JP3969154B2 - Hot water storage water heater - Google Patents

Hot water storage water heater Download PDF

Info

Publication number
JP3969154B2
JP3969154B2 JP2002093975A JP2002093975A JP3969154B2 JP 3969154 B2 JP3969154 B2 JP 3969154B2 JP 2002093975 A JP2002093975 A JP 2002093975A JP 2002093975 A JP2002093975 A JP 2002093975A JP 3969154 B2 JP3969154 B2 JP 3969154B2
Authority
JP
Japan
Prior art keywords
hot water
water
temperature
heat source
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002093975A
Other languages
Japanese (ja)
Other versions
JP2003139405A (en
Inventor
宏治 吉武
輝彦 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002093975A priority Critical patent/JP3969154B2/en
Priority to DE10237840A priority patent/DE10237840A1/en
Publication of JP2003139405A publication Critical patent/JP2003139405A/en
Application granted granted Critical
Publication of JP3969154B2 publication Critical patent/JP3969154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/136Defrosting or de-icing; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/16Reducing cost using the price of energy, e.g. choosing or switching between different energy sources
    • F24H15/164Reducing cost using the price of energy, e.g. choosing or switching between different energy sources where the price of the electric supply changes with time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/258Outdoor temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/269Time, e.g. hour or date
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • F24H15/34Control of the speed of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Description

【0001】
【発明の属する技術分野】
本発明は、熱源器で生成された温水を貯留すると共に、所定の給湯箇所に給湯するための貯湯槽を備えた貯湯式給湯器に関するもので、特に熱源器および貯湯槽を環状に接続する往復配管等の機能部品の凍結防止制御に係わる。
【0002】
【従来の技術】
従来より、特許第3127622号公報においては、熱源器にて生成された温水を貯湯槽に循環供給する温水循環回路中に、貯湯槽をバイパスするバイパス配管を接続した貯湯式電気温水器が知られている。この貯湯式電気温水器は、バイパス配管の開閉を、バイパス配管の途中に設置した開閉弁によって行なうようにしている。なお、温水循環回路は、貯湯槽内の温水を、第1接続管→往配管→熱源器→復配管→給湯管を経て貯湯槽に戻す温水循環経路である。そして、冬期等の低外気温時には、温水温度検知器の信号で給水ポンプ、電気ヒータ等の加熱源に通電し、開閉弁を開放して温水を循環させ、給水ポンプ、熱源器、往配管、バイパス配管、復配管の系内の温水を昇温させて、機能部品の凍結防止、つまり往配管や復配管等の配管凍結防止を行なっている。
【0003】
【発明が解決しようとする課題】
ところが、従来の貯湯式電気温水器においては、低外気温時に、バイパス配管に設けられた開閉弁を開放し、給水ポンプを運転して循環水の循環を行った際に、貯湯槽の上部および給湯管への循環水の回り込み、貯湯槽の下部より第1接続管を通じての温水の吸い出しが懸念される。また、使用者が給水栓を開いて浴室の風呂または台所等の給湯箇所に出湯または給湯しようとすると、貯湯槽内の差圧によって温水循環回路中の冷えた温水(冷水)が回され、貯湯槽の上部へその冷水が入り込むことにより、貯湯槽内の温水温度が低下するという問題が生じる。
【0004】
【発明の目的】
本発明は、低外気温時における沸き上げ運転の停止中に、貯湯式給湯器の各機能部品の効率的な凍結防止、特に往配管や復配管等の配管の効率的な凍結防止、および出湯または給湯時の貯湯槽への冷水の回り込みを解消することを目的とする。また、低外気温時における除霜運転前に、貯湯槽、往配管や復配管等の配管、および貯湯式給湯器の各機能部品の効率的な凍結防止を図ることを目的とする。さらに、低外気温時における貯湯式給湯器の各機能部品の効率的な凍結防止、貯湯式給湯器の各機能部品の温度保護の両立を図ることを目的とする。
【0005】
【課題を解決するための手段】
請求項1に記載の発明によれば、熱源器で生成された温水を貯湯槽に貯留する沸き上げ運転中は、常に第1温水循環経路に切り替えるように経路切替手段が制御され、また、沸き上げ運転の停止中は、常に第2温水循環経路に切り替えるように経路切替手段が制御される。そして、沸き上げ運転の停止中に、温度検出手段によって検出される外気温度または循環水温度が所定値以下となると、給水ポンプおよび熱源器の運転が開始される。したがって、熱源器の出口より流出した循環水は貯湯槽を迂回して熱源器に戻される。これにより、沸き上げ運転の停止中に機能部品の凍結防止制御を行なうことができる。すなわち、低外気温時における貯湯式給湯器の各機能部品、特に往配管や復配管等の配管の効率的な凍結防止を行なうことができる。また、出湯または給湯時に貯湯槽内の差圧によって温水循環回路中の冷水が貯湯槽の上部に入り込むこともなく、貯湯槽内の循環水温度が低くなることもない。
【0006】
また、請求項に記載の発明によれば、上記の機能部品の凍結防止制御中に、温度検出手段によって検出される外気温度または循環水温度が所定値以上の時、あるいは給水ポンプまたは熱源器のうち少なくともどちらか一方の運転を開始してから所定の条件に達した場合には、給水ポンプおよび熱源器の運転を所定時間が経過するまで停止する。そして、給水ポンプおよび熱源器の運転を停止する時間が所定時間を経過した時点で、温度検出手段によって検出される外気温度または循環水温度が所定値以下の時には、給水ポンプおよび熱源器の運転を再開することにより、機能部品の効率的な凍結防止を行なうことができると共に、貯湯式給湯器を使用する際の電気代を低減することができる。また、請求項に記載の発明によれば、給水ポンプの運転の前に予め熱源器による温水への熱量供給を行い、凍結防止制御開始直後の循環水冷却を無くすことにより、効率的に循環水への熱量供給を行なうことができる。
【0007】
請求項に記載の発明によれば、予め熱源器による温水への熱量供給を行なう前に、給水ポンプを運転し、温度検出手段にて温度を検出することにより、熱源器による温水への熱量供給の必要性を判断することができる。また、請求項および請求項1に記載の発明によれば、経路切替手段として、沸き上げ運転時のみ給水配管から往配管への第1温水循環経路に切り替え、沸き上げ運転の停止中にバイパス配管から往配管への第2温水循環経路に切り替える三方弁を用いることにより、貯湯槽への循環水の回り込みや、貯湯槽より温水の吸い出しを確実に防止できる。
【0008】
請求項に記載の発明によれば、循環水温度検出手段によって検出される循環水温度が所定値以上の時、あるいは給水ポンプおよび熱源器の運転を開始してから所定の条件に達した場合には、給水ポンプおよび熱源器の運転を所定時間が経過するまで停止する。そして、給水ポンプおよび熱源器の運転を停止する時間が所定時間を経過した時点で、循環水温度検出手段によって検出される循環水温度が所定値以下の時には、給水ポンプおよび熱源器の運転を再開することを特徴としている。また、請求項に記載の発明によれば、給水ポンプの運転を停止する所定時間は、温度検出手段によって検出される外気温度または循環水温度のうち少なくとも一方の温度にて決定されることを特徴としている。
【0009】
請求項に記載の発明によれば、熱源器の運転を開始してから所定の条件に達して熱源器の運転を停止した後、所定時間が経過するまでの間、給水ポンプを所定回転数で運転することにより、高圧側熱交換器内の余熱回収および循環水温度の均一化を行なうことができる。また、請求項に記載の発明によれば、給水ポンプの運転を停止した後、所定時間が経過するまで給水ポンプを放置することを特徴としている。
【0010】
請求項に記載の発明によれば、外気温度検出手段によって検出される外気温度が所定値以下の場合、貯湯式給湯器の各機能部品の暖機運転として、少なくとも給水ポンプまたは熱源器の運転を開始することにより、凍結防止運転を利用した貯湯式給湯器の各機能部品の低温機能不良を防止できる。また、請求項1に記載の発明によれば、電動式の冷媒圧縮機の運転前に、循環水温度検出手段によって検出された循環水温度から電気式の膨張弁の開度を決定することにより、凍結防止運転を利用した貯湯式給湯器の各機能部品の低温機能不良を防止できる。
【0011】
請求項1に記載の発明によれば、熱源器として、冷媒と温水とを熱交換する水−冷媒熱交換器を用いている。そして、水−冷媒熱交換器には、給水ポンプに接続される給湯用熱交換器、およびコンプレッサの吐出口に接続される高圧側熱交換器が設けられている。そして、水を湯に昇温させる熱源ユニットを、高圧側の冷媒圧力が冷媒の臨界圧力以上となる超臨界ヒートポンプサイクルにより構成したことにより、高圧側の冷媒圧力の上昇によりコンプレッサの吐出部冷媒温度、つまり水−冷媒熱交換器の高圧側熱交換器の入口部冷媒温度を120℃程度まで高めることができる。
【0012】
これにより、貯湯槽内の温水を少ない消費電力で約90℃程度まで高めることができる利点があり、前述のように、貯湯槽への冷水の入り込みを防止できるので、その利点を損うことはない。また、請求項1に記載の発明によれば、全量沸き上げ終了後、外気温度検出手段によって検出される外気温度は通常沸き上げ運転中の平均値を用いることにより、空気熱交換器からの放熱による影響を防止することができる。
【0013】
請求項1に記載の発明によれば、少なくとも熱源器を運転する除霜運転を開始する前に、温度検出手段によって検出される温度が所定値以下の時、経路切替手段によって第2温水循環経路に切り替えると共に、少なくとも給水ポンプの運転を開始することにより、除霜運転開始直前の機能部品の凍結防止制御を行なうことができる。また、請求項1に記載の発明によれば、少なくとも熱源器を運転する除霜運転を開始する前に、温度検出手段によって検出される温度が所定値以下の時、経路切替手段によって第2温水循環経路に切り替えると共に、給水ポンプおよび冷媒圧縮機を所定回転数で運転することにより、除霜運転開始直前の機能部品の凍結防止制御を行なうことができる。
【0014】
求項1に記載の発明によれば、少なくとも給水ポンプを運転して機能部品の凍結防止を行なう、機能部品の凍結防止制御が所定時間以上行なわれた時、経路切替手段によって第1温水循環経路に切り替えることにより、少なくとも貯湯槽配管の凍結防止を行なうことができる。
【0015】
【発明の実施の形態】
[第1実施形態の構成]
図1および図2は本発明の第1実施形態を示したもので、図1はヒートポンプ式給湯器のシステム構成を示した図である。
【0016】
本実施形態のヒートポンプ式給湯器は、本発明の貯湯式給湯器に相当するもので、ランニングコスト(料金)の安い夜間電力(深夜電力)を使用して主に夜間に稼働される電気式温水器を構成するもので、温水を加熱する熱源ユニットとしてのヒートポンプユニット1と、このヒートポンプユニット1によって加熱された温水(水道水等の利用水)を貯留する貯湯槽9を含む貯湯槽ユニット2と、ヒートポンプユニット1および貯湯槽ユニット2に組み付けられる各アクチュエータを電気的に制御して浴室または台所への給湯温度と風呂の自動湯張り(差し湯)等を自動コントロールする電子制御ユニット(運転制御装置、制御部)10とを備えている。
【0017】
ヒートポンプユニット1は、冷媒として臨界温度の低い二酸化炭素(CO2 )を使用するヒートポンプサイクル3、およびこのヒートポンプサイクル3によって加熱された貯湯槽用温水(水道水等の給湯用温水)を利用する温水循環回路(貯湯用温水循環回路)4に設置された給水ポンプ7とから構成されている。ヒートポンプサイクル3は、電動式のコンプレッサ5、水−冷媒熱交換器6、電気式膨張弁11、空気熱交換器12およびアキュームレータ13を順次冷媒配管により接続して構成されている。
【0018】
コンプレッサ5は、内蔵する電動モータ(図示せず)によって回転駆動されて、空気熱交換器12より吸引した冷媒を一時的に使用条件において臨界圧力以上まで高温・高圧に圧縮して吐出する電動式の冷媒圧縮機である。このコンプレッサ5は、通電(ON)されると稼働し、通電が停止(OFF)されると停止する。また、電気式膨張弁11は、水−冷媒熱交換器6から流出する冷媒を弁開度に応じて減圧する減圧装置で、電子制御ユニット10によって弁開度が電気的に制御される。そして、空気熱交換器12は、電気式膨張弁11で減圧された冷媒を、空気熱交換器送風用のファン14によって送風される室外空気との熱交換によって蒸発気化させ、コンプレッサ5にガス冷媒を供給する。そのファン14は、通電(ON)されると稼働し、通電が停止(OFF)されると停止する。
【0019】
水−冷媒熱交換器6は、本発明の熱源器に相当するもので、コンプレッサ5の吐出口より吐出された高圧側の冷媒によって水を湯に昇温させる熱交換器である。水−冷媒熱交換器6中の高圧側熱交換器21は、コンプレッサ5の吐出口より吐出された高圧のガス冷媒と温水とを熱交換する冷媒流路管により構成されている。そして、水−冷媒熱交換器6は、高圧側熱交換器21の一端面に給湯用熱交換器22の他端面が熱交換可能に密着するように配置された二層の熱交換構造となっている。その給湯用熱交換器22は、高圧側熱交換器21の冷媒入口部から冷媒出口部に至る冷媒流路の全長で冷媒と温水との熱交換を行なうように構成されている。このため、給湯用熱交換器22の出口部からは、給湯温度(65℃〜90℃程度)相当の高温の温水を取り出すことができ、その高温の温水を貯湯槽9に供給することができる。
【0020】
ここで、ヒートポンプサイクル3は、冷媒として例えば臨界温度の低い二酸化炭素(CO2 )等を使用し、高圧側の冷媒圧力が冷媒の臨界圧力以上となる超臨界ヒートポンプサイクルにより構成されている。この超臨界ヒートポンプサイクルでは、高圧側冷媒圧力の上昇により高圧側熱交換器21の入口部の冷媒温度(コンプレッサ5の吐出冷媒温度)を120℃程度まで高めることができる。なお、高圧側熱交換器21に流入する冷媒は、コンプレッサ5で臨界圧力以上に加圧されているので、高圧側熱交換器21で放熱しても凝縮液化することはない。
【0021】
温水循環回路4は、水−冷媒熱交換器6中の給湯用熱交換器(熱源器)22、貯湯槽9、三方弁8および給水ポンプ7を順次貯湯用配管により接続して構成された温水循環回路で、貯湯槽9を迂回させて循環水を循環させる凍結防止制御時に使用する凍結防止用配管としてのバイパス配管35を備えている。そして、温水循環回路4には、給湯用熱交換器22の出口より流出した温水を、貯湯槽9を経て給湯用熱交換器22に循環させる第1温水循環経路23と、給湯用熱交換器22の出口より流出した循環水を、貯湯槽9を迂回して給湯用熱交換器22に循環させる第2温水循環経路24と、貯湯槽9の下部から水道水等の利用水を給水するための給水配管25と、貯湯槽9の上部から給湯箇所に所望の給湯温度の温水を給湯するための給湯配管26とが設けられている。
【0022】
給水ポンプ7は、後述するヒートポンプ給水配管31と給湯用熱交換器22の入口とを接続する往配管32の途中に設置されており、内蔵する電動モータ(図示せず)によって回転駆動されて、沸き上げ運転時に、給湯用熱交換器22内で加熱された温水を貯湯槽9に還流させるように作動するウォータポンプである。この給水ポンプ7は、通電(ON)されると稼働し、通電が停止(OFF)されると停止する。給湯配管26は、その途中に温度調整弁(図示せず)が設置されており、貯湯槽9内の温水を台所、洗面所や浴室等の給湯箇所へ給湯する給湯供給管である。その給湯配管26の下流端には、台所、洗面台等に設置された蛇口や水栓等の給水栓(図示せず)、あるいは浴室に設置された蛇口や水栓等の給水栓(図示せず)が接続されている。
【0023】
そして、温度調整弁は、給湯配管26の途中に設けられて、貯湯槽9内の高温の温水と、図示しない給水配管からの低温の水道水との混合比率を調整して所望の給湯温度の温水に調整するものである。この温度調整弁は、上記の混合比率を調整する弁体をモータ等のアクチュエータにより駆動するようになっており、温水の温度を検出する温度センサ(サーミスタ)の検出温度により弁体位置を自動調整して、温水の温度が目標温度(目標出湯温度)に維持されるように構成されている。
【0024】
第1温水循環経路23は、給水ポンプ7を運転し、且つ給湯用熱交換器22への熱量供給を行なうことで貯湯槽9内に貯留する温水を所望の給湯温度に昇温させる沸き上げ運転時に、貯湯槽9内の温水を、貯湯槽9の下部と第1分岐部28とを接続するヒートポンプ給水配管31→第1分岐部28と給湯用熱交換器22の入口とを接続する往配管(往復配管)32→給湯用熱交換器22→給湯用熱交換器22の出口と第2分岐部29とを接続する復配管(往復配管)33→第2分岐部29と貯湯槽9の上部とを接続する貯湯槽配管34→貯湯槽9の順に循環させる経路である。また、第2温水循環経路24は、沸き上げ運転の停止時で、且つ機能部品の効率的な凍結防止を行なう凍結防止制御時に、給湯用熱交換器22内の循環水を、復配管33→第2分岐部29と第1分岐部28とを連通するバイパス配管35→第1分岐部28と給湯用熱交換器22の入口とを連通する往配管32→給湯用熱交換器22の順に循環させる経路である。
【0025】
三方弁8は、本発明の経路切替手段に相当するもので、ヒートポンプ給水配管31と往配管32との間の第1分岐部28に設けられており、第1入口ポートがヒートポンプ給水配管31に連通し、第2入口ポートがバイパス配管35に連通し、出口ポートが往配管32に連通している。そして、三方弁8は、沸き上げ運転時に通電(ON)されて、ヒートポンプ給水配管31から往配管32へ温水が流れる第1温水循環経路23に切り替える。また、三方弁8は、沸き上げ運転の停止時に通電が停止(OFF)されて、バイパス配管35から往配管32へ循環水が流れる第2温水循環経路24に切り替える。
【0026】
貯湯槽9は、給湯用熱交換器22で生成された高温の温水を一時的に貯留する貯湯タンクである。この貯湯槽9の下部には、水道水等を給水するための給水配管25に接続する給水入口、および給湯用熱交換器22に循環水を循環供給するヒートポンプ給水用出口が設けられている。また、貯湯槽9の上部には、給湯用熱交換器22内で加熱された温水が流入する温水入口、および給湯配管26に接続する温水出口が設けられている。
【0027】
電子制御ユニット10は、CPU、ROM、RAM、I/Oポートの機能を有し、それ自体は周知の構造を持つマイクロコンピュータを内蔵している。なお、ヒートポンプユニット1の水−冷媒熱交換器6中の給湯用熱交換器22に設置された循環水温度センサ(循環水温度検出手段)41、室外(例えば空気熱交換器12の空気流れ方向の上流側または下流側)に設置された外気温度センサ(外気温度検出手段)42、コンプレッサ5の吐出口付近に設置された吐出冷媒温度センサ(冷媒温度検出手段)43等の各種センサからのセンサ信号は、図示しない入力回路によってA/D変換された後に、マイクロコンピュータに入力されるように構成されている。
【0028】
そして、電子制御ユニット10は、浴室の壁面および台所の壁面にそれぞれ設置された浴室リモートコントローラ(以下浴室リモコンと呼ぶ:図示せず)および台所リモートコントローラ(以下台所リモコンと呼ぶ:図示せず)や、循環水温度センサ41、外気温度センサ42、吐出冷媒温度センサ43等の各種センサからの信号に基づいて、ヒートポンプユニット1に装着されたコンプレッサ5、給水ポンプ7、電気式膨張弁11およびファン14を制御すると共に、貯湯槽ユニット2に装着された三方弁8を制御する。
【0029】
ここで、浴室リモコンおよび台所リモコンには、少なくとも沸き上げ運転の開始および停止を指示する沸き上げ運転スイッチ(図示せず)、浴室内の風呂または台所や洗面所へ給湯する給湯温度を希望の温度に設定する給湯温度設定スイッチ(図示せず)、貯湯槽9内に貯湯する給湯温度を希望の温度に設定する貯湯温度設定スイッチ(図示せず)、風呂の水位を設定する湯量設定スイッチ(図示せず)、優先状態、給湯温度や貯湯温度等を表示する液晶表示装置(図示せず)等が設けられている。
【0030】
[第1実施形態の作用]
次に、本実施形態のヒートポンプ式給湯器の作用を図1および図2に基づいて簡単に説明する。ここで、図2は給水ポンプの運転状態、水−冷媒熱交換器中の給湯用熱交換器への熱量供給(ヒートポンプサイクルの運転状態)、第2温水循環経路内の循環水温度の推移を示したタイムチャートである。
【0031】
浴室の壁面または台所の壁面にそれぞれ設置された浴室リモコンまたは台所リモコンにより沸き上げ運転の開始が指示されると、三方弁8は電子制御ユニット10の制御信号を受けて、温水循環回路(貯湯用温水循環回路)4をヒートポンプ給水配管31→往配管32への第1温水循環経路23に切り替える。一方、ヒートポンプユニット1側では、電子制御ユニット10の制御信号を受けてコンプレッサ5、電気式膨張弁11、給水ポンプ7およびファン14の運転が開始される。すると、コンプレッサ5の作動によってヒートポンプサイクル3中を冷媒が循環する。これにより、コンプレッサ5が冷媒を圧縮することにより120℃程度まで高められた冷媒は、水−冷媒熱交換器6中の高圧側熱交換器21内に流入し、給湯用熱交換器22内を還流する温水と熱交換した後に、電気式膨張弁11にて膨張して低温・低圧となり、空気熱交換器12にて蒸発し大気より吸熱を行ないコンプレッサ5へ戻る。
【0032】
このとき、温水循環回路4においては、貯湯槽9の下部の温水が給水ポンプ7の作動により、水−冷媒熱交換器6中の給湯用熱交換器22内に流入し、高圧側の冷媒との熱交換によって65〜90℃程度に昇温される。そして、水−冷媒熱交換器6中の給湯用熱交換器22で生成された高温の温水は、復配管33、貯湯槽配管34を通じて貯湯槽9の上部に還流され貯湯される。そして、沸き上げ運転の停止と共に、三方弁8が電子制御ユニット10の制御信号を受けると、温水循環回路4はバイパス配管35→往配管32の第2温水循環経路24へ戻される。
【0033】
一方、機能部品の凍結防止制御、つまり往配管32や復配管33等の配管凍結防止制御は、循環水温度センサ41または外気温度センサ42で検出される循環水温度または外気温度が予め定められた規定値(例えば3〜4℃)以下となると開始される。このとき、三方弁8の通電状態はオフ(OFF)であり、温水循環回路4はバイパス配管35→往配管32の第2温水循環経路24のままであり、給水ポンプ7の運転によって循環水が貯湯槽9の上部へ回り込むことを防止している。
【0034】
先ず、循環水温度センサ41または外気温度センサ42で検出される循環水温度または外気温度が予め定められた規定値(例えば3〜4℃)以下となった時点で、図2のタイムチャートに示したように、電子制御ユニット10の制御信号にて給水ポンプ7は運転を開始する。これにより、往配管32内の循環水は、水−冷媒熱交換器6中の給湯用熱交換器22→復配管33→バイパス配管35→往配管32を循環する。
【0035】
ここで、給水ポンプ7の運転を開始してからコンプレッサ5の運転(水−冷媒熱交換器6中の給湯用熱交換器22への熱量供給)を開始するまでの規定時間(例えば2〜5分間程度)Aの間は、循環水温度センサ41により循環水の温度検出のみを行い、規定時間Aが経過したところで、循環水温度が規定温度(例えば1〜2℃)B以下であったら、電子制御ユニット10はコンプレッサ5、電気式膨張弁11へ制御信号を送り、それぞれを制御し、コンプレッサ5の運転が開始されて水−冷媒熱交換器6中の給湯用熱交換器22へは熱量の供給が開始される。このとき、水−冷媒熱交換器6では高圧側の冷媒と循環水との熱交換が行われ、循環水温度は20〜60℃程度まで昇温し、第2温水循環経路24を循環水が循環することで、低外気温下でも機能部品の凍結防止、つまり往配管32や復配管33等の配管凍結防止が可能となる。
【0036】
循環水温度センサ41で検出される循環水温度が規定温度(例えば4℃)A以上になるか、あるいは規定時間(例えば2〜5分間程度)Bを経過したところで、電子制御ユニット10はコンプレッサ5、電気式膨張弁11へ制御信号を送り、ヒートポンプサイクル3の運転(水−冷媒熱交換器6中の給湯用熱交換器22への熱量の供給)は停止する。一方、給水ポンプ7の運転も、規定時間(例えば30分間程度)Cを経過したところで電子制御ユニット10より制御信号が送られて停止する。この後、規定時間(例えば30分間程度)Dの間は、電気代等の経済性を向上させるために給水ポンプ7は稼働しないものとする。そして、循環水温度センサ41または外気温度センサ42で検出される循環水温度または外気温度が規定値(例えば4℃)以上となったら、凍結防止制御は終了する。
【0037】
[第1実施形態の効果]
以上のように、CO2 を冷媒としたヒートポンプサイクル3によって所望の給湯温度となるように昇温した湯を貯湯槽9に貯湯するヒートポンプ式給湯器においては、特に低温の場合でも、冷媒の密度、圧力が高いため、通常のR22等を冷媒としたヒートポンプ式給湯器に対して、より寒冷地での使用が可能になる。また、ヒートポンプ式給湯器においては、バイパス配管35の開閉を三方弁8によって行なうようにしているので、三方弁8により温水循環回路4を第2温水循環経路24に切り替えて給水ポンプ7の運転を開始して循環水の循環を行った際に、貯湯槽9の上部および貯湯槽配管34への循環水(冷水)の回り込みを防止することができ、且つ貯湯槽9の下部よりヒートポンプ給水配管31を通じての温水の吸い出しを防止できる。
【0038】
さらに、沸き上げ運転の停止中に使用者が給水栓を開いて風呂または台所や洗面所へ出湯または給湯する時に、貯湯槽9内の差圧によって温水循環回路4中の水が貯湯槽9内に回り込み貯湯槽9の上部へ冷たい水が入り込むことはなく、貯湯槽9内の温水の温度が低下することも防止できる。したがって、本実施形態のヒートポンプ式給湯器は、沸き上げ運転の停止中の低外気温時における貯湯槽9と水−冷媒熱交換器6の給湯用熱交換器22とを結ぶ往配管32や復配管33等の往復配管、および機能部品の効率的な凍結防止を行なうことができ、凍結防止時および給湯箇所への出湯または給湯時の貯湯槽9への冷水の回り込みを確実に防止することができる。
【0039】
そして、本実施形態のヒートポンプ式給湯器によって、寒冷地の課題である凍結防止対策が容易になるため、寒冷地での利用が促進されるので、ヒートポンプ式給湯器を使用する際の電気代の低減につながる。なお、三方弁8は電子制御ユニット10の制御信号を受けて、温水循環回路(貯湯用温水循環回路)4をヒートポンプ給水配管31→往配管32への第1温水循環経路23に切り替えるようにしたが、沸き上げ運転開始後、所定時間が経過した後に切り替えても良い。この場合には、沸き上げ初期の冷水が貯湯槽9に入り込むことによる貯湯槽9内の循環水温度(温水温度)の低下を防止できる。
【0040】
[第2実施形態]
図3は本発明の第2実施形態を示したもので、給水ポンプの運転状態、水−冷媒熱交換器中の給湯用熱交換器への熱量供給(ヒートポンプサイクルの運転状態)、第2温水循環経路内の循環水温度の推移、吐出冷媒温度の推移を示したタイムチャートである。
【0041】
ヒートポンプ式給湯器(システム)の設置される環境によっては、水−冷媒熱交換器6中の給湯用熱交換器22への熱量供給(ヒートポンプサイクル3の運転)は、開始直後、外気温度で冷やされたCO2 冷媒と循環水とが熱交換され、一度循環水が冷却されることになり効率的に循環水へ熱量供給を行なうことができない可能性がある。そこで、給水ポンプ7を稼働させる前に電子制御ユニット10は、コンプレッサ5、電気式膨張弁11へ制御信号を送り、予め水−冷媒熱交換器6中の給湯用熱交換器22へ熱量を供給し、低温であるCO2 冷媒を給湯用熱交換器22から押し出し、コンプレッサ5の吐出口より吐出される吐出冷媒温度を検出する吐出冷媒温度センサ43で検出される吐出冷媒温度が規定温度(例えば40℃程度)C以上となるか、規定時間(例えば2分間程度)Eを経過後に電子制御ユニット10より給水ポンプ7へ制御信号を送り給水ポンプ7を稼働させることによって、循環水を冷却することなく効率的に循環水へ熱量供給を行なうことができる。
【0042】
[第3実施形態]
図4は本発明の第3実施形態を示したもので、給水ポンプの運転状態、水−冷媒熱交換器中の給湯用熱交換器への熱量供給(ヒートポンプサイクルの運転状態)、第2温水循環経路内の循環水温度の推移、吐出冷媒温度の推移を示したタイムチャートである。
【0043】
本実施形態では、予め水−冷媒熱交換器6中の給湯用熱交換器22へ熱量を供給(ヒートポンプサイクル3の運転)する前に、規定時間(例えば2〜5分間程度)Fの間、給水ポンプ7を稼働させることにより、循環水温度センサ41にて循環水温度を正確に検出して、水−冷媒熱交換器6中の給湯用熱交換器22への熱量を供給の必要性を電子制御ユニット10にて判断することができる。このとき、コンプレッサ5等のヒートポンプサイクル3を運転しなくても良い場合には、電気代を低減することができる。
【0044】
[第4実施形態]
図5は本発明の第4実施形態を示したもので、除霜運転時の配管凍結防止制御方法を示したタイムチャートである。
【0045】
先ず、図1および図5に基づいて除霜運転時の配管凍結防止制御について説明する。除霜運転時は、外気温度センサ42によって除霜運転開始直前の外気温度を検出し、所定値以下の外気温度であった場合、往配管32内の循環水(温水)が凍結する可能性がある。このため、三方弁8等の経路切替手段によって第2温水循環経路24に切り替え、コンプレッサ5の回転速度を所定回転速度(以下所定回転数Aと言う)で所定時間Aが経過するまでの間運転し、給水ポンプ7の回転速度を所定回転速度(以下所定回転数Bと言う)で所定時間Aが経過するまでの間運転することで、第2温水循環経路24内の循環水の昇温を行なうようにする。この第2温水循環経路24内の循環水の昇温が終了した時点で、配管凍結防止運転から通常の除霜運転に切り替える。なお、この配管凍結防止制御中、少なくとも給水ポンプ7のみの運転、つまりコンプレッサ5を運転させなくても、沸き上げた配管中の温水を第2温水循環経路24内で循環させるのみでも良い。
【0046】
そして、除霜運転から通常の沸き上げ運転に戻る際には、コンプレッサ5および給水ポンプ7は、沸き上げ時の制御値で運転するが、三方弁8等の経路切替手段は、所定時間Bの間、第1温水循環経路23に切り替えず、第2温水循環経路24のままとしておく。これにより、通常の沸き上げ運転の開始時の低温の循環水の水温を昇温し、貯湯槽9への低温水の貯湯を軽減できるため、効率的な貯湯を行なうことができる。なお、この三方弁8等の経路切替手段の動作は、図8に示した沸き上げ開始時にも適用できる。
【0047】
次に、図1に基づいて貯湯槽配管、ヒートポンプ給水配管凍結防止制御について説明する。配管凍結防止制御が所定時間連続で行なわれた場合、所定の短時間が経過するまでの間、三方弁8等の経路切替手段によって第1温水循環経路23に切り替えることで、第2温水循環経路24内を循環することにより昇温した循環水をヒートポンプ給水配管31、貯湯槽9および貯湯槽配管34に循環させるようにする。これにより、往配管32および復配管33だけでなく、ヒートポンプ給水配管31および貯湯槽配管34の凍結防止も行なうことができる。なお、この貯湯槽配管、ヒートポンプ給水配管凍結防止制御のタイムチャートは省略する。
【0048】
[第5実施形態]
図6ないし図8は本発明の第5実施形態を示したもので、図6および図7は沸き上げ運転停止中の配管凍結防止制御方法を示したフローチャートで、図8は沸き上げ運転停止中の配管凍結防止制御方法を示したタイムチャートである。
【0049】
通常沸き上げ運転の停止中に、所定の制御タイミングに入ると、図6および図7の制御ルーチンが起動する。先ず、外気温度センサ42によって検出される外気温度が所定温度(例えば4℃)以下であるか否かを判定する。あるいは循環水温度センサ41によって検出される循環水温度(循環水温)が所定温度(例えば3℃)以下であるか否かを判定する(ステップS1)。この判定結果がNOの場合には、沸き上げ運転停止中の配管凍結防止制御を終了し、図6および図7の制御ルーチンを抜ける(リターンする)。
【0050】
また、ステップS1の判定結果がYESの場合、すなわち、外気温度センサ42によって検出される外気温度または循環水温度センサ41によって検出される循環水温のいずれかが所定温度以下であった場合には、往配管32、復配管33の凍結の可能性があるため、ステップS2以下の配管凍結防止制御が開始される。そして、▲1▼循環水温検出を行なう。すなわち、配管凍結防止制御の開始時に、コンプレッサ5の運転を停止すると共に、給水ポンプ7を所定回転数Cで運転する(ステップS2)。次に、配管凍結防止制御を開始してから所定時間Cが経過しているか否かを判定する(ステップS3)。この判定結果がNOの場合には、ステップS3以下の制御処理を繰り返す。
【0051】
また、ステップS3の判定結果がYESの場合には、▲2▼最低水温検出を行なう。すなわち、循環水温度センサ41によって循環水の最低水温を検出する。そして、コンプレッサ5の運転を停止すると共に、給水ポンプ7を所定回転数Cで運転する(ステップS4)。次に、▲2▼最低水温検出を開始してから所定時間Dが経過しているか否かを判定する(ステップS5)。この判定結果がNOの場合には、ステップS4以下の制御処理を繰り返す。
【0052】
また、ステップS5の判定結果がYESの場合には、所定時間Dが経過するまでの間に検出した最低水温が所定温度以下であるか否かを判定する(ステップS7)。この判定結果がNOの場合には、ステップS15の▲6▼放置の処理を行なう。また、ステップS7の判定結果がYESの場合には、▲3▼循環水昇温を行なう。すなわち、コンプレッサ5を所定回転数Dで運転すると共に、給水ポンプ7を所定回転数Eで運転し、第2温水循環経路24内の循環水を昇温する(ステップS9)。次に、▲3▼循環水昇温を開始してから所定時間Eが経過しているか否かを判定する。あるいは循環水温が所定温度以上に上昇したか否かを判定する(ステップS10)。この判定結果がNOの場合には、ステップS9以下の制御処理を繰り返す。
【0053】
また、ステップS10の判定結果がYESの場合には、▲4▼余熱循環を行なう。すなわち、コンプレッサ5の運転を停止すると共に、給水ポンプ7を所定回転数Eで運転し、高圧側熱交換器21内の余熱回収および循環水温の均一化を図る(ステップS11)。次に、▲4▼余熱循環を開始してから所定時間Fが経過しているか否かを判定する(ステップS12)。この判定結果がNOの場合には、ステップS11以下の制御処理を繰り返す。
【0054】
また、ステップS12の判定結果がYESの場合には、▲5▼最低水温検出を行なう。すなわち、コンプレッサ5の運転を停止すると共に、給水ポンプ7を所定回転数Eで運転する。そして、循環水温度センサ41によって循環水の最低水温を検出する(ステップS13)。次に、▲5▼最低水温検出を開始してから所定時間Gが経過しているか否かを判定する(ステップS14)。この判定結果がNOの場合には、ステップS13以下の制御処理を繰り返す。
【0055】
次に、▲6▼放置を行なう。すなわち、最低水温、外気温度のそれぞれの検出直前の温度により放置時間(所定時間)Hを決定する(ステップS15)。次に、コンプレッサ5の運転を停止すると共に、給水ポンプ7の運転を停止する。そして、▲6▼放置を開始してから所定時間Hが経過しているか否かを判定する(ステップS16)。この判定結果がNOの場合には、ステップS15以下の制御処理を繰り返し、また、ステップS16の判定結果がYESの場合には、沸き上げ運転停止中の配管凍結防止制御を終了し、図6および図7の制御ルーチンを抜ける(リターンする)。
【0056】
したがって、本実施形態のヒートポンプ式給湯器は、通常の沸き上げ運転停止中に、外気温度センサ42によって検出される外気温度または循環水温度センサ41によって検出される循環水温度(循環水温)のどちらかが所定温度以下であった場合、貯湯槽9と水−冷媒熱交換器6の給湯用熱交換器22とを結ぶ往配管32や復配管33等の往復配管の凍結の可能性があるため、上述の配管凍結防止制御を実行することにより、往配管32や復配管33等の往復配管の凍結防止、および機能部品の効率的な凍結防止を行なうことができる。
【0057】
[第6実施形態]
図9ないし図12は本発明の第6実施形態を示したもので、図9および図10は沸き上げ運転停止中の配管凍結防止制御方法を示したフローチャートで、図11は沸き上げ運転停止中の配管凍結防止制御方法を示したタイムチャートである。なお、図6および図7の制御ルーチンと同一処理は同番号を付し、説明を省略する。
【0058】
図9の制御ルーチンのステップS5の判定結果がYESの場合には、外気温度センサ42によって検出される外気温度が所定温度(例えば−15℃)以下であるか否かを判定する(ステップS6)。この判定結果がNOの場合には、最低水温が所定温度以下であるか否かを判定する(ステップS7)。この判定結果がNOの場合には、ステップS13の▲5▼最低水温検出の処理を行なう。
【0059】
また、ステップS6の判定結果がYESの場合、あるいはステップS7の判定結果がYESの場合には、電気式膨張弁11の開度を決定する。このとき、循環水の温度(循環水温度)を参照し、図12の特性図に示すヒステリシスにより電気式膨張弁11の開度を決定する(ステップS8)。次に、ステップS9の▲3▼循環水昇温の処理を行なう。これにより、コンプレッサ5の運転による機能部品自体の発熱による低温機能不良防止と配管凍結防止との同時実行が可能となる。
【0060】
したがって、本実施形態のヒートポンプ式給湯器は、通常の沸き上げ運転停止中に、外気温度センサ42によって検出される外気温度または循環水温度センサ41によって検出される循環水温度(循環水温)のどちらかが所定温度以下であった場合、貯湯槽9と水−冷媒熱交換器6の給湯用熱交換器22とを結ぶ往配管32や復配管33等の往復配管の凍結の可能性があるため、上述の配管凍結防止制御を実行する。
【0061】
しかし、外気温度が所定温度(例えば−15℃)以下の時には、▲3▼循環水昇温を行なった後の▲6▼放置中にヒートポンプ式給湯器の機能部品の雰囲気温度が機能不良となる温度まで低下する可能性がある。このとき、▲3▼循環水昇温を、循環水温度(循環水温)にかかわらず行ない、コンプレッサ5を運転することにより、ヒートポンプ式給湯器の機能部品の低温機能不良防止と配管凍結防止との同時実行が可能となる。
【0062】
[第7実施形態]
図13は本発明の第7実施形態を示したもので、全量沸き上げ終了後の外気温度補正の推移、ヒートポンプサイクル(H/P)の運転状態を示したタイムチャートである。
【0063】
ここで、図1および図13に基づいて全量沸き上げ運転終了後の外気温度補正について説明する。貯湯槽9の全量沸き上げ運転終了後、ヒートポンプサイクルの空気熱交換器12内の冷媒温度は上昇し、この放熱を外気温度センサ42が検出してしまうため、配管凍結防止制御に移行できずに、往配管32および復配管33等の往復配管の凍結の可能性がある。このため、外気温度センサ42によって検出される外気温度の補正を行ない、配管凍結防止制御への移行を可能にする。全量沸き上げ運転終了後の外気温度補正の推移を図13に示す。なお、外気温度センサ42は、室外(例えば空気熱交換器12の空気流れ方向の上流側または下流側)に設置されて、空気熱交換器送風用のファン14の運転時に外気温度を検出するものとする。
【0064】
ここで、外気温度は、通常の沸き上げ運転中のファン14の運転時に検知したものが、真の外気温度となるため、この外気温度補正は通常の沸き上げ運転中(図13中の通常沸き上げa、b)の外気温度の平均値を利用する。但し、除霜運転中については、やはり空気熱交換器12の放熱を検知してしまうため、外気温度の平均値は除霜運転時の値を参照しないものとする。全量沸き上げ運転終了後の所定時間I(例えば2時間)を外気温度補正区間として通常沸き上げa、b中の外気温度の平均値を用いることにより、配管凍結防止運転への移行が可能となる。
【0065】
[他の実施形態]
本実施形態では、熱源ユニットとして臨界温度の低いCO2 を冷媒とするヒートポンプサイクル3を使用しているが、熱源ユニットとしてR22を冷媒とするヒートポンプサイクルを使用しても良く、また、熱源器としてガスバーナ、石油バーナ、電気ヒータ等の熱源器を使用しても良い。なお、熱源器用タンク内に熱源器としての電気ヒータを内蔵し、熱源器用タンク内の循環水を直接加熱するようにした貯湯式給湯器においては、水−冷媒熱交換器6、つまり給湯用熱交換器22を廃止することができる。
【図面の簡単な説明】
【図1】ヒートポンプ式給湯器のシステム構成を示した構成図である(第1実施形態)。
【図2】給水ポンプの運転状態、水−冷媒熱交換器中の給湯用熱交換器への熱量供給、第2温水循環経路内の循環水温度の推移を示したタイムチャートである(第1実施形態)。
【図3】給水ポンプの運転状態、水−冷媒熱交換器中の給湯用熱交換器への熱量供給、第2温水循環経路内の循環水温度の推移、吐出冷媒温度の推移を示したタイムチャートである(第2実施形態)。
【図4】給水ポンプの運転状態、水−冷媒熱交換器中の給湯用熱交換器への熱量供給、第2温水循環経路内の循環水温度の推移、吐出冷媒温度の推移を示したタイムチャートである(第3実施形態)。
【図5】除霜運転時の配管凍結防止制御方法を示したタイムチャートである(第4実施形態)。
【図6】沸き上げ運転停止中の配管凍結防止制御方法を示したフローチャートである(第5実施形態)。
【図7】沸き上げ運転停止中の配管凍結防止制御方法を示したフローチャートである(第5実施形態)。
【図8】沸き上げ運転停止中の配管凍結防止制御方法を示したタイムチャートである(第5実施形態)。
【図9】沸き上げ運転停止中の配管凍結防止制御方法を示したフローチャートである(第6実施形態)。
【図10】沸き上げ運転停止中の配管凍結防止制御方法を示したフローチャートである(第6実施形態)。
【図11】沸き上げ運転停止中の配管凍結防止制御方法を示したタイムチャートである(第6実施形態)。
【図12】循環水温に対する膨張弁開度を示した特性図である(第6実施形態)。
【図13】全量沸き上げ終了後の外気温度補正の推移、ヒートポンプサイクル(H/P)の運転状態を示したタイムチャートである(第7実施形態)。
【符号の説明】
1 ヒートポンプユニット
2 貯湯槽ユニット
3 ヒートポンプサイクル
4 温水循環回路
5 コンプレッサ
6 水−冷媒熱交換器(熱源器)
7 給水ポンプ
8 三方弁(経路切替手段)
9 貯湯槽
10 電子制御ユニット(運転制御装置)
11 電気式膨張弁
12 空気熱交換器
14 ファン
21 高圧側熱交換器
22 給湯用熱交換器(熱源器)
23 第1温水循環経路
24 第2温水循環経路
25 給水配管
31 ヒートポンプ給水配管
32 往配管(往復配管)
33 復配管(往復配管)
34 貯湯槽配管
35 バイパス配管
41 循環水温度センサ(循環水温度検出手段)
42 外気温度センサ(外気温度検出手段)
43 吐出冷媒温度センサ(冷媒温度検出手段)
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a hot water storage type hot water heater that stores hot water generated by a heat source device and has a hot water storage tank for supplying hot water to a predetermined hot water supply location, and in particular, a reciprocating connection between the heat source device and the hot water storage tank in an annular shape. It relates to anti-freezing control of functional parts such as piping.
[0002]
[Prior art]
Conventionally, in Japanese Patent No. 3127622, a hot water storage type electric water heater is known in which a bypass pipe bypassing the hot water tank is connected to a hot water circulation circuit that circulates and supplies the hot water generated by the heat source to the hot water tank. ing. In this hot water storage type electric water heater, the bypass pipe is opened and closed by an open / close valve installed in the middle of the bypass pipe. The hot water circulation circuit is a hot water circulation path for returning the hot water in the hot water storage tank to the hot water storage tank via the first connection pipe → outward piping → heat source device → return pipe → hot water supply pipe. And at low outside air temperature such as winter season, energize the heat source such as feed water pump, electric heater, etc. with the signal of the hot water temperature detector, open the on-off valve and circulate the hot water, feed water pump, heat source device, forward pipe, The hot water in the bypass piping and return piping is heated to prevent freezing of functional parts, that is, piping freezing such as forward piping and return piping.
[0003]
[Problems to be solved by the invention]
However, in the conventional hot water storage type electric water heater, when the open / close valve provided in the bypass pipe is opened and the water supply pump is operated to circulate the circulating water at low outside air temperature, There is concern about circulating water flowing into the hot water supply pipe and sucking out hot water from the lower part of the hot water storage tank through the first connection pipe. In addition, when the user opens the water tap and tries to discharge or supply hot water to a hot water supply location such as a bathroom in a bathroom or a kitchen, cold hot water (cold water) in the hot water circulation circuit is turned by the differential pressure in the hot water tank, and the hot water storage When the cold water enters the upper part of the tank, there arises a problem that the temperature of the hot water in the hot water storage tank is lowered.
[0004]
OBJECT OF THE INVENTION
The present invention provides efficient freezing prevention of each functional component of the hot water storage hot water supply device during the stoppage of the boiling operation at a low outside air temperature, in particular, efficient freezing prevention of piping such as forward piping and return piping, Or it aims at eliminating the wraparound of the cold water to the hot water storage tank at the time of hot water supply. It is another object of the present invention to efficiently prevent freezing of hot water storage tanks, piping such as forward piping and return piping, and each functional component of a hot water storage type hot water heater before defrosting operation at a low outside temperature. It is another object of the present invention to achieve both effective prevention of freezing of each functional part of the hot water storage hot water heater and temperature protection of each functional part of the hot water hot water heater at a low outside air temperature.
[0005]
[Means for Solving the Problems]
According to the invention of claim 1, During the boiling operation in which the hot water generated by the heat source device is stored in the hot water tank, the path switching means is controlled so as to always switch to the first hot water circulation path, Stopping boiling operation Always 2 Switch to hot water circulation path Thus, the path switching means is controlled. Then, when the outside air temperature or the circulating water temperature detected by the temperature detecting means becomes equal to or lower than a predetermined value while the boiling operation is stopped, the operation of the water supply pump and the heat source device is started. Therefore The circulating water flowing out from the outlet of the heat source device bypasses the hot water tank and is returned to the heat source device. Thereby, it is possible to perform the freeze prevention control of the functional component while the boiling operation is stopped. That is, it is possible to efficiently prevent freezing of each functional component of the hot water storage type hot water heater, particularly the piping such as the forward piping and the return piping, at the low outside temperature. In addition, the cold water in the hot water circulation circuit does not enter the upper part of the hot water tank due to the differential pressure in the hot water tank during hot water or hot water supply, and the circulating water temperature in the hot water tank does not decrease.
[0006]
Also, Claim 1 According to the invention described in During the freeze prevention control of the above functional parts, when the outside air temperature or circulating water temperature detected by the temperature detecting means is a predetermined value or more, or after starting the operation of at least one of the feed water pump and the heat source device When the predetermined condition is reached, the operation of the water supply pump and the heat source device is stopped until a predetermined time elapses. When the time for stopping the operation of the water supply pump and the heat source device has passed the predetermined time, when the outside air temperature or the circulating water temperature detected by the temperature detecting means is equal to or lower than the predetermined value, the operation of the water supply pump and the heat source device is performed. Resume By doing so, it is possible to efficiently prevent the functional parts from freezing, and to reduce the electricity bill when using the hot water storage type water heater. Claims 2 According to the invention described in the above, the heat supply to the warm water by the heat source device in advance before the operation of the water supply pump and the cooling water cooling immediately after the start of the freeze prevention control is eliminated, thereby efficiently supplying the heat to the circulating water. Can be performed.
[0007]
Claim 3 According to the invention described in the above, it is necessary to supply the heat amount to the warm water by the heat source device by operating the water supply pump and detecting the temperature by the temperature detecting means before the heat amount supply to the warm water by the heat source device in advance. Sex can be judged. Claims 4 And claim 1 1 According to the invention described in the above, as the path switching means, the first hot water circulation path from the water supply pipe to the forward pipe is switched only during the boiling operation, and the second hot water from the bypass pipe to the forward pipe is stopped during the boiling operation. By using a three-way valve that switches to the circulation path, it is possible to reliably prevent circulating water from flowing into the hot water tank and sucking out hot water from the hot water tank.
[0008]
Claim 5 According to the invention described in the above, when the circulating water temperature detected by the circulating water temperature detecting means is equal to or higher than a predetermined value, or when a predetermined condition is reached after starting the operation of the feed water pump and the heat source device In , Water supply pump And heat source Stop driving until the predetermined time has elapsed . When the circulating water temperature detected by the circulating water temperature detecting means is below the predetermined value when the time for stopping the operation of the feed water pump and the heat source device has passed the predetermined time, the operation of the feed water pump and the heat source device is resumed. It is characterized by doing. Claims 6 The predetermined time for stopping the operation of the feed water pump is determined by at least one of the outside air temperature and the circulating water temperature detected by the temperature detecting means.
[0009]
Claim 7 According to the invention described in the above, the water supply pump is operated at a predetermined number of revolutions until a predetermined time elapses after the operation of the heat source apparatus is started and the predetermined condition is reached and the operation of the heat source apparatus is stopped. This makes it possible to recover the residual heat in the high-pressure side heat exchanger and make the circulating water temperature uniform. Claims 8 According to the invention described in (1), after the operation of the water supply pump is stopped, the water supply pump is left to stand until a predetermined time elapses.
[0010]
Claim 9 According to the invention described in the above, when the outside air temperature detected by the outside air temperature detecting means is not more than a predetermined value, at least the operation of the water supply pump or the heat source device is started as the warm-up operation of each functional component of the hot water storage type water heater. Thus, it is possible to prevent the low-temperature malfunction of each functional component of the hot water storage type water heater using the freeze prevention operation. Claim 1 0 According to the invention described in the above, the freeze prevention operation is performed by determining the opening of the electric expansion valve from the circulating water temperature detected by the circulating water temperature detecting means before the operation of the electric refrigerant compressor. It is possible to prevent the low-temperature malfunction of each functional part of the hot water storage hot water heater used.
[0011]
Claim 1 2 The water-refrigerant heat exchanger that exchanges heat between the refrigerant and hot water is used as the heat source device. The water-refrigerant heat exchanger is provided with a hot water supply heat exchanger connected to the water supply pump and a high pressure side heat exchanger connected to the discharge port of the compressor. The heat source unit that raises the temperature of the water to hot water is configured by a supercritical heat pump cycle in which the refrigerant pressure on the high-pressure side is equal to or higher than the critical pressure of the refrigerant, so that the refrigerant pressure at the discharge section of the compressor is increased by the increase in the refrigerant pressure on the high-pressure side. That is, the refrigerant temperature at the inlet of the high-pressure side heat exchanger of the water-refrigerant heat exchanger can be increased to about 120 ° C.
[0012]
As a result, there is an advantage that the hot water in the hot water tank can be raised to about 90 ° C. with low power consumption, and as mentioned above, cold water can be prevented from entering the hot water tank, so that the advantage is impaired. Absent. Claim 1 3 According to the invention described in the above, after the whole amount is heated up, the outside air temperature detected by the outside air temperature detecting means uses the average value during the normal boiling operation, thereby preventing the influence of heat radiation from the air heat exchanger. be able to.
[0013]
Claim 1 4 According to the invention described in (2), at least before the defrosting operation for operating the heat source device is started, when the temperature detected by the temperature detecting means is equal to or lower than a predetermined value, the path switching means switches to the second hot water circulation path. By starting the operation of at least the water supply pump, it is possible to perform the freeze prevention control of the functional component immediately before the start of the defrosting operation. Claim 1 5 According to the invention described in (2), at least before the defrosting operation for operating the heat source device is started, when the temperature detected by the temperature detecting means is equal to or lower than a predetermined value, the path switching means switches to the second hot water circulation path. By operating the water supply pump and the refrigerant compressor at a predetermined rotational speed, it is possible to perform the freeze prevention control of the functional components immediately before the start of the defrosting operation.
[0014]
Contract Claim 1 6 According to the invention described in At least operate the water supply pump to prevent the functional parts from freezing, When the anti-freezing control of the functional parts is performed for a predetermined time or longer, at least the hot water tank piping can be prevented from freezing by switching to the first hot water circulation path by the path switching means.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
[Configuration of First Embodiment]
1 and 2 show a first embodiment of the present invention, and FIG. 1 is a diagram showing a system configuration of a heat pump type water heater.
[0016]
The heat pump type water heater of the present embodiment corresponds to the hot water storage type water heater of the present invention, and is an electric hot water operated mainly at night using night power (late night power) with low running cost (fee). A hot water storage tank unit 2 including a heat pump unit 1 as a heat source unit for heating hot water and a hot water storage tank 9 for storing hot water (utilized water such as tap water) heated by the heat pump unit 1; , An electronic control unit (operation control device) that automatically controls each actuator assembled in the heat pump unit 1 and the hot water tank unit 2 to automatically control the hot water supply temperature to the bathroom or kitchen, the hot water filling (bath hot water), etc. , Control unit) 10.
[0017]
The heat pump unit 1 uses carbon dioxide (CO 2 ), And a hot water circulation circuit (hot water circulation circuit for hot water storage) 4 that uses hot water for hot water tanks (hot water for hot water supply such as tap water) heated by the heat pump cycle 3. 7. The heat pump cycle 3 is configured by sequentially connecting an electric compressor 5, a water-refrigerant heat exchanger 6, an electric expansion valve 11, an air heat exchanger 12, and an accumulator 13 through a refrigerant pipe.
[0018]
The compressor 5 is rotationally driven by a built-in electric motor (not shown), and temporarily discharges the refrigerant sucked from the air heat exchanger 12 to a high temperature / high pressure up to a critical pressure or higher under a use condition. This is a refrigerant compressor. The compressor 5 operates when energized (ON) and stops when energization is stopped (OFF). The electric expansion valve 11 is a decompression device that decompresses the refrigerant flowing out of the water-refrigerant heat exchanger 6 in accordance with the valve opening, and the valve opening is electrically controlled by the electronic control unit 10. The air heat exchanger 12 evaporates and evaporates the refrigerant decompressed by the electric expansion valve 11 by heat exchange with the outdoor air blown by the fan 14 for blowing air heat exchanger, and causes the compressor 5 to gas-refrigerate. Supply. The fan 14 operates when energized (ON) and stops when energization is stopped (OFF).
[0019]
The water-refrigerant heat exchanger 6 corresponds to the heat source device of the present invention, and is a heat exchanger that raises the temperature of the water to hot water by the high-pressure side refrigerant discharged from the discharge port of the compressor 5. The high-pressure side heat exchanger 21 in the water-refrigerant heat exchanger 6 is configured by a refrigerant flow pipe that exchanges heat between the high-pressure gas refrigerant discharged from the discharge port of the compressor 5 and hot water. And the water-refrigerant heat exchanger 6 becomes a two-layer heat exchange structure arrange | positioned so that the other end surface of the heat exchanger 22 for hot water supply may closely_contact | adhere to the one end surface of the high voltage | pressure side heat exchanger 21 so that heat exchange is possible. ing. The hot water supply heat exchanger 22 is configured to perform heat exchange between the refrigerant and the hot water over the entire length of the refrigerant flow path from the refrigerant inlet to the refrigerant outlet of the high-pressure heat exchanger 21. For this reason, high temperature hot water corresponding to the hot water supply temperature (about 65 ° C. to 90 ° C.) can be taken out from the outlet of the hot water heat exchanger 22, and the high temperature hot water can be supplied to the hot water tank 9. .
[0020]
Here, the heat pump cycle 3 is, for example, carbon dioxide (CO 2 ) And the like, and a supercritical heat pump cycle in which the refrigerant pressure on the high-pressure side is equal to or higher than the critical pressure of the refrigerant. In this supercritical heat pump cycle, the refrigerant temperature at the inlet of the high-pressure side heat exchanger 21 (the refrigerant temperature discharged from the compressor 5) can be increased to about 120 ° C. by increasing the high-pressure side refrigerant pressure. Note that the refrigerant flowing into the high-pressure side heat exchanger 21 is pressurized to a critical pressure or higher by the compressor 5, so that it does not become condensed and liquefied even if the heat is radiated by the high-pressure side heat exchanger 21.
[0021]
The hot water circulation circuit 4 includes hot water heat exchanger (heat source device) 22 in the water-refrigerant heat exchanger 6, a hot water tank 9, a three-way valve 8, and a water supply pump 7 that are sequentially connected by hot water storage pipes. In the circulation circuit, a bypass pipe 35 is provided as an anti-freezing pipe used during anti-freezing control for bypassing the hot water tank 9 and circulating the circulating water. The hot water circulation circuit 4 includes a first hot water circulation path 23 for circulating the hot water flowing out from the outlet of the hot water supply heat exchanger 22 to the hot water supply heat exchanger 22 through the hot water tank 9, and a hot water supply heat exchanger. The second hot water circulation path 24 circulates the circulating water flowing out from the outlet 22 to the hot water supply heat exchanger 22, bypassing the hot water storage tank 9, and supply water such as tap water from the lower part of the hot water storage tank 9. And a hot water supply pipe 26 for supplying hot water at a desired hot water supply temperature from the upper part of the hot water tank 9 to the hot water supply location.
[0022]
The water supply pump 7 is installed in the middle of an outgoing pipe 32 that connects a heat pump water supply pipe 31 described later and an inlet of a hot water supply heat exchanger 22, and is rotationally driven by a built-in electric motor (not shown). This is a water pump that operates to recirculate hot water heated in the hot water supply heat exchanger 22 to the hot water storage tank 9 during the boiling operation. The water supply pump 7 operates when energized (ON) and stops when energization is stopped (OFF). The hot water supply pipe 26 is provided with a temperature adjustment valve (not shown) in the middle thereof, and is a hot water supply pipe for supplying hot water in the hot water storage tank 9 to hot water supply places such as a kitchen, a washroom, and a bathroom. At the downstream end of the hot water supply pipe 26, a faucet (not shown) such as a faucet or a faucet installed in a kitchen, a wash basin or the like, or a faucet such as a faucet or faucet installed in a bathroom (not shown) Connected).
[0023]
The temperature adjustment valve is provided in the middle of the hot water supply pipe 26, and adjusts the mixing ratio between the hot water in the hot water storage tank 9 and the low-temperature tap water from the water supply pipe (not shown) to achieve a desired hot water supply temperature. It adjusts to warm water. This temperature control valve is configured to drive the valve body that adjusts the above mixing ratio by an actuator such as a motor. The valve body position is automatically adjusted based on the temperature detected by the temperature sensor (thermistor) that detects the temperature of hot water. And it is comprised so that the temperature of warm water may be maintained at target temperature (target hot-water temperature).
[0024]
The first hot water circulation path 23 operates the water supply pump 7 and supplies heat to the hot water supply heat exchanger 22 to raise the temperature of the hot water stored in the hot water tank 9 to a desired hot water supply temperature. Sometimes the hot water in the hot water tank 9 is connected to the lower part of the hot water tank 9 and the first branch part 28 by the heat pump water supply pipe 31 → the first pipe 28 connecting the first branch part 28 and the inlet of the hot water supply heat exchanger 22. (Reciprocating piping) 32 → Hot water supply heat exchanger 22 → Return piping (reciprocating piping) 33 connecting the outlet of the hot water supply heat exchanger 22 and the second branch part 29 → Second branch part 29 and the upper part of the hot water tank 9 The hot water tank pipe 34 is connected to the hot water tank 9 in this order. In addition, the second hot water circulation path 24 supplies the circulating water in the hot water supply heat exchanger 22 to the return pipe 33 → when the boiling operation is stopped and the antifreeze control for efficiently preventing the functional parts from freezing. Bypass piping 35 that connects the second branching portion 29 and the first branching portion 28 → circulation in the order of the outgoing piping 32 that connects the first branching portion 28 and the inlet of the hot water supply heat exchanger 22 → the heat exchanger 22 for hot water supply It is a route to make.
[0025]
The three-way valve 8 corresponds to the path switching means of the present invention, and is provided in the first branch portion 28 between the heat pump water supply pipe 31 and the forward pipe 32, and the first inlet port is connected to the heat pump water supply pipe 31. The second inlet port communicates with the bypass pipe 35, and the outlet port communicates with the forward pipe 32. The three-way valve 8 is energized (ON) during the boiling operation, and switches to the first hot water circulation path 23 through which hot water flows from the heat pump water supply pipe 31 to the forward pipe 32. The three-way valve 8 is switched to the second hot water circulation path 24 where energization is stopped (OFF) when the boiling operation is stopped and the circulating water flows from the bypass pipe 35 to the forward pipe 32.
[0026]
The hot water storage tank 9 is a hot water storage tank that temporarily stores high-temperature hot water generated by the hot water supply heat exchanger 22. Below the hot water tank 9, a water supply inlet connected to a water supply pipe 25 for supplying tap water and the like, and a heat pump water supply outlet for circulating the circulating water to the hot water supply heat exchanger 22 are provided. In addition, a hot water inlet through which hot water heated in the hot water supply heat exchanger 22 flows and a hot water outlet connected to the hot water supply pipe 26 are provided in the upper part of the hot water tank 9.
[0027]
The electronic control unit 10 has functions of a CPU, a ROM, a RAM, and an I / O port, and incorporates a microcomputer having a known structure. In addition, the circulating water temperature sensor (circulating water temperature detection means) 41 installed in the hot water supply heat exchanger 22 in the water-refrigerant heat exchanger 6 of the heat pump unit 1, outdoor (for example, the air flow direction of the air heat exchanger 12) Sensors from various sensors such as an outside air temperature sensor (outside air temperature detecting means) 42 installed on the upstream side or downstream side of the compressor, and a discharged refrigerant temperature sensor (refrigerant temperature detecting means) 43 installed near the discharge port of the compressor 5. The signal is A / D converted by an input circuit (not shown) and then input to the microcomputer.
[0028]
The electronic control unit 10 includes a bathroom remote controller (hereinafter referred to as bathroom remote controller: not shown) and a kitchen remote controller (hereinafter referred to as kitchen remote controller: not shown) installed on the wall surface of the bathroom and the wall surface of the kitchen. Based on signals from various sensors such as the circulating water temperature sensor 41, the outside air temperature sensor 42, and the discharge refrigerant temperature sensor 43, the compressor 5, the water supply pump 7, the electric expansion valve 11, and the fan 14 mounted on the heat pump unit 1. And the three-way valve 8 attached to the hot water tank unit 2 is controlled.
[0029]
Here, the bathroom remote controller and the kitchen remote controller have at least a boiling operation switch (not shown) for instructing start and stop of the heating operation, and a desired hot water temperature for supplying water to the bath in the bathroom or the kitchen or the washroom. Hot water temperature setting switch (not shown) to be set, hot water temperature setting switch (not shown) to set the hot water temperature to be stored in the hot water tank 9 to a desired temperature, hot water setting switch to set the water level of the bath (not shown) (Not shown), a liquid crystal display device (not shown) for displaying the priority state, the hot water supply temperature, the hot water storage temperature, and the like are provided.
[0030]
[Operation of First Embodiment]
Next, the operation of the heat pump type water heater of the present embodiment will be briefly described with reference to FIGS. Here, FIG. 2 shows the operating state of the feed water pump, the heat supply to the hot water heat exchanger in the water-refrigerant heat exchanger (the operating state of the heat pump cycle), and the transition of the circulating water temperature in the second hot water circulation path. It is the time chart shown.
[0031]
When the start of the boiling operation is instructed by the bathroom remote controller or the kitchen remote controller respectively installed on the wall of the bathroom or the wall of the kitchen, the three-way valve 8 receives the control signal of the electronic control unit 10 and receives a hot water circulation circuit (for hot water storage) The hot water circulation circuit) 4 is switched to the first hot water circulation path 23 from the heat pump water supply pipe 31 to the forward pipe 32. On the other hand, on the heat pump unit 1 side, operation of the compressor 5, the electric expansion valve 11, the feed water pump 7 and the fan 14 is started in response to a control signal from the electronic control unit 10. Then, the refrigerant circulates through the heat pump cycle 3 by the operation of the compressor 5. Thereby, the refrigerant raised to about 120 ° C. by the compressor 5 compressing the refrigerant flows into the high-pressure heat exchanger 21 in the water-refrigerant heat exchanger 6, and passes through the hot water supply heat exchanger 22. After exchanging heat with the recirculating hot water, the electric expansion valve 11 expands to a low temperature / low pressure, evaporates in the air heat exchanger 12, absorbs heat from the atmosphere, and returns to the compressor 5.
[0032]
At this time, in the hot water circulation circuit 4, the hot water in the lower part of the hot water tank 9 flows into the hot water supply heat exchanger 22 in the water-refrigerant heat exchanger 6 by the operation of the water supply pump 7, and the high pressure side refrigerant and The temperature is raised to about 65 to 90 ° C. by heat exchange. The hot hot water generated by the hot water supply heat exchanger 22 in the water-refrigerant heat exchanger 6 is refluxed and stored in the hot water tank 9 through the return pipe 33 and the hot water tank pipe 34. When the three-way valve 8 receives a control signal from the electronic control unit 10 along with the stop of the boiling operation, the hot water circulation circuit 4 is returned to the second hot water circulation path 24 of the bypass pipe 35 → the forward pipe 32.
[0033]
On the other hand, in the antifreezing control of functional parts, that is, the antifreezing control of the piping such as the outward piping 32 and the returning piping 33, the circulating water temperature or the outside air temperature detected by the circulating water temperature sensor 41 or the outside air temperature sensor 42 is predetermined. It starts when the temperature falls below a specified value (for example, 3 to 4 ° C.). At this time, the energized state of the three-way valve 8 is OFF, and the hot water circulation circuit 4 remains in the second hot water circulation path 24 of the bypass pipe 35 → the forward pipe 32, and the circulating water is supplied by the operation of the feed water pump 7. It is prevented from going around to the upper part of the hot water tank 9.
[0034]
First, when the circulating water temperature or the outside air temperature detected by the circulating water temperature sensor 41 or the outside air temperature sensor 42 is equal to or lower than a predetermined value (for example, 3 to 4 ° C.), the time chart of FIG. As described above, the feed water pump 7 starts operation by the control signal of the electronic control unit 10. As a result, the circulating water in the forward pipe 32 circulates through the hot water supply heat exchanger 22 in the water-refrigerant heat exchanger 6 → the return pipe 33 → the bypass pipe 35 → the forward pipe 32.
[0035]
Here, a specified time (for example, 2 to 5) from the start of the operation of the feed water pump 7 to the start of the operation of the compressor 5 (supply of heat to the hot water supply heat exchanger 22 in the water-refrigerant heat exchanger 6). During the period of A), only the temperature of the circulating water is detected by the circulating water temperature sensor 41, and when the circulating water temperature is below a specified temperature (for example, 1 to 2 ° C.) B when the specified time A has elapsed, The electronic control unit 10 sends control signals to the compressor 5 and the electric expansion valve 11 to control them, and the operation of the compressor 5 is started, so that the amount of heat is supplied to the hot water supply heat exchanger 22 in the water-refrigerant heat exchanger 6. Supply is started. At this time, the water-refrigerant heat exchanger 6 performs heat exchange between the refrigerant on the high-pressure side and the circulating water, the circulating water temperature is raised to about 20 to 60 ° C., and the circulating water passes through the second hot water circulation path 24. By circulating, it is possible to prevent the functional parts from freezing even at a low outside temperature, that is, prevent the pipes such as the forward pipe 32 and the return pipe 33 from freezing.
[0036]
When the circulating water temperature detected by the circulating water temperature sensor 41 is equal to or higher than a specified temperature (for example, 4 ° C.) A, or when a specified time (for example, about 2 to 5 minutes) B has elapsed, the electronic control unit 10 performs the compressor 5 Then, a control signal is sent to the electric expansion valve 11 to stop the operation of the heat pump cycle 3 (supply of heat to the hot water supply heat exchanger 22 in the water-refrigerant heat exchanger 6). On the other hand, the operation of the water supply pump 7 is also stopped by sending a control signal from the electronic control unit 10 when a predetermined time (for example, about 30 minutes) C has elapsed. Thereafter, during a specified time period (for example, about 30 minutes) D, the water supply pump 7 is not operated in order to improve economic efficiency such as electricity bill. When the circulating water temperature or the outside air temperature detected by the circulating water temperature sensor 41 or the outside air temperature sensor 42 becomes equal to or higher than a specified value (for example, 4 ° C.), the freeze prevention control ends.
[0037]
[Effect of the first embodiment]
As mentioned above, CO 2 In a heat pump water heater that stores hot water heated to a desired hot water supply temperature in the hot water storage tank 9 by the heat pump cycle 3 using as a refrigerant, the density and pressure of the refrigerant are high even at low temperatures. The heat pump type water heater using R22 or the like as a refrigerant can be used in a cold region. Further, in the heat pump type water heater, the bypass pipe 35 is opened and closed by the three-way valve 8, so that the hot water circulation circuit 4 is switched to the second hot water circulation path 24 by the three-way valve 8 to operate the water supply pump 7. When the circulating water is circulated after starting, circulating water (cold water) to the upper part of the hot water tank 9 and the hot water tank pipe 34 can be prevented and the heat pump water supply pipe 31 from the lower part of the hot water tank 9 can be prevented. It is possible to prevent the hot water from being sucked out.
[0038]
Further, when the user opens the water tap and stops or supplies hot water to the bath or kitchen or washroom while the boiling operation is stopped, the water in the hot water circulation circuit 4 is moved into the hot water tank 9 due to the differential pressure in the hot water tank 9. It is possible to prevent cold water from entering the upper part of the hot water storage tank 9 and lowering the temperature of the hot water in the hot water storage tank 9. Therefore, the heat pump type water heater of the present embodiment has a forward pipe 32 and a return pipe connecting the hot water storage tank 9 and the hot water supply heat exchanger 22 of the water-refrigerant heat exchanger 6 at a low outside air temperature while the boiling operation is stopped. Efficient freezing prevention of the reciprocating pipes such as the pipe 33 and the functional parts can be performed, and it is possible to surely prevent the cold water from flowing into the hot water storage tank 9 at the time of preventing freezing and at the time of hot water supply or hot water supply. it can.
[0039]
And, since the heat pump type hot water heater of the present embodiment facilitates the prevention of freezing, which is a problem in cold areas, the use in cold areas is promoted, so the electricity bill when using the heat pump type hot water heater It leads to reduction. The three-way valve 8 receives a control signal from the electronic control unit 10 and switches the hot water circulation circuit (hot water storage hot water circulation circuit) 4 to the first hot water circulation path 23 from the heat pump water supply pipe 31 to the forward pipe 32. However, it may be switched after a predetermined time has elapsed after the start of the boiling operation. In this case, it is possible to prevent a decrease in circulating water temperature (warm water temperature) in the hot water tank 9 due to cold water at the initial boiling stage entering the hot water tank 9.
[0040]
[Second Embodiment]
FIG. 3 shows a second embodiment of the present invention. The operating state of the water supply pump, the supply of heat to the hot water heat exchanger in the water-refrigerant heat exchanger (the operating state of the heat pump cycle), the second hot water It is the time chart which showed transition of circulating water temperature in a circulation path, and transition of discharge refrigerant temperature.
[0041]
Depending on the environment in which the heat pump water heater (system) is installed, the heat supply to the hot water supply heat exchanger 22 in the water-refrigerant heat exchanger 6 (operation of the heat pump cycle 3) is cooled at the outside air temperature immediately after the start. CO 2 There is a possibility that heat is exchanged between the refrigerant and the circulating water, and the circulating water is once cooled, so that heat cannot be efficiently supplied to the circulating water. Therefore, before operating the water supply pump 7, the electronic control unit 10 sends a control signal to the compressor 5 and the electric expansion valve 11, and supplies heat to the hot water supply heat exchanger 22 in the water-refrigerant heat exchanger 6 in advance. CO at low temperature 2 The discharge refrigerant temperature detected by the discharge refrigerant temperature sensor 43 that detects the discharge refrigerant temperature discharged from the discharge port of the compressor 5 by extruding the refrigerant from the hot water supply heat exchanger 22 is a specified temperature (for example, about 40 ° C.) C or more. In other words, the electronic control unit 10 sends a control signal to the water supply pump 7 after the elapse of a specified time (for example, about 2 minutes) E to operate the water supply pump 7, so that the circulating water can be efficiently converted into the circulating water without cooling. The amount of heat can be supplied.
[0042]
[Third Embodiment]
FIG. 4 shows a third embodiment of the present invention. The operating state of the water supply pump, the supply of heat to the hot water heat exchanger in the water-refrigerant heat exchanger (the operating state of the heat pump cycle), the second hot water It is the time chart which showed transition of circulating water temperature in a circulation path, and transition of discharge refrigerant temperature.
[0043]
In this embodiment, before supplying heat quantity to the hot water supply heat exchanger 22 in the water-refrigerant heat exchanger 6 (operation of the heat pump cycle 3) in advance for a specified time (for example, about 2 to 5 minutes) F, By operating the feed water pump 7, the circulating water temperature sensor 41 accurately detects the circulating water temperature, and the necessity of supplying the amount of heat to the hot water supply heat exchanger 22 in the water-refrigerant heat exchanger 6 is reduced. This can be determined by the electronic control unit 10. At this time, when the heat pump cycle 3 such as the compressor 5 does not need to be operated, the electricity cost can be reduced.
[0044]
[Fourth Embodiment]
FIG. 5 shows a fourth embodiment of the present invention, and is a time chart showing a pipe freezing prevention control method during a defrosting operation.
[0045]
First, piping freezing prevention control at the time of defrosting operation is demonstrated based on FIG. 1 and FIG. During the defrosting operation, the outside air temperature immediately before the start of the defrosting operation is detected by the outside air temperature sensor 42. If the outside air temperature is a predetermined value or less, the circulating water (hot water) in the outgoing pipe 32 may be frozen. is there. For this reason, it switches to the 2nd warm water circulation path | route 24 by path | route switching means, such as the three-way valve 8, and drive | operates until predetermined time A passes at the rotational speed of the compressor 5 by predetermined rotational speed (henceforth predetermined rotational speed A). Then, the temperature of the circulating water in the second hot water circulation path 24 is increased by operating the rotation speed of the water supply pump 7 at a predetermined rotation speed (hereinafter referred to as a predetermined rotation speed B) until a predetermined time A elapses. Do it. When the temperature rise of the circulating water in the second hot water circulation path 24 is finished, the operation is switched from the pipe freezing prevention operation to the normal defrosting operation. During the pipe freezing prevention control, at least the operation of only the feed pump 7, that is, the compressor 5 may not be operated, and the hot water in the heated pipe may be circulated in the second hot water circulation path 24.
[0046]
When returning from the defrosting operation to the normal boiling operation, the compressor 5 and the water supply pump 7 are operated with the control value at the time of boiling, but the path switching means such as the three-way valve 8 is operated for a predetermined time B. In the meantime, the second warm water circulation path 24 is left without switching to the first warm water circulation path 23. As a result, the temperature of the low-temperature circulating water at the start of the normal boiling operation can be raised, and hot water storage in the hot water tank 9 can be reduced, so that efficient hot water storage can be performed. The operation of the path switching means such as the three-way valve 8 can also be applied at the start of boiling as shown in FIG.
[0047]
Next, the hot water tank piping and the heat pump water supply piping freezing prevention control will be described with reference to FIG. When the pipe freezing prevention control is performed continuously for a predetermined time, the second hot water circulation path is switched by switching to the first hot water circulation path 23 by the path switching means such as the three-way valve 8 until a predetermined short time elapses. Circulating water whose temperature has been raised by circulating in 24 is circulated through the heat pump water supply pipe 31, the hot water tank 9 and the hot water tank pipe 34. Thereby, not only the forward piping 32 and the return piping 33 but also the heat pump water supply piping 31 and the hot water storage piping 34 can be prevented from freezing. In addition, the time chart of this hot water tank piping and heat pump water supply piping freezing prevention control is abbreviate | omitted.
[0048]
[Fifth Embodiment]
FIGS. 6 to 8 show a fifth embodiment of the present invention. FIGS. 6 and 7 are flowcharts showing a pipe freezing prevention control method during the stop of the heating operation, and FIG. 8 is the stop of the heating operation. It is the time chart which showed the pipe freezing prevention control method.
[0049]
When a predetermined control timing is entered while the normal boiling operation is stopped, the control routine of FIGS. 6 and 7 is started. First, it is determined whether or not the outside temperature detected by the outside temperature sensor 42 is a predetermined temperature (for example, 4 ° C.) or less. Alternatively, it is determined whether or not the circulating water temperature (circulating water temperature) detected by the circulating water temperature sensor 41 is equal to or lower than a predetermined temperature (for example, 3 ° C.) (step S1). When this determination result is NO, the pipe freezing prevention control during the boiling operation stop is terminated, and the control routine of FIGS. 6 and 7 is exited (returned).
[0050]
If the determination result in step S1 is YES, that is, if either the outside air temperature detected by the outside air temperature sensor 42 or the circulating water temperature detected by the circulating water temperature sensor 41 is equal to or lower than a predetermined temperature, Since there is a possibility of the free pipe 32 and the return pipe 33 being frozen, the pipe freezing prevention control in step S2 and subsequent steps is started. Then, (1) circulating water temperature is detected. That is, at the start of the pipe freezing prevention control, the operation of the compressor 5 is stopped and the water supply pump 7 is operated at a predetermined rotational speed C (step S2). Next, it is determined whether or not a predetermined time C has elapsed since the pipe freezing prevention control was started (step S3). When this determination result is NO, the control processing after step S3 is repeated.
[0051]
If the determination result in step S3 is YES, (2) minimum water temperature detection is performed. That is, the minimum water temperature of the circulating water is detected by the circulating water temperature sensor 41. Then, the operation of the compressor 5 is stopped and the water supply pump 7 is operated at a predetermined rotational speed C (step S4). Next, (2) it is determined whether or not a predetermined time D has elapsed since the lowest water temperature detection was started (step S5). When this determination result is NO, the control processing after step S4 is repeated.
[0052]
When the determination result in step S5 is YES, it is determined whether or not the minimum water temperature detected until the predetermined time D elapses is equal to or lower than the predetermined temperature (step S7). If the result of this determination is NO, step 6 (6) neglected processing is performed. If the determination result in step S7 is YES, (3) the circulating water temperature is increased. In other words, the compressor 5 is operated at the predetermined rotational speed D, and the feed water pump 7 is operated at the predetermined rotational speed E to raise the temperature of the circulating water in the second hot water circulation path 24 (step S9). Next, (3) it is determined whether or not a predetermined time E has elapsed since the start of temperature rise of the circulating water. Alternatively, it is determined whether or not the circulating water temperature has risen above a predetermined temperature (step S10). When this determination result is NO, the control processing after step S9 is repeated.
[0053]
If the determination result in step S10 is YES, (4) residual heat circulation is performed. That is, the operation of the compressor 5 is stopped, and the feed water pump 7 is operated at a predetermined rotational speed E to recover the residual heat in the high-pressure side heat exchanger 21 and make the circulating water temperature uniform (step S11). Next, (4) it is determined whether or not a predetermined time F has elapsed since the start of the residual heat circulation (step S12). When this determination result is NO, the control processing after step S11 is repeated.
[0054]
When the determination result in step S12 is YES, (5) minimum water temperature detection is performed. That is, the operation of the compressor 5 is stopped and the water supply pump 7 is operated at a predetermined rotational speed E. And the minimum water temperature of circulating water is detected by the circulating water temperature sensor 41 (step S13). Next, (5) it is determined whether or not a predetermined time G has elapsed since the lowest water temperature detection was started (step S14). When this determination result is NO, the control processing after step S13 is repeated.
[0055]
Next, (6) is left unattended. That is, the standing time (predetermined time) H is determined based on the temperatures immediately before the detection of the minimum water temperature and the outside air temperature (step S15). Next, the operation of the compressor 5 is stopped and the operation of the feed water pump 7 is stopped. Then, it is determined whether or not the predetermined time H has elapsed since the start of the standing (6) (step S16). If the determination result is NO, the control processing from step S15 is repeated, and if the determination result in step S16 is YES, the pipe freezing prevention control during the boiling operation stop is terminated, and FIG. The control routine of FIG. 7 is exited (returned).
[0056]
Therefore, the heat pump type water heater of the present embodiment has either the outside air temperature detected by the outside air temperature sensor 42 or the circulating water temperature (circulating water temperature) detected by the circulating water temperature sensor 41 during a normal boiling operation stop. When the temperature is below the predetermined temperature, there is a possibility that the reciprocating pipes such as the outgoing pipe 32 and the return pipe 33 connecting the hot water storage tank 9 and the hot water supply heat exchanger 22 of the water-refrigerant heat exchanger 6 may be frozen. By executing the above-described pipe freezing prevention control, it is possible to prevent freezing of reciprocating pipes such as the forward pipe 32 and the return pipe 33, and efficient freezing prevention of functional parts.
[0057]
[Sixth Embodiment]
FIGS. 9 to 12 show a sixth embodiment of the present invention. FIGS. 9 and 10 are flow charts showing a pipe freezing prevention control method during a heating operation stop, and FIG. 11 is a heating operation stopped. It is the time chart which showed the pipe freezing prevention control method. The same processes as those in the control routines of FIGS. 6 and 7 are denoted by the same reference numerals and description thereof is omitted.
[0058]
When the determination result of step S5 of the control routine of FIG. 9 is YES, it is determined whether or not the outside temperature detected by the outside temperature sensor 42 is equal to or lower than a predetermined temperature (for example, −15 ° C.) (step S6). . If the determination result is NO, it is determined whether or not the minimum water temperature is equal to or lower than a predetermined temperature (step S7). If the determination result is NO, the process of (5) minimum water temperature detection in step S13 is performed.
[0059]
Further, when the determination result of step S6 is YES or when the determination result of step S7 is YES, the opening degree of the electric expansion valve 11 is determined. At this time, the temperature of the circulating water (circulating water temperature) is referred to, and the opening degree of the electric expansion valve 11 is determined by the hysteresis shown in the characteristic diagram of FIG. 12 (step S8). Next, the process of (3) circulating water temperature rise in step S9 is performed. As a result, it is possible to simultaneously perform low-temperature malfunction prevention and piping freezing prevention due to heat generation of the functional component itself by the operation of the compressor 5.
[0060]
Therefore, the heat pump type water heater of the present embodiment has either the outside air temperature detected by the outside air temperature sensor 42 or the circulating water temperature (circulating water temperature) detected by the circulating water temperature sensor 41 during a normal boiling operation stop. When the temperature is below the predetermined temperature, there is a possibility that the reciprocating pipes such as the outgoing pipe 32 and the return pipe 33 connecting the hot water storage tank 9 and the hot water supply heat exchanger 22 of the water-refrigerant heat exchanger 6 may be frozen. The above-described piping freeze prevention control is executed.
[0061]
However, when the outside air temperature is below a predetermined temperature (for example, −15 ° C.), the ambient temperature of the functional parts of the heat pump type hot water heater becomes defective during (3) standing after the temperature rise of the circulating water (6). May drop to temperature. At this time, (3) the temperature of the circulating water is raised regardless of the circulating water temperature (circulating water temperature), and the compressor 5 is operated, thereby preventing the low-temperature malfunction of the heat pump water heater and preventing the pipe from freezing. Simultaneous execution is possible.
[0062]
[Seventh Embodiment]
FIG. 13 shows the seventh embodiment of the present invention, and is a time chart showing the transition of the outside air temperature correction after the completion of the total boiling and the operating state of the heat pump cycle (H / P).
[0063]
Here, based on FIG. 1 and FIG. 13, the correction of the outside air temperature after the completion of the full-boiling operation will be described. After the boiling-up operation of the whole amount of the hot water tank 9 is completed, the refrigerant temperature in the air heat exchanger 12 of the heat pump cycle rises, and this heat radiation is detected by the outside air temperature sensor 42. There is a possibility that the reciprocating pipes such as the outgoing pipe 32 and the return pipe 33 are frozen. For this reason, the outside air temperature detected by the outside air temperature sensor 42 is corrected, and the shift to the pipe freezing prevention control is enabled. FIG. 13 shows the transition of the outside air temperature correction after the completion of the total amount heating operation. The outside air temperature sensor 42 is installed outside the room (for example, upstream or downstream in the air flow direction of the air heat exchanger 12) and detects the outside air temperature when the air heat exchanger fan 14 is in operation. And
[0064]
Here, since the outside air temperature detected during operation of the fan 14 during normal boiling operation becomes the true outside air temperature, this outside air temperature correction is performed during normal boiling operation (normal boiling in FIG. 13). The average value of the outside air temperature of the increase a, b) is used. However, during the defrosting operation, since the heat radiation of the air heat exchanger 12 is still detected, the average value of the outside air temperature does not refer to the value during the defrosting operation. By using the average value of the outside air temperatures in the normal boiling points a and b with the predetermined time I (for example, 2 hours) after the completion of the total amount boiling operation as the outside air temperature correction interval, it is possible to shift to the pipe freezing prevention operation. .
[0065]
[Other Embodiments]
In this embodiment, CO having a low critical temperature is used as the heat source unit. 2 However, a heat pump cycle using R22 as a refrigerant may be used as a heat source unit, and a heat source device such as a gas burner, an oil burner, or an electric heater is used as a heat source device. May be. In the hot water storage water heater in which an electric heater as a heat source device is built in the heat source device tank and the circulating water in the heat source device tank is directly heated, the water-refrigerant heat exchanger 6, that is, the heat for hot water supply, is used. The exchanger 22 can be abolished.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a system configuration of a heat pump type hot water heater (first embodiment).
FIG. 2 is a time chart showing the operating state of the feed water pump, the supply of heat to the hot water supply heat exchanger in the water-refrigerant heat exchanger, and the transition of the circulating water temperature in the second hot water circulation path (first). Embodiment).
FIG. 3 is a time chart showing the operating state of the feed water pump, the amount of heat supplied to the hot water supply heat exchanger in the water-refrigerant heat exchanger, the change in circulating water temperature in the second hot water circulation path, and the change in discharge refrigerant temperature. It is a chart (2nd Embodiment).
FIG. 4 is a time chart showing the operating state of the feed water pump, the amount of heat supplied to the hot water supply heat exchanger in the water-refrigerant heat exchanger, the change in circulating water temperature in the second hot water circulation path, and the change in discharge refrigerant temperature. It is a chart (3rd Embodiment).
FIG. 5 is a time chart showing a pipe freezing prevention control method during a defrosting operation (fourth embodiment).
FIG. 6 is a flowchart showing a pipe freezing prevention control method during a boiling operation stop (fifth embodiment).
FIG. 7 is a flowchart showing a pipe freezing prevention control method during a boiling operation stop (fifth embodiment).
FIG. 8 is a time chart showing a pipe freezing prevention control method during a boiling operation stop (fifth embodiment).
FIG. 9 is a flowchart showing a pipe freezing prevention control method during a boiling operation stop (sixth embodiment).
FIG. 10 is a flowchart showing a pipe freeze prevention control method during a boiling operation stop (sixth embodiment).
FIG. 11 is a time chart showing a pipe freezing prevention control method during a boiling operation stop (sixth embodiment).
FIG. 12 is a characteristic diagram showing the opening degree of the expansion valve with respect to the circulating water temperature (sixth embodiment).
FIG. 13 is a time chart showing the transition of the outside air temperature correction after the completion of the total amount boiling and the operating state of the heat pump cycle (H / P) (seventh embodiment).
[Explanation of symbols]
1 Heat pump unit
2 Hot water tank unit
3 Heat pump cycle
4 Hot water circulation circuit
5 Compressor
6 Water-refrigerant heat exchanger (heat source)
7 Water supply pump
8 Three-way valve (route switching means)
9 Hot water tank
10 Electronic control unit (operation control device)
11 Electric expansion valve
12 Air heat exchanger
14 fans
21 High pressure side heat exchanger
22 Heat exchanger for hot water supply (heat source)
23 First hot water circulation route
24 Second hot water circulation route
25 Water supply piping
31 Heat pump water supply piping
32 Outward piping (reciprocating piping)
33 Return piping (reciprocating piping)
34 Hot water tank piping
35 Bypass piping
41 Circulating water temperature sensor (circulating water temperature detection means)
42 Outside temperature sensor (outside temperature detection means)
43 Discharge refrigerant temperature sensor (refrigerant temperature detection means)

Claims (16)

(a)熱量を供給する熱源器と、
(b)この熱源器で生成された温水を貯留すると共に、所定の給湯箇所に給湯するための貯湯槽と、
(c)前記熱源器より流出した温水を、前記貯湯槽を経て再び前記熱源器に戻すための第1温水循環経路と、
)前記熱源器より流出した温水を、前記貯湯槽を迂回して再び前記熱源器に戻すための第2温水循環経路と、
前記熱源器より流出した温水を、前記第1温水循環経路もしくは前記第2温水循環経路に循環させる給水ポンプと、
(f)前記第1温水循環経路と前記第2温水循環経路とを切り替える経路切替手段と、 (g)外気温度または循環水温度を検出する温度検出手段を有し、
前記熱源器および前記給水ポンプを制御すると共に、
前記熱源器で生成された温水を前記貯湯槽に貯留する沸き上げ運転中は、常に前記第1温水循環経路に切り替えるように前記経路切替手段を制御し、
沸き上げ運転の停止中は、常に前記第2温水循環経路に切り替えるように前記経路切替手段を制御する運転制御装置と
を備え
前記運転制御装置は、沸き上げ運転の停止中に、前記温度検出手段によって検出される外気温度または循環水温度が所定値以下となると、前記給水ポンプおよび前記熱源器の運転を開始すると共に、
前記温度検出手段によって検出される外気温度または循環水温度が所定値以上の時、あるいは前記給水ポンプまたは前記熱源器のうち少なくともどちらか一方の運転を開始してから所定の条件に達した場合、前記給水ポンプおよび前記熱源器の運転を所定時間が経過するまで停止し、
前記給水ポンプおよび前記熱源器の運転を停止する時間が所定時間を経過した時点で、前記温度検出手段によって検出される外気温度または循環水温度が所定値以下の時、前記給水ポンプおよび前記熱源器の運転を再開することを特徴とする貯湯式給湯器。
(A) a heat source device for supplying heat;
(B) A hot water storage tank for storing hot water generated by the heat source device and supplying hot water to a predetermined hot water supply location;
(C) a hot water flowing out from the previous SL heat source unit, a first hot water circulation path for returning again the heat source unit through the hot water storage tank,
( D ) a second hot water circulation path for returning the hot water flowing out of the heat source device back to the heat source device, bypassing the hot water storage tank;
( E ) a feed water pump that circulates hot water flowing out of the heat source device to the first hot water circulation path or the second hot water circulation path;
(F) path switching means for switching between the first warm water circulation path and the second warm water circulation path; and (g) temperature detection means for detecting the outside air temperature or the circulating water temperature,
Controlling the heat source and the feed pump;
During the boiling operation of storing hot water generated by the heat source device in the hot water storage tank, the path switching means is controlled so as to always switch to the first hot water circulation path,
During the stop of the boiling operation, and a OPERATION controller that controls the path switching means to switch to the second hot water circulation path always,
The operation control device starts operation of the water supply pump and the heat source device when the outside air temperature or the circulating water temperature detected by the temperature detection unit is equal to or lower than a predetermined value while the boiling operation is stopped.
When the outside air temperature or circulating water temperature detected by the temperature detection means is equal to or higher than a predetermined value, or when a predetermined condition is reached after starting the operation of at least one of the feed water pump or the heat source device, Stop the operation of the water supply pump and the heat source until a predetermined time elapses,
When a predetermined time has elapsed when the operation of the water supply pump and the heat source device is stopped, when the outside air temperature or the circulating water temperature detected by the temperature detection unit is equal to or lower than a predetermined value, the water supply pump and the heat source device Hot water storage water heater characterized by resuming operation of
請求項に記載の貯湯式給湯器において、
前記運転制御装置は、前記給水ポンプの運転を開始する前に、前記熱源器の運転を開始することを特徴とする貯湯式給湯器。
In the hot water storage type water heater according to claim 1 ,
The operation control device starts the operation of the heat source device before starting the operation of the water supply pump.
請求項に記載の貯湯式給湯器において、
前記運転制御装置は、前記熱源器の運転を開始する前に、前記給水ポンプの運転を開始することを特徴とする貯湯式給湯器。
In the hot water storage type water heater according to claim 1 ,
The operation control device starts the operation of the water supply pump before the operation of the heat source device is started.
請求項ないし請求項のうちいずれかに記載の貯湯式給湯器において、
前記第1温水循環経路は、前記貯湯槽の下部に接続する給水配管、この給水配管と前記熱源器の入口とを接続する往配管、前記熱源器の出口に接続する復配管、およびこの復配管と前記貯湯槽の上部とを接続する貯湯槽配管の順に温水が循環する経路であり、
前記第2温水循環経路は、前記復配管、前記貯湯槽から循環水を迂回させるバイパス配管、および前記往配管の順に循環水が循環する経路であり、
前記経路切替手段は、沸き上げ運転時のみ前記給水配管から前記往配管への前記第1温水循環経路に切り替え、沸き上げ運転の停止時に前記バイパス配管から前記往配管への前記第2温水循環経路に切り替える三方弁であることを特徴とする貯湯式給湯器。
In hot water storage type water heater according to any one of claims 1 to 3,
The first hot water circulation path includes a water supply pipe connected to the lower part of the hot water storage tank, an outgoing pipe connecting the water supply pipe and the inlet of the heat source device, a return pipe connected to the outlet of the heat source device, and the return pipe Is a path through which hot water circulates in the order of hot water tank piping connecting the hot water tank and the upper part of the hot water tank,
The second hot water circulation path is a path through which the circulating water circulates in the order of the return pipe, a bypass pipe that bypasses the circulating water from the hot water storage tank, and the forward pipe.
The path switching means switches to the first hot water circulation path from the water supply pipe to the forward pipe only during the boiling operation, and the second hot water circulation path from the bypass pipe to the forward pipe when the boiling operation is stopped. Hot water storage type water heater characterized by being a three-way valve that switches to
請求項に記載の貯湯式給湯器において、
前記温度検出手段は、前記第1温水循環経路または前記第2温水循環経路を循環する循環水温度を検出する循環水温度検出手段であり、
前記運転制御装置は、前記循環水温度検出手段によって検出される循環水温度が所定値以上の時、あるいは前記給水ポンプおよび前記熱源器の運転を開始してから所定の条件に達した場合、前記給水ポンプおよび前記熱源器の運転を所定時間が経過するまで停止すると共に、前記給水ポンプおよび前記熱源器の運転を停止する時間が所定時間を経過した時点で、前記循環水温度検出手段によって検出される循環水温度が所定値以下の時、前記給水ポンプおよび前記熱源器の運転を再開することを特徴とする貯湯式給湯器。
In the hot water storage type water heater according to claim 1 ,
The temperature detecting means is a circulating water temperature detecting means for detecting a circulating water temperature circulating in the first hot water circulation path or the second hot water circulation path;
When the circulating water temperature detected by the circulating water temperature detecting means is equal to or higher than a predetermined value, or when a predetermined condition is reached after the operation of the feed water pump and the heat source device is reached, The operation of the water supply pump and the heat source device is stopped until a predetermined time elapses, and when the time for stopping the operation of the water supply pump and the heat source device elapses a predetermined time, it is detected by the circulating water temperature detecting means. When the circulating water temperature is below a predetermined value, the operation of the water supply pump and the heat source device is resumed .
請求項に記載の貯湯式給湯器において、
前記給水ポンプの運転を停止する所定時間は、前記温度検出手段によって検出される外気温度または循環水温度のうち少なくとも一方の温度にて決定されることを特徴とする貯湯式給湯器。
In the hot water storage type water heater according to claim 5 ,
The hot water storage type hot water heater according to claim 1, wherein the predetermined time for stopping the operation of the water supply pump is determined by at least one of an outside air temperature and a circulating water temperature detected by the temperature detecting means.
請求項に記載の貯湯式給湯器において、
前記熱源器は、吸引した冷媒を圧縮して吐出する電動式の冷媒圧縮機、およびこの冷媒圧縮機より吐出された高圧側の冷媒によって水を湯に昇温させる高圧側熱交換器を有し、 前記運転制御装置は、前記熱源器の運転を開始してから所定の条件に達して前記熱源器の運転を停止した後、前記給水ポンプを所定時間が経過するまでの間、所定回転数で運転することを特徴とする貯湯式給湯器。
In the hot water storage type water heater according to claim 6 ,
The heat source device includes an electric refrigerant compressor that compresses and discharges the sucked refrigerant, and a high-pressure side heat exchanger that raises the temperature of the water to hot water by the high-pressure side refrigerant discharged from the refrigerant compressor. The operation control device starts operating the heat source device, reaches a predetermined condition, stops the operation of the heat source device, and then operates the water supply pump at a predetermined rotation speed until a predetermined time elapses. Hot water storage water heater that is characterized by operation.
請求項に記載の貯湯式給湯器において、
前記運転制御装置は、前記給水ポンプの運転を停止した後、所定時間が経過するまで前記給水ポンプを放置することを特徴とする貯湯式給湯器。
In the hot water storage type water heater according to claim 7 ,
The operation control device leaves the water supply pump until a predetermined time elapses after the operation of the water supply pump is stopped.
請求項に記載の貯湯式給湯器において、
前記熱源器は、空気熱交換器より吸引した冷媒を圧縮して吐出する電動式の冷媒圧縮機、この冷媒圧縮機より吐出された高圧側の冷媒によって水を湯に昇温させる高圧側熱交換器、およびこの高圧側熱交換器から流出する冷媒を弁開度に応じて減圧する電気式の膨張弁を有し、
前記温度検出手段は、前記空気熱交換器近傍に設置されて、外気温度を検出する外気温度検出手段であり、
前記運転制御装置は、前記外気温度検出手段によって検出される外気温度が所定値以下の場合、少なくとも前記給水ポンプまたは前記熱源器の運転を開始することを特徴とする貯湯式給湯器。
In the hot water storage type water heater according to claim 1 ,
The heat source unit is an electric refrigerant compressor that compresses and discharges the refrigerant sucked from the air heat exchanger, and high-pressure side heat exchange that raises the temperature of the water to hot water by the high-pressure side refrigerant discharged from the refrigerant compressor And an electric expansion valve that depressurizes the refrigerant flowing out of the high pressure side heat exchanger according to the valve opening degree,
The temperature detection means is an outside air temperature detection means that is installed in the vicinity of the air heat exchanger and detects an outside air temperature,
The operation control device starts operation of at least the water supply pump or the heat source device when the outside air temperature detected by the outside air temperature detecting means is equal to or lower than a predetermined value.
請求項に記載の貯湯式給湯器において、
前記温度検出手段は、前記第1温水循環経路または前記第2温水循環経路を循環する循環水温度を検出する循環水温度検出手段であり、
前記運転制御装置は、前記冷媒圧縮機の運転前に、前記循環水温度検出手段によって検出された循環水温度から前記膨張弁の開度を決定することを特徴とする貯湯式給湯器。
In the hot water storage type water heater according to claim 9 ,
The temperature detecting means is a circulating water temperature detecting means for detecting a circulating water temperature circulating in the first hot water circulation path or the second hot water circulation path;
The operation control device determines the opening degree of the expansion valve from the circulating water temperature detected by the circulating water temperature detecting means before the operation of the refrigerant compressor.
請求項1に記載の貯湯式給湯器において、
前記第1温水循環経路は、前記貯湯槽の下部に接続する給水配管、この給水配管と前記熱源器の入口とを接続する往配管、前記熱源器の出口に接続する復配管、およびこの復配管と前記貯湯槽の上部とを接続する貯湯槽配管の順に温水が循環する経路であり、
前記第2温水循環経路は、前記復配管、前記貯湯槽から循環水を迂回させるバイパス配管、および前記往配管の順に循環水が循環する経路であり、
前記経路切替手段は、沸き上げ運転時のみ前記給水配管から前記往配管への前記第1温水循環経路に切り替え、沸き上げ運転の停止時に前記バイパス配管から前記往配管への前記第2温水循環経路に切り替える三方弁であることを特徴とする貯湯式給湯器。
In the hot water storage type water heater according to claim 1,
The first hot water circulation path includes a water supply pipe connected to the lower part of the hot water storage tank, an outgoing pipe connecting the water supply pipe and the inlet of the heat source device, a return pipe connected to the outlet of the heat source device, and the return pipe Is a path through which hot water circulates in the order of hot water tank piping connecting the hot water tank and the upper part of the hot water tank,
The second hot water circulation path is a path through which the circulating water circulates in the order of the return pipe, a bypass pipe that bypasses the circulating water from the hot water storage tank, and the forward pipe.
The path switching means switches to the first hot water circulation path from the water supply pipe to the forward pipe only during the boiling operation, and the second hot water circulation path from the bypass pipe to the forward pipe when the boiling operation is stopped. Hot water storage type water heater characterized by being a three-way valve that switches to
請求項1に記載の貯湯式給湯器において、
前記熱源器は、冷媒と温水とを熱交換する水−冷媒熱交換器であり、
前記水−冷媒熱交換器は、前記給水ポンプに接続されて、水を湯に昇温させる給湯用熱交換器、およびコンプレッサの吐出口に接続されて、前記給湯用熱交換器へ熱量供給を行なう高圧側熱交換器を有し、
水を湯に昇温させる熱源ユニットは、前記コンプレッサの吐出口より吐出された高圧側の冷媒圧力が冷媒の臨界圧力以上となる超臨界ヒートポンプサイクルにより構成されていることを特徴とする貯湯式給湯器。
In the hot water storage type water heater according to claim 1,
The heat source device is a water-refrigerant heat exchanger that exchanges heat between the refrigerant and hot water.
The water-refrigerant heat exchanger is connected to the water supply pump, and is connected to a hot water heat exchanger that raises the temperature of the water to hot water, and a discharge port of a compressor, and supplies heat to the hot water heat exchanger. Has a high pressure side heat exchanger to perform,
The heat source unit for raising the temperature of water to hot water is constituted by a supercritical heat pump cycle in which the refrigerant pressure on the high-pressure side discharged from the discharge port of the compressor is equal to or higher than the critical pressure of the refrigerant. vessel.
請求項1に記載の貯湯式給湯器において、
前記熱源器は、空気熱交換器より吸引した冷媒を圧縮して吐出する電動式の冷媒圧縮機を有し、
前記温度検出手段は、前記空気熱交換器近傍に設置されて、外気温度を検出する外気温度検出手段であり、
前記運転制御装置は、全量沸き上げ終了後、前記外気温度検出手段によって検出される外気温度は通常沸き上げ運転中の平均値を用いることを特徴とする貯湯式給湯器。
In the hot water storage type water heater according to claim 1,
The heat source device has an electric refrigerant compressor that compresses and discharges the refrigerant sucked from the air heat exchanger,
The temperature detection means is an outside air temperature detection means that is installed in the vicinity of the air heat exchanger and detects an outside air temperature,
The operation control device uses an average value during normal boiling operation as the outside air temperature detected by the outside air temperature detecting means after the completion of the boiling of the entire amount.
請求項1に記載の貯湯式給湯器において、
前記運転制御装置は、
少なくとも前記熱源器を運転する除霜運転を開始する前に、前記温度検出手段によって検出される温度が所定値以下の時、前記第2温水循環経路に切り替えるように前記経路切替手段を制御すると共に、少なくとも前記給水ポンプの運転を開始することを特徴とする貯湯式給湯器。
In the hot water storage type water heater according to claim 1,
The operation control device includes:
At least before starting the defrosting operation for operating the heat source device, when the temperature detected by the temperature detecting means is not more than a predetermined value, the path switching means is controlled to switch to the second hot water circulation path. A hot water storage type hot water supply device that starts operation of at least the water supply pump.
請求項1に記載の貯湯式給湯器において、
前記熱源器は、空気熱交換器より吸引した冷媒を圧縮して吐出する電動式の冷媒圧縮機を有し、
前記運転制御装置は、前記除霜運転を開始する前に、前記温度検出手段によって検出される温度が所定値以下の時、前記第2温水循環経路に切り替えるように前記経路切替手段を制御すると共に、前記給水ポンプおよび前記冷媒圧縮機を所定回転数で運転することを特徴とする貯湯式給湯器。
In hot water storage type water heater according to claim 1 4,
The heat source device has an electric refrigerant compressor that compresses and discharges the refrigerant sucked from the air heat exchanger,
The operation control device controls the path switching unit to switch to the second hot water circulation path when the temperature detected by the temperature detection unit is equal to or lower than a predetermined value before starting the defrosting operation. A hot water storage type hot water heater, wherein the water supply pump and the refrigerant compressor are operated at a predetermined rotational speed.
請求項1に記載の貯湯式給湯器において、
前記運転制御装置は、
少なくとも前記給水ポンプ転して機能部品の凍結防止を行なう、前記機能部品の凍結防止制御が所定時間以上行なわれた時、前記第1温水循環経路に切り替えるように前記経路切替手段を制御することを特徴とする貯湯式給湯器。
In the hot water storage type water heater according to claim 1,
The operation control device includes:
Performing freezing prevention function components at least the water supply pump to OPERATION, when the freeze prevention control before Symbol functional components is performed over a predetermined time, the path switching means to switch to the first hot water circulation path A hot water storage type water heater that is controlled.
JP2002093975A 2001-08-24 2002-03-29 Hot water storage water heater Expired - Fee Related JP3969154B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002093975A JP3969154B2 (en) 2001-08-24 2002-03-29 Hot water storage water heater
DE10237840A DE10237840A1 (en) 2001-08-24 2002-08-19 Hot water supply system, especially for domestic use, has an additional hot water circulation path that can be used to prevent water boiling, pipe freezing and prevent cooling of hot water when hot water taps are turned on

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001255010 2001-08-24
JP2001-255010 2001-08-24
JP2002093975A JP3969154B2 (en) 2001-08-24 2002-03-29 Hot water storage water heater

Publications (2)

Publication Number Publication Date
JP2003139405A JP2003139405A (en) 2003-05-14
JP3969154B2 true JP3969154B2 (en) 2007-09-05

Family

ID=26620964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002093975A Expired - Fee Related JP3969154B2 (en) 2001-08-24 2002-03-29 Hot water storage water heater

Country Status (2)

Country Link
JP (1) JP3969154B2 (en)
DE (1) DE10237840A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100991888B1 (en) 2010-08-04 2010-11-04 주식회사 한국그린피아 Freezing burst prevention system for water closet
KR20140139425A (en) * 2013-05-27 2014-12-05 린나이가부시기가이샤 Heating system
CN110530047A (en) * 2019-07-17 2019-12-03 西安交通大学 A kind of Trans-critical cycle CO of double vortex tube auxiliary2System and its control method

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7028494B2 (en) 2003-08-22 2006-04-18 Carrier Corporation Defrosting methodology for heat pump water heating system
US7228692B2 (en) 2004-02-11 2007-06-12 Carrier Corporation Defrost mode for HVAC heat pump systems
JP3904013B2 (en) * 2004-10-25 2007-04-11 松下電器産業株式会社 Heat pump type water heater
JP4327170B2 (en) * 2006-04-05 2009-09-09 リンナイ株式会社 Hot water storage hot water supply system
JP2008064338A (en) * 2006-09-05 2008-03-21 Corona Corp Hot water storage device
JP2008121923A (en) * 2006-11-09 2008-05-29 Denso Corp Heat pump water heater
JP2008232576A (en) * 2007-03-22 2008-10-02 Sanden Corp Hot water supply apparatus
JP4988486B2 (en) * 2007-05-31 2012-08-01 株式会社コロナ Hot water storage water heater
JP2010144938A (en) * 2008-12-16 2010-07-01 Mitsubishi Electric Corp Heat pump water heater and method for operating the same
JP5183511B2 (en) * 2009-01-28 2013-04-17 三菱電機株式会社 Heat pump type water heater
JP5729910B2 (en) * 2010-03-05 2015-06-03 三菱重工業株式会社 Hot water heat pump and control method thereof
JP5603146B2 (en) * 2010-06-21 2014-10-08 株式会社コロナ Heat pump water heater
JP5571489B2 (en) * 2010-07-22 2014-08-13 株式会社コロナ Hot water storage water heater
JP2011257130A (en) * 2011-08-22 2011-12-22 Osaka Gas Co Ltd Apparatus for recovering exhaust heat
CN105466077B (en) * 2016-01-20 2018-02-02 马鞍山市博浪热能科技有限公司 A kind of mixed-proof constant flow rate energy-saving cistern
CN109268925A (en) * 2018-11-01 2019-01-25 青岛太和环境工程有限公司 A kind of concentrated hot watersystem based on solar energy and air source heat pump
JP7288806B2 (en) * 2019-06-03 2023-06-08 リンナイ株式会社 Water heater

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348250A (en) * 1977-10-24 1978-05-01 Matsushita Electric Ind Co Ltd Freezing-preventive operation system of feedwater system
JPH05272812A (en) * 1992-03-26 1993-10-22 Matsushita Electric Ind Co Ltd Heat pump type hot water feeder
JP3127622B2 (en) * 1992-10-26 2001-01-29 松下電器産業株式会社 Hot water storage type electric water heater
JP3651942B2 (en) * 1994-11-29 2005-05-25 京セラ株式会社 Water heater
JP3393601B2 (en) * 1999-09-09 2003-04-07 株式会社デンソー Heat pump water heater
JP2002048399A (en) * 2000-07-31 2002-02-15 Daikin Ind Ltd Heat pump hot water supply apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100991888B1 (en) 2010-08-04 2010-11-04 주식회사 한국그린피아 Freezing burst prevention system for water closet
KR20140139425A (en) * 2013-05-27 2014-12-05 린나이가부시기가이샤 Heating system
KR102189464B1 (en) 2013-05-27 2020-12-11 린나이가부시기가이샤 Heating system
CN110530047A (en) * 2019-07-17 2019-12-03 西安交通大学 A kind of Trans-critical cycle CO of double vortex tube auxiliary2System and its control method
CN110530047B (en) * 2019-07-17 2020-10-27 西安交通大学 Double-vortex-tube-assisted transcritical CO2System and control method thereof

Also Published As

Publication number Publication date
DE10237840A1 (en) 2003-03-06
JP2003139405A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
JP3969154B2 (en) Hot water storage water heater
US7856835B2 (en) Hot water supply apparatus
US7228695B2 (en) Heat pump type hot water supply device
JP2008121923A (en) Heat pump water heater
JP2003139392A (en) Water heater
JP2008096044A (en) Hot water reservoir type hot-water supply device
JP2004257583A (en) Storage water heater
JP3737357B2 (en) Water heater
JP3887781B2 (en) Heat pump water heater
JP2004317093A (en) Heat pump hot water supply and heating apparatus
JP4988486B2 (en) Hot water storage water heater
JP5095488B2 (en) Heat pump water heater
JP2006003077A (en) Heat pump type hot water supply apparatus
JP3387474B2 (en) Heat pump water heater
JP2007333340A (en) Heat pump type hot water supply apparatus
JP4372361B2 (en) Heat pump water heater
JP2002340439A (en) Heat pump type hot-water supplier
JP2009074736A (en) Heat pump type hot water supply device
JP4867925B2 (en) Heat pump type water heater
JP2010054145A (en) Heat pump water heater
JP2003056907A (en) Heat pump water heater
JPS58179764A (en) Heat pump water heater
JP4515883B2 (en) Hot water storage water heater
JP3719162B2 (en) Heat pump water heater
JP2004340450A (en) Hot water storage type water heater and thermostat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140615

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees