの湯水と前記給水バイパス管18からの水道水を給湯設定温度に混合する給湯混合弁。20は前記給湯混合弁19から給湯栓21に湯を供給する給湯管。22は給湯管20に設けた給湯温度センサ。23は給湯管20に設けた給湯流量センサ。24は前記給水管11に備えた給水温度センサ。25は前記給水管11に備えた減圧弁。26は前記給水管11に備え、タンク2内の水が水道側に逆流することを防止する逆止弁。27は前記出湯管17に接続された過圧逃し弁。28は台所等に設置され、給湯装置の運転停止や給湯温度の設定や各種運転モードの設定を行うリモコンで、前記貯湯タンクユニット1と接続されている。29は前記ヒーポン制御部8やリモコン28と接続され給湯装置全体の制御を行う給湯制御装置である。   Reference numeral 17 denotes a discharge pipe connected to the upper part of the hot water storage tank 2 for discharging hot water stored in the hot water. A water supply bypass pipe 18 guides tap water from the water supply pipe 11 to the hot water outlet side. A hot water supply mixing valve 19 mixes hot water from the hot water discharge pipe 17 and tap water from the water supply bypass pipe 18 to a hot water supply set temperature. A hot water supply pipe 20 supplies hot water from the hot water supply mixing valve 19 to the hot water tap 21. Reference numeral 22 denotes a hot water supply temperature sensor provided in the hot water supply pipe 20. A hot water supply flow sensor 23 is provided in the hot water supply pipe 20. A water supply temperature sensor 24 is provided in the water supply pipe 11. A pressure reducing valve 25 is provided in the water supply pipe 11. A check valve 26 is provided in the water supply pipe 11 and prevents the water in the tank 2 from flowing back to the water supply side. Reference numeral 27 denotes an overpressure relief valve connected to the outlet pipe 17. A remote control 28 is installed in a kitchen or the like, and is connected to the hot water storage tank unit 1 by a remote controller for stopping the operation of the hot water supply device, setting the hot water supply temperature, and setting various operation modes. A hot water supply control device 29 is connected to the heat pump control unit 8 and the remote control 28 and controls the entire hot water supply device.

30は前記貯湯タンク2の側面上下方向に多数のサーミスタセンサを備えた貯湯温度センサで、貯湯タンク2内の温水の温度と湯量を検知するものである。   Reference numeral 30 denotes a hot water storage temperature sensor provided with a number of thermistor sensors in the vertical direction of the side surface of the hot water storage tank 2, and detects the temperature and amount of hot water in the hot water storage tank 2.

31は前記蒸発器7の熱交換を行うためにプロペラファンにて送風する送風機。32は前記蒸発器7の風上側に設けられ、外気温を測定する外気温センサ。33は前記冷媒−水熱交換器5とヒーポン往き管9の接続部分に設けた熱交入口温度センサで、加熱する前の冷水温度を検知する。34は前記冷媒−水熱交換器5とヒーポン戻り管12接続部分に設けた熱交出口温度センサで、加熱後の温水温度を検知するものである。   31 is a blower which blows with a propeller fan in order to perform heat exchange of the evaporator 7. An outside air temperature sensor 32 is provided on the windward side of the evaporator 7 and measures the outside air temperature. Reference numeral 33 denotes a heat exchange inlet temperature sensor provided at a connection portion between the refrigerant-water heat exchanger 5 and the heat-pump forward pipe 9, and detects a cold water temperature before heating. Reference numeral 34 denotes a heat exchange outlet temperature sensor provided at the connecting portion of the refrigerant-water heat exchanger 5 and the heat-pump return pipe 12 for detecting the hot water temperature after heating.

前記リモコン28には押圧式の電源スイッチ35、給湯設定温度を設定する温度設定スイッチ36、浴槽(図示せず)への湯張りを指示する湯張りスイッチ37、湯張り量を設定する湯張り量設定スイッチ38、及び給湯可能な残時間を表示させる残時間表示スイッチ39とを有した操作部40と、ドットマトリクス型の蛍光表示管よりなる表示部41と、これら操作部40及び表示部41を制御すると共に、前記給湯制御部29と通信を行うマイクロコンピュータを主に構成されたリモコン制御部(図示せず)を備えており、通常運転時は前記表示部41に操作部40で設定された給湯設定温度や時刻情報および貯湯温度センサ22で検知する残り貯湯量等が表示されるものである。なお、前記表示部41はドットマトリクス型の液晶表示部としても良い。   The remote control 28 has a push-type power switch 35, a temperature setting switch 36 for setting a hot water supply set temperature, a hot water switch 37 for instructing a hot water filling to a bathtub (not shown), and a hot water amount for setting the hot water amount. An operation unit 40 having a setting switch 38 and a remaining time display switch 39 for displaying the remaining time for hot water supply, a display unit 41 formed of a dot matrix type fluorescent display tube, and the operation unit 40 and the display unit 41. A remote control unit (not shown) mainly configured with a microcomputer that controls and communicates with the hot water supply control unit 29 is provided, and is set in the display unit 41 by the operation unit 40 during normal operation. The hot water supply set temperature, time information, and the remaining hot water storage amount detected by the hot water storage temperature sensor 22 are displayed. The display unit 41 may be a dot matrix type liquid crystal display unit.

ここで、給湯装置の電源は時間帯別電灯であり、夜間(ここでは23時から翌7時まで)が割安な電力料金設定となっているもので、この割安な夜間電力を用いて夜間に一日に必要な貯湯熱量を沸かし上げて使用するものであり、また、この時間帯別電灯では昼間(7時から23時まで)にも電力は供給され、残湯量が少なくなったときに追加の沸き増しが行われるものである。   Here, the power supply of the hot water supply device is an electric light according to time zone, and it is set at a cheap electricity rate at night (here from 23:00 to 7:00 the next day). It heats up the amount of hot water required for the day and uses it for this purpose. Also, with this hourly lamp, power is supplied even during the daytime (from 7:00 to 23:00), and is added when the amount of remaining hot water decreases. Is heated.

そして、夜間時間帯になると前記給湯制御部29が翌日に必要な貯湯熱量を演算し、この目標となる貯湯熱量を夜間時間帯の終了時までに沸き上げるようヒーポン制御部8に指示してヒートポンプ回路を作動させ、ヒーポン循環回路15の循環ポンプ10を駆動開始する。そして、循環ポンプ10の駆動により貯湯タンク2下部から取り出された湯水がヒーポン往き管9を通り冷媒−水熱交換器5に流入して加熱され、ヒーポン戻り管12を介して貯湯タンク2の上部に戻されることにより高温の湯が貯湯される。   When the night time zone is reached, the hot water supply control unit 29 calculates the amount of hot water storage required for the next day, and instructs the heat pump control unit 8 to boil up the target hot water storage amount by the end of the night time zone. The circuit is activated and the circulation pump 10 of the heat pump circulation circuit 15 is started to be driven. Then, hot water taken out from the lower part of the hot water storage tank 2 by driving the circulation pump 10 flows into the refrigerant-water heat exchanger 5 through the heat pump forward pipe 9 and is heated, and is heated to the upper part of the hot water tank 2 through the heat pump return pipe 12. The hot water is stored by being returned to.

更に貯湯タンク2の側面に設けられた貯湯温度センサ30が所定の量の高温水が貯湯されたことを検出するか、または、熱交入口温度センサ33が所定温度以上を検出すると、給湯制御部29がヒーポン制御部8へ加熱動作の停止を指令し、ヒーポン循環回路15と循環ポンプ10の作動が停止され、夜間時間帯の終了時までに貯湯動作を終了するものである。   Further, when the hot water storage temperature sensor 30 provided on the side surface of the hot water storage tank 2 detects that a predetermined amount of hot water has been stored, or when the heat exchange inlet temperature sensor 33 detects a predetermined temperature or more, a hot water supply control unit 29 instructs the heat pump control unit 8 to stop the heating operation, the operations of the heat pump circulation circuit 15 and the circulation pump 10 are stopped, and the hot water storage operation is completed by the end of the night time zone.

なお、ここで貯湯タンク2内に貯湯される熱量は給湯制御部29により、過去数日分の給湯負荷から適切と思われる熱量を目標貯湯熱量として算出されるもので、貯湯される湯水の温度は季節(または給水温度センサ24で検出する給水温度)および目標貯湯熱量の大小によって60℃〜90℃の範囲で変動するものである。   Here, the amount of heat stored in the hot water storage tank 2 is calculated by the hot water supply control unit 29 as a target amount of heat stored in the hot water supply load for the past several days. Varies in the range of 60 ° C. to 90 ° C. depending on the season (or the feed water temperature detected by the feed water temperature sensor 24) and the amount of target hot water stored.

次に給湯栓21を開くと、給水管11からの給水圧により貯湯タンク2上部の高温水が出湯管17に押し出され、給湯制御部29により制御される給湯混合弁19にて、給水バイパス管18の低温水と給湯温度センサ22の検出する温度が、前記リモコン28の操作部40で設定された給湯設定温度になるように混合されて、給湯管20を介して給湯されるものである。   Next, when the hot water tap 21 is opened, the hot water in the upper part of the hot water storage tank 2 is pushed out to the hot water discharge pipe 17 by the water supply pressure from the water supply pipe 11, and the hot water mixing valve 19 controlled by the hot water supply control unit 29 The low temperature water 18 and the temperature detected by the hot water supply temperature sensor 22 are mixed so as to become the hot water supply set temperature set by the operation unit 40 of the remote controller 28, and hot water is supplied via the hot water supply pipe 20.

もしも給湯量が通常よりも多くなってしまい、昼間電力時間帯にて貯湯温度センサ30で検出する残り貯湯量が少なくなったことを給湯制御部29が検知し、貯湯タンク2内に貯湯された湯の湯切れが予想される場合は、その時点にて昼間電力を利用して必要な熱量の沸き増しが行われるものである。   If the amount of hot water supply becomes larger than usual, the hot water supply control unit 29 detects that the remaining hot water storage amount detected by the hot water storage temperature sensor 30 has decreased during the daytime power hours, and the hot water is stored in the hot water storage tank 2. When hot water is expected to run out, the necessary amount of heat is increased using the daytime power at that time.

次に図2によって、沸き上げ運転停止中の凍結防止運転の第1の実施例について説明する。S1にて沸き上げ運転が停止しているときのみに凍結防止運転を行う。沸き上げ運転中には貯湯を行うためにヒーポン循環回路15に温水が循環し、貯湯タンク2にも高温の湯が増加していくので、ヒーポン循環回路15が凍結する心配は必要ない。S2にて外気温センサ32や熱交入口温度センサ33、給水温度センサ24等の各温度センサの読込を行う。   Next, with reference to FIG. 2, a first embodiment of the anti-freezing operation while the boiling operation is stopped will be described. The freeze prevention operation is performed only when the boiling operation is stopped in S1. During the boiling operation, hot water circulates in the heat pump circulation circuit 15 to store hot water, and hot water also increases in the hot water storage tank 2, so there is no need to worry that the heat pump circulation circuit 15 freezes. In S2, the temperature sensors 32, the heat exchange inlet temperature sensor 33, the water supply temperature sensor 24, and the like are read.

次にS3にて外気温センサ32の現在値Tが所定温度T1(例えば3℃)より低いかを比較する。Yesの場合はS4へ進み、NoではS2へ戻る。S4では三方弁13を上流側接続口13aとバイパス側接続口13cが連通するようにバイパス管14側に切り換え、循環ポンプ10を運転すれば、凍結防止バイパス回路16に貯湯タンク2下部の水が循環を始める。そしてタイマtをスタートさせる。S5ではタイマtが第1の所定時間t1(この実施例では2時間)経過したかを比較して、Yesの場合はS6に進み、Noの場合はS5に留まる。   Next, in S3, it is compared whether the current value T of the outside air temperature sensor 32 is lower than a predetermined temperature T1 (for example, 3 ° C.). In the case of Yes, it progresses to S4, and in No, it returns to S2. In S4, when the three-way valve 13 is switched to the bypass pipe 14 side so that the upstream side connection port 13a and the bypass side connection port 13c communicate with each other and the circulation pump 10 is operated, the water in the lower part of the hot water storage tank 2 is transferred to the freeze prevention bypass circuit 16. Start circulation. Then, the timer t is started. In S5, it is compared whether or not the first predetermined time t1 (2 hours in this embodiment) has elapsed. If Yes, the process proceeds to S6, and if No, remains in S5.

S6では三方弁13を上流側接続口13aと下流側接続口13bとバイパス側接続口13cが3方向で連通し、バイパス管14側と戻り管12b側に同時に水が流れる運転を第2の所定時間t2(この実施例では30秒間)行うことで、戻り管12bにも約半部の流量の水が流れ凍結を防止するものである。貯湯タンクユニット1内の温度と外気温は約5℃ほどの温度差有るので、戻り管12bとバイパス管14は外気に直接さらされる配管部分よりも凍結の条件は良いので半分の流量でも凍結防止ができるものである。また、この運転によって貯湯タンク2上部に入り込む冷水は極めて少量であるために貯湯タンク2内の温水へ与える影響も極めて少ないものである。   In S6, the operation of the three-way valve 13 in which the upstream side connection port 13a, the downstream side connection port 13b, and the bypass side connection port 13c communicate in three directions and water flows simultaneously to the bypass pipe 14 side and the return pipe 12b side is a second predetermined operation. By performing the time t2 (30 seconds in this embodiment), about half of the water flows through the return pipe 12b to prevent freezing. Since there is a temperature difference of about 5 ° C. between the temperature in the hot water storage tank unit 1 and the outside air temperature, the return pipe 12b and the bypass pipe 14 have better freezing conditions than the piping part directly exposed to the outside air, so that even at half the flow rate, freezing prevention is achieved. It is something that can be done. Further, since the amount of cold water entering the upper part of the hot water storage tank 2 by this operation is very small, the influence on the hot water in the hot water storage tank 2 is extremely small.

次にS7では外気温センサ32の値Tが所定温度T1(3℃)より大きくなったかを比較し、YesであればS8へ進み、NoであればS2に戻る。S8では凍結防止運転が必要ないとの判断から循環ポンプ10を停止して、タイマtも停止し、S2に戻るものである。   Next, in S7, it is compared whether or not the value T of the outside air temperature sensor 32 is higher than the predetermined temperature T1 (3 ° C.). If Yes, the process proceeds to S8, and if No, the process returns to S2. In S8, the circulation pump 10 is stopped from the determination that the freeze prevention operation is not necessary, the timer t is also stopped, and the process returns to S2.

このように、ヒーポン循環回路15や凍結防止バイパス回路16の各配管の効率的な凍結防止と、凍結防止運転時の貯湯タンク2上部への冷水の入り込みを最小限に抑えることができ、出湯温度の変動の少なくできるものである。
またこの実施例では外気温センサ32の値を基に凍結防止の制御を行ったが、外気温センサ32に変えて熱交入口温度センサ33や給水温度センサ24の値を使用しても同じ効果が得られるものである。
In this way, efficient freezing prevention of each pipe of the heat pump circulation circuit 15 and the freezing prevention bypass circuit 16 and the entry of cold water into the upper part of the hot water storage tank 2 during the freezing prevention operation can be minimized, and the hot water temperature It is possible to reduce the fluctuation of
In this embodiment, the freeze prevention control is performed based on the value of the outside air temperature sensor 32, but the same effect can be obtained by using the values of the heat inlet temperature sensor 33 and the feed water temperature sensor 24 instead of the outside air temperature sensor 32. Is obtained.

次に図3によって、第2の実施例について説明する。S9にて沸き上げ運転が停止しているときのみに凍結防止運転を行う。次にS10にて外気温センサ32や熱交入口温度センサ33、給水温度センサ24等の各温度センサの読込を行う。   Next, a second embodiment will be described with reference to FIG. The freeze prevention operation is performed only when the boiling operation is stopped in S9. Next, in S10, reading of each temperature sensor such as the outside air temperature sensor 32, the heat exchange inlet temperature sensor 33, and the water supply temperature sensor 24 is performed.

次にS11にて外気温センサ32の現在値Tが所定温度T1(例えば3℃)より低いかを比較する。Yesの場合はS12へ進み、NoではS10へ戻る。S12では三方弁13を上流側接続口13aとバイパス側接続口13cが連通するようにバイパス管14側に切り換え、循環ポンプ10を運転すれば、凍結防止バイパス回路16に貯湯タンク2下部の水が循環を始める。S13では外気温センサ32が第1の所定温度T1(3℃)より低い第2の所定温度T2(例えば−3℃)より低くなくかを比較し、Yesの場合はS14へ進み、Noの場合はS10へ戻る。   Next, in S11, it is compared whether the current value T of the outside air temperature sensor 32 is lower than a predetermined temperature T1 (for example, 3 ° C.). In the case of Yes, it progresses to S12, and in No, it returns to S10. In S12, when the three-way valve 13 is switched to the bypass pipe 14 side so that the upstream side connection port 13a and the bypass side connection port 13c communicate with each other and the circulating pump 10 is operated, the water in the lower part of the hot water storage tank 2 is transferred to the freeze prevention bypass circuit 16. Start circulation. In S13, whether or not the outside air temperature sensor 32 is lower than a second predetermined temperature T2 (for example, −3 ° C.) lower than the first predetermined temperature T1 (3 ° C.) is compared. If Yes, the process proceeds to S14. Returns to S10.

次にS14では、三方弁13を上流側接続口13aと下流側接続口13bとバイパス側接続口13cが3方向で連通し、バイパス管14側と戻り管12b側に同時に水が流れる運転を行うことで、戻り管12bにも約半部の流量の水が流れ凍結を防止するものである。貯湯タンクユニット1内の温度と外気温は約5℃ほどの温度差有るので、戻り管12bとバイパス管14は外気に直接さらされる配管部分よりも凍結の条件は良いので半分の流量でも凍結防止ができるものである。また、この運転によって貯湯タンク2上部に入り込む冷水は極めて少量であるために貯湯タンク2内の温水へ与える影響も極めて少ないものである。   Next, in S14, the three-way valve 13 is connected to the upstream connection port 13a, the downstream connection port 13b, and the bypass connection port 13c in three directions so that water flows simultaneously to the bypass tube 14 side and the return tube 12b side. As a result, about half of the water flows through the return pipe 12b to prevent freezing. Since there is a temperature difference of about 5 ° C. between the temperature in the hot water storage tank unit 1 and the outside air temperature, the return pipe 12b and the bypass pipe 14 have better freezing conditions than the piping part directly exposed to the outside air, so that even at half the flow rate, freezing prevention is achieved. It is something that can be done. Further, since the amount of cold water entering the upper part of the hot water storage tank 2 by this operation is very small, the influence on the hot water in the hot water storage tank 2 is extremely small.

次にS15では現在の外気温Tと第1の所定温度T1、第2の所定温度T2を比較して、両温度の間にある時に、S12へ戻り、そうでないときはS14へ戻る。このように、ヒーポン循環回路15や凍結防止バイパス回路16の各配管の効率的な凍結防止と、凍結防止運転時の貯湯タンク2上部への冷水の入り込みを最小限に抑えることができ、出湯温度の変動の少なくできるものである。
またこの実施例では外気温センサ32の値を基に凍結防止の制御を行ったが、外気温センサ32に変えて熱交入口温度センサ33や給水温度センサ24の値を使用しても同じ効果が得られるものである。
Next, in S15, the present outside air temperature T is compared with the first predetermined temperature T1 and the second predetermined temperature T2, and when the temperature is between both temperatures, the process returns to S12, and otherwise, the process returns to S14. In this way, efficient freezing prevention of each pipe of the heat pump circulation circuit 15 and the freezing prevention bypass circuit 16 and the entry of cold water into the upper part of the hot water storage tank 2 during the freezing prevention operation can be minimized, and the hot water temperature It is possible to reduce the fluctuation of
In this embodiment, the freeze prevention control is performed based on the value of the outside air temperature sensor 32, but the same effect can be obtained by using the values of the heat inlet temperature sensor 33 and the feed water temperature sensor 24 instead of the outside air temperature sensor 32. Is obtained.

この発明の一実施形態の貯湯式給湯装置の概略構成図。The schematic block diagram of the hot water storage type hot water supply apparatus of one Embodiment of this invention. 同第1実施例のフローチャート。The flowchart of the said 1st Example. 同第2実施例のフローチャート。The flowchart of the said 2nd Example.

符号の説明Explanation of symbols

1 貯湯タンクユニット
2 貯湯タンク
3 ヒートポンプユニット
5 冷媒−水熱交換器
8 ヒーポン制御部
9 ヒーポン往き管
10 循環ポンプ
12 ヒーポン戻り管
13 三方弁
14 バイパス管
15 ヒーポン循環回路
16 凍結防止バイパス回路
29 給湯制御部
32 外気温センサ
DESCRIPTION OF SYMBOLS 1 Hot water storage tank unit 2 Hot water storage tank 3 Heat pump unit 5 Refrigerant-water heat exchanger 8 Heaton control part 9 Heaton outgoing pipe 10 Circulation pump 12 Heaton return pipe 13 Three-way valve 14 Bypass pipe 15 Heaton circulation circuit 16 Freezing prevention bypass circuit 29 Hot water supply control Part 32 Outside air temperature sensor

Claims (3)

ヒートポンプユニット内に圧縮機、冷媒対水熱交換器、減圧器、蒸発器を有する冷凍回路を備え、タンクユニット内に前記冷凍回路の冷媒対水熱交換器で加熱された水を貯留可能に循環させる貯湯タンクとを備えたヒートポンプ式給湯装置に於いて、前記貯湯タンクの下部と冷媒対水熱交換器とを接続するヒーポン往き管と、前記冷媒対水熱交換器と貯湯タンクの上部とを接続するヒーポン戻り管と、貯湯タンクの下部と水道を接続する給水管と、前記ヒーポン往き管に循環ポンプを備え、前記貯湯タンクとヒーポン往き管と冷媒対水熱交換器とヒーポン戻り管を連通してヒーポン循環回路を形成し、前記ヒーポン戻り管に三方弁を設け、この三方弁と給水管をバイパス管にて接続することで凍結防止バイパス回路を形成し、前記三方弁にてヒーポン循環回路と、凍結防止バイパス回路と、ヒーポン循環回路と凍結防止バイパス回路を同時に連通する回路を切り換え可能としたことを特徴とするヒートポンプ式給湯装置。   A refrigeration circuit having a compressor, a refrigerant-to-water heat exchanger, a decompressor, and an evaporator is provided in the heat pump unit, and water heated by the refrigerant-to-water heat exchanger of the refrigeration circuit is circulated in a tank unit so as to be stored. In a heat pump type hot water supply apparatus comprising a hot water storage tank, a heat pump forward pipe connecting a lower portion of the hot water storage tank and a refrigerant to water heat exchanger, and an upper portion of the refrigerant to water heat exchanger and the hot water storage tank are provided. A heat pump return pipe to be connected, a water supply pipe connecting the lower part of the hot water storage tank to the water supply, and a circulation pump in the heat pump forward pipe, wherein the hot water storage tank, the heat pump forward pipe, the refrigerant-to-water heat exchanger, and the heat pump return pipe communicate with each other. A heat-pump circulation circuit is formed, a three-way valve is provided in the heat-pump return pipe, and a freezing prevention bypass circuit is formed by connecting the three-way valve and a water supply pipe with a bypass pipe. And Coupon circulation circuit, the antifreezing bypass circuit, a heat pump type hot water supply apparatus is characterized in that a switchable circuit that communicates simultaneously antifreeze bypass circuit and Hipon circulation circuit. 沸き上げ運転停止中には、前記ヒートポンプユニットの蒸発器への送風経路に備えた外気温センサ、または前記ヒーポン循環回路に備えた循環水温度センサ、または前記給水管に備えた給水温度センサの値が第1の所定温度より低い時、前記凍結防止バイパス回路のみでの運転を行い、前記凍結防止バイパス回路の凍結防止運転が所定時間経過した時には、ヒーポン循環回路と凍結防止バイパス回路を同時に連通する回路を切り換えて運転する運転制御装置とを備えたことを特徴とする請求項1記載のヒートポンプ式給湯装置。   While the boiling operation is stopped, the value of the outside air temperature sensor provided in the ventilation path to the evaporator of the heat pump unit, the circulating water temperature sensor provided in the heat pump circulation circuit, or the value of the feed water temperature sensor provided in the water supply pipe When the temperature is lower than the first predetermined temperature, only the antifreezing bypass circuit is operated, and when the antifreezing operation of the antifreezing bypass circuit has elapsed for a predetermined time, the heat pump circulation circuit and the antifreezing bypass circuit are simultaneously connected. The heat pump type hot water supply apparatus according to claim 1, further comprising an operation control apparatus that operates by switching a circuit. 沸き上げ運転停止中には、前記ヒートポンプユニットの蒸発器への送風経路に備えた外気温センサ、または前記ヒーポン循環回路に備えた循環水温度センサ、または前記給水管に備えた給水温度センサの値が第1の所定温度と、第1の所定温度より低い第2の所定温度の間では前記凍結防止バイパス回路での運転を行い、または前記センサの値が第2の所定温度より低い時には前記ヒーポン循環回路と凍結防止バイパス回路を同時に連通して運転する運転制御装置とを備えたことを特徴とする請求項1記載のヒートポンプ式給湯装置。   While the boiling operation is stopped, the value of the outside air temperature sensor provided in the ventilation path to the evaporator of the heat pump unit, the circulating water temperature sensor provided in the heat pump circulation circuit, or the value of the feed water temperature sensor provided in the water supply pipe Between the first predetermined temperature and a second predetermined temperature lower than the first predetermined temperature, the freeze prevention bypass circuit is operated, or when the sensor value is lower than the second predetermined temperature, the heat pump 2. The heat pump type hot water supply device according to claim 1, further comprising an operation control device that operates the circulation circuit and the freeze prevention bypass circuit in communication at the same time.
JP2007243583A 2007-09-20 2007-09-20 Heat pump type hot water supply device Pending JP2009074736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007243583A JP2009074736A (en) 2007-09-20 2007-09-20 Heat pump type hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007243583A JP2009074736A (en) 2007-09-20 2007-09-20 Heat pump type hot water supply device

Publications (1)

Publication Number Publication Date
JP2009074736A true JP2009074736A (en) 2009-04-09

Family

ID=40609883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007243583A Pending JP2009074736A (en) 2007-09-20 2007-09-20 Heat pump type hot water supply device

Country Status (1)

Country Link
JP (1) JP2009074736A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172944A (en) * 2011-02-24 2012-09-10 Corona Corp Heat pump type water heater
JP2013088043A (en) * 2011-10-19 2013-05-13 Mitsubishi Electric Corp Hot water storage type water heater
JP2013170788A (en) * 2012-02-22 2013-09-02 Toshiba Carrier Corp Water heater
JP2014089009A (en) * 2012-10-31 2014-05-15 Noritz Corp Hot water storage and hot water supply system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172944A (en) * 2011-02-24 2012-09-10 Corona Corp Heat pump type water heater
JP2013088043A (en) * 2011-10-19 2013-05-13 Mitsubishi Electric Corp Hot water storage type water heater
JP2013170788A (en) * 2012-02-22 2013-09-02 Toshiba Carrier Corp Water heater
JP2014089009A (en) * 2012-10-31 2014-05-15 Noritz Corp Hot water storage and hot water supply system

Similar Documents

Publication Publication Date Title
US7856835B2 (en) Hot water supply apparatus
EP2505940B1 (en) Auxiliary heater control device and heated fluid using system and auxiliary heater control method
JP5378504B2 (en) Heat pump water heater
JP3969154B2 (en) Hot water storage water heater
KR20100015104A (en) Method for controlling hot water circulation system associated with heat pump
JP2007132599A (en) Controller for storage water heater
JP2008096044A (en) Hot water reservoir type hot-water supply device
JP2004257583A (en) Storage water heater
JP2006329581A (en) Electric water heater
EP2933579B1 (en) Heat pump water heater
JP2009264617A (en) Heat pump water heater
JP2006250505A (en) Heat pump type water heater
JP2009074736A (en) Heat pump type hot water supply device
JP2009156495A (en) Heat pump type water heater
JP4988486B2 (en) Hot water storage water heater
JP4368846B2 (en) Hot water storage water heater
JP2007333340A (en) Heat pump type hot water supply apparatus
JP2009138980A (en) Heat pump type water heater
JP2006003077A (en) Heat pump type hot water supply apparatus
JP4138704B2 (en) Heat pump water heater
JP2006250504A (en) Hot water supply device
JP5385197B2 (en) Heat pump water heater
JP2008064338A (en) Hot water storage device
JP2007178059A (en) Heat pump type hot-water supply device
JP2008045826A (en) Hot-water storage type hot water supply heater