JP6346122B2 - Hot water heating system - Google Patents

Hot water heating system Download PDF

Info

Publication number
JP6346122B2
JP6346122B2 JP2015088281A JP2015088281A JP6346122B2 JP 6346122 B2 JP6346122 B2 JP 6346122B2 JP 2015088281 A JP2015088281 A JP 2015088281A JP 2015088281 A JP2015088281 A JP 2015088281A JP 6346122 B2 JP6346122 B2 JP 6346122B2
Authority
JP
Japan
Prior art keywords
temperature
predetermined
hot water
heat exchange
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015088281A
Other languages
Japanese (ja)
Other versions
JP2016205716A (en
Inventor
瑛一 白井
瑛一 白井
智史 莅戸
智史 莅戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2015088281A priority Critical patent/JP6346122B2/en
Publication of JP2016205716A publication Critical patent/JP2016205716A/en
Application granted granted Critical
Publication of JP6346122B2 publication Critical patent/JP6346122B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ヒートポンプ装置と熱交換した温水を用いて暖房を実行可能な温水暖房システムに関する。   The present invention relates to a hot water heating system capable of performing heating using hot water exchanged with a heat pump device.

従来より、この種のシステムにおいては、室外機の水熱交換器に対し複数の熱交換端末(放熱端末)をそれぞれ接続したものがあった(例えば、特許文献1参照)。このシステムにおいて、暖房運転の際は、ヒートポンプ装置からの冷媒により前記水熱交換器において生成された温水が導入管路を介して各放熱端末へと供給される。   Conventionally, in this type of system, there has been a system in which a plurality of heat exchange terminals (heat radiating terminals) are connected to a water heat exchanger of an outdoor unit (see, for example, Patent Document 1). In this system, during the heating operation, hot water generated in the water heat exchanger by the refrigerant from the heat pump device is supplied to each heat radiating terminal via the introduction pipe.

特開2013−217522号公報JP2013-217522A

ここで、前記冷媒として従来よりヒートポンプ装置に広く使用されていたR22やR410A冷媒に代わり、近年、R32冷媒がヒートポンプ装置において使用されつつある。このR32冷媒は、従来から使用されていたR22やR410A冷媒に比べて単位体積あたりの冷凍能力が高く前記R410A冷媒よりも冷媒配管内での充填量を少なくできることが知られているが、その場合には、蒸発器(空気熱交換器)の上流側で減圧するとき、従来の前記R410A冷媒用のヒートポンプ装置での減圧率よりも大きな減圧率とする必要がある。   Here, in recent years, R32 refrigerant is being used in heat pump devices instead of R22 and R410A refrigerants that have been widely used in heat pump devices. It is known that this R32 refrigerant has a higher refrigeration capacity per unit volume than the conventionally used R22 and R410A refrigerants, and can reduce the filling amount in the refrigerant pipes than the R410A refrigerant. Therefore, when the pressure is reduced on the upstream side of the evaporator (air heat exchanger), it is necessary to set the pressure reduction rate larger than the pressure reduction rate in the conventional heat pump device for the R410A refrigerant.

このようなR32冷媒における(R410A冷媒と比べた場合の)充填量の減少及び減圧率の増大により、R32冷媒用のヒートポンプ装置では、除霜性能(除霜運転で凝縮器に付着した霜を加熱してどれ位早く溶かせるか)低下し、除霜の時間が長くなることで、熱交換端末での暖房運転が中断される時間が長くなり、室温の下降で室内の快適性が損なわれる問題があった。   With such a decrease in the filling amount and an increase in the decompression rate in the R32 refrigerant (compared to the R410A refrigerant), the heat pump device for the R32 refrigerant heats the frost attached to the condenser in the defrosting operation. How quickly it melts), and the longer the time of defrosting, the longer the time during which the heating operation at the heat exchange terminal is interrupted, and the lowering of the room temperature impairs indoor comfort was there.

上記問題を解決するために、本発明の請求項1では、R32冷媒用の圧縮機、膨張弁、空気熱交換器を備えたヒートポンプ装置、及び、このヒートポンプ装置からR32冷媒の供給を受けて水との熱交換により温水を生成する水熱交換器、を有する室外機と、前記室外機の前記水熱交換器で生成され導入管路を介して供給された前記温水を用いて室内側空気に対する放熱により暖房を行うとともに、前記放熱後の温水を導出管路を介し前記室外機の前記水熱交換器へと循環ポンプにて還流させる熱交換端末と、前記熱交換端末の運転状態を所定の制御態様で制御するリモコン装置と、このリモコン装置からの指令によって、前記圧縮機、膨張弁等を制御する室外制御部とを有するR32冷媒用の温水暖房システムにおいて、前記空気熱交換器の温度を検知する熱交センサと、外気の温度を検知する外気温センサを設け、前記熱交センサで検知する熱交温度aと、前記外気温センサで検知する外気温bとの温度差cが第1所定温度差c1以上のときに、除霜運転を開始し、前記循環ポンプを第1所定回転数d1で、前記圧縮機を第1所定周波数e1にて除霜運転継続後、前記除霜運転開始から第1所定時間t1経過時の前記熱交温度aが第1所定温度a1以下のときに、前記循環ポンプの回転数を第1所定回転数d1よりも大きい第2所定回転数d2に変更する除霜制御手段を有するものである。   In order to solve the above problem, in claim 1 of the present invention, a heat pump device including a compressor for R32 refrigerant, an expansion valve, an air heat exchanger, and water supplied from the heat pump device with R32 refrigerant supplied. An outdoor unit having a water heat exchanger that generates hot water by heat exchange with the outdoor unit, and indoor water using the hot water generated by the water heat exchanger of the outdoor unit and supplied via an introduction pipe Heating is performed by heat radiation, and the heat exchange terminal that recirculates the hot water after heat radiation to the water heat exchanger of the outdoor unit through a discharge pipe by a circulation pump, and the operation state of the heat exchange terminal In the hot water heating system for R32 refrigerant having a remote control device controlled in a control mode and an outdoor control unit for controlling the compressor, the expansion valve and the like according to a command from the remote control device, the air heat exchanger A heat exchange sensor that detects the temperature and an outside air temperature sensor that detects the temperature of the outside air are provided, and a temperature difference c between the heat exchange temperature a detected by the heat exchange sensor and the outside air temperature b detected by the outside air temperature sensor is When the temperature difference is equal to or greater than the first predetermined temperature difference c1, the defrosting operation is started, the decirculation operation is continued at the first predetermined rotation speed d1 and the compressor at the first predetermined frequency e1, and then the defrosting operation is performed. When the heat exchange temperature a after the first predetermined time t1 has elapsed from the start of operation is equal to or lower than the first predetermined temperature a1, the rotational speed of the circulation pump is set to a second predetermined rotational speed d2 that is greater than the first predetermined rotational speed d1. It has a defrost control means to change.

また、請求項2では、前記除霜運転開始から第1所定時間t1経過時の前記熱交温度aが第1所定温度a1以下で、前記循環ポンプの回転数を第1所定回転数d1よりも大きい第2所定回転数d2に変更後、除霜運転を継続し、前記除霜運転開始から第1所定時間t1よりも大きな第2所定時間t2経過時の、前記熱交温度aが第1所定温度a1以下のときに、前記圧縮機を第1所定周波数e1より大きい第2所定周波数e2に変更する除霜制御手段を有するものである。   Moreover, in Claim 2, the said heat exchanger temperature a at the time of 1st predetermined time t1 progressing from the said defrost operation start is below 1st predetermined temperature a1, and the rotation speed of the said circulation pump is set rather than 1st predetermined rotation speed d1. After changing to a large second predetermined rotational speed d2, the defrosting operation is continued, and the heat exchange temperature a when the second predetermined time t2 greater than the first predetermined time t1 has elapsed from the start of the defrosting operation is the first predetermined temperature. When the temperature is equal to or lower than a1, the compressor has defrosting control means for changing the compressor to a second predetermined frequency e2 that is higher than the first predetermined frequency e1.

また、請求項3では、前記除霜運転中に熱交温度aが前記第1所定温度a1よりも高い第2所定温度a2以上を、第3所定時間t3継続したときには除霜運転を終了して暖房運転を再開する除霜制御手段を有するものである。   According to a third aspect of the present invention, the defrosting operation is terminated when the heat exchange temperature a continues at the second predetermined temperature a2 higher than the first predetermined temperature a1 for the third predetermined time t3 during the defrosting operation. It has a defrost control means which restarts heating operation.

この発明の請求項1では、前記R32冷媒の使用に由来する前記の弊害を解消するために、除霜運転開始から第1所定時間後における除霜の進行状況を熱交温度によって検知して、除霜の進行状況が悪い場合には循環ポンプの回転数を上げて水熱交換器の蒸発能力を向上することで、空気熱交換器の凝縮能力も向上し、除霜性能が向上することで、除霜運転を短時間で終了することができ、この結果、暖房運転の快適性が向上する。   In claim 1 of the present invention, in order to eliminate the above-described adverse effects resulting from the use of the R32 refrigerant, the progress of defrosting after the first predetermined time from the start of the defrosting operation is detected by the heat exchange temperature, When the progress of defrosting is poor, increasing the rotation speed of the circulation pump to improve the evaporation capacity of the water heat exchanger will improve the condensation capacity of the air heat exchanger and improve the defrosting performance. The defrosting operation can be completed in a short time, and as a result, the comfort of the heating operation is improved.

また、請求項2によれば、除霜運転開始から第2所定時間後における除霜の進行状況を熱交温度によって検知して、除霜の進行状況が悪い場合には、更に圧縮機の周波数を上昇させることで、空気熱交換器の凝縮能力を向上し、除霜性能を更に向上させる。この結果、長びいている除霜運転の時間を一刻も早く終了させ、暖房運転を再開することで、暖房運転の快適性の低下を緩やかにすることができる。   According to claim 2, when the progress of defrosting after the second predetermined time from the start of the defrosting operation is detected by the heat exchange temperature, and the progress of defrosting is poor, the frequency of the compressor is further reduced. Is raised, the condensation capability of the air heat exchanger is improved, and the defrosting performance is further improved. As a result, it is possible to moderate the deterioration in the comfort of the heating operation by ending the long defrosting operation time as soon as possible and restarting the heating operation.

また、請求項3によれば、除霜運転時の熱交温度の上昇により除霜の終了を判断し、速やかに暖房運転を再開することで、暖房運転の快適性の低下を緩やかにすることができる。   Moreover, according to claim 3, the end of the defrosting is judged by the rise in the heat exchange temperature during the defrosting operation, and the heating operation is restarted promptly, so that the decrease in the comfort of the heating operation is moderated. Can do.

本発明の一実施形態の温水冷暖房システムの全体概略構成を示す図The figure which shows the whole schematic structure of the hot-water cooling / heating system of one Embodiment of this invention. 同室外機の除霜運転・暖房運転時における冷凍サイクルを模式的に表したSchematic representation of the refrigeration cycle during defrosting and heating operations of the outdoor unit 同除霜運転の切換条件の説明図Explanatory drawing of switching conditions for the defrosting operation 同除霜運転の切換による各部の作動の説明図Explanatory drawing of operation of each part by switching of the defrosting operation 同制御手順を示すフローチャート図Flow chart showing the control procedure

以下、本発明の一実施の形態を図1〜図4に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

本実施形態の温水暖房システムの全体概略構成を図1に示す。図1において、この温水暖房システム100は、室外に設置される室外機1と、この室外機1と温水往き管2及び温水戻り管3を介して接続されて室内に設置される、複数の熱交換端末(この例では、暖房パネル51、暖房パネル52、床暖房パネル53、の3つ)とを有する。   The whole schematic structure of the hot water heating system of this embodiment is shown in FIG. In FIG. 1, this hot water heating system 100 includes an outdoor unit 1 that is installed outdoors, and a plurality of heat units that are installed indoors by being connected to the outdoor unit 1 via a hot water forward pipe 2 and a hot water return pipe 3. And an exchange terminal (in this example, a heating panel 51, a heating panel 52, and a floor heating panel 53).

この例では、前記暖房パネル51はA室、B室、C室からなる3室構造のうち前記A室に配置されており、前記暖房パネル52は前記B室に配置されており、前記床暖房パネル53は前記C室に配置されている。このとき、前記室外機1から延びる前記温水往き管2の途中に1つの往きヘッダ91が設けられており、温水往き管2のうち前記往きヘッダ91より上流側部分は、1つの共通往き管2Aとして構成され、前記室外機1からの温水が供給される。そして、温水往き管2のうち前記往きヘッダ91より下流側部分は、前記暖房パネル51への往き管2B1と、前記暖房パネル52への往き管2B2と、前記床暖房パネル53への往き管2B3と、に分かれている。なお、前記共通往き管2Aと往き管2B1とが前記暖房パネル51への導入管路に相当し、前記共通往き管2Aと往き管2B2とが前記暖房パネル52への導入管路に相当し、前記共通往き管2Aと往き管2B3とが前記床暖房パネル53への導入管路に相当している。同様に、前記室外機1へと延びる前記温水戻り管3の途中に1つの戻りヘッダ92が設けられており、温水戻り管3のうち前記戻りヘッダ92より上流側部分は、前記暖房パネル51からの戻り管3B1と、前記暖房パネル52からの戻り管3B2と、前記床暖房パネル53からの戻り管3B3と、に分かれている。そして、温水戻り管3のうち前記戻りヘッダ92より下流側部分は、1つの共通戻り管3Aとして構成され、前記戻り管3B1,3B2,3B3を介し導入された温水を前記室外機1へと戻す。なお、前記共通戻り管3Aと戻り管3B1とが前記暖房パネル51からの導出管路に相当し、前記共通戻り管3Aと戻り管3B2とが前記暖房パネル52からの導出管路に相当し、前記共通戻り管3Aと戻り管3B3とが前記床暖房パネル53からの導出管路に相当している。   In this example, the heating panel 51 is arranged in the A room among the three-room structure consisting of the A room, the B room, and the C room, the heating panel 52 is arranged in the B room, and the floor heating. The panel 53 is disposed in the C chamber. At this time, one forward header 91 is provided in the middle of the warm water outgoing pipe 2 extending from the outdoor unit 1, and the upstream side portion of the warm water outgoing pipe 2 from the forward header 91 is one common outgoing pipe 2A. The hot water from the outdoor unit 1 is supplied. The downstream portion of the warm water forward pipe 2 from the forward header 91 includes an outgoing pipe 2B1 to the heating panel 51, an outgoing pipe 2B2 to the heating panel 52, and an outgoing pipe 2B3 to the floor heating panel 53. And is divided. The common forward pipe 2A and the forward pipe 2B1 correspond to the introduction pipe line to the heating panel 51, and the common forward pipe 2A and the forward pipe 2B2 correspond to the introduction pipe line to the heating panel 52, The common forward pipe 2 </ b> A and the forward pipe 2 </ b> B <b> 3 correspond to introduction pipes to the floor heating panel 53. Similarly, one return header 92 is provided in the middle of the hot water return pipe 3 extending to the outdoor unit 1, and a portion of the hot water return pipe 3 upstream from the return header 92 is connected to the heating panel 51. Return pipe 3B1, a return pipe 3B2 from the heating panel 52, and a return pipe 3B3 from the floor heating panel 53. A portion of the hot water return pipe 3 downstream from the return header 92 is configured as one common return pipe 3A, and the hot water introduced through the return pipes 3B1, 3B2, and 3B3 is returned to the outdoor unit 1. . The common return pipe 3A and the return pipe 3B1 correspond to the lead-out pipe line from the heating panel 51, and the common return pipe 3A and the return pipe 3B2 correspond to the lead-out pipe line from the heating panel 52, The common return pipe 3 </ b> A and the return pipe 3 </ b> B <b> 3 correspond to a lead-out pipe line from the floor heating panel 53.

そして、前記暖房パネル51への往き管2B1、前記暖房パネル52への往き管2B2、及び、前記床暖房パネル53への往き管2B3には、熱動弁コントローラCVからの駆動信号により各往き管を開閉可能な熱動弁V1,V2,V3がそれぞれ設けられている。この例では、前記A室には、前記暖房パネル51の放熱(暖房)運転操作と前記暖房パネル52及び床暖房パネル53の放熱(暖房)運転操作を行うためのメインリモコン装置RMが設けられており、前記B室には前記暖房パネル52の放熱(暖房)運転操作を行うための端末用リモコン装置RAが設けられており、前記C室には前記床暖房パネル53の放熱(暖房)運転操作を行うための端末用リモコン装置RBが設けられている。   The forward pipe 2B1 to the heating panel 51, the forward pipe 2B2 to the heating panel 52, and the forward pipe 2B3 to the floor heating panel 53 are each forward pipe by a drive signal from a thermal valve controller CV. Thermally operated valves V1, V2, V3 that can be opened and closed are respectively provided. In this example, the room A is provided with a main remote controller RM for performing a heat radiation (heating) operation of the heating panel 51 and a heat radiation (heating) operation of the heating panel 52 and the floor heating panel 53. The room B is provided with a terminal remote controller RA for performing a heat radiation (heating) operation of the heating panel 52, and the room C is provided with a heat radiation (heating) operation of the floor heating panel 53. A terminal remote control device RB is provided for performing the above.

前記メインリモコン装置RMでの操作に対応して出力される制御信号SS1は、前記室外機1の制御を行う室外機制御部(後述)へと入力され、これによって前記共通往き管2Aへ供給される温水の流量や温度等が制御されるとともに、さらにこれに対応して前記室外機制御部から前記熱動弁コントローラCVに制御信号SS2が出力され、これに応じて熱動弁コントローラCVから出力される制御信号S1,S2,S3によって各熱動弁V1,V2,V3の開閉動作が制御される。これにより、前記メインリモコン装置RMを適宜に操作することで、前記暖房パネル51、前記暖房パネル52、及び前記床暖房パネル53の運転状態を一括して制御可能となる(以下適宜、このような制御態様を「一括制御」と称する)。また、前記端末用リモコン装置RAでの操作に対応して出力される制御信号Saは前記熱動弁コントローラCVへと入力され、これに応じて熱動弁コントローラCVから出力される制御信号S2によって前記熱動弁V2の開閉動作が制御される。これにより、前記端末用リモコン装置RAを適宜に操作することで前記前記暖房パネル52の運転状態を個別に制御可能となる(以下適宜、このような制御態様を「個別制御」と称する)。また、前記端末用リモコン装置RBでの操作に対応して出力される制御信号Sbは前記熱動弁コントローラCVへと入力され、これに応じて熱動弁コントローラCVから出力される制御信号S3によって前記熱動弁V3の開閉動作が制御される。これにより、前記端末用リモコン装置RBを適宜に操作することで前記床暖房パネル53の運転状態を個別に制御可能となる。   A control signal SS1 output in response to an operation on the main remote controller RM is input to an outdoor unit controller (described later) that controls the outdoor unit 1, and is thereby supplied to the common forward pipe 2A. The flow rate and temperature of the heated water are controlled, and the control signal SS2 is output from the outdoor unit controller to the thermal valve controller CV in response to this, and the thermal valve controller CV outputs the control signal accordingly. The opening / closing operations of the thermal valves V1, V2, V3 are controlled by the control signals S1, S2, S3. Accordingly, by appropriately operating the main remote controller RM, the operation states of the heating panel 51, the heating panel 52, and the floor heating panel 53 can be collectively controlled (hereinafter, as appropriate) The control mode is referred to as “collective control”). Further, the control signal Sa output in response to the operation on the terminal remote controller RA is input to the thermal valve controller CV, and in response to the control signal S2 output from the thermal valve controller CV. The opening / closing operation of the thermal valve V2 is controlled. Accordingly, the operating state of the heating panel 52 can be individually controlled by appropriately operating the terminal remote controller RA (hereinafter, such a control mode is referred to as “individual control” as appropriate). Further, the control signal Sb output in response to the operation on the terminal remote control device RB is input to the thermal valve controller CV, and in response to the control signal S3 output from the thermal valve controller CV. The opening / closing operation of the thermal valve V3 is controlled. Thereby, the operating state of the floor heating panel 53 can be individually controlled by appropriately operating the terminal remote control device RB.

次に、前記室外機1の概略的なシステム構成を図2(a)除霜運転時、(b)暖房運転時、に示す。図2(a)において、室外機1は、従来より空気調和機に広く使用されていたR410A冷媒に代え、近年使用されつつあるR32冷媒を循環させ室外での吸放熱を行う冷媒循環回路21と、例えば不凍液などを温水として循環させ前記複数の熱交換端末(前記の例では、暖房パネル51、暖房パネル52、床暖房パネル53の3つ)での放熱を行う、(前記温水往き管2及び前記温水戻り管3からなる)温水循環回路22と、の間における熱交換を行うものである。   Next, the schematic system configuration of the outdoor unit 1 is shown in FIG. 2 (a) during the defrosting operation and (b) during the heating operation. In FIG. 2A, an outdoor unit 1 includes a refrigerant circulation circuit 21 that circulates an R32 refrigerant that has been used in recent years and absorbs and releases heat outside the room, instead of the R410A refrigerant that has been widely used in air conditioners. For example, the antifreeze is circulated as hot water to radiate heat at the plurality of heat exchange terminals (the heating panel 51, the heating panel 52, and the floor heating panel 53 in the above example) (the hot water outlet pipe 2 and Heat exchange with the warm water circulation circuit 22 (consisting of the warm water return pipe 3) is performed.

すなわち、前記冷媒循環回路21は、前記室外機1に備えられた、前記冷媒の循環方向を切り替える四方弁6と、前記冷媒を圧縮する圧縮機7と、前記冷媒と外気との熱交換を行う室外熱交換器8(空気熱交換器に相当)と、前記冷媒を減圧膨張させる膨張弁9と、前記温水往き管2及び前記温水戻り管3を循環する前記温水と前記冷媒との熱交換を行う水−冷媒熱交換器11(水熱交換器に相当)とを、冷媒配管15で接続して形成されている。なお、前記冷媒配管15で互いに接続された前記四方弁6、前記圧縮機7、前記室外熱交換器8、前記膨張弁9によってヒートポンプ装置が構成されている。また、前記室外熱交換器8に送風する室外ファン10がさらに設けられている。そして、前記室外熱交換器8の略中間部表面の温度を検知する熱交センサ8aと、前記室外ファン10の風上側に設けられ、室外ファン10によって吸い込まれた空気の温度(外気温t)を検知する外気温センサ10aを備えている。   That is, the refrigerant circulation circuit 21 performs heat exchange between the refrigerant and the outside air, which is provided in the outdoor unit 1 and switches the four-way valve 6 that switches the circulation direction of the refrigerant, the compressor 7 that compresses the refrigerant, and the like. Heat exchange between the refrigerant and the hot water circulating through the outdoor heat exchanger 8 (corresponding to an air heat exchanger), an expansion valve 9 for decompressing and expanding the refrigerant, the hot water outlet pipe 2 and the hot water return pipe 3 is performed. A water / refrigerant heat exchanger 11 (corresponding to a water heat exchanger) to be performed is connected by a refrigerant pipe 15. The four-way valve 6, the compressor 7, the outdoor heat exchanger 8, and the expansion valve 9 that are connected to each other through the refrigerant pipe 15 constitute a heat pump device. Further, an outdoor fan 10 for blowing air to the outdoor heat exchanger 8 is further provided. And the heat exchange sensor 8a which detects the temperature of the substantially intermediate | middle part surface of the said outdoor heat exchanger 8, and the temperature (outside temperature t) of the air inhaled by the outdoor fan 10 provided in the windward side of the said outdoor fan 10 Is provided with an outside air temperature sensor 10a.

前記四方弁6は4つのポートを備える弁であり、(前記冷媒配管15の一部を構成する)冷媒主経路15a用の2つのポートのそれぞれに対して、(前記冷媒配管15の一部を構成する)他の冷媒副経路15b用の2つのポートのいずれに接続するかを切り替える。冷媒副経路15b用の2つのポートどうしはループ状に配置された冷媒副経路15bで接続されており、この冷媒副経路15b上に前記圧縮機7が設けられている。   The four-way valve 6 is a valve having four ports. For each of two ports for the refrigerant main path 15a (which constitutes a part of the refrigerant pipe 15), a part of the refrigerant pipe 15 is provided. Configure) Switch which of the two ports for the other refrigerant sub-path 15b is connected. The two ports for the refrigerant sub-path 15b are connected by a refrigerant sub-path 15b arranged in a loop, and the compressor 7 is provided on the refrigerant sub-path 15b.

前記圧縮機7は、低圧ガス状態の冷媒を昇圧して高圧ガス状態にするとともに、室外機1内における冷媒配管15全体の冷媒を循環させるポンプとしても機能する。そして周知のインバータ装置(図示せず)によって回転数を20〜105Hzの間で連続的に可変制御することで、圧縮能力を変化するものである。   The compressor 7 pressurizes the refrigerant in a low-pressure gas state to be in a high-pressure gas state, and also functions as a pump for circulating the refrigerant in the entire refrigerant pipe 15 in the outdoor unit 1. Then, the compression capacity is changed by continuously and variably controlling the rotational speed between 20 and 105 Hz by a known inverter device (not shown).

また、前記四方弁6の冷媒主経路15a用の2つのポートどうしは、ループ状に配置された前記冷媒主経路15aで接続されており、この冷媒主経路15a上に前記室外熱交換器8、前記膨張弁9、及び前記水−冷媒交換器11が順に(図2(a)に示す例では冷媒主経路15a左回りの順に)設けられている。   The two ports for the refrigerant main path 15a of the four-way valve 6 are connected by the refrigerant main path 15a arranged in a loop shape, and the outdoor heat exchanger 8, The expansion valve 9 and the water-refrigerant exchanger 11 are provided in this order (in the example shown in FIG. 2A, in the order of the counterclockwise refrigerant main path 15a).

図2(b)の暖房運転では、前記室外熱交換器8は、その内部を通過する液体状態の前記冷媒の温度が室外の外気温度より低く、外気の熱を冷媒に吸熱してガス状態に蒸発させる蒸発器として機能する。前記室外熱交換器8で外気から吸収した熱は冷媒回路によって前記水−冷媒交換器11に運ばれ、前記温水循環回路22を介して室内の暖房が行われる。外気温bが約5℃以下に下がると室外熱交換器8は氷点下まで低下し、通過する外気に含まれる水分が氷結することで室外熱交換器8表面に霜の付着が始まる、霜の形成は外気温bが低いほど多く発生し、暖房運転の継続時間に沿って徐々に増加し、霜が発達することで熱交換が阻害され室外熱交換器8内を通過する冷媒の温度更に低下して暖房運転ができなくなるので、適当なタイミング(この実施例では外気温bと熱交温度aの温度差が8deg以上)で定期的に除霜運転が必要になる。   In the heating operation of FIG. 2 (b), the outdoor heat exchanger 8 is in a gas state in which the temperature of the refrigerant in the liquid state passing through the interior thereof is lower than the outdoor outdoor temperature, and the heat of the outdoor air is absorbed by the refrigerant. Functions as an evaporator to evaporate. The heat absorbed from the outside air by the outdoor heat exchanger 8 is carried to the water-refrigerant exchanger 11 by the refrigerant circuit, and the room is heated through the hot water circulation circuit 22. When the outside air temperature b falls below about 5 ° C., the outdoor heat exchanger 8 decreases to below freezing point, and the moisture contained in the passing outside air freezes, so that frost formation starts on the surface of the outdoor heat exchanger 8. Is generated more as the outside air temperature b is lower, and gradually increases along the duration of the heating operation. As frost develops, heat exchange is inhibited and the temperature of the refrigerant passing through the outdoor heat exchanger 8 further decreases. Therefore, the defrosting operation is required periodically at an appropriate timing (in this embodiment, the temperature difference between the outside air temperature b and the heat exchange temperature a is 8 deg or more).

図2(a)除霜運転時には、前記圧縮機7で加圧された高温高圧のガスを室外熱交換器8に送り込んで加熱することで室外熱交換器8に付着した霜を取り除き室外熱交換器8において正常な熱交換が行われるようにするもので、その冷媒の熱を放熱して液体状態に凝縮させる凝縮器として機能する。   Fig. 2 (a) During the defrosting operation, the high-temperature and high-pressure gas pressurized by the compressor 7 is sent to the outdoor heat exchanger 8 and heated to remove frost attached to the outdoor heat exchanger 8 and to perform outdoor heat exchange. In this case, normal heat exchange is performed in the vessel 8 and functions as a condenser that radiates the heat of the refrigerant and condenses it into a liquid state.

前記室外ファン10は、前記室外熱交換器8に対して送風することで、室外熱交換器8の性能を向上させる。前記外気温センサ10aは室外ファン10の風上側で室外空気の吸込口近傍に配置され、外気温を検知する。   The outdoor fan 10 improves the performance of the outdoor heat exchanger 8 by sending air to the outdoor heat exchanger 8. The outside air temperature sensor 10a is arranged on the windward side of the outdoor fan 10 and in the vicinity of the outdoor air inlet, and detects the outside air temperature.

前記膨張弁9は、高圧液体状態の前記冷媒を減圧膨張させて低圧液体状態とするよう機能する。   The expansion valve 9 functions to decompress and expand the refrigerant in a high-pressure liquid state to a low-pressure liquid state.

水−冷媒熱交換器11は、前記のように冷媒主経路15aに接続されてその内部に冷媒を通過させるとともに、前記冷温水往き管2及び前記冷温水戻り管3にも接続されてその内部に温水を通過させる。水−冷媒熱交換器11の内部を通過する液体状態R32冷媒の温度が前記温水の温度より低い場合は、冷媒に対して冷温水の熱を吸熱しガス状態に蒸発させる蒸発器として機能する。また、水−冷媒熱交換器11の内部を通過するガス状態の冷媒の温度が冷温水の温度より高い場合は、冷媒に対してその熱を冷温水に放熱し液体状態に凝縮させる凝縮器として機能する。   As described above, the water-refrigerant heat exchanger 11 is connected to the refrigerant main path 15a and allows the refrigerant to pass through it, and is also connected to the cold / hot water return pipe 2 and the cold / hot water return pipe 3 so as to have the inside thereof. Allow warm water to pass through. When the temperature of the liquid state R32 refrigerant passing through the inside of the water-refrigerant heat exchanger 11 is lower than the temperature of the hot water, it functions as an evaporator that absorbs the heat of the cold / hot water and evaporates it into a gas state. Moreover, when the temperature of the gaseous refrigerant passing through the inside of the water-refrigerant heat exchanger 11 is higher than the temperature of the cold / hot water, the condenser radiates the heat to the cold / hot water and condenses it into a liquid state. Function.

一方、前記温水循環回路22は、前記室外機1に備えられた、前記水−冷媒熱交換器11、前記温水に循環圧力を加える循環ポンプ12、及びシスターンタンク13と、前記複数の熱交換端末(前記の例では、暖房パネル51、暖房パネル52、床暖房パネル53の3つ)を、前記温水往き管2及び前記温水戻り管3で接続して形成されている。   On the other hand, the hot water circulation circuit 22 includes the water-refrigerant heat exchanger 11, a circulation pump 12 that applies a circulation pressure to the hot water, a cistern tank 13, and the plurality of heat exchange terminals provided in the outdoor unit 1. (In the above example, the heating panel 51, the heating panel 52, and the floor heating panel 53) are connected by the hot water outlet pipe 2 and the hot water return pipe 3.

前記水−冷媒熱交換器11は、前記温水往き管2及び前記温水戻り管3に接続されており、前記温水戻り管3上に、前記シスターンタンク13及び前記循環ポンプ12が設けられている。   The water-refrigerant heat exchanger 11 is connected to the hot water return pipe 2 and the hot water return pipe 3, and the cistern tank 13 and the circulation pump 12 are provided on the hot water return pipe 3.

前記シスターンタンク13は、キャビテーションなどで温水中に生じた気泡の分離(気水分離機能)と、前記温水循環回路22における膨張温水の吸収及び冷温水の補給を行う。   The cistern tank 13 separates bubbles generated in the hot water by cavitation or the like (air / water separation function), absorbs the hot / warm water in the hot water circulation circuit 22 and supplies cold / hot water.

前記循環ポンプ12は、前記温水往き管2及び前記温水戻り管3全体に温水を循環させるよう機能する。   The circulation pump 12 functions to circulate hot water throughout the hot water forward pipe 2 and the hot water return pipe 3.

なお、このとき、室外機1は、当該室外機1の制御を行い除霜制御手段としての室外機制御部CUを備えている。この室外機制御部は、主にCPU、ROM、RAM等を備えたマイクロコンピュータで構成され、前記メインリモコン装置RMからの前記制御信号SS1に基づいて前記圧縮機7の周波数や前記循環ポンプ12の回転数等、室外機1全体の制御を行うとともに、対応する前記制御信号SS2を前記熱動弁コントローラCVに出力する。   At this time, the outdoor unit 1 includes an outdoor unit control unit CU as a defrosting control unit that controls the outdoor unit 1. The outdoor unit control unit is mainly composed of a microcomputer including a CPU, a ROM, a RAM, and the like. Based on the control signal SS1 from the main remote controller RM, the frequency of the compressor 7 and the circulation pump 12 The overall control of the outdoor unit 1 such as the number of rotations is performed, and the corresponding control signal SS2 is output to the thermal valve controller CV.

上記構成の冷媒循環回路21において、前記圧縮機7は冷媒副経路15b上において一方向に冷媒を循環させるものであり、前記四方弁6の切り替えによって冷媒主経路15a上の冷媒の循環方向を制御する。前記図2(a)は除霜運転時の循環方向を示しており、圧縮機7から吐出した高温の冷媒が室外熱交換器8、膨張弁9、水−冷媒熱交換器11の順で流通する。これにより、低温・低圧で吸入されたガス状態の冷媒が前記圧縮機7で圧縮されて高温・高圧のガスとなった後、前記室外熱交換器8(凝縮器として機能)において、表面に付着した霜を溶かしていく。この時前記室外ファン10の送風は外気温に応じて回転が制御される、そして外気(室外熱交換器8に付着した霜)に熱を放出しながら高圧の液体に変化する。こうして液体になった冷媒は前記膨張弁9で減圧されて低圧の液体となり蒸発しやすい状態となる。その後、低圧の液体が前記水−冷媒熱交換器11(蒸発器として機能)において蒸発してガスに変化することで前記温水戻り管3からの冷水から吸熱を行う。ここで循環ポンプ12の回転数を上昇すれば、前記温水戻り管3からの冷水の流量が増加し吸熱量も増加することで、水−冷媒熱交換器11を通過する冷媒の温度も上昇し、除霜能力も向上する。そして冷媒は、低温・低圧のガスとして再び前記圧縮機7へと戻る。また、圧縮機7の運転周波数を上昇すれば出力が向上すると共に冷媒循環量も増加することで、除霜能力が向上する。   In the refrigerant circulation circuit 21 configured as described above, the compressor 7 circulates the refrigerant in one direction on the refrigerant sub-path 15b, and controls the circulation direction of the refrigerant on the refrigerant main path 15a by switching the four-way valve 6. To do. FIG. 2A shows the circulation direction during the defrosting operation, and the high-temperature refrigerant discharged from the compressor 7 flows in the order of the outdoor heat exchanger 8, the expansion valve 9, and the water-refrigerant heat exchanger 11. To do. Thereby, after the refrigerant in the gas state sucked at low temperature and low pressure is compressed by the compressor 7 to become high temperature and high pressure gas, it adheres to the surface in the outdoor heat exchanger 8 (functioning as a condenser). Melt the frost. At this time, the air blown by the outdoor fan 10 is controlled to rotate according to the outside air temperature, and changes to a high-pressure liquid while releasing heat to the outside air (frost attached to the outdoor heat exchanger 8). The refrigerant that has become liquid in this manner is decompressed by the expansion valve 9 to become a low-pressure liquid that is easily evaporated. Thereafter, the low-pressure liquid evaporates in the water-refrigerant heat exchanger 11 (functions as an evaporator) and changes into gas, thereby absorbing heat from the cold water from the hot water return pipe 3. Here, if the rotational speed of the circulation pump 12 is increased, the flow rate of the cold water from the hot water return pipe 3 increases and the amount of heat absorption also increases, so that the temperature of the refrigerant passing through the water-refrigerant heat exchanger 11 also increases. Also, the defrosting ability is improved. The refrigerant then returns to the compressor 7 again as a low-temperature and low-pressure gas. Further, if the operating frequency of the compressor 7 is increased, the output is improved and the refrigerant circulation amount is also increased, so that the defrosting ability is improved.

一方、図2(b)は暖房運転時の循環方向を示しており、圧縮機7から吐出した冷媒が水−冷媒熱交換器11、膨張弁9、室外熱交換器8の順で流通する。これにより、低温・低圧で吸入されたガス状態の冷媒が前記圧縮機7で圧縮されて高温・高圧のガスとなった後、前記水−冷媒熱交換器11(凝縮器として機能)において前記温水戻り管3からの温水に熱を放出しながら高圧の液体に変化する。こうして液体になった冷媒は前記膨張弁9で減圧されて低圧の液体となり蒸発しやすい状態となる。その後、低圧の液体が前記室外熱交換器8(蒸発器として機能)において蒸発してガスに変化することで外気から吸熱する。そして冷媒は、低温・低圧のガスとして再び前記圧縮機7へと戻る。   On the other hand, FIG. 2B shows the circulation direction during the heating operation, and the refrigerant discharged from the compressor 7 flows in the order of the water-refrigerant heat exchanger 11, the expansion valve 9, and the outdoor heat exchanger 8. Thereby, after the refrigerant in the gas state sucked at low temperature and low pressure is compressed by the compressor 7 to become high temperature and high pressure gas, the hot water is supplied in the water-refrigerant heat exchanger 11 (functioning as a condenser). It changes into a high-pressure liquid while releasing heat into the warm water from the return pipe 3. The refrigerant that has become liquid in this manner is decompressed by the expansion valve 9 to become a low-pressure liquid that is easily evaporated. Thereafter, the low-pressure liquid evaporates in the outdoor heat exchanger 8 (functions as an evaporator) and changes into gas, thereby absorbing heat from the outside air. The refrigerant then returns to the compressor 7 again as a low-temperature and low-pressure gas.

このとき、前記のようにして水−冷媒熱交換器11で加熱された温水は、温水往き管2から前記複数の熱交換端末(前記の例では、暖房パネル51、暖房パネル52、床暖房パネル53の3つ)のうち少なくとも1つに供給されて室内空気に放熱して室内を加温し、その後に前記シスターンタンク13を通過して再び前記循環ポンプ12へ戻る。この循環ポンプ12は通常運転時は約4,200rpsの回転数で運転するが、施工時において、熱交換端末の個数や容量が小さく、流通抵抗が小さなときには工事業者が通常運転時の回転数を低く設定する場合もある。以上のような冷媒循環回路21の冷凍サイクルと温水循環回路22との間で熱交換を行うことにより、室内空気の温度を上げる暖房運転が行われる。   At this time, the hot water heated by the water-refrigerant heat exchanger 11 as described above is supplied from the hot water outlet pipe 2 to the plurality of heat exchange terminals (in the above example, the heating panel 51, the heating panel 52, the floor heating panel). 53), the heat is radiated to the room air to heat the room, and then passes through the cistern tank 13 and returns to the circulation pump 12 again. The circulation pump 12 operates at a rotational speed of about 4,200 rps during normal operation. However, during construction, when the number and capacity of heat exchange terminals are small and the flow resistance is small, the contractor sets the rotational speed during normal operation. Sometimes it is set low. By performing heat exchange between the refrigeration cycle of the refrigerant circuit 21 and the hot water circuit 22 as described above, a heating operation for raising the temperature of the indoor air is performed.

次に、前記メインリモコン装置RMには、前記複数の熱交換端末(前記図1に示した例では、暖房パネル51、暖房パネル52、床暖房パネル53)の運転状態や各種設定状態を表示可能な表示部(図示せず)と、メインリモコン装置RM自体の電源をON・OFFするための「電源」ボタン(図示せず)と、前記熱交換端末の運転開始を指示するための「運転」ボタン(図示せず)と、前記熱交換端末に対しタイマーによる運転を指示するための「タイマー」ボタン(図示せず)等多数の操作ボタンが設けられている。なお、図示を省略しているが、リモコン装置RMには、各種の表示を行うための、演算部としてのCPUや記憶部としてのメモリ等が内蔵されている。   Next, the main remote controller RM can display the operation state and various setting states of the plurality of heat exchange terminals (in the example shown in FIG. 1, the heating panel 51, the heating panel 52, and the floor heating panel 53). Display unit (not shown), a “power” button (not shown) for turning on / off the main remote control device RM itself, and “operation” for instructing the start of operation of the heat exchange terminal A number of operation buttons such as a button (not shown) and a “timer” button (not shown) for instructing the heat exchange terminal to operate by a timer are provided. Although not shown, the remote controller RM incorporates a CPU as a calculation unit, a memory as a storage unit, and the like for performing various displays.

図3〜5によって、前記除霜運転の開始から除霜終了までの各条件と、この各条件に対応する各構成部品の作動を説明する。   Each condition from the start of the defrosting operation to the end of the defrosting and the operation of each component corresponding to each condition will be described with reference to FIGS.

前記暖房運転では、前記四方弁6が暖房側に位置する、図2(b)に示す方向にR32冷媒が冷媒循環回路21を循環する、通常暖房時は熱交換端末の負荷に応じて、前記圧縮機7は20Hzから105Hzの範囲で連続的に可変制御される、前記室外ファン10は負荷に応じて600rpmから800rpmの範囲で可変制御される、同じく負荷に応じて前記膨張弁9も開度(減圧度)が可変制御される、前記温水循環回路22の循環ポンプ12は約4,200rpmで一定回転を継続する。尚、室外熱交換器8に霜の発生が無い状態では室外熱交温度aは外気温cとほぼ等しい温度を示す。(s1)   In the heating operation, the four-way valve 6 is located on the heating side, the R32 refrigerant circulates in the refrigerant circulation circuit 21 in the direction shown in FIG. 2 (b), and during normal heating, depending on the load of the heat exchange terminal, The compressor 7 is continuously variably controlled in the range of 20 Hz to 105 Hz, the outdoor fan 10 is variably controlled in the range of 600 rpm to 800 rpm according to the load, and the expansion valve 9 is also opened according to the load. The circulation pump 12 of the hot water circulation circuit 22 whose (pressure reduction degree) is variably controlled continues to rotate at a constant speed of about 4,200 rpm. In the state where frost is not generated in the outdoor heat exchanger 8, the outdoor heat exchange temperature a is substantially equal to the outside air temperature c. (S1)

外気温bが約5℃以下に低下すると室外熱交換器8の表面に霜の付着が始まる、外気温bが氷点下になれば急速に霜が発達し室外熱交換器8を覆うと、外気温cと室外熱交温度aの温度差cが8deg(第1所定温度差c1に相当)を越えたかの、除霜開始の条件を判定し(s2)、Yesで8degより大きければs3に進んで図4の「除霜1」が開始され、Noで8deg以下ならばs1に戻り暖房運転を継続する。s3において除霜運転が開始されれば、四方弁6が冷房側に切り替わり、除霜を妨げない様に室外ファン10は停止し、圧縮機7は約中間の周波数70Hz(第1所定周波数e1に相当)に、循環ポンプ12はなるべく温水循環回路22の温度を下げないように低速の2,000rpm(第1所定回転数d1に相当)にそれぞれ切り替え制御され除霜運転を継続する。   When the outside air temperature b drops below about 5 ° C., frost begins to adhere to the surface of the outdoor heat exchanger 8. When the outside air temperature b falls below freezing point, frost develops rapidly and covers the outdoor heat exchanger 8. Whether the temperature difference c between c and the outdoor heat exchanger temperature a exceeds 8 deg (corresponding to the first predetermined temperature difference c1) is determined (s2). If Yes is greater than 8 deg, the process proceeds to s3. 4 "Defrosting 1" is started, and if it is No or less than 8 deg, return to s1 and continue the heating operation. When the defrosting operation is started in s3, the four-way valve 6 is switched to the cooling side, the outdoor fan 10 is stopped so as not to prevent the defrosting, and the compressor 7 is set to an intermediate frequency of 70 Hz (to the first predetermined frequency e1). Correspondingly, the circulation pump 12 is controlled to be switched to a low speed of 2,000 rpm (corresponding to the first predetermined rotation speed d1) so as not to lower the temperature of the hot water circulation circuit 22 as much as possible, and the defrosting operation is continued.

次に、s4において除霜終了条件の判定が行われる。室外熱交換器8の霜が溶けて熱交温度aが8℃(第2所定温度a2に相当)を60秒(第3所定時間t3に相当)継続して越えれば、Yesでs11に進んで除霜運転が終了する。s4において熱交温度aが8℃以下ならば、Noでs5に進み図3の「条件1」の判定が行われる。除霜の進捗が悪くて熱交温度aが1℃(第1所定温度a1に相当)より低く、かつ、除霜開始からの7分(第1所定時間t1に相当)経過しているかを判定し、Noであればs3に戻り「除霜1」の運転を継続し、Yesであればs6に進んで図4の「除霜2」の運転に切り替わるり、循環ポンプ12の回転数を3,000rpm(第2所定回転数)に上昇することで、除霜能力を向上して除霜時間の短縮をはかる。   Next, the defrost termination condition is determined at s4. If the frost of the outdoor heat exchanger 8 melts and the heat exchange temperature a exceeds 8 ° C. (corresponding to the second predetermined temperature a2) for 60 seconds (corresponding to the third predetermined time t3), the process proceeds to Yes in s11. The defrosting operation ends. If the heat exchange temperature a is 8 ° C. or lower in s4, the process proceeds to s5 in No, and the determination of “condition 1” in FIG. 3 is performed. Determining whether the progress of defrosting is poor, the heat exchange temperature a is lower than 1 ° C. (corresponding to the first predetermined temperature a1), and 7 minutes (corresponding to the first predetermined time t1) have elapsed since the start of defrosting If No, the operation returns to s3 and continues the operation of "defrosting 1". If Yes, the operation proceeds to s6 and switches to the operation of "defrosting 2" in FIG. The defrosting capability is improved and the defrosting time is shortened by increasing the rotation speed to 1,000,000 rpm (second predetermined rotation speed).

次に、s7ではs4と同様に除霜終了条件の判定が行われる。前記の除霜終了条件が成立すればYesでs11に進んで除霜運転を終了し、Noならばs8に進み図3の「条件2」の判定が行われる。除霜の進捗が悪くて熱交温度aが1℃(第1所定温度a1に相当)より低く、かつ、除霜開始からの10分(第2所定時間t2に相当)経過しているかを判定し、Noであればs6に戻り「除霜2」の運転を継続し、Yesであればs9に進んで図4の「除霜3」の運転に切り替わることで、圧縮機7の運転周波数を80Hz(第2所定周波数e2に相当)に上昇することで、更なる除霜能力を向上して除霜時間の短縮をはかるものであり、圧縮機7と循環ポンプ12を共に高出力、高回転で運転して除霜運転を早急に終了して暖房の再運転を行うことで、除霜運転によって低下した室温の早急な復帰をはかるものである。   Next, in s7, the defrost termination condition is determined as in s4. If the defrosting termination condition is satisfied, the process proceeds to s11 in Yes to end the defrosting operation, and if No, the process proceeds to s8 and the determination of “condition 2” in FIG. 3 is performed. Determining whether the progress of defrosting is poor, the heat exchange temperature a is lower than 1 ° C. (corresponding to the first predetermined temperature a1), and 10 minutes (corresponding to the second predetermined time t2) have elapsed since the start of defrosting. If No, the operation returns to s6 and continues the operation of "defrosting 2". If Yes, the operation proceeds to s9 to switch to the operation of "defrosting 3" in FIG. By raising the frequency to 80 Hz (corresponding to the second predetermined frequency e2), the defrosting capability is further improved and the defrosting time is shortened, and both the compressor 7 and the circulation pump 12 have a high output and a high rotation speed. The defrosting operation is immediately finished and the heating is restarted to restart the heating, thereby quickly returning the room temperature lowered by the defrosting operation.

次に、s10ではs4と同様に除霜終了条件の判定が行われる。前記の除霜終了条件が成立すればYesでs11に進んで除霜運転を終了し、Noならばs9に戻り除霜終了条件が成立するまで「除霜3」の運転を継続する。s11に進んで除霜運転を終了すればs1にて通常の暖房運転に戻る。   Next, in s10, the defrost termination condition is determined as in s4. If the defrosting termination condition is satisfied, the process proceeds to s11 in Yes to end the defrosting operation. If No, the process returns to s9 and the operation of "defrosting 3" is continued until the defrosting termination condition is satisfied. If it progresses to s11 and a defrost operation is complete | finished, it will return to a normal heating operation in s1.

以上説明したように、本実施形態の温水暖房システムでは、R32冷媒の使用に由来する弊害を解消するために、除霜運転開始から第1所定時間t1後における除霜の進行状況を熱交温度によって検知して、除霜の進行状況が悪い場合には循環ポンプ12の回転数を上げて水熱交換器11の蒸発能力を向上することで、空気熱交換器8の凝縮能力も向上し、除霜性能が向上することで、除霜運転を短時間で終了することができ、この結果、暖房運転の快適性が向上する。   As described above, in the hot water heating system of the present embodiment, in order to eliminate the adverse effects resulting from the use of the R32 refrigerant, the defrosting progress after the first predetermined time t1 from the start of the defrosting operation is determined as the heat exchange temperature. When the progress of defrosting is poor, the condensing capacity of the air heat exchanger 8 is improved by increasing the rotation speed of the circulation pump 12 and improving the evaporation capacity of the water heat exchanger 11, By improving the defrosting performance, the defrosting operation can be completed in a short time, and as a result, the comfort of the heating operation is improved.

また、除霜運転開始から第2所定時間t2後における除霜の進行状況を熱交温度aによって検知して、除霜の進行状況が悪い場合には、更に圧縮機7の周波数を上昇させることで、凝縮能力を向上し、除霜性能を更に向上させ、長びいている除霜運転の時間を一刻も早く終了させる。そして暖房運転を早期に再開することで、暖房運転の快適性の低下を緩やかにすることができる。また、除霜運転時の熱交温度aの上昇を検知して終了を判断し、速やかに暖房運転を再開することで、暖房運転の快適性の低下を緩やかにすることができる。   Further, the progress of defrosting after the second predetermined time t2 from the start of the defrosting operation is detected by the heat exchange temperature a, and if the progress of defrosting is poor, the frequency of the compressor 7 is further increased. Thus, the condensation capacity is improved, the defrosting performance is further improved, and the long defrosting operation time is finished as soon as possible. And the fall of the comfort of heating operation can be moderated by restarting heating operation at an early stage. Moreover, the fall of the comfort of heating operation can be moderated by detecting the completion | finish by detecting the raise of the heat exchanger temperature a at the time of a defrost operation, and restarting heating operation rapidly.

1 室外機
6 四方弁
7 圧縮機
8 室外熱交換器(空気熱交換器)
8a 熱交センサ
9 膨張弁
10 室外ファン
10a 外気温センサ
11 水−冷媒熱交換器(水熱交換器)
12 循環ポンプ
2 温水往き管
3 温水戻り管
51 暖房パネル(暖房端末、熱交換端末)
52 暖房パネル(暖房端末、熱交換端末)
53 床暖房パネル(床暖房端末、熱交換端末)
CU 室外機制御部(除霜制御手段)
RM メインリモコン装置(リモコン装置)
1 Outdoor unit 6 Four-way valve 7 Compressor 8 Outdoor heat exchanger (air heat exchanger)
8a Heat exchange sensor 9 Expansion valve 10 Outdoor fan 10a Outside air temperature sensor 11 Water-refrigerant heat exchanger (water heat exchanger)
12 Circulating pump 2 Hot water outlet pipe 3 Hot water return pipe 51 Heating panel (heating terminal, heat exchange terminal)
52 Heating panel (heating terminal, heat exchange terminal)
53 Floor heating panel (floor heating terminal, heat exchange terminal)
CU outdoor unit control unit (defrost control means)
RM Main remote control device (remote control device)

Claims (3)

R32冷媒用の圧縮機、膨張弁、空気熱交換器を備えたヒートポンプ装置、及び、このヒートポンプ装置からR32冷媒の供給を受けて水との熱交換により温水を生成する水熱交換器、を有する室外機と、
前記室外機の前記水熱交換器で生成され導入管路を介して供給された前記温水を用いて室内側空気に対する放熱により暖房を行うとともに、前記放熱後の温水を導出管路を介し前記室外機の前記水熱交換器へと循環ポンプにて還流させる熱交換端末と、
前記熱交換端末の運転状態を所定の制御態様で制御するリモコン装置と、このリモコン装置からの指令によって、前記圧縮機、膨張弁等を制御する室外制御部とを有するR32冷媒用の温水暖房システムにおいて、
前記空気熱交換器の温度を検知する熱交センサと、外気の温度を検知する外気温センサを設け、
前記熱交センサで検知する熱交温度aと、前記外気温センサで検知する外気温bとの温度差cが第1所定温度差c1以上のときに、
除霜運転を開始し、前記循環ポンプを第1所定回転数d1で、前記圧縮機を第1所定周波数e1にて除霜運転継続後、
前記除霜運転開始から第1所定時間t1経過時の前記熱交温度aが第1所定温度a1以下のときに、
前記循環ポンプの回転数を第1所定回転数d1よりも大きい第2所定回転数d2に変更する除霜制御手段を有する
ことを特徴とする温水暖房システム。
A heat pump device including a compressor for R32 refrigerant, an expansion valve, an air heat exchanger, and a water heat exchanger that receives the supply of the R32 refrigerant from the heat pump device and generates hot water by heat exchange with water. Outdoor unit,
Heating is performed by radiating heat to indoor air using the hot water generated by the water heat exchanger of the outdoor unit and supplied via an inlet pipe, and the hot water after the heat radiating is supplied to the outdoor via a lead-out pipe. A heat exchange terminal that recirculates to the water heat exchanger of the machine with a circulation pump;
A hot water heating system for R32 refrigerant having a remote control device that controls the operating state of the heat exchange terminal in a predetermined control mode, and an outdoor control unit that controls the compressor, the expansion valve, and the like according to a command from the remote control device In
A heat exchange sensor for detecting the temperature of the air heat exchanger and an outside air temperature sensor for detecting the temperature of the outside air are provided,
When the temperature difference c between the heat exchange temperature a detected by the heat exchange sensor and the outside air temperature b detected by the outside air temperature sensor is equal to or greater than a first predetermined temperature difference c1,
The defrosting operation is started, the circulation pump is operated at the first predetermined rotational speed d1, and the compressor is continuously operated at the first predetermined frequency e1.
When the heat exchange temperature a when the first predetermined time t1 has elapsed from the start of the defrosting operation is equal to or lower than the first predetermined temperature a1.
A hot water heating system comprising defrosting control means for changing the rotation speed of the circulation pump to a second predetermined rotation speed d2 larger than the first predetermined rotation speed d1.
前記除霜運転開始から第1所定時間t1経過時の前記熱交温度aが第1所定温度a1以下で、前記循環ポンプの回転数を第1所定回転数d1よりも大きい第2所定回転数d2に変更後、除霜運転を継続し、
前記除霜運転開始から第1所定時間t1よりも大きな第2所定時間t2経過時の、前記熱交温度aが第1所定温度a1以下のときに、
前記圧縮機を第1所定周波数e1より大きい第2所定周波数e2に変更する除霜制御手段を有する
ことを特徴とする請求項1記載の温水暖房システム。
When the first predetermined time t1 has elapsed from the start of the defrosting operation, the heat exchange temperature a is equal to or lower than the first predetermined temperature a1, and the rotation speed of the circulating pump is greater than the first predetermined rotation speed d1. After changing to, continue the defrosting operation,
When the heat exchange temperature a is equal to or lower than the first predetermined temperature a1 when the second predetermined time t2 larger than the first predetermined time t1 has elapsed since the start of the defrosting operation,
The hot water heating system according to claim 1, further comprising a defrosting control unit that changes the compressor to a second predetermined frequency e2 that is higher than the first predetermined frequency e1.
前記除霜運転中に熱交温度aが前記第1所定温度a1よりも高い第2所定温度a2以上を、第3所定時間t3継続したときには除霜運転を終了して暖房運転を再開する除霜制御手段を有する
ことを特徴とする請求項1または2記載の温水暖房システム。
During the defrosting operation, the defrosting operation is terminated and the heating operation is resumed when the heat exchange temperature a continues at a second predetermined temperature a2 higher than the first predetermined temperature a1 for a third predetermined time t3. 3. The hot water heating system according to claim 1, further comprising a control unit.
JP2015088281A 2015-04-23 2015-04-23 Hot water heating system Active JP6346122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015088281A JP6346122B2 (en) 2015-04-23 2015-04-23 Hot water heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015088281A JP6346122B2 (en) 2015-04-23 2015-04-23 Hot water heating system

Publications (2)

Publication Number Publication Date
JP2016205716A JP2016205716A (en) 2016-12-08
JP6346122B2 true JP6346122B2 (en) 2018-06-20

Family

ID=57487618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015088281A Active JP6346122B2 (en) 2015-04-23 2015-04-23 Hot water heating system

Country Status (1)

Country Link
JP (1) JP6346122B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107367013B (en) * 2017-06-06 2019-11-12 珠海格力电器股份有限公司 Control the methods, devices and systems of compressor
JP6907110B2 (en) * 2017-12-27 2021-07-21 株式会社コロナ Heat pump device
CN108332370A (en) * 2018-01-11 2018-07-27 广东美的制冷设备有限公司 The control method and air conditioner of air conditioner
CN108826772B (en) * 2018-05-03 2020-11-17 广东美的暖通设备有限公司 Defrosting control method and system
CN110631184A (en) * 2018-06-25 2019-12-31 青岛海尔空调器有限总公司 Defrosting control method and device for air conditioner
CN110631202A (en) * 2018-06-25 2019-12-31 青岛海尔空调器有限总公司 Defrosting control method and device for air conditioner
CN110631200B (en) * 2018-06-25 2022-04-19 青岛海尔空调器有限总公司 Defrosting control method and device for air conditioner
CN110631192B (en) * 2018-06-25 2021-09-21 青岛海尔空调器有限总公司 Defrosting control method and device for air conditioner
CN109323370B (en) * 2018-09-30 2021-05-25 广东美的制冷设备有限公司 Air conditioner and defrosting method and device thereof
CN111189195B (en) * 2018-11-14 2022-04-19 青岛海尔空调器有限总公司 Air conditioner and anti-freezing control method thereof
CN109631234B (en) * 2018-11-15 2021-06-22 青岛海尔空调电子有限公司 Heating and defrosting control method and system for outdoor unit of air conditioner
CN109357434A (en) * 2018-11-29 2019-02-19 四川长虹空调有限公司 It is a kind of based on the air-conditioning of double-compressor indoor temperature control system in parallel with heat transfer unit (HTU)
EP3885662A4 (en) * 2018-12-27 2022-01-26 Hefei Midea Heating & Ventilating Equipment Co., Ltd. Air conditioner, and control method and device for heating system thereof
CN110595010B (en) * 2019-09-04 2021-07-06 宁波奥克斯电气股份有限公司 Control method and control device for heating priority mode of air conditioner and air conditioner
CN110553347B (en) * 2019-09-17 2022-01-04 宁波奥克斯电气股份有限公司 Control method and system for delaying frosting, storage medium and air conditioner
CN110701730B (en) * 2019-10-29 2021-08-27 宁波奥克斯电气股份有限公司 Defrosting control method and device and air conditioner
JP7295779B2 (en) * 2019-10-31 2023-06-21 株式会社コロナ Heat pump hot water heating system
CN114963291B (en) * 2021-06-29 2023-11-17 青岛海尔新能源电器有限公司 Heating machine control method, device, equipment and storage medium
CN115127270A (en) * 2022-06-24 2022-09-30 北京小米移动软件有限公司 Method and device for determining current loop bandwidth of compressor and electronic equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246553A (en) * 1985-04-23 1986-11-01 松下電器産業株式会社 Solar-heat utilizing heat collector
JP2006046692A (en) * 2004-07-30 2006-02-16 Daikin Ind Ltd Heat pump type air conditioner
US7856836B2 (en) * 2005-07-26 2010-12-28 Mitsubishi Electric Corporation Refrigerating air conditioning system
JP5411777B2 (en) * 2010-03-31 2014-02-12 株式会社コロナ Hot water heater
JP5978099B2 (en) * 2012-10-29 2016-08-24 東芝キヤリア株式会社 Water heater

Also Published As

Publication number Publication date
JP2016205716A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
JP6346122B2 (en) Hot water heating system
JP2019049393A (en) Hot water heating system
JP4836212B2 (en) Air conditioner
JP6580149B2 (en) Refrigeration cycle equipment
JP4867749B2 (en) Heat pump water heater
JP6138711B2 (en) Air conditioner
JP4760974B2 (en) Refrigeration equipment
EP2933579B1 (en) Heat pump water heater
JP2007333341A (en) Heat pump hot water supply machine
JP2019070498A (en) Temperature control system
JP2012007751A (en) Heat pump cycle device
JP6465332B2 (en) Heat pump hot water supply system
JP2013108729A (en) Air conditioner
WO2016002009A1 (en) Air conditioning apparatus
JP2004205071A (en) Air conditioner
JP2009264716A (en) Heat pump hot water system
JP6258802B2 (en) Combined heat source heat pump device
JP6964049B2 (en) Heat pump type cold water air conditioner
JP6978363B2 (en) Heat pump heat source machine
JP6467271B2 (en) Hot water heating system
JPWO2017179165A1 (en) Refrigeration cycle equipment
JP6964482B2 (en) Heat pump type temperature control system
JP2023010091A (en) Heat pump device
JP2015148414A (en) air conditioner
EP3995752B1 (en) Hot water supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180524

R150 Certificate of patent or registration of utility model

Ref document number: 6346122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250