JPH07158937A - Controller for refrigerating cycle - Google Patents

Controller for refrigerating cycle

Info

Publication number
JPH07158937A
JPH07158937A JP5310452A JP31045293A JPH07158937A JP H07158937 A JPH07158937 A JP H07158937A JP 5310452 A JP5310452 A JP 5310452A JP 31045293 A JP31045293 A JP 31045293A JP H07158937 A JPH07158937 A JP H07158937A
Authority
JP
Japan
Prior art keywords
indoor
heat exchanger
blower
outdoor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5310452A
Other languages
Japanese (ja)
Other versions
JP2982588B2 (en
Inventor
Koji Yamashita
浩司 山下
Masato Yosomiya
正人 四十宮
Fumio Matsuoka
文雄 松岡
Toshihiko Enomoto
寿彦 榎本
Yuji Shibata
裕治 柴田
Takayuki Yoshida
孝行 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5310452A priority Critical patent/JP2982588B2/en
Publication of JPH07158937A publication Critical patent/JPH07158937A/en
Application granted granted Critical
Publication of JP2982588B2 publication Critical patent/JP2982588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To minimize the total electric power consumption in a refrigerating system by controlling the number of revolutions of each of a compressor, an outdoor blower and an indoor blower, following after the fluctuations of indoor and outdoor loads and speedily stabilizing a refrigerating cycle. CONSTITUTION:A refrigerating cycle controller is constituted of a refrigerator comprising a compressor 1 housing a motor, an outdoor heat exchanger 26 having an outdoor blower 27, a choke mechanism 23 and an indoor heat exchanger 24 having an indoor blower 25, and controllers 4, 28, 30 which compare operation results obtained by interrelating the number of revolutions of each of these driving devices on the basis of a preset empirical constant with a preset judgement reference and which control the number of revolutions of each of the driving devices 1, 27, 25 according to the results of comparison.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷凍サイクル制御装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle control device.

【0002】[0002]

【従来の技術】図11は、例えば特開平2−75859
号公報に示された従来の送風機の制御方法であり、図に
おいて、1は圧縮機、2は凝縮器、4は圧縮機1の周波
数を制御するインバータ、7は圧縮機1の吸込圧力を検
出する吸込圧力センサ、8は制御部、9は凝縮器側送風
機、10は送風制御部、11は凝縮圧力あるいは温度セ
ンサ、12は電流センサである。
2. Description of the Related Art FIG. 11 shows, for example, JP-A-2-75859.
In the figure, 1 is a compressor, 2 is a condenser, 4 is an inverter for controlling the frequency of the compressor 1, and 7 is the suction pressure of the compressor 1. The suction pressure sensor, 8 is a control unit, 9 is a condenser-side blower, 10 is a blowing control unit, 11 is a condensation pressure or temperature sensor, and 12 is a current sensor.

【0003】次に動作について説明する。冷房運転時、
圧縮機1の周波数は、インバータ4によって吸込圧力セ
ンサ7の検出する吸込圧力がほぼ一定になるまで制御さ
れる。次いで、圧縮機1の吸込圧力が安定したときに、
インバータ4の入力電流を電流センサ12が検出し、こ
の検出した電流値が更に小さくなるように、送風機制御
部10が凝縮器側送風機9の回転数を制御して、送風量
を変化させる。この制御の繰り返しによって、制御部8
が、圧縮機1の吸込圧力がほぼ一定状態での、外気温度
変化に対応した各凝縮温度毎のインバータ4の最小入力
(圧縮機1と凝縮器側送風機9との最小入力和)を実現
する凝縮器側送風機9の回転数を決定し、この回転数で
制御する。
Next, the operation will be described. During cooling operation,
The frequency of the compressor 1 is controlled by the inverter 4 until the suction pressure detected by the suction pressure sensor 7 becomes substantially constant. Next, when the suction pressure of the compressor 1 becomes stable,
The current sensor 12 detects the input current of the inverter 4, and the blower control unit 10 controls the rotation speed of the condenser-side blower 9 so that the detected current value becomes smaller, thereby changing the amount of blown air. By repeating this control, the control unit 8
However, when the suction pressure of the compressor 1 is almost constant, the minimum input of the inverter 4 (the minimum input sum of the compressor 1 and the condenser side blower 9) for each condensation temperature corresponding to the change of the outside air temperature is realized. The number of rotations of the condenser side blower 9 is determined and controlled by this number of rotations.

【0004】[0004]

【発明が解決しようとする課題】従来の送風機の制御方
法は以上のように構成されているので、圧縮機の周波数
制御と凝縮器側送風機の回転数とを互いに関連させずに
制御して、インバータの入力電流を下げるため、凝縮器
側送風機の回転数を変化させ、凝縮温度(圧力)を変化
させていくと、この凝縮圧力と連動する蒸発圧力(圧縮
機の吸込圧力)が変化してしまうため、圧縮機の吸込圧
力がなかなか安定せず、制御工程のフローがスムーズに
進まず、インバータ入力(圧縮機と凝縮器側送風機の総
消費電力)がなかなか最小値にならないばかりか、冷凍
サイクルも安定しない。また、室内の冷・暖設定温度、
室内扉の開閉、および在室人数等の変化によって室内負
荷が変化した場合にも、この室内負荷変化に連動して蒸
発圧力(圧縮機の吸込圧力)が変化するため、制御工程
のフローがスムーズに進まず、インバータ入力がなかな
か最小値にならず、冷凍サイクルも安定しないという問
題があった。
Since the conventional method of controlling the blower is configured as described above, the frequency control of the compressor and the rotation speed of the condenser side blower are controlled without being related to each other, and In order to reduce the input current of the inverter, changing the rotation speed of the blower on the condenser side and changing the condensing temperature (pressure) changes the evaporation pressure (suction pressure of the compressor) that is linked to this condensing pressure. As a result, the suction pressure of the compressor does not stabilize easily, the flow of the control process does not proceed smoothly, and the inverter input (total power consumption of the compressor and the blower on the condenser side) does not easily reach the minimum value, and the refrigeration cycle Is not stable either. In addition, the cold / warm set temperature in the room,
Even if the indoor load changes due to changes in the number of people in the room, such as opening and closing the indoor door, the evaporation pressure (compressor suction pressure) changes in conjunction with this change in the indoor load, so the flow of the control process is smooth. There was a problem that the inverter input did not reach the minimum value and the refrigeration cycle was not stable.

【0005】この発明は、係る問題点を解決するために
なされたもので、冷凍システムの消費電力を決定する各
種機器の回転数を、予め設定した経験定数により互いに
相関させて求めた演算結果と設定された判断基準とを比
較して、該比較結果に基づいて制御し、雨、風、雪等の
天候条件により室外側負荷が変化しても、また、室内の
冷・暖設定温度、室内扉の開閉、および在室人数等の変
化によって室内側負荷が変化しても、この変化に追従し
て制御フローをスムーズに進め、冷凍サイクルをスピー
ディに安定させるとともに、冷凍システムの総消費電力
を最小にする信頼性の高い冷凍サイクル制御装置を得る
ことを目的とする。
The present invention has been made in order to solve the above problems, and the calculation results obtained by correlating the rotation speeds of various devices that determine the power consumption of the refrigeration system with each other by a preset empirical constant. Even if the outdoor load changes due to weather conditions such as rain, wind, snow, etc. Even if the indoor load changes due to changes in the number of people in the room, such as opening and closing the doors, the control flow can be smoothly progressed by following this change to stabilize the refrigeration cycle speedily and reduce the total power consumption of the refrigeration system. An object is to obtain a highly reliable refrigeration cycle control device that minimizes.

【0006】また、各駆動機器の回転数を、予め設定し
た経験定数により互いに相関させて求めた演算結果と設
定された判断基準とを比較して、該比較結果並びに特性
検知サーモの室内温度と設定温度との温度差に対応する
特性信号に基づいて、温度差に対応する特性信号が所定
値を越えた時には、室内熱交換器の熱交換能力が最大に
なるように制御し、また、温度差に対応する特性信号が
所定値以内の時には、室内熱交換器の熱交換能力が所定
範囲以内で、かつ各駆動機器の総入力が最小になるよう
に制御し、室外側負荷および室内側負荷が変化しても、
この変化に追従して制御フローをスムーズに進め、常に
室内温度がスピーディに快適な冷・暖房温度になり、冷
凍サイクルをスピーディに安定させ、冷凍システムの総
消費電力を最小にする信頼性の高い冷凍サイクル制御装
置を得ることを目的とする。
Further, the calculation result obtained by correlating the rotational speeds of the respective drive devices with each other by a preset empirical constant is compared with the set judgment standard, and the comparison result and the room temperature of the characteristic detection thermometer are compared. Based on the characteristic signal corresponding to the temperature difference from the set temperature, when the characteristic signal corresponding to the temperature difference exceeds a predetermined value, the indoor heat exchanger is controlled to maximize the heat exchange capacity, and the temperature When the characteristic signal corresponding to the difference is within the specified value, the heat exchange capacity of the indoor heat exchanger is controlled within the specified range and the total input of each drive device is controlled to be the minimum, and the outdoor load and the indoor load are controlled. Changes,
Following this change, the control flow proceeds smoothly, the indoor temperature always becomes a comfortable and comfortable cooling / heating temperature, the refrigeration cycle is stabilized quickly, and the total power consumption of the refrigeration system is minimized. The object is to obtain a refrigeration cycle control device.

【0007】また、予め設定された経験定数を、各駆動
機器の入力に対応する各電気特性値を検知する各電気特
性センサ、および室内熱交換器の熱交換能力を検知する
高圧および低圧センサに相当する能力検知センサの各検
知結果と判断部の判断結果とを比較し、該比較結果が所
定値を越えた時、予め設定された経験定数を補正せず、
該比較結果が所定値以内の時、各電気特性センサおよび
各能力特性値力センサの各検知結果に基づいて演算され
た経験定数と置換して補正し、経年変化により、室内熱
交換器または室外熱交換器の伝熱面に異物等が付着堆積
し、室内熱交換器または室外熱交換器の能力が変化した
り、また、設置条件が変化しても、これらの変化に追従
して安定した制御をする信頼性の高い冷凍サイクル制御
装置を得ることを目的とする。
Further, the preset empirical constants are used for each electric characteristic sensor for detecting each electric characteristic value corresponding to the input of each driving device and for the high pressure and low pressure sensors for detecting the heat exchange capacity of the indoor heat exchanger. Comparing each detection result of the corresponding ability detection sensor and the determination result of the determination unit, when the comparison result exceeds a predetermined value, the preset empirical constant is not corrected,
When the comparison result is within a predetermined value, it is replaced by an empirical constant calculated based on each detection result of each electric characteristic sensor and each capacity characteristic value force sensor to correct it, and due to secular change, an indoor heat exchanger or an outdoor Even if the performance of the indoor heat exchanger or the outdoor heat exchanger changes due to foreign substances adhering to and deposits on the heat transfer surface of the heat exchanger, or if the installation conditions change, these changes are stable and follow the changes. An object is to obtain a highly reliable refrigeration cycle control device for controlling.

【0008】[0008]

【課題を解決するための手段】この発明に係る冷凍サイ
クル制御装置は、電動機を内蔵する圧縮機、室外送風機
を有する室外熱交換器、絞り機構、および室内送風機を
有する室内熱交換器とが順次配管で接続されてなる冷凍
装置部と、この冷凍装置部の上記圧縮機、上記室内送風
機、および上記室外送風機の各駆動機器を制御する制御
装置とを備え、上記制御装置に、予め設定された経験定
数を記憶する記憶部と、この記憶部の記憶した設定経験
定数に基づいて上記各駆動機器のそれぞれの回転数変化
に対するそれぞれの上記各駆動機器の入力および上記室
内熱交換器の熱交能力を演算する演算部と、この演算部
の演算結果と予め設定された判定基準とを比較し、該比
較結果より上記室内熱交換器の熱交換能力を所定範囲以
内に維持し、かつ上記各駆動機器の総入力を最小にする
上記各駆動機器間の回転数組合せを判断する判断部と、
この判断部の判断結果に基づいて上記各駆動機器の回転
数をそれぞれに制御する制御部と、を備えたものであ
る。
In a refrigeration cycle control device according to the present invention, a compressor containing an electric motor, an outdoor heat exchanger having an outdoor blower, a throttle mechanism, and an indoor heat exchanger having an indoor blower are sequentially arranged. A refrigeration unit connected by piping, and a control unit for controlling each compressor of the refrigeration unit, the indoor blower, and the outdoor blower are provided, and the control unit is preset. A storage unit that stores an empirical constant, and the input of each drive device and the heat exchange capacity of the indoor heat exchanger with respect to each rotation speed change of each drive device based on the set empirical constant stored in this storage unit. And a calculation result of this calculation unit and a preset judgment standard are compared, and from the comparison result, the heat exchange capacity of the indoor heat exchanger is maintained within a predetermined range, and Serial a determination unit for determining the rotational speed combinations between the respective driving devices to minimize the total input of each drive device,
And a control unit that controls the number of rotations of each drive device based on the determination result of the determination unit.

【0009】また、電動機を内蔵する圧縮機、室外送風
機を有する室外熱交換器、絞り機構、および室内送風機
を有する室内熱交換器とが順次配管で接続されてなる冷
凍装置部と、この冷凍装置部の上記圧縮機、上記室内送
風機、および上記室外送風機の各駆動機器を制御する制
御装置とを備え、上記制御装置に、室内温度と室内設定
温度との温度差に対応する特性信号を検知する特性検知
サーモと、予め設定された経験定数を記憶する記憶部
と、この記憶部の記憶した設定経験定数に基づいて上記
各駆動機器のそれぞれの回転数変化に対するそれぞれの
上記各駆動機器の入力および上記室内熱交換器の熱交能
力を演算する演算部と、この演算部の演算結果と予め設
定された判定基準とを比較し、該比較結果より上記室内
熱交換器の熱交換能力を所定範囲以内に維持し、かつ上
記各駆動機器の総入力を最小にする上記各駆動機器間の
回転数組合せを判断する判断部と、この判断部の判断結
果と上記特性検知サーモの検知結果に基づいて、上記温
度差に対応する特性信号が所定値を越えた時には、室内
熱交換器の熱交換能力を最大にする予め設定された各回
転数により上記各駆動機器の回転数をそれぞれに制御
し、上記温度差に対応する特性信号が所定値以内の時に
は、上記判断部の判断結果に基づいて上記各駆動機器の
回転数をそれぞれに制御する制御部と、を備えたもので
ある。
Further, a refrigerating apparatus section in which a compressor having a built-in electric motor, an outdoor heat exchanger having an outdoor blower, a throttling mechanism, and an indoor heat exchanger having an indoor blower are sequentially connected by pipes, and this refrigerating apparatus A compressor, the indoor blower, and a control device for controlling each drive device of the outdoor blower, the control device detects a characteristic signal corresponding to a temperature difference between the indoor temperature and the indoor set temperature. A characteristic detection thermostat, a storage unit that stores a preset empirical constant, and an input of each of the above-mentioned drive devices with respect to each rotational speed change of each of the above-mentioned drive devices based on the set empirical constant stored in this storage unit A calculation unit that calculates the heat exchange capacity of the indoor heat exchanger is compared with a calculation result of this calculation unit and a preset determination standard, and the heat exchange capacity of the indoor heat exchanger is determined from the comparison result. Is within a predetermined range, and a judgment unit for judging the rotational speed combination between the driving devices that minimizes the total input of the driving devices, the judgment result of the judging unit and the detection result of the characteristic detection thermometer. On the basis of the above, when the characteristic signal corresponding to the temperature difference exceeds a predetermined value, the rotation speeds of the respective drive devices are set to the respective rotation speeds set in advance to maximize the heat exchange capacity of the indoor heat exchanger. When the characteristic signal corresponding to the temperature difference is within a predetermined value, the control unit controls the number of revolutions of each drive device based on the determination result of the determination unit.

【0010】また、上記制御装置に、上記各駆動機器の
入力に対応する各電気特性値を検知する各電気特性セン
サと、上記室内熱交換器の熱交換能力を検知する高圧お
よび低圧センサに相当する能力検知センサと、この能力
検知センサおよび上記各電気特性センサの各検知結果と
上記判断部の判断結果とを比較し、該比較結果が所定値
を越えた時、上記記憶部の記憶した設定経験定数を補正
せず、該比較結果が所定値以内のとき、上記記憶部の記
憶した設定経験定数を上記各電気特性センサおよび上記
各能力特性値センサの各検知結果に基づいて演算された
経験定数と置換して補正する学習機能部と、を備えたも
のである。
Further, the control device corresponds to each electric characteristic sensor for detecting each electric characteristic value corresponding to the input of each driving device, and a high pressure and low pressure sensor for detecting the heat exchange capacity of the indoor heat exchanger. Comparing the detection results of the capability detection sensor and the detection results of the capability detection sensor and the electrical characteristic sensors with the determination result of the determination unit, and when the comparison result exceeds a predetermined value, the setting stored in the storage unit is set. When the comparison result is within a predetermined value without correcting the empirical constant, the experience that the set empirical constant stored in the storage unit is calculated based on the detection results of the electric characteristic sensors and the capacity characteristic value sensors. And a learning function unit that replaces the constant and corrects it.

【0011】また、上記制御装置に、室内温度を検知す
る室内温度センサと、室外温度を検知する室外温度セン
サとを備え、判断部が、上記演算部の演算結果から上記
室内温度センサおよび室外温度センサの検知温度、並び
に予め設定された判断基準とに基づいて判断するもので
ある。
Further, the control device is provided with an indoor temperature sensor for detecting the indoor temperature and an outdoor temperature sensor for detecting the outdoor temperature, and the judging section determines the indoor temperature sensor and the outdoor temperature from the calculation result of the calculating section. The determination is made based on the temperature detected by the sensor and a preset determination standard.

【0012】また、判断部が、上記室内熱交換器の熱交
能力および上記各駆動機器の総入力に対する各重み付け
関数を上記判断基準に加味して判断するものである。
Further, the judging section makes a judgment by taking into consideration the heat exchange capacity of the indoor heat exchanger and each weighting function for the total input of each driving device in the above judgment criteria.

【0013】[0013]

【作用】制御装置が冷凍システムの総消費電力を決定す
る各駆動機器の回転数を、予め設定した経験定数により
互いに相関させて求めた演算結果と設定された判断基準
とを比較して、該比較結果に基づいて室外側負荷および
室内側負荷の変化に追従するとともに、室内熱交換器の
熱交換能力が所定範囲以内で、かつ各駆動機器の総入力
が最小になるように制御する。
The controller compares the rotation speed of each drive device, which determines the total power consumption of the refrigeration system, with each other by a preset empirical constant, and compares the calculated result with the set judgment criterion. Based on the comparison result, it is controlled so as to follow changes in the outdoor load and the indoor load, the heat exchange capacity of the indoor heat exchanger is within a predetermined range, and the total input of each drive device is minimized.

【0014】また、制御装置が各駆動機器の回転数を、
予め設定した経験定数により互いに相関させて求めた演
算結果と設定された判断基準とを比較して、該比較結果
並びに特性検知サーモの室内温度と設定温度との温度差
に対応する特性信号により、温度差に対応する特性信号
が所定値を越えた時には、室内熱交換器の熱交換能力が
最大になるように制御し、また、温度差に対応する特性
信号が所定値以内の時には、室内熱交換器の熱交換能力
が所定範囲以内で、かつ各駆動機器の総入力が最小にな
るように制御する。
Further, the control device controls the rotation speed of each drive device by
By comparing the calculation result obtained by correlating with each other by a preset empirical constant and the set judgment standard, the comparison result and the characteristic signal corresponding to the temperature difference between the room temperature and the set temperature of the characteristic detection thermometer, When the characteristic signal corresponding to the temperature difference exceeds a predetermined value, control is performed to maximize the heat exchange capacity of the indoor heat exchanger, and when the characteristic signal corresponding to the temperature difference is within the predetermined value, the indoor heat The heat exchange capacity of the exchanger is controlled within a predetermined range, and the total input of each drive device is controlled to be the minimum.

【0015】また、学習機能部が予め設定された経験定
数を、各駆動機器の入力に対応する各電気特性値を検知
する各電気特性センサ、および室内熱交換器の熱交換能
力を検知する高圧および低圧センサに相当する能力検知
センサの各検知結果と判断部の判断結果とを比較し、該
比較結果が所定値を越えた時、予め設定された経験定数
を補正せず、該比較結果が所定値以内の時、各電気特性
センサおよび各能力特性値力センサの各検知結果に基づ
いて演算された経験定数と置換して補正する。
Further, the learning function unit uses preset empirical constants as electric characteristic sensors for detecting electric characteristic values corresponding to the inputs of the driving devices and high voltage for detecting heat exchange capacity of the indoor heat exchanger. And comparing each detection result of the ability detection sensor corresponding to the low pressure sensor and the determination result of the determination unit, and when the comparison result exceeds a predetermined value, the preset empirical constant is not corrected and the comparison result is When it is within a predetermined value, it is corrected by replacing it with an empirical constant calculated based on each detection result of each electric characteristic sensor and each capacity characteristic value force sensor.

【0016】[0016]

【実施例】【Example】

実施例1.以下、この発明の一実施例を図について説明
する。図1において、1は圧縮機、4は圧縮機1の回転
数(周波数)を制御するインバータ、21は四方弁、2
2はアキュムレータ、23は絞り機構、24は室内熱交
換器、25は室内送風機、26は室外熱交換器、27は
室外送風機、28は室内送風機25の回転数を制御する
インバータ、29はインバータ28に制御指令を与える
制御機、30は室外送風機27の回転数を制御するイン
バータ、31はインバータ30に制御指令を与える制御
機、32はインバータ4に制御指令を与える制御機、3
3は各種演算を行う演算機、34は演算機33の演算結
果から最適な運転パターンを選択・出力する判断機、3
5は演算機33から読み出し可能な記憶部であるメモリ
である。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 1 is a compressor, 4 is an inverter for controlling the rotation speed (frequency) of the compressor 1, 21 is a four-way valve, 2
2 is an accumulator, 23 is a throttle mechanism, 24 is an indoor heat exchanger, 25 is an indoor blower, 26 is an outdoor heat exchanger, 27 is an outdoor blower, 28 is an inverter for controlling the rotation speed of the indoor blower 25, and 29 is an inverter 28. , 30 is an inverter for controlling the rotation speed of the outdoor blower 27, 31 is a controller for giving a control command to the inverter 30, 32 is a controller for giving a control command to the inverter 4, 3
3 is a computing machine for performing various computations, 34 is a judgment machine for selecting and outputting an optimum operation pattern from the computation results of the computing machine 33, 3
Reference numeral 5 is a memory that is a storage unit that can be read from the computing unit 33.

【0017】以上のように構成された冷凍サイクル制御
装置は、冷暖方の標準室内外温度条件において、圧縮機
1の周波数をインバータ4によって、室内熱交換器24
に取り付けられた送風機25の回転数をインバータ28
によって、室外熱交換器26に取り付けられた送風機2
7の回転数をインバータ30によって、それぞれ別個に
変化させる実験をし、この実験により、圧縮機1の周波
数変化量ΔF、室内送風機25の回転数変化量ΔNi、
および室外送風機27の回転数変化量ΔNに対するそれ
ぞれの室内熱交換器24の能力変化量ΔQの割合を経験
定数a,b,cとし、また、圧縮機1の周波数変化量Δ
F、室内送風機25の回転数変化量ΔNi、および室外
送風機27の回転数変化量ΔNに対する冷凍システムの
各駆動機器(圧縮機1、室内送風機25、および室外送
風機27)総入力変化量ΔWの割合を経験定数d,e,
fとして予め求めておき、この求めた経験定数をメモリ
35に予め設定した経験定数a〜fとして記憶させる。
実機においては、この予め記憶させた設定経験定数a〜
fに基づいて、演算機33は、各インバータ4,28,
30の制御する圧縮機1の周波数、室内送風機25の回
転数、および室外送風機27の回転数の想定されるそれ
ぞれの回転数変化に対する室内熱交換器24の熱交換能
力変化量ΔQおよび冷凍システムの各駆動機器の総入力
変化量ΔWをマトリックス演算式から求める。
In the refrigeration cycle control device configured as described above, the frequency of the compressor 1 is changed by the inverter 4 by the inverter 4 under the standard indoor / outdoor temperature conditions of cooling and warming.
The rotation speed of the blower 25 attached to the inverter 28
The blower 2 attached to the outdoor heat exchanger 26 by
An experiment was carried out in which the rotation speed of No. 7 was changed individually by the inverter 30, and by this experiment, the frequency change amount ΔF of the compressor 1, the rotation speed change amount ΔNi of the indoor blower 25,
And the ratio of the capacity change amount ΔQ of each indoor heat exchanger 24 to the rotation speed change amount ΔN of the outdoor blower 27 are set as empirical constants a, b, and c, and the frequency change amount Δ of the compressor 1 is also set.
F, the ratio of the total input change amount ΔW of each drive device (compressor 1, indoor blower 25, and outdoor blower 27) of the refrigeration system to the rotation speed change amount ΔNi of the indoor blower 25 and the rotation speed change amount ΔN of the outdoor blower 27. The empirical constants d, e,
The empirical constants obtained in advance are stored in the memory 35 as preset empirical constants af.
In the actual machine, this preset empirical constant a ~
Based on f, the computing unit 33 determines that the inverters 4, 28,
The frequency of the compressor 1 controlled by 30, the rotational speed of the indoor blower 25, and the expected rotational speed change of the outdoor blower 27 with respect to the respective expected rotational speed changes, the heat exchange capacity change amount ΔQ of the indoor heat exchanger 24, and the refrigeration system. The total input change amount ΔW of each drive device is calculated from the matrix calculation formula.

【0018】次に、図2に示す通り、この演算機33の
マトリックス演算結果と予め設定された判断基準(後に
詳述する)とに基づいて、判断機34は、室内熱交換器
24の熱交換能力を所定範囲以内に維持し、かつ冷凍シ
ステムの各駆動機器(圧縮機1、室内送風機25、およ
び室外送風機27)の総入力Wを最小にする圧縮機1の
周波数、室内送風機25の回転数、および室外送風機2
7の回転数の組合せを判断・選択し、この判断・選択結
果を各インバータの制御機32,29,31へ送信する
ので、この互いに相関・組合させて選択した判断結果の
圧縮機1の周波数、室内送風機25の回転数、および室
外送風機25の回転数の信号に基づいて、各インバータ
の制御機32,29,31は各インバータ4,28,3
0を制御し、室内熱交換器24の熱交換能力を所定範囲
以内に維持しながら、冷凍システムの駆動機器の総入力
Wを最小にする。
Next, as shown in FIG. 2, based on the matrix calculation result of the calculator 33 and a preset judgment standard (detailed later), the judge 34 determines that the heat of the indoor heat exchanger 24 has been exceeded. The frequency of the compressor 1 and the rotation of the indoor blower 25 that keep the exchange capacity within a predetermined range and minimize the total input W of each drive device (compressor 1, indoor blower 25, and outdoor blower 27) of the refrigeration system. Number, and outdoor blower 2
The combination of the rotation speeds of 7 is judged and selected, and the judgment / selection result is transmitted to the controllers 32, 29, 31 of the respective inverters. Therefore, the frequency of the compressor 1 of the judgment result selected by correlating and combining with each other. , The number of revolutions of the indoor blower 25, and the number of revolutions of the outdoor blower 25, the controllers 32, 29, 31 of the respective inverters control the inverters 4, 28, 3 respectively.
By controlling 0, the total input W of the drive equipment of the refrigeration system is minimized while maintaining the heat exchange capacity of the indoor heat exchanger 24 within a predetermined range.

【0019】なお、前述の室内熱交換器の熱交換能力を
所定範囲以内に維持しながらとは、室内熱交換器の伝熱
面積は機種が選定されれば常に一定であるので、室内熱
交換器の熱交換能力は、室内温度と室内熱交換器温度と
の温度差および室内送風機の回転数(風速)によって決
定され、また、前述の通り判定基準の所定範囲以内に維
持されるのであるから、室内の冷・暖設定温度、室内扉
の開閉、および在室人数等の変化により室内負荷(温度
差)が変化しても、この変化に対応して室内送風機の入
力を最小にする室内送風機の回転数が熱交換能力の所定
範囲以内で演算され、この演算結果と予め設定された判
断基準(例えば、冷房運転時10℃、冷房運転5分後5
℃、暖房運転時12℃、暖房運転5分後6℃と言うよう
な予め設定されたタイムスケジュール等)との比較結果
より、室内送風機の回転数は室内送風機の入力を最小に
する回転数で制御されることを意味するのはいうまでも
ない。また、室内送風機の回転数が決定され、低圧が一
定になれば、低圧が一定状態での圧縮機の仕事量は、室
外熱交換器の能力によって決まる高圧によって決定さ
れ、しかも、この室外熱交換器の能力は、前述の室内熱
交換器の能力が決定されるまでの論理と同様に、室外温
度と室外熱交換器温度との温度差および室内送風機の回
転数(風速)によって決定される。しかし、室外熱交換
器の能力は、所定範囲以内に維持されないために、設定
判断基準に圧縮機の仕事量と室外送風機の入力との和を
最小にすると言う判断基準を付加して、以下に詳述する
ことを実現させる。なお、圧縮機に入力は圧縮機の仕事
量×圧縮機の回転数である。
It should be noted that while maintaining the heat exchange capacity of the indoor heat exchanger within a predetermined range, the heat transfer area of the indoor heat exchanger is always constant if the model is selected. The heat exchange capacity of the air conditioner is determined by the temperature difference between the indoor temperature and the indoor heat exchanger temperature and the rotation speed (wind speed) of the indoor blower, and is maintained within the predetermined range of the judgment standard as described above. Even if the indoor load (temperature difference) changes due to changes in the room's cold / warm set temperature, the opening / closing of the indoor door, and the number of people in the room, the indoor blower minimizes the input of the indoor blower in response to this change. Is calculated within a predetermined range of heat exchange capacity, and the calculation result and a preset judgment standard (for example, 10 ° C. during cooling operation, 5 minutes after cooling operation)
℃, heating operation 12 ℃, heating operation 5 minutes later 6 ℃, etc.), the indoor blower rotation speed is the rotation speed that minimizes the input of the indoor blower. It goes without saying that it means being controlled. Also, if the rotation speed of the indoor blower is determined and the low pressure becomes constant, the work of the compressor when the low pressure is constant is determined by the high pressure determined by the capacity of the outdoor heat exchanger. The capacity of the air conditioner is determined by the temperature difference between the outdoor temperature and the outdoor heat exchanger temperature and the number of revolutions (wind speed) of the indoor blower, similar to the logic until the capacity of the indoor heat exchanger is determined. However, since the capacity of the outdoor heat exchanger is not maintained within a predetermined range, a criterion for minimizing the sum of the work of the compressor and the input of the outdoor blower is added to the criterion for setting, and Realize the details. The input to the compressor is the work of the compressor times the rotation speed of the compressor.

【0020】この演算機33および判断機34における
処理を図2のブロック線図で説明する。まず、空調機の
要求される室内熱交換器能力Qに対して、従来と同様の
方法でF(圧縮機周波数)、Ni(室内送風機回転
数)、No(室外送風機回転数)の基本変化分を決定す
る。次に、演算機でマトリックス演算を行うことにより
27通り(後述)のΔF(圧縮機周波数変化幅)、ΔN
i(室内熱交換器側送風機回転数変化幅)、ΔNo(室
外熱交換器側送風機回転数変化幅)の組合せを得る。そ
して、判断機で能力Qを維持(能力がある範囲内に入っ
ている)しながら総入力Wを最小にするΔF,ΔNi,
ΔNoの組合せを判断・選択し、基本変化分に加えて、
出力する。
The processing in the arithmetic unit 33 and the judging unit 34 will be described with reference to the block diagram of FIG. First, the basic change amount of F (compressor frequency), Ni (indoor blower rotation speed), No (outdoor blower rotation speed) with respect to the indoor heat exchanger capacity Q required by the air conditioner is calculated in the same manner as the conventional method. To decide. Next, by performing a matrix operation with a computing device, there are 27 ways (described later) of ΔF (compressor frequency change width), ΔN
A combination of i (internal heat exchanger side blower rotation speed change width) and ΔNo (outdoor heat exchanger side blower rotation speed change width) is obtained. Then, ΔF, ΔNi, which minimizes the total input W while maintaining the capacity Q (the capacity is within a certain range) by the judgment device.
Judge and select the combination of ΔNo, add to the basic change,
Output.

【0021】なお、次に以下に前述のマトリックス演算
の一実施例の考え方を含めて処理の流れを図3および図
4のフローチャートにより説明する。まず、図3で、圧
縮機周波数の変化量をΔF、室内送風機回転数の変化量
をΔNi、室外送風機回転数の変化量をΔNoとし、こ
れらの各アクチュエータの変化量をΔF,ΔNi,ΔN
oだけ変化させるものとする。ただし、これらの変化量
は次の値のどれかをとるものとする。 ΔF =−α,0,+α ΔNi=−β,0,+β ΔNo=−γ,0,+γ すると、ΔF,ΔNi,ΔNoは、それぞれ3通りに変
化するので、結局、3×3×3すなわち27通りの(Δ
F,ΔNi,ΔNo)の組合せができる。従って、この
27通りの組合せ結果と事前に実験または計算によって
求めてメモリ35に記憶させておいた経験定数a〜fを
用い演算機33で次式によって計算することにより、こ
の27通りに対応する室内熱交換器の能力変化量ΔQと
装置の全入力変化量ΔWが求まる。
The flow of processing will be described below with reference to the flow charts of FIGS. 3 and 4, including the concept of one embodiment of the matrix operation described above. First, in FIG. 3, the change amount of the compressor frequency is ΔF, the change amount of the indoor blower rotation speed is ΔNi, the change amount of the outdoor blower rotation speed is ΔNo, and the change amounts of these actuators are ΔF, ΔNi, and ΔN.
Change only o. However, these changes take one of the following values. ΔF = −α, 0, + α ΔNi = −β, 0, + β ΔNo = −γ, 0, + γ Then, since ΔF, ΔNi, and ΔNo change in three ways, respectively, 3 × 3 × 3 or 27 Street (Δ
F, ΔNi, ΔNo) can be combined. Therefore, by using the 27 combination results and the empirical constants a to f previously obtained by experiment or calculation and stored in the memory 35, the arithmetic unit 33 calculates the following equations to correspond to the 27 combinations. The capacity change amount ΔQ of the indoor heat exchanger and the total input change amount ΔW of the device are obtained.

【数1】 [Equation 1]

【0022】次に、この27通りの(ΔQ,ΔW)の組
合せ中から、図4に示す通り能力を維持(能力がある範
囲内に入っている)しながら入力が最小となるものを判
断機33が予め設定されている判断条件に基づいて1組
判断・選択する。そして、この結果が圧縮機1、室内送
風機25、室外送風機27のそれぞれに取り付けられた
インバータの制御機32,29,31に送信されるの
で、制御機はそれぞれのインバータ4,28,30を介
して各アクチュエータ(圧縮機1または送風機25,2
7の回転数)を制御する。
Next, from the 27 combinations of (ΔQ, ΔW), the one having the minimum input while maintaining the capability (capacity within a certain range) as shown in FIG. 4 is judged. 33 determines / selects one set based on a preset determination condition. Then, this result is transmitted to the controllers 32, 29, 31 of the inverters attached to the compressor 1, the indoor blower 25, and the outdoor blower 27, respectively, so that the controllers pass through the respective inverters 4, 28, 30. Each actuator (compressor 1 or blower 25, 2
7 rotation speed).

【0023】ここで、簡単な例として室内送風機25の
回転数Niを変化させない場合で、低外気温時の冷房運
転時の事例について説明する。圧縮機1の周波数変化量
ΔF、室外送風機27の回転数変化量ΔNoをそれぞれ
3通りづつ、9通りに変化させた場合、その結果を図示
すると図5のようになる。なお、ここで、ΔFとΔNo
の変化が能力および入力に及ぼす影響が同程度となるよ
うに例えば圧縮機周波数Fの変化量α=1[Hz]、室
外熱交換器回転数Noの変化量β=50[rpm]と設
定し、また、(ΔF,ΔNo)=(0,0)が図5の原
点で示されているとすると、図5において、入力が原点
(0,0)の場合よりも小さくなる(ΔF,ΔNo)の
組合せは、下記の4通りであり、 (−1,−50),(−1,0) (−1,50),(0,50) また、能力が判断基準範の±δに入っている組合せは、 (−1,0),(1,0) の2通り存在する。従って、熱交換能力を±δに維持し
ながら入力が最小となる組合せは、 (ΔF,ΔNo)=(−1,0) となり、これに対応する圧縮機1および送風機27の回
転数変化指令が制御機32,29,31に出され、制御
されることになる。
Here, as a simple example, a case where the number of revolutions Ni of the indoor blower 25 is not changed and the cooling operation is performed at a low outside temperature will be described. When the frequency change amount ΔF of the compressor 1 and the rotation speed change amount ΔNo of the outdoor blower 27 are changed in three ways and nine ways, respectively, the results are shown in FIG. Here, ΔF and ΔNo
The change amount of the compressor frequency F is set to α = 1 [Hz], and the change amount of the outdoor heat exchanger rotation number No is set to β = 50 [rpm] so that the change of the heat exchanger has the same effect on the capacity and the input. Further, if (ΔF, ΔNo) = (0, 0) is shown at the origin of FIG. 5, it is smaller than that when the input is the origin (0, 0) in FIG. 5 (ΔF, ΔNo). There are 4 combinations of (-1, -50), (-1, 0), (-1, 50), (0, 50) There are two combinations of (-1,0) and (1,0). Therefore, the combination that minimizes the input while maintaining the heat exchange capacity at ± δ is (ΔF, ΔNo) = (− 1,0), and the corresponding rotation speed change commands for the compressor 1 and the blower 27 are It is sent to the controllers 32, 29, 31 and controlled.

【0024】なお、ここでは、本発明の概念を簡略化す
るために、室内送風機回転数を変化させない場合につい
てその具体例を述べたが、ΔF,ΔNi,ΔNoの3つ
の全部変化させる場合についても同様のことがいえ、そ
の場合は図6のように27通りの中から能力を維持しな
がら総入力が最小となる組合せを選択する。また、本実
施例では、送風機の回転数を変化させるのにインバータ
を用いたが、その他のサイリスタ等を応用した可変手段
で実施しても何等問題はない。
Here, in order to simplify the concept of the present invention, a specific example of the case where the indoor blower rotation speed is not changed is described, but the case where all three of ΔF, ΔNi, and ΔNo are changed is also described. The same can be said, in that case, a combination that minimizes the total input while maintaining the capability is selected from 27 ways as shown in FIG. Further, in the present embodiment, the inverter is used to change the rotation speed of the blower, but there is no problem even if it is implemented by a variable means to which another thyristor or the like is applied.

【0025】実施例2.本実施例では、実施例1の制御
装置に、図示はしないが、室内温度と室内設定温度との
温度差を検知し、この検出結果を本実施のインバータの
制御機32,29,31に送信する特性検知サーモであ
る室内サーモを付加する構成とする。このように構成さ
れるために、室内サーモの検知結果と実施例1で述べた
判定機34からの判定結果を受信した本実施のインバー
タの制御機32,29,31は、室内サーモの検知結果
として、室内温度と室内設定温度との温度差が所定値を
越える信号を受信した時には、室内熱交換器24の熱交
換能力を最大に維持する予め設定された圧縮機1の周波
数、室内送風機25の回転数、および室外送風機27の
回転数に基づいて各インバータ4,28,30を制御
し、室内温度と室内設定温度との差が所定値以内の信号
を受信したときには、前述の実施例1で説明した通り、
判定機34からの判定結果である室内熱交換器24の熱
交換能力を所定範囲以内に維持しながら、冷凍システム
の各駆動機器の総入力Wを最小にする圧縮機1の周波
数、室内送風機25の回転数、および室外送風機27の
回転数に基づいて各インバータ4,28,30を制御す
る。従って、本実施例では、実施例1の効果が得られる
とともに、室内温度がスピーディに快適な冷・暖房温度
になり、かつ、エネルギー効率の良い冷凍サイクル制御
装置が得られる。
Example 2. In the present embodiment, although not shown, the control device of the first embodiment detects the temperature difference between the indoor temperature and the indoor set temperature, and sends the detection result to the inverter controllers 32, 29, 31 of the present embodiment. The indoor thermometer, which is a characteristic detection thermometer, is added. With such a configuration, the inverter controllers 32, 29, and 31 of the present embodiment, which have received the detection result of the indoor thermometer and the judgment result from the judgment machine 34 described in the first embodiment, are detected by the indoor thermostat. As a result, when a signal is received in which the temperature difference between the indoor temperature and the indoor set temperature exceeds a predetermined value, the preset frequency of the compressor 1 that maintains the heat exchange capacity of the indoor heat exchanger 24 at the maximum, and the indoor blower 25. When the inverters 4, 28 and 30 are controlled based on the rotation speed of the outdoor fan 27 and the rotation speed of the outdoor blower 27 and a signal in which the difference between the indoor temperature and the indoor set temperature is within a predetermined value is received, As explained in
The frequency of the compressor 1 and the indoor blower 25 that minimize the total input W of each drive device of the refrigeration system while maintaining the heat exchange capacity of the indoor heat exchanger 24, which is the determination result from the determination device 34, within a predetermined range. The inverters 4, 28, 30 are controlled on the basis of the number of revolutions and the number of revolutions of the outdoor blower 27. Therefore, in the present embodiment, the effect of the first embodiment can be obtained, and the refrigeration cycle control device can be obtained in which the room temperature quickly becomes a comfortable cooling / heating temperature and energy efficiency is high.

【0026】なお、前述の特性検知サーモの検知する室
内温度と室内設定温度との温度差に対応する特性信号と
して、冷凍システムの運転開始信号を受信した後の時間
が所定時間を経過したか、しないかの信号を用いても、
前述と同様に、制御回路が簡単で、快適な冷・暖房温度
がスピーディに得られ、エネルギー効率もほぼ良好な冷
凍サイクル制御装置が得られる。
Whether or not a predetermined time has elapsed after the operation start signal of the refrigeration system is received as the characteristic signal corresponding to the temperature difference between the indoor temperature detected by the characteristic detection thermometer and the indoor set temperature, Even if you use the signal
Similar to the above, a refrigeration cycle control device with a simple control circuit, a comfortable cooling / heating temperature can be obtained speedily, and energy efficiency is almost good can be obtained.

【0027】実施例3.図7は、実施例3の冷凍サイク
ル制御装置の構成図であり、12は圧縮機1(インバー
タ4)の入力を、この電流から変換して検知する電流セ
ンサ、36は室内送風機25の入力を、この電流から変
換して検知する電流センサ、37は室外送風機27の入
力を、この電流から変換して検知する電流センサ、38
は室内熱交換器24の冷媒圧力を検知する圧力センサ、
39は室外熱交換器26の冷媒圧力を検知する圧力セン
サであり、その他は、実施例2で述べた通りである。な
お、圧力センサ38または39の替わりに、室内熱交換
器24または室外熱交換器26の冷媒圧力に相当する冷
媒の飽和温度を検知する温度センサを使用してもよい。
また、後述するように、圧力センサ38および39は、
圧縮機1の冷凍能力である室内熱交換器24の能力を検
出するためのものであるから、室内熱交換器24の出入
口温度差を検知する温度差センサからの出入口温度差に
よって決定される出入口エンタルピ差と室内熱交換器2
4の冷媒流量である圧縮機1の冷媒循環量を決定する圧
縮機1の回転数とを組み合わせてもよい。
Example 3. FIG. 7 is a configuration diagram of the refrigeration cycle control device according to the third embodiment. 12 is a current sensor that detects the input of the compressor 1 (inverter 4) by converting it from this current, and 36 is the input of the indoor blower 25. , A current sensor for converting and detecting from this current, 37 a current sensor for converting and detecting the input of the outdoor blower 27 from this current, 38
Is a pressure sensor for detecting the refrigerant pressure in the indoor heat exchanger 24,
Reference numeral 39 is a pressure sensor for detecting the refrigerant pressure in the outdoor heat exchanger 26, and the other components are as described in the second embodiment. Instead of the pressure sensor 38 or 39, a temperature sensor that detects the saturation temperature of the refrigerant corresponding to the refrigerant pressure of the indoor heat exchanger 24 or the outdoor heat exchanger 26 may be used.
Further, as will be described later, the pressure sensors 38 and 39 are
Since it is for detecting the capacity of the indoor heat exchanger 24, which is the refrigerating capacity of the compressor 1, the inlet / outlet port determined by the inlet / outlet temperature difference from the temperature difference sensor detecting the inlet / outlet temperature difference of the indoor heat exchanger 24. Enthalpy difference and indoor heat exchanger 2
4 may be combined with the number of rotations of the compressor 1 that determines the refrigerant circulation amount of the compressor 1, which is the refrigerant flow rate of No. 4.

【0028】冷凍システムを前述のように構成した本実
施例では、各電流センサ12,37,38の検知するイ
ンバータ4の入力、室内送風機25の入力、および室外
送風機27の入力と、さらに、圧力センサ38,39の
検知する室内熱交換器24および室外熱交換器26の冷
媒圧力から決定される室内熱交換器24の能力とを、実
施例1で述べた設定経験定数a〜fおよび圧縮機1、室
内送風機25、室外送風機27の想定した回転数変化の
演算結果と判断条件によって求められたインバータ4の
入力、室内送風機25の入力、室外送風機27の入力、
および室内熱交換器24の熱交換能力Qと比較し、この
比較結果が所定値(例えば、5%)を越えた時には、検
知上等のトラブルズが発生したと判断し、実験によって
求めた経験定数a〜fを変更せずに、この変更しないa
〜fに基づいて各インバータの制御機32,29,31
は、各インバータ4,28,30を制御する。
In the present embodiment in which the refrigeration system is configured as described above, the input of the inverter 4 detected by each current sensor 12, 37, 38, the input of the indoor blower 25, the input of the outdoor blower 27, and the pressure The set empirical constants a to f described in the first embodiment, the compressor, and the capacity of the indoor heat exchanger 24, which are determined from the refrigerant pressures of the indoor heat exchanger 24 and the outdoor heat exchanger 26 detected by the sensors 38 and 39, are described. 1, the input of the inverter 4, the input of the indoor blower 25, the input of the outdoor blower 27, which are obtained by the calculation result of the rotation speed change assumed by the indoor blower 25 and the outdoor blower 27 and the determination condition,
And the heat exchange capacity Q of the indoor heat exchanger 24, and when this comparison result exceeds a predetermined value (for example, 5%), it is determined that a trouble such as detection has occurred, and the experience obtained by experiments This constant a is not changed without changing the constants a to f
~ F based on the controller 32, 29, 31 of each inverter
Controls each inverter 4, 28, 30.

【0029】また、上記比較結果が所定値(5%)以内
の時には、各電流センサ12,37,38が検知したイ
ンバータ4、室内送風機25、および室外送風機27の
各入力と、さらに、圧力センサ38,39の検知した冷
媒圧力から決定される室内熱交換器24の能力と、並び
に、各インバータ4,28,30が現在制御している圧
縮機1の周波数、室内送風機25の回転数、および室外
送風機25の回転数から下記の式に基づいて、a〜f
を計算し直し、この計算し直したa〜fに基づいて各イ
ンバータの制御機32,29,31は、各インバータ
4,28,30を制御するとともに、この計算し直した
a〜fを実験によって求めた経験定数a〜fと置き換え
てメモリ35に記憶させる。 a=ΔQ/ΔF,b=ΔQ/ΔNi,c=ΔQ/ΔNo … d=ΔW/ΔF,e=ΔW/ΔNi,f=ΔW/ΔNo なお、次の制御から、この記憶させたa〜fに基づいて
前述の動作を繰り返すようになる。
When the comparison result is within a predetermined value (5%), each input of the inverter 4, the indoor blower 25, and the outdoor blower 27 detected by each current sensor 12, 37, 38, and the pressure sensor. The capacity of the indoor heat exchanger 24 determined from the refrigerant pressures detected by 38 and 39, the frequency of the compressor 1 currently controlled by each inverter 4, 28 and 30, the rotation speed of the indoor blower 25, and From the rotation speed of the outdoor blower 25, based on the following formula, a to f
And the controllers 32, 29, 31 of the respective inverters control the respective inverters 4, 28, 30 based on the recalculated a to f, and the recalculated a to f are tested. It is replaced with the empirical constants a to f obtained by the above and stored in the memory 35. a = ΔQ / ΔF, b = ΔQ / ΔNi, c = ΔQ / ΔNo ... d = ΔW / ΔF, e = ΔW / ΔNi, f = ΔW / ΔNo From the following control, the stored a to f are stored. Based on this, the above operation is repeated.

【0030】従って、本実施例では、室内熱交換器また
は室外熱交換器の伝熱面に異物等が付着堆積し、経年変
化により、室内熱交換器または室外熱交換器の能力が低
下したり、また、冷凍装置の客先設置条件により各熱交
換器の送風する風の流れが変化しても、この変化に対応
した補正設定経験定数a〜fにより各駆動機器の回転数
を制御しているために、実施例2の効果を長期的に精度
良く、安定した制御をする。
Therefore, in this embodiment, foreign matter adheres to and deposits on the heat transfer surface of the indoor heat exchanger or the outdoor heat exchanger, and the performance of the indoor heat exchanger or the outdoor heat exchanger decreases due to aging. Also, even if the flow of air blown by each heat exchanger changes depending on the customer installation conditions of the refrigeration system, the rotation speed of each drive device is controlled by the correction setting empirical constants a to f corresponding to this change. Therefore, the effect of the second embodiment is controlled accurately and stably for a long period of time.

【0031】実施例4.本実施例では、室内温度と室外
温度(外気温度)との組合せ温度毎に、圧縮機1の周波
数、室内送風機25の回転数、および室外送風機27の
回転数に対するそれぞれの室内熱交換器24の能力変化
の割合、並びに、それぞれの冷凍システムの各駆動機器
の総入力変化の割合を設定経験定数a〜fとして、図1
0のように求めておく。また、実施例2の制御装置の構
成に、図示はしないが、室内温度を検知し、この検知温
度を本実施例の判断機34に送信する室内温度センサ
と、室外温度を検知し、この検知温度を本実施例の判断
機34に送信する室外温度センサとを付加した構成とす
る。
Example 4. In the present embodiment, for each combination temperature of the indoor temperature and the outdoor temperature (outside air temperature), the frequency of the compressor 1, the rotation speed of the indoor blower 25, and the rotation speed of the outdoor blower 27 of the respective indoor heat exchangers 24 are changed. The rate of capacity change and the rate of total input change of each drive device of each refrigeration system are set as empirical constants a to f, and FIG.
It asks like 0. Although not shown in the figure, the control device of the second embodiment detects the indoor temperature and transmits the detected temperature to the determining device 34 of the present embodiment, and the outdoor temperature sensor detects the outdoor temperature. An outdoor temperature sensor for transmitting the temperature to the determination device 34 of the present embodiment is added.

【0032】このように構成することにより、本実施の
演算機33は前述の求めた設定経験定数a〜fに基づい
て演算し、この演算結果を本実施例の判断機34へ送信
する。また、演算機34、室内温度センサ、および室外
温度センサからの信号を受信した本実施例の判断機34
は、演算機34の演算結果から室内温度センサおよび室
外温度センサの各検知温度並びに予め設定された判断基
準に基づいて判断する。
With this configuration, the arithmetic unit 33 of the present embodiment performs an arithmetic operation based on the above-mentioned set empirical constants a to f, and sends the arithmetic result to the judgment unit 34 of the present embodiment. Further, the judging device 34 of the present embodiment which receives signals from the arithmetic unit 34, the indoor temperature sensor, and the outdoor temperature sensor.
Is determined from the calculation result of the calculator 34 based on the detected temperatures of the indoor temperature sensor and the outdoor temperature sensor and the preset determination criteria.

【0033】この後の動作は、実施例2で説明した通り
の動作する。従って、本実施例では、実施例2の効果を
有するとともに、室内温度、室外温度の変化に対して、
さらに精度良く追従する信頼性の高い冷凍サイクル制御
装置が得られる。
The subsequent operation is as described in the second embodiment. Therefore, in this embodiment, in addition to having the effect of the second embodiment, in addition to the change in the indoor temperature and the outdoor temperature,
It is possible to obtain a highly reliable refrigeration cycle control device that follows with higher accuracy.

【0034】実施例5.本実施例は、実施例1,2また
は3の判断機34が後述する重み付け関数を判断基準に
加味して判断するものである。圧縮機周波数変化量Δ
F、室内送風機回転数変化量ΔNiおよび室外送風機回
転数変化量ΔNoを決定するにあたり、経験的な要素を
取り入れたものである。なお、この装置の構成は図1と
同様とする。今、冷房能力または暖房能力(室内熱交換
器の熱交換能力)に対する重み付け関数をω1 (冷房能
力または暖房能力の関数)、入力の総和に対する重み付
け関数をω2 (入力の関数)とし、次式で定義される指
標ωを導入する。 ω=ω1 ×ω2 … ω=(p×ω1 +q×ω2 )/(p+q) … (p,qは重み係数) このどちらの式を採用するかは、システムにより選択す
るものとするが、この時、ωが最大となるように(Δ
F,ΔNi,ΔNo)の組合せを選ぶことにより、経験
的な感覚を重み付け関数ω1 ,ω2 の決定時に導入する
ことができ、より細やかな制御が行える。
Example 5. In the present embodiment, the judgment device 34 of the first, second or third embodiment makes a judgment by taking a weighting function, which will be described later, into consideration as a judgment criterion. Compressor frequency change Δ
F, an empirical factor is incorporated in determining the indoor blower rotation speed change amount ΔNi and the outdoor blower rotation speed change amount ΔNo. The configuration of this device is similar to that of FIG. Now, the weighting function for the cooling capacity or the heating capacity (heat exchange capacity of the indoor heat exchanger) is ω 1 (function of the cooling capacity or heating capacity), and the weighting function for the sum of the inputs is ω 2 (function of the input). The index ω defined by the formula is introduced. ω = ω 1 × ω 2 ... ω = (p × ω 1 + q × ω 2 ) / (p + q) (where p and q are weighting factors) Which system is to be adopted depends on the system. However, at this time, so that ω becomes maximum (Δ
By selecting a combination of (F, ΔNi, ΔNo), an empirical sensation can be introduced at the time of determining the weighting functions ω 1 and ω 2 , and finer control can be performed.

【0035】例えば、実施例1の場合を、この方法によ
り表現してみると、図8のようになる。 即ち、能力変化が、±δの範囲であれば、ω1 =1 それ以外では、 ω1 =0 総入力変化が、0より大きければ、ω2 =0 それ以外では、 ω2 =0.5〜1 とするので、式を用いωを演算すると、掛け算はどち
らかの値が0だと結果も0となり、能力変化が±δの範
囲で、かつ入力変化が0以下のものだけωは0以外の値
を持つことになる。そして、入力が最小となる組合せ時
にωが最大となるため、その組合せが選択・出力され
る。同様に、より経験的な感覚を導入する時は、例え
ば、まず、次のようにイメージを言葉にしてみる。能力
は大き過ぎても構わないが、小さ過ぎるのはだめ。入力
はいくら小さくても良い。
For example, the case of the first embodiment can be expressed by this method as shown in FIG. That is, if the capacity change is in the range of ± δ, ω 1 = 1 otherwise, ω 1 = 0. If the total input change is larger than 0, ω 2 = 0 otherwise, ω 2 = 0.5 Therefore, if ω is calculated using the formula, the result will be 0 if either value is 0, and ω is 0 only when the capacity change is within ± δ and the input change is 0 or less. Will have a value other than. Then, ω is maximum when the input is the minimum, so that combination is selected and output. Similarly, when introducing a more experiential sense, for example, first try to put the image into words. It doesn't matter if the ability is too big, but not too small. The input can be as small as you like.

【0036】このイメージを図にすると、図9のような
重み付け関数ω1 、ω2 の分布図ができる。この図9に
よると、 能力変化が、−δ以下であれば、ω1 =0 入力変化が、0より大きければ、ω2 =0 となり、図8と同じ値となる部分もあるが、その他の部
分は図9に示した通りの値になる。その後、式または
式に基づいてωを計算するのだが、式については先
に使用方法を述べたので、ここでは式を用いるものと
する。式は、例えば、空調機の起動時は能力をできる
だけ出したいので、pをqに対して大きくしたり、ある
いは負荷が軽く能力が変化しても入力をなるべく小さく
したい時は、qをpに対して大きくしたりと、システム
の運転条件によって、判定条件を変えたりする時に有効
な判定方法である。
By plotting this image, a distribution diagram of the weighting functions ω 1 and ω 2 as shown in FIG. 9 can be obtained. According to this FIG. 9, if the change in capability is −δ or less, ω 1 = 0, and if the change in input is greater than 0, then ω 2 = 0. The part has values as shown in FIG. After that, the formula or ω is calculated based on the formula, but since the usage of the formula has been described above, the formula is used here. The formula is, for example, to maximize the capacity when the air conditioner is started, so to make p larger than q, or to make the input as small as possible even if the load is light and the capacity changes, set q to p. This is an effective judgment method when the judgment conditions are changed depending on the operating conditions of the system, such as increasing the size.

【0037】[0037]

【発明の効果】冷凍システムの総消費電力を決定する各
駆動機器の回転数を、予め設定した経験定数により互い
に相関させた演算結果と設定された判断基準とを比較
し、該比較結果により制御するので、雨、風、雪等の天
候条件により室外側負荷が変化しても、また、室内の冷
・暖設定温度、室内扉の開閉、および在室人数等の変化
によって室内側負荷が変化しても、この変化に追従して
制御フローをスムーズに進め、冷凍サイクルをスピーデ
ィに安定させるとともに、冷凍システムの総消費電力を
最小にする信頼性の高い冷凍サイクル制御装置が得られ
る。
[Effects of the Invention] The calculation results in which the rotational speeds of the respective drive devices that determine the total power consumption of the refrigeration system are correlated with each other by a preset empirical constant are compared with the set judgment criteria, and the control is performed based on the comparison result. Therefore, even if the outdoor load changes due to weather conditions such as rain, wind, and snow, the indoor load also changes due to changes in the indoor cold / warm set temperature, the opening and closing of the indoor doors, and the number of people in the room. Even so, a highly reliable refrigeration cycle control device can be obtained in which the control flow is smoothly advanced following this change, the refrigeration cycle is speedily stabilized, and the total power consumption of the refrigeration system is minimized.

【0038】また、各駆動機器の回転数を、予め設定し
た経験定数により互いに相関させて求めた演算結果と設
定された判断基準とを比較して、該比較結果並びに特性
検知サーモの室内温度と設定温度との温度差に対応する
特性信号に基づいて、温度差に対応する特性信号が所定
値を越えた時には、室内熱交換器の熱交換能力が最大に
なるように制御し、また、温度差に対応する特性信号が
所定値以内の時には、室内熱交換器の熱交換能力が所定
範囲以内で、かつ各駆動機器の総入力が最小になるよう
に制御するので、室外側負荷および室内側負荷が変化し
ても、この変化に追従して制御フローをスムーズに進
め、常に室内温度がスピーディに快適な冷・暖房温度に
なり、冷凍サイクルをスピーディに安定させ、冷凍シス
テムの総消費電力を最小にする信頼性の高い冷凍サイク
ル制御装置が得られる。
Further, the calculation results obtained by correlating the rotational speeds of the respective drive devices with each other by a preset empirical constant are compared with the set judgment criteria, and the comparison result and the room temperature of the characteristic detection thermometer are compared. Based on the characteristic signal corresponding to the temperature difference from the set temperature, when the characteristic signal corresponding to the temperature difference exceeds a predetermined value, the indoor heat exchanger is controlled to maximize the heat exchange capacity, and the temperature When the characteristic signal corresponding to the difference is within the specified value, the heat exchange capacity of the indoor heat exchanger is controlled within the specified range and the total input of each drive device is controlled to be the minimum. Even if the load changes, the control flow smoothly follows this change, the indoor temperature quickly and comfortably becomes the cooling / heating temperature, the refrigeration cycle is stabilized quickly, and the total power consumption of the refrigeration system is reduced. High refrigeration cycle controller reliable to small are obtained.

【0039】また、学習機能部が予め設定された経験定
数を、各駆動機器の入力に対応する各電気特性値を検知
する各電気特性センサ、および室内熱交換器の熱交換能
力を検知する高圧および低圧センサに相当する能力検知
センサの各検知結果と判断部の判断結果とを比較し、該
比較結果が所定値を越えた時、予め設定された経験定数
を補正せず、該比較結果が所定値以内の時、各電気特性
センサおよび各能力特性値力センサの各検知結果に基づ
いて演算された経験定数と置換して補正するので、経年
変化により、室内熱交換器または室外熱交換器の伝熱面
に異物等が付着堆積し、室内熱交換器または室外熱交換
器の能力が変化したり、また、設置条件が変化しても、
これらの変化に追従して安定した制御をする信頼性の高
い冷凍サイクル制御装置が得られる。
In addition, the learning function section uses preset empirical constants as high voltage values for detecting the electric characteristic sensors for detecting the electric characteristic values corresponding to the inputs of the driving devices and the heat exchange capacity of the indoor heat exchanger. And comparing each detection result of the ability detection sensor corresponding to the low pressure sensor and the determination result of the determination unit, and when the comparison result exceeds a predetermined value, the preset empirical constant is not corrected and the comparison result is When it is within the specified value, it is corrected by substituting it with an empirical constant calculated based on each detection result of each electric characteristic sensor and each performance characteristic value force sensor. Even if the performance of the indoor heat exchanger or the outdoor heat exchanger changes, or the installation conditions change, due to the accumulation of foreign matter on the heat transfer surface of
A highly reliable refrigeration cycle control device that can follow these changes and perform stable control can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す冷凍サイクル制御装
置の構成図である。
FIG. 1 is a configuration diagram of a refrigeration cycle control device showing an embodiment of the present invention.

【図2】この発明の動作を示すブロック線図である。FIG. 2 is a block diagram showing the operation of the present invention.

【図3】この発明の動作手順を示す動作フローチャート
図である。
FIG. 3 is an operation flowchart showing an operation procedure of the present invention.

【図4】この発明の判断手順を示す判断フローチャート
である。
FIG. 4 is a determination flowchart showing a determination procedure of the present invention.

【図5】圧縮機周波数と室外送風機回転数のみを変化さ
せた場合の能力変化と入力変化を示す図である。
FIG. 5 is a diagram showing a capacity change and an input change when only the compressor frequency and the outdoor blower rotation speed are changed.

【図6】圧縮機周波数、室内送風機回転数および室外送
風機回転数を変化に対する能力変化と入力変化を示す能
力・入力変化図である。
FIG. 6 is a capacity / input change diagram showing a capacity change and an input change with respect to changes in compressor frequency, indoor blower rotation speed, and outdoor blower rotation speed.

【図7】この発明の一実施例3の冷凍サイクル制御装置
の構成図である。
FIG. 7 is a configuration diagram of a refrigeration cycle control device according to a third embodiment of the present invention.

【図8】この発明の経験判定条件を示した図である。FIG. 8 is a diagram showing experience determination conditions of the present invention.

【図9】この発明の他の実施例による判定条件を示した
図である。
FIG. 9 is a diagram showing determination conditions according to another embodiment of the present invention.

【図10】圧縮機周波数、室内送風機、室外送風機、室
内温度、外気温度の変化に対する定数aの変化を示した
図である。
FIG. 10 is a diagram showing changes in the constant a with respect to changes in compressor frequency, indoor blower, outdoor blower, indoor temperature, and outside air temperature.

【図11】従来の冷凍サイクル制御装置の構成図であ
る。
FIG. 11 is a configuration diagram of a conventional refrigeration cycle control device.

【符号の説明】[Explanation of symbols]

1 圧縮機 4 インバータ 12 電流センサ 21 四方弁 22 アキュムレータ 23 絞り機構 24 室内熱交換器 25 室内送風機 26 室外熱交換器 27 室外送風機 28 インバータ 29 制御機 30 インバータ 31 制御機 32 制御機 33 演算機 34 判断機 35 メモリ 36 電流センサ 37 電流センサ 1 Compressor 4 Inverter 12 Current sensor 21 Four-way valve 22 Accumulator 23 Throttle mechanism 24 Indoor heat exchanger 25 Indoor fan 26 Outdoor heat exchanger 27 Outdoor fan 28 Inverter 29 Controller 30 Inverter 31 Controller 32 Controller 33 Arithmetic unit 34 Judgment Machine 35 Memory 36 Current sensor 37 Current sensor

フロントページの続き (72)発明者 榎本 寿彦 静岡市小鹿三丁目18番1号 三菱電機株式 会社静岡製作所内 (72)発明者 柴田 裕治 静岡市小鹿三丁目18番1号 三菱電機株式 会社静岡製作所内 (72)発明者 吉田 孝行 静岡市小鹿三丁目18番1号 三菱電機株式 会社住環境エンジニアリング統括センター 内Front page continuation (72) Inventor Toshihiko Enomoto 3-18-1, Oga, Shizuoka-shi Shizuoka Manufacturing Co., Ltd. (72) Inventor Yuji Shibata 3--18-1, Oka Shizuoka Shizuoka Manufacturing (72) Inventor Takayuki Yoshida 3-18-1, Oga, Shizuoka City Mitsubishi Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電動機を内蔵する圧縮機、室外送風機を
有する室外熱交換器、絞り機構、および室内送風機を有
する室内熱交換器とが順次配管で接続されてなる冷凍装
置部と、この冷凍装置部の上記圧縮機、上記室内送風
機、および上記室外送風機の各駆動機器を制御する制御
装置とを備え、上記制御装置に、予め設定された経験定
数を記憶する記憶部と、この記憶部の記憶した設定経験
定数に基づいて上記駆動機器のそれぞれの回転数変化に
対するそれぞれの上記各駆動機器の入力および上記室内
熱交換器の熱交能力を演算する演算部と、この演算部の
演算結果と予め設定された判定基準とを比較し、該比較
結果より上記室内熱交換器の熱交換能力を所定範囲以内
に維持し、かつ上記各駆動機器の総入力を最小にする上
記各駆動機器間の回転数組合せを判断する判断部と、こ
の判断部の判断結果に基づいて上記各駆動機器の回転数
をそれぞれに制御する制御部と、を備えたことを特徴と
する冷凍サイクル制御装置。
1. A refrigerating apparatus section in which a compressor having a built-in electric motor, an outdoor heat exchanger having an outdoor blower, a throttle mechanism, and an indoor heat exchanger having an indoor blower are sequentially connected by piping, and the refrigerating apparatus. Of the compressor, the indoor blower, and the outdoor blower, and a storage unit for storing preset empirical constants in the control unit, and a storage of the storage unit. Based on the set empirical constants, a calculation unit that calculates the heat exchange capacity of the input of each drive device and the indoor heat exchanger for each rotation speed change of the drive device, the calculation result of this calculation unit, and Rotation between the above-mentioned driving devices is compared with a set judgment criterion, and the heat exchange capacity of the indoor heat exchanger is maintained within a predetermined range based on the comparison result, and the total input of each driving device is minimized. A refrigeration cycle control device comprising: a determination unit that determines a number combination; and a control unit that controls the number of rotations of each drive device based on the determination result of the determination unit.
【請求項2】 電動機を内蔵する圧縮機、室外送風機を
有する室外熱交換器、絞り機構、および室内送風機を有
する室内熱交換器とが順次配管で接続されてなる冷凍装
置部と、この冷凍装置部の上記圧縮機、上記室内送風
機、および上記室外送風機の各駆動機器を制御する制御
装置とを備え、上記制御装置に、室内温度と室内設定温
度との温度差に対応する特性信号を検知する特性検知サ
ーモと、予め設定された経験定数を記憶する記憶部と、
この記憶部の記憶した設定経験定数に基づいて上記駆動
機器のそれぞれの回転数変化に対するそれぞれの上記各
駆動機器の入力および上記室内熱交換器の熱交能力を演
算する演算部と、この演算部の演算結果と予め設定され
た判定基準とを比較し、該比較結果より上記室内熱交換
器の熱交換能力を所定範囲以内に維持し、かつ上記各駆
動機器の総入力を最小にする上記各駆動機器間の回転数
組合せを判断する判断部と、この判断部の判断結果と上
記特性検知サーモの検知結果に基づいて、上記温度差に
対応する特性信号が所定値を越えた時には、室内熱交換
器の熱交換能力を最大にする予め設定された各回転数に
より上記各駆動機器の回転数をそれぞれに制御し、上記
温度差に対応する特性信号が所定値以内の時には、上記
判断部の判断結果に基づいて上記各駆動機器の回転数を
それぞれに制御する制御部と、を備えたことを特徴とす
る冷凍サイクル制御装置。
2. A refrigerating apparatus section in which a compressor having a built-in electric motor, an outdoor heat exchanger having an outdoor blower, a throttling mechanism, and an indoor heat exchanger having an indoor blower are sequentially connected by piping, and the refrigerating apparatus. A compressor, the indoor blower, and a control device for controlling each drive device of the outdoor blower, the control device detects a characteristic signal corresponding to a temperature difference between the indoor temperature and the indoor set temperature. A characteristic detection thermometer, a storage unit that stores a preset empirical constant,
A computing unit for computing the input of each driving device and the heat exchange capacity of the indoor heat exchanger with respect to each rotation speed change of the driving device based on the set empirical constant stored in the storage unit, and this computing unit. Comparing the calculation result of the above with a preset judgment criterion, maintaining the heat exchange capacity of the indoor heat exchanger within a predetermined range from the comparison result, and minimizing the total input of each driving device. When the characteristic signal corresponding to the temperature difference exceeds a predetermined value based on the determination unit that determines the rotational speed combination between the drive devices and the determination result of the determination unit and the detection result of the characteristic detection thermostat, the indoor heat The rotation speed of each drive device is controlled by each preset rotation speed that maximizes the heat exchange capacity of the exchanger, and when the characteristic signal corresponding to the temperature difference is within a predetermined value, the determination unit Judgment result Based on the refrigeration cycle control apparatus characterized by comprising a control unit for controlling the respective rotational speed of the respective drive devices.
【請求項3】 上記制御装置に、上記各駆動機器の入力
に対応する各電気特性値を検知する各電気特性センサ
と、上記室内熱交換器の熱交換能力を検知する高圧およ
び低圧センサに相当する能力検知センサと、この能力検
知センサおよび上記各電気特性センサの各検知結果と上
記判断部の判断結果とを比較し、該比較結果が所定値を
越えた時、上記記憶部の記憶した設定経験定数を補正せ
ず、該比較結果が所定値以内のとき、上記記憶部の記憶
した設定経験定数を上記各電気特性センサおよび上記各
能力特性値センサの各検知結果に基づいて演算された経
験定数と置換して補正する学習機能部と、を備えたこと
を特徴とする請求項第1項または第2項記載の冷凍サイ
クル制御装置。
3. The control device corresponds to each electric characteristic sensor for detecting each electric characteristic value corresponding to an input of each drive device, and a high pressure and low pressure sensor for detecting a heat exchange capacity of the indoor heat exchanger. Comparing the detection results of the capability detection sensor and the detection results of the capability detection sensor and the electrical characteristic sensors with the determination result of the determination unit, and when the comparison result exceeds a predetermined value, the setting stored in the storage unit is set. When the comparison result is within a predetermined value without correcting the empirical constant, the experience that the set empirical constant stored in the storage unit is calculated based on the detection results of the electric characteristic sensors and the capacity characteristic value sensors. The refrigeration cycle control device according to claim 1 or 2, further comprising a learning function unit that replaces a constant and corrects the constant.
【請求項4】 上記制御装置に、室内温度を検知する室
内温度センサと、室外温度を検知する室外温度センサと
を備え、判断部が、上記演算部の演算結果から上記室内
温度センサおよび室外温度センサの検知温度、並びに予
め設定された判断基準とに基づいて判断することを特徴
とする請求項第3項記載の冷凍サイクル制御装置。
4. The control device includes an indoor temperature sensor for detecting an indoor temperature and an outdoor temperature sensor for detecting an outdoor temperature, and the judging section determines the indoor temperature sensor and the outdoor temperature from the calculation result of the calculating section. The refrigeration cycle control device according to claim 3, wherein the determination is performed based on the temperature detected by the sensor and a preset determination criterion.
【請求項5】 判断部が、室内熱交換器の熱交能力およ
び各駆動機器の総入力に対する各重み付け関数を上記判
定基準に加味して判断することを特徴とする請求項第3
項記載の冷凍サイクル制御装置。
5. The determination unit makes a determination by taking into consideration the heat exchange capacity of the indoor heat exchanger and each weighting function for the total input of each drive device in the determination criterion.
The refrigeration cycle control device according to the item.
JP5310452A 1993-12-10 1993-12-10 Refrigerant cycle device and control method thereof Expired - Fee Related JP2982588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5310452A JP2982588B2 (en) 1993-12-10 1993-12-10 Refrigerant cycle device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5310452A JP2982588B2 (en) 1993-12-10 1993-12-10 Refrigerant cycle device and control method thereof

Publications (2)

Publication Number Publication Date
JPH07158937A true JPH07158937A (en) 1995-06-20
JP2982588B2 JP2982588B2 (en) 1999-11-22

Family

ID=18005425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5310452A Expired - Fee Related JP2982588B2 (en) 1993-12-10 1993-12-10 Refrigerant cycle device and control method thereof

Country Status (1)

Country Link
JP (1) JP2982588B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6499308B2 (en) 1998-05-19 2002-12-31 Mitsubishi Denki Kabushiki Kaisha Apparatus for controlling refrigeration cycle and a method of controlling the same
JP2008232507A (en) * 2007-03-19 2008-10-02 Toshiba Corp Air-conditioning optimum control system
JP2016003791A (en) * 2014-06-16 2016-01-12 三菱電機株式会社 Control device of refrigeration cycle device, and air conditioning system
JP2016061552A (en) * 2014-09-22 2016-04-25 三菱電機株式会社 Air conditioner
JP2019527330A (en) * 2016-07-07 2019-09-26 ロッキー・リサーチ Vector drive for vapor compression systems
CN117268460A (en) * 2023-08-16 2023-12-22 广东省泰维思信息科技有限公司 Indoor and outdoor linkage monitoring method and system based on Internet of things

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101833295B1 (en) * 2016-07-11 2018-04-13 엘지전자 주식회사 Outdoor unit of refrigeration system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6499308B2 (en) 1998-05-19 2002-12-31 Mitsubishi Denki Kabushiki Kaisha Apparatus for controlling refrigeration cycle and a method of controlling the same
JP2008232507A (en) * 2007-03-19 2008-10-02 Toshiba Corp Air-conditioning optimum control system
JP2016003791A (en) * 2014-06-16 2016-01-12 三菱電機株式会社 Control device of refrigeration cycle device, and air conditioning system
JP2016061552A (en) * 2014-09-22 2016-04-25 三菱電機株式会社 Air conditioner
JP2019527330A (en) * 2016-07-07 2019-09-26 ロッキー・リサーチ Vector drive for vapor compression systems
US11639819B2 (en) 2016-07-07 2023-05-02 Rocky Research Vector drive for vapor compression systems
CN117268460A (en) * 2023-08-16 2023-12-22 广东省泰维思信息科技有限公司 Indoor and outdoor linkage monitoring method and system based on Internet of things
CN117268460B (en) * 2023-08-16 2024-04-09 广东省泰维思信息科技有限公司 Indoor and outdoor linkage monitoring method and system based on Internet of Things

Also Published As

Publication number Publication date
JP2982588B2 (en) 1999-11-22

Similar Documents

Publication Publication Date Title
US20050288822A1 (en) HVAC start-up control system and method
CN111981640B (en) Defrosting control method and device, air conditioner and storage medium
EP0501432B1 (en) Method of controlling an air conditioning apparatus and air conditioning apparatus using the method
CN113669850A (en) Air conditioner and control method thereof
JP2004218879A (en) Air conditioner and its control method
JP2509786B2 (en) Automatic cooling stop control device and control method
JPH1151500A (en) Heat pump type air-conditioner
JPH07158937A (en) Controller for refrigerating cycle
JPS629137A (en) Air conditioner
JPH1038398A (en) Controller of electric expansion valve
JPH0668410B2 (en) Air conditioner
CN113739343A (en) Control method and system of air conditioning equipment, air conditioning equipment and storage medium
JP3030109B2 (en) Control method of air conditioner
JPH07286761A (en) Air conditioner
JP3117321B2 (en) Air conditioner
JPH06185814A (en) Expansion valve controller for refrigerant circulating cycle
JPH08178448A (en) Multi-room type air conditioner
JP2795067B2 (en) Air conditioner
JP2730381B2 (en) Multi-room air conditioner
JPH0763392A (en) Controller for air conditioner
JPH0960943A (en) Air conditioner
KR0152104B1 (en) Operating control device and control method of an airconditioner
JPS5927145A (en) Air conditioner
JP6906689B2 (en) Air conditioner
JPH02126058A (en) Operating control method for heat pump apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees