JPS61246553A - Solar-heat utilizing heat collector - Google Patents

Solar-heat utilizing heat collector

Info

Publication number
JPS61246553A
JPS61246553A JP60086731A JP8673185A JPS61246553A JP S61246553 A JPS61246553 A JP S61246553A JP 60086731 A JP60086731 A JP 60086731A JP 8673185 A JP8673185 A JP 8673185A JP S61246553 A JPS61246553 A JP S61246553A
Authority
JP
Japan
Prior art keywords
temperature
heat
flow rate
frequency
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60086731A
Other languages
Japanese (ja)
Inventor
竹司 渡辺
蜷川 典夫
達規 桜武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60086731A priority Critical patent/JPS61246553A/en
Publication of JPS61246553A publication Critical patent/JPS61246553A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は太陽熱の集熱手段にヒートポンプを用いた集熱
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat collecting device using a heat pump as a means for collecting solar heat.

従来の技術 従来のこの種の太陽熱利用集熱装置は、第3図に示すよ
うに、圧縮機1、凝縮器3、膨張装置4、集熱器5を順
次連結した冷媒回路と、貯湯WI7、水循環ポンプ8、
前記凝縮器3と熱交換関係を有する水加熱器9を連結し
た給湯回路で構成されており、前記集熱器5で太陽熱及
び大気熱を吸熱して、その吸熱量に前記圧縮機1の圧縮
熱を加えた熱量を前記凝縮器3と前記水加熱器9で熱交
換して前記貯湯槽7の水を昇温させるようになっていた
2. Description of the Related Art As shown in FIG. 3, a conventional solar heat collection device of this type includes a refrigerant circuit in which a compressor 1, a condenser 3, an expansion device 4, and a heat collector 5 are successively connected, a hot water storage WI 7, water circulation pump 8,
The hot water supply circuit is composed of a water heater 9 connected to the condenser 3 and a water heater 9 having a heat exchange relationship.The heat collector 5 absorbs solar heat and atmospheric heat, and the absorbed heat is converted into the compressor 1. The added heat is exchanged between the condenser 3 and the water heater 9 to raise the temperature of the water in the hot water tank 7.

発明が解決しようとする問題点 しかしながら上記の構成では、集熱器5で太陽熱及び大
気熱を吸熱するため、給湯負荷が少ない夏季には単位時
間当りの集熱量が増大し、給湯負荷が大きい冬季には単
位時間当りの集熱量が少ない。従って、給湯負荷と集熱
量が相反する特性となり、特に冬季に集熱量が給湯負荷
を満足できず集熱量不足となる。この欠点を解決するた
めに機器の大きさ、仕様を冬季基準で設計すると機器が
大きくなり、夏季には過大設備となってコスト、工事性
の而で問題となる。又、当然ながら夏季には運転時間が
一層短かくなり太陽熱利用熱量も少なくシステムの運転
効率も悪いといった問題点を有していた。
Problems to be Solved by the Invention However, in the above configuration, since the heat collector 5 absorbs solar heat and atmospheric heat, the amount of heat collected per unit time increases in the summer when the hot water supply load is low, and in the winter when the hot water supply load is high. The amount of heat collected per unit time is small. Therefore, the hot water supply load and the heat collection amount have contradictory characteristics, and especially in winter, the heat collection amount cannot satisfy the hot water supply load, resulting in an insufficient amount of heat collection. In order to solve this drawback, if the size and specifications of the equipment are designed based on winter standards, the equipment will become larger, and in the summer, the equipment will become too large, causing problems in terms of cost and ease of construction. Also, as a matter of course, in the summer, the operating time becomes even shorter, and the amount of heat utilized by solar heat is small, resulting in a problem that the operating efficiency of the system is poor.

本発明はかかる従来の問題を解決するもので、冬季の集
熱量増加とシステムの運転効率を向上する目的とするも
のである。
The present invention solves these conventional problems, and aims to increase the amount of heat collected in winter and improve the operating efficiency of the system.

問題点を解決するための手段 上記問題点を解決するために、本発明の太陽熱利用集熱
装置は周波数変換型圧縮機、四方弁、凝縮器、膨張装置
、集熱器、前記膨張装置と並列に逆止弁を有するバイパ
ス回路からなる冷媒回路と、貯湯槽、流7it可変型水
循環ポンプ、前記凝縮器と熱交換関係を有する水加熱器
を連結した給湯回路さ、前記集熱器入口の冷媒温度を検
知する温度検出器と、温度設定値が異なる複数の温度設
定器と、前記集熱器入口の冷媒温度を検知して前記周波
数変換型圧縮機の周波数と前記流量可変型水循環ポンプ
の流量を制御する制御部上からなり、前記集熱器入口の
冷媒温度が前記温度設定器の任意湯度設定器の温度設定
値より低い場合に前記周波数変換型圧縮機の周波数と前
記流量可変型水循環ポンプの流量を大きく、温度設定値
より高い場合に前記周波数変換型圧縮機の周波数と前記
流量可変型水循環ポンプの流量を少なくするものである
Means for Solving the Problems In order to solve the above problems, the solar heat collecting device of the present invention includes a frequency conversion compressor, a four-way valve, a condenser, an expansion device, a heat collector, and A refrigerant circuit consisting of a bypass circuit with a check valve at the top, a hot water supply circuit connected to a hot water storage tank, a 7-liter variable flow water circulation pump, a water heater having a heat exchange relationship with the condenser, and a refrigerant at the inlet of the collector. a temperature detector that detects temperature; a plurality of temperature setting devices with different temperature setting values; and a temperature detector that detects the refrigerant temperature at the inlet of the heat collector to determine the frequency of the frequency conversion compressor and the flow rate of the variable flow rate water circulation pump. the frequency of the frequency converting compressor and the variable flow rate water circulation when the refrigerant temperature at the inlet of the heat collector is lower than the temperature setting value of the arbitrary hot water temperature setting device of the temperature setting device. The flow rate of the pump is increased, and when the temperature is higher than a set value, the frequency of the frequency conversion compressor and the flow rate of the variable flow rate water circulation pump are decreased.

作  用 本発明は上記した構成によって、給湯負荷が大きい冬季
には集熱量増大をはかり、給湯負荷が小さい夏季にはシ
ステムの運転効率向上をはかったものである。
Operation The present invention aims to increase the amount of heat collected during the winter when the hot water supply load is large, and to improve the operating efficiency of the system during the summer when the hot water supply load is low, by using the above-described configuration.

実施例 以下、本発明の実施例を添付図面に基づいて説明する。Example Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図、第2図、第3図において、1け周波数変換型圧
縮機、2//i四方弁、3r/′i凝縮器であり冷媒の
凝縮作用を行なう。4け膨張装置、5け集熱器であり、
太陽熱及び大気熱を集熱し冷媒の蒸発作用を行なう。6
け逆止弁であり、前記膨張装置4と並列なバイパス回路
途中に設けられている。
In FIGS. 1, 2, and 3, there is a single frequency conversion type compressor, a 2//i four-way valve, and a 3r/'i condenser, which perform the function of condensing the refrigerant. 4-piece expansion device, 5-piece heat collector,
It collects solar heat and atmospheric heat and evaporates the refrigerant. 6
This check valve is provided in a bypass circuit parallel to the expansion device 4.

また、前記周波数変換型圧縮機1、四方弁2、凝Ifa
器3、膨張装置4、前記膨張装置4と並列に設けられて
いる逆止弁6、集熱器5、前記四方弁2、前記周波数変
換型圧縮機1け順次連結されて冷媒密閉回路を構成する
。7は貯湯槽、8け流量町変型水循環ポンプ、9け水加
熱器であり、前記凝縮器3と熱交換関係を有し、水を昇
温させる。また、前記貯湯槽7、流量町変型水循環ポン
プ8、水加熱器9け順次連結されて給湯回路を構成する
In addition, the frequency conversion type compressor 1, the four-way valve 2, the
3, an expansion device 4, a check valve 6 provided in parallel with the expansion device 4, a heat collector 5, the four-way valve 2, and the frequency conversion compressor are connected in sequence to form a refrigerant sealed circuit. do. Reference numeral 7 denotes a hot water storage tank, an 8-channel water circulation pump, and a 9-channel water heater, which have a heat exchange relationship with the condenser 3 and raise the temperature of the water. In addition, the hot water storage tank 7, the modified water circulation pump 8, and the nine water heaters are successively connected to form a hot water supply circuit.

10は温度検出器であり、前記集熱器5の入口冷媒温度
を検出する。11は温度設定値Tla1T’+b%Ti
e ”””、T2、T3(T3<T2<Tla<T+b
<Tsc・−)が異なる複数の温度設定器、12は制御
部であり、前記温度検出器10の信号と前記温度設定器
11の信号を比較して、前記四方弁2の冷媒流れ方向を
変更させる制御、前記周波数変換型圧縮機1の周波数及
び前記流量可変型水循環ポンプ8の流量を制御する。
A temperature detector 10 detects the temperature of the refrigerant at the inlet of the heat collector 5. 11 is the temperature setting value Tla1T'+b%Ti
e “””, T2, T3 (T3<T2<Tla<T+b
12 is a control unit that compares the signal of the temperature detector 10 and the signal of the temperature setter 11 to change the refrigerant flow direction of the four-way valve 2. The frequency of the frequency converting compressor 1 and the flow rate of the variable flow rate water circulation pump 8 are controlled.

上記構成において、周波数変換型圧縮機1で圧縮された
高温高圧の冷媒ガスは西方弁2を介して、第1図の実線
矢印方向の冷媒流れによって凝縮器3に流入し過冷却液
まで凝縮液化して膨張装置4に流れ、ここで外気温より
低い飽和温度を有する圧力まで減圧されて集熱器5に流
入する。そして、太陽熱及び大気熱を集熱して蒸発ガス
化し前記四方弁を介して前記圧縮機1に戻る。一方、凝
縮器3と熱交換関係を有する水加熱器9け流量町変型水
循環ポンプ8から送られてきた水を凝縮熱で昇温させ貯
湯槽7に戻す。このサイクルにおいて、外気温が低下す
る七外気のエンタルピー低下により、集熱器5での大気
吸熱量が減少し、前記集熱器5の入口冷媒温度は低下す
る。従って、その温度を温度検出器10で検出し、温度
設定器11の設定値Tla、Tlb、Tlc・・・・・
・より低下すると、制御部12から圧縮機1の周波数を
徐々に増大する信号を送り能力増加をはかる。この時に
凝縮能力が増加する為に凝縮器3での高圧圧力が上昇し
、システムの運転効率を悪くする。しかし、本発明では
、同時に制御部12から流量可変型水循環ポンプ8の流
量を増大させるため、高圧圧力の上昇はなくシステムの
運転効率も良い。従って、外気温が低下しても集熱量不
足は改善され、又、システムの運転効率も良くなる。そ
して、外気温がさらに低下し、前記集′熱器5の表面温
度が外気空気の露点湯度以下かつ氷点下で運転を続ける
と前記集熱器50表面に着霜が生じ、集熱量が減少し、
システム運転効率も悪い。この場合には、当然ながら前
記集熱器5の入口冷媒温度は低くなっているため、本発
明は前記集熱器5の入口冷媒温度を温度検出器10で検
知し、温度設定器11の最低温度設定値T3になると、
制御部12より四方弁2へ信号を送り、冷媒流れ方向を
第1図の破線方向へ変更させ、周波数変換型圧縮機1の
吐出ガスで前記集熱器5の霜を融解するサイクルに変化
する。以下に、この除霜サイクルについて述べる。前記
周波数変換型圧縮機1から吐出されたガス冷媒は前記四
方弁2を介して第1図の破線に示す如く前記集熱器5に
流入し、ここで霜を融解して液相冷媒となり前記逆止弁
6を流れ前記凝1?3器3に流入する。そして、ここで
液相冷媒は流量可変型水循環ポンプ8から送られてきた
水によって水加熱器9を介して加熱されて蒸発ガス化し
前記四方弁2を介して前記周波数変換型圧縮機1にもど
る。このサイクルにおいて、前記集熱器5の霜が融解中
は前記温度検出器10での冷媒温度け0℃以下であるが
、融解終了するとガス冷媒は霜に熱を奪われないために
温度上昇する。従って、前記温度検出器10で冷媒温度
を検知して、霜融解終了の冷媒温度設定値T2を有する
温度設定器11と比較し制御部から前記四方弁2に信号
を送り、冷媒流れ方向を第1図の実線方向にして集熱運
転に切換える。従って、外気温が低下しても集熱運転が
可能となり、集熱量の大巾な増加がはかれる。又、霜融
解中のサイクル時は前記周波数変換型圧縮機1の周波数
及び流量可変型水循環ポンプの流量を大きくして、・霜
融解時間を短かく、又、周波数変換型圧縮機1への液バ
ツクをなくシ、システムの運転効率と機器の信頼性も確
保できる。
In the above configuration, the high temperature and high pressure refrigerant gas compressed by the frequency converting compressor 1 flows into the condenser 3 through the west valve 2 in the direction of the solid arrow in FIG. 1, where it is condensed and liquefied to the supercooled liquid. It flows into the expansion device 4, where it is reduced in pressure to a pressure having a saturation temperature lower than the outside air temperature, and flows into the heat collector 5. Then, solar heat and atmospheric heat are collected, evaporated and gasified, and returned to the compressor 1 via the four-way valve. On the other hand, water sent from a water heater 9-type water circulation pump 8 having a heat exchange relationship with the condenser 3 is heated by condensation heat and returned to the hot water storage tank 7. In this cycle, due to the decrease in enthalpy of the outside air as the outside temperature decreases, the amount of atmospheric heat absorbed by the heat collector 5 decreases, and the refrigerant temperature at the inlet of the heat collector 5 decreases. Therefore, the temperature is detected by the temperature detector 10, and the set values Tla, Tlb, Tlc, etc. of the temperature setting device 11 are detected.
- When the frequency of the compressor 1 becomes lower, the control unit 12 sends a signal to gradually increase the frequency of the compressor 1 in order to increase the capacity. At this time, since the condensing capacity increases, the high pressure in the condenser 3 increases, which deteriorates the operating efficiency of the system. However, in the present invention, since the flow rate of the variable flow rate type water circulation pump 8 is simultaneously increased from the control unit 12, there is no increase in high pressure and the operating efficiency of the system is also good. Therefore, even if the outside temperature decreases, the insufficient amount of heat collection can be alleviated, and the operating efficiency of the system can also be improved. If the outside temperature further decreases and the operation continues when the surface temperature of the heat collector 5 is below the dew point temperature of the outside air and below the freezing point, frost will form on the surface of the heat collector 50 and the amount of heat collected will decrease. ,
System operation efficiency is also poor. In this case, as a matter of course, the inlet refrigerant temperature of the heat collector 5 is low, so the present invention detects the inlet refrigerant temperature of the heat collector 5 with the temperature detector 10, When the temperature setting value T3 is reached,
A signal is sent from the control unit 12 to the four-way valve 2 to change the refrigerant flow direction to the direction shown by the broken line in FIG. . This defrosting cycle will be described below. The gas refrigerant discharged from the frequency conversion compressor 1 flows into the heat collector 5 as shown by the broken line in FIG. 1 via the four-way valve 2, where it melts frost and becomes liquid phase refrigerant. It flows through the check valve 6 and flows into the condenser 1-3 vessel 3. Here, the liquid phase refrigerant is heated by the water sent from the variable flow rate water circulation pump 8 via the water heater 9, evaporates into gas, and returns to the frequency conversion type compressor 1 via the four-way valve 2. . In this cycle, while the frost in the heat collector 5 is melting, the temperature of the refrigerant at the temperature detector 10 is below 0°C, but once the frost has finished melting, the temperature of the gas refrigerant increases because no heat is taken away by the frost. . Therefore, the refrigerant temperature is detected by the temperature detector 10, and compared with the temperature setting device 11 having the refrigerant temperature set value T2 at which frost melting ends, and a signal is sent from the control section to the four-way valve 2 to adjust the refrigerant flow direction. Switch to heat collection operation in the direction of the solid line in Figure 1. Therefore, heat collection operation is possible even when the outside temperature drops, and the amount of heat collection can be greatly increased. Also, during the cycle during frost thawing, the frequency of the frequency converting compressor 1 and the flow rate of the variable flow rate water circulation pump are increased to shorten the frost thawing time and reduce the flow of liquid to the frequency converting compressor 1. It eliminates backlogs and ensures system operating efficiency and equipment reliability.

発明の効果 以上のように本発明の太陽熱利用集熱装置によれば次の
効果が得られる。
Effects of the Invention As described above, the solar heat collection device of the present invention provides the following effects.

(1)集熱器入口の冷媒温度を検知して周波数変換型圧
縮機の周波数と流量可変型水循環ポンプの流量を制御し
、前記集熱器入口冷媒温度が低くなるにつれて前記周波
数変換型圧縮機の周波数及び前記流量可変型水循環ポン
プの流量を増大させる制御としているので、給湯負荷の
大きい冬季には集熱量増加をはかり、さらに集熱器表面
に着霜が生じ集熱量が低下した場合の除霜時にも除霜運
転を短かくして集熱運転を拡大し集熱量の増加をはかる
ことができる。一方、給湯負荷の小さい夏季には前記周
波数変換型圧縮機の周波数及び前記流量可変型水循環ポ
ンプの流量を減少させてシステムの運転効率向上をはか
ることができる。
(1) Detecting the refrigerant temperature at the inlet of the collector, and controlling the frequency of the frequency converter compressor and the flow rate of the variable flow rate water circulation pump, and as the refrigerant temperature at the collector inlet becomes lower, the frequency converter compressor Since the frequency of the water circulation pump and the flow rate of the variable flow rate water circulation pump are increased, the amount of heat collected can be increased in the winter when the hot water supply load is large, and the amount of heat collected can be increased in the event that frost forms on the surface of the collector and the amount of heat collected is reduced. Even during frost, the defrosting operation can be shortened and the heat collection operation can be expanded to increase the amount of heat collection. On the other hand, in the summer when the hot water supply load is small, the frequency of the frequency conversion compressor and the flow rate of the variable flow rate water circulation pump can be reduced to improve the operating efficiency of the system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の太陽熱利用集熱装置・・・
・・二層波数変換型圧縮機、2・・・・・・四方弁、3
・・・・・・凝縮器、4・・・・・・膨張装置、5・・
・・・・集熱器、6・・・・・・逆止弁、7・・・・・
・貯湯槽、8・・・・・・流量可変型水循環ポンプ、9
・・・・・・水加熱器、10・・−・・・温度検出器、
11・・・・・・温度設定器、12・・・・・・制御部
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
2 図 第3図
Figure 1 shows a solar heat collecting device according to an embodiment of the present invention...
...Two-layer wave number conversion type compressor, 2...Four-way valve, 3
...Condenser, 4...Expansion device, 5...
... Heat collector, 6 ... Check valve, 7 ...
・Hot water tank, 8... Variable flow rate water circulation pump, 9
...Water heater, 10...Temperature detector,
11...Temperature setting device, 12...Control unit. Name of agent: Patent attorney Toshio Nakao and 1 other person
2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)周波数変換型圧縮機、四方弁、凝縮器、膨張装置
、太陽熱及び大気熱を集熱する集熱器、前記膨張装置と
並列に逆止弁を有するバイパス回路からなる冷媒回路と
、貯湯槽、流量可変型水循環ポンプ、前記凝縮器と熱交
換関係を有する水加熱器を連結した給湯回路と、前記集
熱器の入口冷媒温度を検知する温度検出器と、温度設定
値が異なる複数の温度設定器と、前記集熱器入口の冷媒
温度を検知して前記周波数変換型圧縮機の周波数と前記
流量可変型水循環ポンプの流量を制御する制御部とから
なる太陽熱利用集熱装置。
(1) A refrigerant circuit consisting of a frequency conversion compressor, a four-way valve, a condenser, an expansion device, a heat collector that collects solar heat and atmospheric heat, a bypass circuit with a check valve in parallel with the expansion device, and hot water storage. a hot water supply circuit that connects a tank, a variable flow rate water circulation pump, a water heater having a heat exchange relationship with the condenser, a temperature detector that detects the refrigerant temperature at the inlet of the collector, and a plurality of temperature detectors having different temperature settings. A solar heat collecting device comprising a temperature setting device and a control unit that detects the refrigerant temperature at the inlet of the heat collector and controls the frequency of the frequency converting compressor and the flow rate of the variable flow rate water circulation pump.
(2)集熱器入口の冷媒温度が前記温度設定器の任意温
度設定器の温度設定値より低い場合に前記圧縮機の周波
数及び前記流量可変型水循環ポンプの流量を大きく、前
記温度設定器の任意温度設定器の温度設定値より高い場
合には前記圧縮機の周波数及び前記流量可変型水循環ポ
ンプの流量を小さくした特許請求の範囲第1項記載の太
陽熱利用集熱装置。
(2) When the refrigerant temperature at the inlet of the collector is lower than the temperature setting value of the arbitrary temperature setting device of the temperature setting device, the frequency of the compressor and the flow rate of the variable flow rate water circulation pump are increased; 2. The solar heat collecting device according to claim 1, wherein the frequency of the compressor and the flow rate of the variable flow rate water circulation pump are reduced when the temperature is higher than the temperature setting value of the arbitrary temperature setting device.
JP60086731A 1985-04-23 1985-04-23 Solar-heat utilizing heat collector Pending JPS61246553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60086731A JPS61246553A (en) 1985-04-23 1985-04-23 Solar-heat utilizing heat collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60086731A JPS61246553A (en) 1985-04-23 1985-04-23 Solar-heat utilizing heat collector

Publications (1)

Publication Number Publication Date
JPS61246553A true JPS61246553A (en) 1986-11-01

Family

ID=13894987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60086731A Pending JPS61246553A (en) 1985-04-23 1985-04-23 Solar-heat utilizing heat collector

Country Status (1)

Country Link
JP (1) JPS61246553A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093061A (en) * 2010-10-28 2012-05-17 Noritz Corp Solar water heat system
JP2016205716A (en) * 2015-04-23 2016-12-08 株式会社コロナ Hot water heating system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093061A (en) * 2010-10-28 2012-05-17 Noritz Corp Solar water heat system
JP2016205716A (en) * 2015-04-23 2016-12-08 株式会社コロナ Hot water heating system

Similar Documents

Publication Publication Date Title
JPS6249160A (en) Heat-pump hot-water supply device
JPS61246553A (en) Solar-heat utilizing heat collector
CN111486613A (en) Air conditioning system, control method and device thereof and storage medium
CN200996705Y (en) Forced heat exchanger of air-source hot-pump hot-water heater set
JPS5986846A (en) Hot water supply device of heat pump type
JPH07174414A (en) Heat pump solar heat collecting system
JPS5921949A (en) Heat collector
JPS60233453A (en) Solar heat collector
JPS6155553A (en) Hot water supplying device utilizing solar heat
JPS611967A (en) Air-conditioning and hot-water supply heat pump device
JPS60155861A (en) Heat collector utilizing solar heat
JPH034820B2 (en)
JPS61208472A (en) Solar-heat utilizing water heater
JPS61235651A (en) Solar-heat utilizing heat collector
JPS6146848A (en) Hot-water supplier utilizing solar heat
JPS59231365A (en) Solar heat pump air conditioner
JPS6066056A (en) Heat collecting device utilizing solar heat
JPH0788992B2 (en) Air conditioning / hot water supply heat pump device
JPS6146847A (en) Solar heat type hot water feeding device
JPS61208471A (en) Solar-heat utilizing heat collector
JPS5956050A (en) Hot-water supplier
Rasson et al. The double-effect regenerative absorption heat pump: cycle description and experimental test results
JPS5865Y2 (en) Refrigeration equipment
JPS6066054A (en) Heat collecting device utilizing solar heat
JPS6138356A (en) Hot-water supplier utilizing solar heat