JPH08178448A - Multi-room type air conditioner - Google Patents

Multi-room type air conditioner

Info

Publication number
JPH08178448A
JPH08178448A JP31838594A JP31838594A JPH08178448A JP H08178448 A JPH08178448 A JP H08178448A JP 31838594 A JP31838594 A JP 31838594A JP 31838594 A JP31838594 A JP 31838594A JP H08178448 A JPH08178448 A JP H08178448A
Authority
JP
Japan
Prior art keywords
valve
opening
flow rate
flow
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31838594A
Other languages
Japanese (ja)
Inventor
Masataka Ozeki
正高 尾関
Minoru Tagashira
實 田頭
Mitsuhiro Ikoma
光博 生駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31838594A priority Critical patent/JPH08178448A/en
Publication of JPH08178448A publication Critical patent/JPH08178448A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To improve the response of the temperature control of an air conditioning space by controlling the temperature of the space by a flow control valve, and controlling the superheat or supercool degree of the output of a user side heat exchanger by a user side expansion valve. CONSTITUTION: The temperatures and set temperatures of air conditioning rooms are detected by flow valve opening deciding units 181, 182, 183, and the openings of flow control valves 91 to 93 are so decided that the former coincide with the latter. The valves 91 to 93 are operated based on the decided openings by expansion valve opening deciding units 161, 162, 163, the outlet superheat or supercool degree of the user side exchangers are detected, and the openings of user side expansion valves 81 to 83 are so decided that they fall within predetermined range. Thus, the response of the temperature control of the space can be improved to realize an efficient air conditioning operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多室型空気調和装置特
に関し、その能力、過熱度及び過冷却度の制御に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room type air conditioner, and to control of its capacity, degree of superheat and degree of supercooling.

【0002】[0002]

【従来の技術】従来の空気調和装置の系統構成(いわゆ
る線図)を図5に示す。本図において、1は圧縮機であ
り、2は四方弁であり、3は熱源機側熱交換器であり、
4はアキュムレータである。そして、これらは熱源機5
に備えられている。また、71,72,73は利用側熱
交換器であり、81,82,83は利用側熱交換器7
1,72,73の液側に接続された利用側膨張弁であ
り、101,102,103は温度検出端であり、11
1,112,113は送風ファンであり、これらは各利
用側ユニット61,62,63に備えられ、更に空調空
間121,122,123に設置されている。また、こ
れら熱源機5及び利用側ユニット61,62,63は、
ガス側及び液側を各々ガス側管路13と液側管路14で
接続されて、閉回路を構成し、更にその内部に冷媒を封
入してなるヒートポンプサイクルとなる。
2. Description of the Related Art A conventional air conditioner system configuration (so-called diagram) is shown in FIG. In the figure, 1 is a compressor, 2 is a four-way valve, 3 is a heat source side heat exchanger,
4 is an accumulator. And these are heat source machines 5
Is equipped with. Further, 71, 72, 73 are utilization side heat exchangers, and 81, 82, 83 are utilization side heat exchangers 7.
1, 72, and 73 are use-side expansion valves connected to the liquid side, and 101, 102, and 103 are temperature detection ends, and 11
Reference numerals 1, 112, 113 are blower fans, which are provided in the respective use side units 61, 62, 63, and are further installed in the air-conditioned spaces 121, 122, 123. Further, the heat source device 5 and the use side units 61, 62, 63 are
The gas side and the liquid side are respectively connected by the gas side pipe line 13 and the liquid side pipe line 14 to form a closed circuit, and a refrigerant is sealed inside the heat pump cycle.

【0003】図4は、利用側ユニットにある弁を開閉す
るアクチュエータ(actuator)の制御に関係す
る部分の構成を示したものである。本図において、16
1,162,163は利用側膨張弁開度決定機であり、
例えば、PID制御に代表されるような制御器の一種で
ある。そして、各温度検知器101,102,103に
よって検知された各空調空間121,122,123内
の温度を、各空調温度設定機151,152,153で
設定された各温度に一致するよう各利用側膨張弁81,
82,83の開度を決定する。また、171,172,
173は送風ファン回転数決定機であり、例えば、PI
D制御に代表されるような制御機器の一種である。そし
て、各温度検出端101,102,103によって検知
された空調空間121,122,123の温度を、各空
調温度設定機151,152,153で設定された各温
度に一致するよう各送風ファン111,112,113
の回転数を決定する。
FIG. 4 shows a structure of a portion related to control of an actuator for opening and closing a valve in a utilization side unit. In this figure, 16
1, 162 and 163 are use-side expansion valve opening determiners,
For example, it is a kind of controller represented by PID control. Then, the temperature inside each of the air-conditioned spaces 121, 122, 123 detected by each of the temperature detectors 101, 102, 103 is used so as to match the temperature set by each of the air-conditioning temperature setting machines 151, 152, 153. Side expansion valve 81,
The opening degree of 82, 83 is determined. Also, 171, 172,
173 is a blower fan rotation speed determination device, for example, PI
It is a type of control device represented by D control. Then, the blower fans 111 are arranged so that the temperatures of the air-conditioned spaces 121, 122, 123 detected by the temperature detecting ends 101, 102, 103 coincide with the temperatures set by the air-conditioning temperature setting machines 151, 152, 153, respectively. , 112, 113
Determines the rotation speed of.

【0004】また、このとき、圧縮機1は、全空調空間
で要求される空調能力が出せるように、その能力が制御
されている。なお、その方法は、例えば圧力検出端17
によって検知された圧力をあらかじめ定められた値に一
致するようにする等の手段が採用されている。
At this time, the capacity of the compressor 1 is controlled so that the air conditioning capacity required in the entire air-conditioned space can be obtained. The method is, for example, the pressure detecting end 17
Means such as making the pressure sensed by the pressure equal to a predetermined value are adopted.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来のような系統構成や制御では、利用側ユニットの負荷
に相違がある場合に、各利用側熱交換器が独自に冷媒圧
力を調整することはできず、またファン風量をユーザが
例えば「強風」等に設定してしまい、機械側ではコント
ロールできないことも多い。このため、空調空間の温度
を利用側膨張弁の開度で制御することとなるが、この場
合に、空調空間の温度と設定温度の差が大きいときに
は、冷媒流量を増加させるべく利用側膨張弁の開度をど
んどん開くこととなる。ところで、利用側膨張弁は冷媒
を減圧膨張させるためのアクチュエータでもある。そし
て、減圧膨張を満足に行なうことの可能な開度の範囲は
全開から全閉までのうちの一度でしかない。しかも、空
調の運転状態によって、その範囲は変化する。結果的
に、利用膨張弁はその開度が必要以上に開くことにな
る。このため、利用側熱交換器の出口で冷房時は過熱度
が、暖房時では過冷却度がうまく取れなくなり、ひいて
は能力の適切な配分が困難となる。
However, in the above-described conventional system configuration and control, each usage-side heat exchanger cannot independently adjust the refrigerant pressure when there is a difference in the load of the usage-side unit. In many cases, the user cannot set the fan air volume to "strong wind" or the like, and the machine side cannot control it. For this reason, the temperature of the air-conditioned space is controlled by the opening degree of the use-side expansion valve. In this case, when the difference between the temperature of the air-conditioned space and the set temperature is large, the use-side expansion valve should be increased to increase the refrigerant flow rate. The opening of will be opened more and more. By the way, the use side expansion valve is also an actuator for decompressing and expanding the refrigerant. Further, the range of the opening degree that can perform the decompression expansion satisfactorily is only once from the full opening to the full closing. Moreover, the range changes depending on the operating condition of the air conditioner. As a result, the expansion valve used will open more than necessary. For this reason, the superheat degree cannot be obtained well at the outlet of the utilization side heat exchanger during cooling and at the time of heating, and it becomes difficult to appropriately distribute the capacity.

【0006】また、当該熱交換器への冷媒流量が変化し
た分他の熱交換器への流量が変化し、これによる悪影響
やコンプレッサの冷媒圧力上昇に伴う入力電力の増加等
も生じる。このため、さらに、全利用側熱交換器の圧力
がほぼ等しいため、各利用側ユニット間で要求される空
調能力に著しく差があるときは、少ない能力を要求され
ている利用側ユニットは逆に膨張弁の開度を絞り、冷房
時には熱交換器出口の過熱度を、暖房時には過冷却度を
過大にして能力を絞ったり、それだけでは足りずいわゆ
るオン、オフ制御を採用して空調を停止したりすること
になる。そして、これらは単に電源効率、空調効率が著
しく悪化するだけでなく、快適性をも著しく悪化させ
る。
Also, the flow rate of the refrigerant to the other heat exchanger is changed by the change of the flow rate of the refrigerant to the heat exchanger, which causes an adverse effect and an increase of the input power due to the increase of the refrigerant pressure of the compressor. Therefore, since the pressures of all heat exchangers on the usage side are almost the same, when there is a significant difference in the air-conditioning capacity required between the usage-side units, the usage-side units that are required to have a small capacity are reversed. The expansion valve is throttled to reduce the superheat at the outlet of the heat exchanger during cooling and to reduce the capacity by increasing the degree of supercooling during heating, and this is not enough to stop the air conditioning by using so-called on / off control. Will be. And not only the power efficiency and the air conditioning efficiency are significantly deteriorated, but also the comfort is significantly deteriorated.

【0007】従って、各室、各室側ユニットに要求され
る空調能力に著しい差違がある場合でも、快適性は勿論
のこと電源、空調効率をも損なわない多室型空気調和装
置が望まれている。本発明は、上記課題に鑑みてなされ
たものである。
Therefore, there is a demand for a multi-room air conditioner which does not impair not only the comfort but also the power supply and air conditioning efficiency even when there is a significant difference in the air conditioning capacity required for each room and each room side unit. There is. The present invention has been made in view of the above problems.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明においては、圧縮機、四方弁等の
弁、外気等と熱交換をなす熱交換器、膨張弁等からなる
熱源ユニットと、空調空間の空気と熱交換を行う熱交換
器、熱交換器のガス側の流量調整弁、熱交換器の液側の
膨張弁等からなる複数の利用側ユニットとを、ガス用配
管、液用配管等に接続して開回路を構成する多室型空気
調和装置において、冷房運転時に上記各利用側ユニット
が設置された各空調空間の温度を測定する熱電対等の各
温度測定手段と、上記各空調空間の設定温度を居住者等
から入力された上記憶する各設定温度記憶手段と、前記
各温度測定手段の測定値と該当する上記各空調空間の設
定値との差をもとめ、これから各空調空間の温度が上記
各設定温度に一致するように上記各流量調整弁の開度を
決定するプロセッサーを内蔵する等した各流量弁開度決
定手段と、前記各流量弁開度決定手段で決定された開度
に基づいて上記各流量調整弁を操作するアクチュエータ
等を有する各流量調整弁操作手段と、上記各利用側熱交
換器の各出口過熱度を検出する各出口過熱度検出手段
と、前記各出口過熱度検出手段の検出した各出口過熱度
をあらかじめ定められた各範囲に入るように上記各利用
側膨張弁の開度を決定する各膨張弁開度決定手段と、前
記各膨張弁開度決定手段で決定された開度に基づいて上
記各利用側膨張弁を操作するアクチュエータ等を有する
各利用側膨張弁操作手段とを有していることを特徴とし
ている。
In order to achieve the above object, the invention of claim 1 comprises a compressor, a valve such as a four-way valve, a heat exchanger for exchanging heat with outside air, an expansion valve and the like. A heat source unit and a plurality of use side units including a heat exchanger for exchanging heat with the air in the air-conditioned space, a flow rate adjustment valve on the gas side of the heat exchanger, an expansion valve on the liquid side of the heat exchanger, etc. In a multi-room air conditioner connected to pipes, liquid pipes, etc. to form an open circuit, each temperature measuring means such as a thermocouple for measuring the temperature of each air-conditioned space in which each of the above-mentioned use side units is installed during cooling operation. And the set temperature storage means for storing the set temperature of each air-conditioned space, which is input by a resident or the like, and the difference between the measured value of each temperature measuring means and the corresponding set value of each air-conditioned space. , The temperature of each air-conditioned space will match the above set temperature. Each flow rate valve opening determining means having a built-in processor for determining the degree of opening of each flow rate adjusting valve, and each flow rate adjusting valve based on the degree of opening determined by each flow rate valve opening determining means Each flow rate control valve operating means having an actuator or the like for operating, each outlet superheat detection means for detecting each outlet superheat degree of each of the utilization side heat exchangers, each outlet detected by each outlet superheat degree detection means Based on the opening degree determined by each expansion valve opening degree determining means for determining the opening degree of each of the utilization side expansion valve so that the degree of superheat falls within each predetermined range, and the expansion valve opening degree determining means And each use side expansion valve operating means having an actuator or the like for operating each use side expansion valve.

【0009】また、請求項2の発明においては、圧縮
機、弁、熱交換器、膨張弁等からなる熱源ユニットと、
熱交換器、熱交換器のガス側の流量調整弁、熱交換器の
液側の膨張弁等からなる複数の利用側ユニットとを、ガ
ス用配管、液用配管等にて接続してなる多室型空気調和
装置において、暖房運転時に上記各利用側ユニットが設
置された各空調空間の温度を測定する各温度測定手段
と、上記各空調空間の設定温度を入力された上記憶する
各設定温度記憶手段と、前記各温度測定手段の測定値と
該当する上記各空調空間の設定値との差をもとめ、これ
から各空調空間の温度を各設定温度に一致するように上
記各流量調整弁の開度を決定する各流量弁開度決定手段
と、前記各流量弁開度決定手段で決定された開度に基づ
いて上記各流量調整弁を操作する各流量調整弁操作手段
と、上記各利用側熱交換器の各出口過冷却度を検出する
出口過冷却度検出手段と、前記出口過冷却度検出手段の
検出した各出口過冷却度をあらかじめ定められた各範囲
に入るように上記各利用側膨張弁の開度を決定する各膨
張弁開度決定手段と、前記各膨張弁開度決定手段で決定
された開度に基づいて上記各利用側膨張弁を操作する各
利用側膨張弁操作手段とを有していることを特徴として
いる。
Further, in the invention of claim 2, a heat source unit comprising a compressor, a valve, a heat exchanger, an expansion valve, and the like,
A multi-use unit consisting of a heat exchanger, a flow control valve on the gas side of the heat exchanger, an expansion valve on the liquid side of the heat exchanger, etc. is connected by gas piping, liquid piping, etc. In the room-type air conditioner, each temperature measuring means for measuring the temperature of each air-conditioned space in which each of the use side units is installed during heating operation, and each set temperature stored after inputting the set temperature of each air-conditioned space The difference between the storage means and the measured value of each temperature measuring means and the corresponding set value of each air-conditioned space is obtained, and from this the opening of each flow rate adjustment valve is adjusted so that the temperature of each air-conditioned space matches each set temperature. Flow rate valve opening determining means for determining the degree, flow rate adjusting valve operating means for operating the flow rate adjusting valves based on the degree of opening determined by the flow rate valve opening determining means, and the use side Outlet supercooling degree detection hand that detects each outlet supercooling degree of the heat exchanger And each expansion valve opening degree determining means for determining the opening degree of each of the utilization side expansion valves so that each outlet supercooling degree detected by the outlet supercooling degree detecting means falls within each of predetermined ranges, The present invention is characterized by including each use side expansion valve operating means for operating each of the use side expansion valves based on the opening degree determined by each expansion valve opening degree determining means.

【0010】また、請求項3の発明においては、空調の
ため各利用側ユニットに空調空間、あるいは室内の空気
を送風する能力可変な各送風ファンと、前記各温度測定
手段により、検出された各空調空間の温度を参照して各
空調空間の温度を設定値にするように前記各送風ファン
の回転数を決定する送風ファン回転数決定手段と、前記
各送風ファン回転数決定手段で決定された回転数に基づ
いて各送風ファンを制御する送風ファン制御手段と、前
記各送風ファン回転数決定手段で決定された回転数の全
てが前記各送風ファン回転数各々の能力や構造等から定
まる上限値以上か否かを判断する全上限値判断手段と、
前記全上限値判断手段が全て上限以上と判断したときに
は、前記各流量弁開度決定手段の決定した開度を下記式
1に基づいて変換し、逆に少なくとも1つが前記各送風
ファンの回転数の上限値未満の場合には前記各流量弁開
度決定手段の決定した開度を下記式2に基づいて変換
し、更にその変換結果を下記式1に基づいて変換する各
流量弁開度変換手段と、前記各流量弁開度変換手段によ
って決定された開度に基づいて上記各流量調整弁を操作
する各流量調整弁操作手段とを有していることを特徴と
している。
Further, according to the invention of claim 3, each fan detected by the temperature measuring means and each fan having a variable capacity for blowing air in the air-conditioned space or room to each user side unit for air conditioning. Blower fan rotation speed determining means for determining the rotation speed of each blower fan so that the temperature of each air conditioning space is set to a set value with reference to the temperature of the air conditioning space, and the blower fan rotation speed determining means. A blower fan control means for controlling each blower fan based on the number of revolutions, and an upper limit value for which all of the number of revolutions determined by each of the blower fan revolutions determination means are determined from the capability or structure of each of the blower fan revolutions. All upper limit value determining means for determining whether or not,
When all of the upper limit value determining means determine that all the upper limit values are equal to or higher than the upper limit, the opening determined by each flow valve opening determining means is converted based on the following formula 1, and conversely, at least one of the rotating speeds of the blower fans is If it is less than the upper limit value of each of the flow valve opening degree conversion means, the opening degree determined by the flow rate valve opening degree determining means is converted based on the following equation 2 and the conversion result is converted based on the following equation 1. And means for operating each of the flow rate adjusting valves based on the opening degree determined by each of the flow rate valve opening degree converting means.

【0011】ここに、式1は、 ui =fi /(max(F)) F :fi /Vi ui :i番目の流量調整弁の変換後の開度。 fi :i番目の流量弁開度決定手段が決定した流量調整
弁開度、または、下記式2に基づく変換後の流量調整弁
開度。
Here, the equation 1 is ui = fi / (max (F)) F: fi / Vi ui: The converted opening of the i-th flow control valve. fi: the flow control valve opening determined by the i-th flow valve opening determination means, or the flow control valve opening after conversion based on the following equation (2).

【0012】Vi :i番目の流量調整弁の最大開度 max(F):送風ファンの回転数が最大でない室内ユ
ニット中で、Fの最大値を選び出す関数。 ここに、式2は、 ui =min(fi ,Vi ) ui :i番目の流量調整弁の変換後の開度。
Vi: maximum opening of i-th flow rate adjusting valve max (F): function for selecting the maximum value of F in an indoor unit in which the rotation speed of the blower fan is not maximum. Here, the equation 2 is: ui = min (fi, Vi) ui: The opening degree of the i-th flow rate adjusting valve after conversion.

【0013】fi :i番目の流量弁開度決定手段が決定
した流量調整弁開度。 Vi :i番目の流量調整弁の最大開度。 min(fi ,Vi ):fi とVi の小さい方の値をと
る演算子 また、請求項4の発明においては、各利用側ユニットに
送風する能力可変な各送風ファンと、前記各温度測定手
段により検出された各空調空間の温度を参照して空調空
間の温度を各設定値にするように前記各送風ファンの回
転数を決定する各送風ファン回転数決定手段と、前記各
送風ファン回転数決定手段で決定された回転数に基づい
て各送風ファンを制御する送風ファン制御手段と、前記
各送風ファン回転数決定手段で決定された回転数の全て
が前記各送風ファン回転数各々の上限値以上か否かを判
断する全上限値判断手段と、前記全上限値判断手段が全
て上限値以上と判断したときには、前記各流量弁開度決
定手段の決定した開度を下記式1に基づいて変換し、逆
に少なくとも1つが前記各送風ファンの回転数の上限値
未満の場合には、前記各流量弁開度決定手段の決定した
開度を下記式2に基づいて変換し更にその変換結果を下
記式1に基づいて変換する各流量弁開度変換手段と、前
記各流量弁開度変換手段によって決定された開度に基づ
いて前記各流量調整弁を操作する各流量調整弁操作手段
とを有していることを特徴としている。
Fi: the flow control valve opening determined by the i-th flow valve opening determining means. Vi: Maximum opening of the i-th flow rate adjusting valve. min (fi, Vi): An operator that takes the smaller value of fi and Vi. Further, in the invention of claim 4, each of the fan units with variable abilities to blow air to each user side unit and each of the temperature measuring means are used. Blower fan rotation speed determination means for determining the rotation speed of each blower fan so as to set the temperature of the air-conditioned space to each set value by referring to the detected temperature of each air-conditioned space, and each blower fan rotation speed determination means The blower fan control means for controlling each blower fan based on the rotation speed determined by the means, and all of the rotation speeds determined by the blower fan rotation speed determination means are equal to or more than the upper limit value of each of the blower fan rotation speeds. When the upper limit value determining means for determining whether or not all the upper limit value determining means determines that all the upper limit value determining means are equal to or higher than the upper limit value, the opening determined by the flow valve opening determining means is converted based on the following equation 1. And, conversely, at least When one is less than the upper limit value of the rotation speed of each blower fan, the opening determined by each flow valve opening determining means is converted based on the following equation 2 and the conversion result is calculated based on the following equation 1. The flow rate valve opening conversion means for converting the flow rate control valve and the flow rate control valve operating means for operating the flow rate control valve based on the degree of opening determined by the flow rate valve opening conversion means. Is characterized by.

【0014】ここに、式1は、 ui =fi /(max(F)) F :fi /Vi ui :i番目の流量調整弁の変換後の開度。 fi :i番目の流量弁開度決定手段が決定した流量調整
弁開度、または、下記式2に基づく変換後の流量調整弁
開度。
Here, the expression 1 is ui = fi / (max (F)) F: fi / Vi ui: The converted opening of the i-th flow rate adjusting valve. fi: the flow control valve opening determined by the i-th flow valve opening determination means, or the flow control valve opening after conversion based on the following equation (2).

【0015】Vi :i番目の流量調整弁の最大開度。 max(F):送風ファンの回転数が最大でない室内ユ
ニット中で、Fの最大値を選び出す関数。 ここに、式2は、 ui =min(fi ,Vi ) ui :i番目の流量調整弁の変換後の開度。
Vi: Maximum opening of the i-th flow rate adjusting valve. max (F): A function that selects the maximum value of F in the indoor unit in which the rotation speed of the blower fan is not the maximum. Here, the equation 2 is: ui = min (fi, Vi) ui: The opening degree of the i-th flow rate adjusting valve after conversion.

【0016】fi :i番目の流量弁開度決定手段が決定
した流量調整弁開度。 Vi :i番目の流量調整弁の最大開度。 min(fi ,Vi ):fi とVi の小さい方の値をと
る演算子 また、請求項5の発明においては、利用側ユニットの全
熱交換器出口の過冷却度を検出する各過冷却度検出手段
と、上記熱源側の膨張弁の液側圧力を検出する液側圧力
検出手段と、前記各過冷却度検出手段と前記液側圧力検
出手段の現在の検出結果をもとにあらかじめ定められた
範囲に全過冷却度が入ることとなる液側圧力の目標値を
演算により求める圧力目標値演算手段と、液側圧力が、
前記圧力目標値演算手段の演算結果に一致するように上
記熱源側の膨張弁を操作する熱源側膨張弁操作手段とを
有していることを特徴としている。
Fi: The flow control valve opening determined by the i-th flow valve opening determining means. Vi: Maximum opening of the i-th flow rate adjusting valve. min (fi, Vi): An operator that takes the smaller value of fi and Vi. Further, in the invention of claim 5, each subcooling degree detection for detecting the subcooling degree at the outlet of the total heat exchanger of the utilization side unit is performed. Means, liquid-side pressure detection means for detecting the liquid-side pressure of the expansion valve on the heat source side, and predetermined based on the current detection results of each of the subcooling degree detection means and the liquid-side pressure detection means The target pressure value calculating means for calculating the target value of the liquid side pressure that will bring the total degree of supercooling into the range and the liquid side pressure are
And a heat source side expansion valve operating means for operating the expansion valve on the heat source side so as to match the calculation result of the pressure target value calculating means.

【0017】また、請求項6の発明においては、休止し
ている利用側ユニットがあれば、これを検出して、その
流量調整弁を微開として、内部の冷媒を排出させる流量
調整弁微開操作制御手段を有していることを特徴として
いる。また、請求項7の発明においては、休止している
利用側ユニットがあれば、これを検出して、その流量調
整弁を全閉とし、対応する利用側の膨張弁を微開とし
て、内部に利用側ユニット運転時と同等量の冷媒を貯溜
させる流量調整弁、膨張弁微開制御手段を有しているこ
とを特徴としている。
Further, in the invention of claim 6, if there is a suspended use-side unit, it is detected and the flow control valve is opened slightly to allow the internal refrigerant to be discharged. It is characterized by having operation control means. Further, in the invention of claim 7, if there is a use-side unit that is not operating, it is detected and the flow rate adjusting valve is fully closed, and the corresponding use-side expansion valve is slightly opened to internally It is characterized by having a flow rate adjusting valve and an expansion valve slightly opening control means for storing the same amount of refrigerant as when the user side unit is operating.

【0018】[0018]

【作用】上記構成により、請求項1の発明においては、
圧縮機、弁、熱交換器、膨張弁等からなる熱源ユニット
と、熱交換器、熱交換器のガス側の流量調整弁、熱交換
器の液側の膨張弁等からなる複数の利用側ユニットと
を、ガス用配管、液用配管等に接続してなる多室型空気
調和装置において、以下の作用がなされる。各温度測定
手段は、冷房運転時に各利用側ユニットが設置された各
空調空間の温度を測定する。各設定温度記憶手段は、上
記各空調空間の設定温度を居住者操作等で入力された上
記憶する。各流量弁開度決定手段は、前記各温度測定手
段の現在の測定値と該当する各空調空間の設定値との差
を例えば電気的にもとめ、これから上記各空調空間の温
度が各設定温度に一致するように上記各流量調整弁の開
度を所定の手順等で決定する。各流量調整弁操作手段
は、前記各流量弁開度決定手段で決定された開度に基づ
いて上記各流量調整弁を例えば電気的に操作して開閉等
する。各出口過熱度検出手段は、上記各利用側熱交換器
の各出口過熱度を検出する。各膨張弁開度決定手段は、
前記各出口過熱度検出手段の検出した各出口過熱度をあ
らかじめ定められた各範囲に入るように上記各利用側膨
張弁の開度を決定する。各利用側膨張弁操作手段は、前
記各膨張弁開度決定手段で決定された開度に基づいて前
記各利用側膨張弁を操作する。
With the above structure, in the invention of claim 1,
A heat source unit consisting of a compressor, a valve, a heat exchanger, an expansion valve, etc., and a plurality of utilization side units consisting of a heat exchanger, a gas side flow rate adjusting valve of the heat exchanger, a liquid side expansion valve of the heat exchanger, etc. In a multi-chamber air conditioner in which and are connected to gas pipes, liquid pipes, and the like, the following actions are performed. Each temperature measuring means measures the temperature of each air-conditioned space in which each usage-side unit is installed during the cooling operation. Each set temperature storage means stores the set temperature of each of the above-mentioned air-conditioned spaces after it is input by a resident operation or the like. Each flow valve opening determining means electrically finds the difference between the current measured value of each temperature measuring means and the set value of each corresponding air-conditioned space, and from this, the temperature of each air-conditioned space becomes each set temperature. The opening of each of the flow rate adjusting valves is determined by a predetermined procedure or the like so that they coincide with each other. Each of the flow rate adjusting valve operating means, for example, electrically operates the each of the flow rate adjusting valves based on the opening degree determined by each of the flow rate valve opening degree determining means to open and close. The outlet superheat degree detecting means detects the outlet superheat degree of each of the use side heat exchangers. Each expansion valve opening determination means,
The opening degree of each of the use-side expansion valves is determined so that the outlet superheat degree detected by each outlet superheat degree detecting unit falls within each of the predetermined ranges. Each usage-side expansion valve operating means operates each usage-side expansion valve based on the opening determined by each expansion valve opening determination means.

【0019】また、請求項2の発明においては、圧縮
機、弁、熱交換器、膨張弁等からなる熱源ユニットと、
熱交換器、熱交換器のガス側の流量調整弁、熱交換器の
液側の膨張弁等からなる複数の利用側ユニットとを、ガ
ス用配管、液用配管等にて接続してなる多室型空気調和
装置において、以下の作用がなされる。各温度測定手段
は、暖房運転時に各利用側ユニットが設置された各空調
空間の温度を測定する。各設定温度記憶手段は、上記各
空調空間の設定温度を入力された上記憶する。各流量弁
開度決定手段は、前記各温度測定手段の測定値と該当す
る各空調空間の設定値との差をもとめ、これから上記各
空調空間の温度を各設定温度に一致するように上記各流
量調整弁の開度を決定する。各流量調整弁操作手段は、
前記各流量弁開度決定手段で決定された開度に基づいて
上記各流量調整弁を操作する。各出口過冷却度検出手段
は、上記各利用側熱交換器の各出口過冷却度を検出す
る。各膨張弁開度決定手段は、前記各出口過冷却度検出
手段の検出した各出口過冷却度をあらかじめ定められた
各範囲に入るように上記各利用側膨張弁の開度を決定す
る。各利用側膨張弁操作手段は、前記各膨張弁開度決定
手段で決定された開度に基づいて上記各利用側膨張弁を
操作する。
Further, in the invention of claim 2, a heat source unit comprising a compressor, a valve, a heat exchanger, an expansion valve and the like,
A multi-use unit consisting of a heat exchanger, a flow control valve on the gas side of the heat exchanger, an expansion valve on the liquid side of the heat exchanger, etc. is connected by gas piping, liquid piping, etc. The following actions are performed in the room air conditioner. Each temperature measuring means measures the temperature of each air-conditioned space in which each usage-side unit is installed during heating operation. Each set temperature storage means receives the set temperature of each air-conditioned space and stores it. Each flow valve opening determination means obtains the difference between the measured value of each temperature measurement means and the set value of each corresponding air-conditioned space, and from this the temperature of each air-conditioned space is adjusted to match each set temperature. Determine the opening of the flow control valve. Each flow control valve operating means,
Each of the flow rate adjusting valves is operated based on the degree of opening determined by each of the flow rate valve opening determining means. The outlet supercooling degree detecting means detects the outlet supercooling degree of each of the utilization side heat exchangers. The expansion valve opening degree determining means determines the opening degree of each of the use-side expansion valves so that the outlet supercooling degree detected by the outlet supercooling degree detecting means falls within each predetermined range. Each usage-side expansion valve operating means operates each usage-side expansion valve based on the opening determined by the expansion valve opening determination means.

【0020】また、請求項3の発明においては、能力可
変な送風ファンが、各利用側ユニットに送風する。送風
ファン回転数決定手段は、前記各温度測定手段により、
検出された各空調空間の温度を参照して各空調空間の温
度を設定値にするように前記各送風ファンの回転数を決
定する。各送風ファン制御手段は、前記各送風ファン回
転数決定手段で決定された回転数に基づいて各送風ファ
ンの回転数や発停を制御する。全上限値判断手段は、前
記各送風ファン回転数決定手段で決定された回転数の全
てが前記各送風ファン回転数各々の上限値以上か否かを
駆動電力とあらかじめ与えられた上限の電力値と比較す
る等して判断する。各流量弁開度変換手段は、前記全上
限値判断手段が全て上限以上と判断したときには、前記
各流量弁開度決定手段の決定した開度を下記式1に基づ
いて変換し、逆に少なくとも1つが前記各送風ファンの
回転数の上限値未満の場合には、前記各流量弁開度決定
手段の決定した開度を下記式2に基づいて変換し更にそ
の変換結果を下記式1に基づいて変換する。各流量調整
弁操作手段は、前記各流量弁開度変換手段によって決定
された開度に基づいて上記各流量調整弁の開度を操作す
る。
Further, in the third aspect of the invention, the blower fan whose capacity is variable blows air to each user side unit. Blower fan rotation speed determining means, by the temperature measuring means,
The rotation speed of each blower fan is determined so that the temperature of each air-conditioned space is set to a set value with reference to the detected temperature of each air-conditioned space. Each blower fan control means controls the rotation speed and start / stop of each blower fan based on the rotation speed determined by each blower fan rotation speed determination means. The total upper limit value determination means determines whether or not all of the rotation speeds determined by the respective blower fan rotation speed determination means are equal to or higher than the respective upper limit values of the respective blower fan rotation speeds and a power value of an upper limit given in advance. Judge by comparing with. Each of the flow valve opening conversion means converts the opening determined by each of the flow valve opening determination means based on the following equation 1 when all the upper limit value determination means determine that the upper limit values are equal to or more than the upper limit, and conversely at least. When one is less than the upper limit value of the rotation speed of each blower fan, the opening determined by each flow valve opening determining means is converted based on the following equation 2 and the conversion result is calculated based on the following equation 1. Convert. Each of the flow rate adjusting valve operating means operates the opening degree of each of the flow rate adjusting valves based on the opening degree determined by each of the flow rate valve opening degree converting means.

【0021】ここに、式1は、 ui =fi /(max(F)) F :fi /Vi ui :i番目の流量調整弁の変換後の開度。 fi :i番目の流量弁開度決定手段が決定した流量調整
弁開度、または、下記式2に基づく変換後の流量調整弁
開度。
Here, the equation 1 is ui = fi / (max (F)) F: fi / Vi ui: The converted opening of the i-th flow rate adjusting valve. fi: the flow control valve opening determined by the i-th flow valve opening determination means, or the flow control valve opening after conversion based on the following equation (2).

【0022】Vi :i番目の流量調整弁の最大開度。 max(F):送風ファンの回転数が最大でない室内ユ
ニット中で、Fの最大値を選び出す関数。 ここに、式2は、 ui =min(fi ,Vi ) ui :i番目の流量調整弁の変換後の開度。
Vi: Maximum opening of the i-th flow rate adjusting valve. max (F): A function that selects the maximum value of F in the indoor unit in which the rotation speed of the blower fan is not the maximum. Here, the equation 2 is: ui = min (fi, Vi) ui: The opening degree of the i-th flow rate adjusting valve after conversion.

【0023】fi :i番目の流量弁開度決定手段が決定
した流量調整弁開度。 Vi :i番目の流量調整弁の最大開度。 min(fi ,Vi ):fi とVi の小さい方の値をと
る演算子 また、請求項4の発明においては、能力可変な送風ファ
ンが、各利用側ユニットに送風する。送風ファン回転数
決定手段は、前記各温度測定手段により検出された各空
調空間の温度を参照して空調空間の温度を各設定値にす
るように前記各送風ファンの回転数を決定する。各送風
ファン制御手段は、前記各送風ファン回転数決定手段で
決定された回転数に基づいて各送風ファンを制御する。
全上限値判断手段は、前記各送風ファン回転数決定手段
で決定された回転数の全てが前記各送風ファン回転数各
々の上限値以上か否かを判断する。各流量弁開度変換手
段は、前記全上限値判断手段が全て上限値以上と判断し
たときには、前記各流量弁開度決定手段の決定した開度
を下記式1に基づいて変換し、逆に少なくとも1つが前
記各送風ファンの回転数の上限値未満の場合には、前記
各流量弁開度決定手段の決定した開度を下記式2に基づ
いて変換し更にその変換結果を下記式1に基づいて変換
する。各流量調整弁操作手段は、前記各流量弁開度変換
手段によって決定された開度に基づいて上記各流量調整
弁を操作する。
Fi: the flow control valve opening determined by the i-th flow valve opening determining means. Vi: Maximum opening of the i-th flow rate adjusting valve. min (fi, Vi): operator that takes the smaller value of fi and Vi Further, in the invention of claim 4, a blower fan with variable capacity blows air to each user side unit. The blower fan rotation speed determination means determines the rotation speed of each blower fan so that the temperature of the air-conditioned space is set to each set value with reference to the temperature of each air-conditioned space detected by the temperature measurement means. Each blower fan control means controls each blower fan based on the rotation speed determined by each blower fan rotation speed determination means.
The total upper limit value determination means determines whether or not all of the rotation speeds determined by the blower fan rotation speed determination means are equal to or higher than the respective upper limit values of the blower fan rotation speeds. Each flow valve opening conversion means converts the opening determined by each flow valve opening determination means based on the following equation 1 when all the upper limit value determination means determine that all the upper limit values are not less than the upper limit value, and vice versa. When at least one is less than the upper limit value of the rotation speed of each blower fan, the opening determined by each flow valve opening determining means is converted based on the following expression 2 and the conversion result is converted into the following expression 1. Convert based on. Each flow rate adjusting valve operating means operates each of the flow rate adjusting valves based on the opening determined by the flow rate valve opening converting means.

【0024】ここに、式1は、 ui =fi /(max(F)) F :fi /Vi ui :i番目の流量調整弁の変換後の開度。 fi :i番目の流量弁開度決定器が決定した流量調整弁
開度、または、下記式2に基づく変換後の流量調整弁開
度。
Here, the equation 1 is ui = fi / (max (F)) F: fi / Vi ui: The converted opening of the i-th flow rate adjusting valve. fi: the flow control valve opening determined by the i-th flow valve opening determiner, or the flow control valve opening after conversion based on the following equation 2.

【0025】Vi :i番目の流量調整弁の最大開度。 max(F):送風ファンの回転数が最大でない室内ユ
ニット中で、Fの最大値を選び出す関数。 ここに、式2は、 ui =min(fi ,Vi ) ui :i番目の流量調整弁の変換後の開度。
Vi: Maximum opening of the i-th flow rate adjusting valve. max (F): A function that selects the maximum value of F in the indoor unit in which the rotation speed of the blower fan is not the maximum. Here, the equation 2 is: ui = min (fi, Vi) ui: The opening degree of the i-th flow rate adjusting valve after conversion.

【0026】fi :i番目の流量弁開度決定手段が決定
した流量調整弁開度。 Vi :i番目の流量調整弁の最大開度。 min(fi ,Vi ):fi とVi の小さい方の値をと
る演算子 また、請求項5の発明においては、各過冷却度検出手段
は、利用側ユニットの全熱交換器出口の過冷却度を検出
する。液側圧力検出手段は、熱源側の膨張弁の液側圧力
を圧力歪電気変換等で検出する。圧力目標値演算手段
は、前記各過冷却度検出手段と前記液側圧力検出手段の
現在の検出結果をもとにあらかじめ定められた範囲に全
過冷却度が入ることとなる液側圧力の目標値を演算す
る。熱源側膨張弁操作手段は、液側圧力が、前記圧力目
標値演算手段の演算結果に一致するように上記熱源側の
膨張弁を操作する。
Fi: the flow control valve opening determined by the i-th flow valve opening determining means. Vi: Maximum opening of the i-th flow rate adjusting valve. min (fi, Vi): An operator that takes the smaller value of fi and Vi. Further, in the invention of claim 5, each subcooling degree detecting means is a subcooling degree at the outlet of the total heat exchanger of the utilization side unit. To detect. The liquid side pressure detecting means detects the liquid side pressure of the expansion valve on the heat source side by pressure strain electric conversion or the like. The target pressure value calculating means is a target of the liquid side pressure at which the total degree of supercooling falls within a predetermined range based on the current detection results of the respective supercooling degree detecting means and the liquid side pressure detecting means. Calculate the value. The heat source side expansion valve operating means operates the heat source side expansion valve so that the liquid side pressure matches the calculation result of the pressure target value calculating means.

【0027】また、請求項6の発明においては、流量調
整弁微開操作制御手段は、休止している利用側ユニット
があれば、これを設定温度なしや送風ファンの消費電力
なし、あるいは、利用者の指示等により検出して、その
流量調整弁を微開として、内部の冷媒を排出させる。ま
た、請求項7の発明においては、流量調整弁、膨張弁微
開制御手段は、休止している利用側の流量調整弁を全閉
とし、対応する利用側の膨張弁を微開として、内部に運
転時と同等量の冷媒を貯溜させる。
Further, in the invention of claim 6, the flow rate adjusting valve fine opening operation control means, if there is a suspended use side unit, does not use the set temperature or the power consumption of the blower fan, or uses it. The flow rate adjusting valve is slightly opened to detect the internal refrigerant, and the internal refrigerant is discharged. Further, in the invention of claim 7, the flow rate adjusting valve and the expansion valve fine opening control means fully close the idle side flow rate adjusting valve and slightly open the corresponding use side expansion valve. Store the same amount of refrigerant as during operation.

【0028】[0028]

【実施例】以下、本発明を実施例に基づいて説明する。
図3は、本発明に係る空気調和装置全体の系統構成図で
ある。本図において、1は圧縮機であり、2は四方弁で
あり、3は熱源機側熱交換器であり、4はアキュムレー
タであり、17は気側圧力検出端であり、22は熱源利
用膨張弁であり、23は液側圧力検出端である。これら
は熱源機5に備えられている。一方、71,72,73
は利用側熱交換器であり、81,82,83は利用側熱
交換器71,72,73の液側に接続された利用側膨張
弁であり、91,92,93は利用側熱交換器71,7
2,73のガス側に接続された流量調整弁であり、10
1,102,103は温度検出端であり、111,11
2,113は送風ファンであり、そしてこれらは利用側
ユニット61,62,63を構成し、空調空間121,
122,123に設置される。また、熱源機5及び利用
側ユニット61,62,63のガス側及び液側は各々ガ
ス側管路13と液側管路14で接続されており、閉回路
を構成し、更にその内部に冷媒を封入されている。
EXAMPLES The present invention will be described below based on examples.
FIG. 3 is a system configuration diagram of the entire air conditioner according to the present invention. In the figure, 1 is a compressor, 2 is a four-way valve, 3 is a heat source side heat exchanger, 4 is an accumulator, 17 is an air side pressure detecting end, and 22 is a heat source utilizing expansion. It is a valve, and 23 is a liquid side pressure detection end. These are provided in the heat source unit 5. On the other hand, 71, 72, 73
Is a utilization side heat exchanger, 81, 82, 83 are utilization side expansion valves connected to the liquid side of the utilization side heat exchangers 71, 72, 73, and 91, 92, 93 are utilization side heat exchangers. 71,7
It is a flow rate control valve connected to the gas side of 2,73.
1, 102 and 103 are temperature detection terminals, and 111, 11
2, 113 are blower fans, and these constitute the use side units 61, 62, 63, and the air-conditioned space 121,
122 and 123. Further, the gas side and the liquid side of the heat source unit 5 and the use side units 61, 62, 63 are respectively connected by the gas side pipe line 13 and the liquid side pipe line 14 to form a closed circuit, and the refrigerant is further provided therein. Is enclosed.

【0029】また、利用側熱交換器71,72,73と
流量調整弁91,92,93との間には過熱度検知機1
91,192,193が設けられており、利用側熱交換
器71,72,73と利用側膨張弁81,82,83と
の間には過冷却度検知機201,202,203が設け
られている。次に上記各部の重要な作用、原理等につい
て説明する。
Further, the superheat detector 1 is provided between the use side heat exchangers 71, 72, 73 and the flow rate adjusting valves 91, 92, 93.
91, 192, 193 are provided, and subcooling degree detectors 201, 202, 203 are provided between the use side heat exchangers 71, 72, 73 and the use side expansion valves 81, 82, 83. There is. Next, the important action, principle, etc. of each of the above parts will be described.

【0030】圧縮機1は、冷媒ガスを圧縮する。四方弁
2は、その切り換えにより本空気調和装置を冷暖房兼用
としている。そして、四方弁2の実矢線で示すループは
暖房運転時であり、点矢線で示すループは冷房運転時を
示す。熱源側熱交換器3は、冷房時には系外へ排熱を、
暖房時には系外からは吸熱を行う。利用側熱交換器7
1,72,73は、その逆を行う。アキュムレータ4
は、冷媒の液と気を分離し、圧縮機1に冷媒液が入り込
むのを防止する。
The compressor 1 compresses the refrigerant gas. By switching the four-way valve 2, the air conditioner is also used for cooling and heating. The loop indicated by the solid arrow of the four-way valve 2 indicates the heating operation, and the loop indicated by the dotted arrow indicates the cooling operation. The heat source side heat exchanger 3 discharges exhaust heat to the outside of the system during cooling,
When heating, it absorbs heat from outside the system. Utilization side heat exchanger 7
1, 72, 73 do the opposite. Accumulator 4
Separates the liquid of the refrigerant and the air and prevents the refrigerant liquid from entering the compressor 1.

【0031】利用側膨張弁81,82,83及び熱源側
膨張22は、各々冷媒ガスを膨張液化させ、これにより
吸熱を行わせる。過熱度検知機191,192,193
は、蒸発器側入口の冷媒温度と圧縮機吸入口の温度とか
ら過熱度を検出する。過冷却度検知機201,202,
203は、同じく蒸発器側の出口温度と圧縮機1の吐出
圧力より算出した冷媒の吐出側飽和蒸気温度とから過冷
却度を算出する。
The use-side expansion valves 81, 82, 83 and the heat-source-side expansion 22 respectively expand and liquefy the refrigerant gas, thereby absorbing heat. Superheat detector 191,192,193
Detects the degree of superheat from the refrigerant temperature at the evaporator side inlet and the temperature at the compressor inlet. Supercooling degree detectors 201, 202,
Similarly, 203 calculates the degree of supercooling from the outlet temperature on the evaporator side and the discharge side saturated vapor temperature of the refrigerant calculated from the discharge pressure of the compressor 1.

【0032】なお、空冷熱交換器の型式、その採用する
熱伝達率と空気流速の関係、膨張弁の型式、その開度性
能曲線、冷凍サイクル等は本発明の趣旨に直接の関係が
なく、また機械工学便覧(日本機械学会、昭和60年発
行)B8の第1章、第2章、同A6の第3章等に記載さ
れている周知技術であるため、その説明は省略する。同
じく、その他各種の温度や圧力検出端等の計装、そのた
めの配線等をも有するが、これらも自明、かつ周知の技
術であるため、その説明は省略する。
The type of the air-cooling heat exchanger, the relationship between the heat transfer coefficient and the air flow rate to be adopted, the type of the expansion valve, its opening performance curve, the refrigeration cycle, etc. have no direct relation to the gist of the present invention. Further, since it is a well-known technique described in Chapters 1 and 2 of B8, Chapter 3 of A6 of the Mechanical Engineering Handbook (published by the Japan Society of Mechanical Engineers, 1985), the description thereof will be omitted. Similarly, although it also has various kinds of instrumentation such as temperature and pressure detection ends, and wiring for that purpose, these are also known and well-known techniques, and therefore description thereof will be omitted.

【0033】図1は、本実施例の利用側ユニットにある
アクチュエータの冷房運転時の制御系統図であり、図2
は、同じく利用側ユニットにあるアクチュエータの暖房
運転時の制御系統図である。以下、両図を参照しつつ実
施例の制御動作を説明する。161,162,163
は、PID制御を採用した利用側膨張弁開度決定機であ
る。そして、冷房運転時には、図1に示すように、過熱
度検知機191,192,193によって検知された利
用側熱交換器71,72,73の出口過熱度があらかじ
め定められた目標の幅(例えば、5deg〜15de
g)に入るように、暖房運転時は、図2に示すように、
過冷却度検知機201,202,203によって検知さ
れた利用側熱交換器71,72,73の出口過冷却度
が、あらかじめ定められた目標の幅(例えば、5deg
〜15deg)に入るように、利用側膨張弁81,8
2,83の開度を決定する。なお、過熱度を目標値の幅
に入れる方法としては、従来の技術と同じく、不感帯を
設定している。
FIG. 1 is a control system diagram during the cooling operation of the actuator in the utilization side unit of this embodiment.
[Fig. 4] is a control system diagram of an actuator in the user side unit during heating operation. Hereinafter, the control operation of the embodiment will be described with reference to both drawings. 161, 162, 163
Is a use-side expansion valve opening determiner that employs PID control. Then, during the cooling operation, as shown in FIG. 1, the outlet superheat degree of the use side heat exchangers 71, 72, 73 detected by the superheat detectors 191, 192, 193 is a predetermined target width (for example, 5 deg to 15 de
g), during heating operation, as shown in FIG.
The outlet supercooling degree of the use side heat exchangers 71, 72, 73 detected by the supercooling degree detectors 201, 202, 203 is a predetermined target width (for example, 5 deg).
~ 15 deg) so that the use side expansion valves 81, 8
The opening degree of 2,83 is determined. In addition, as a method of putting the degree of superheat into the range of the target value, a dead zone is set as in the conventional technique.

【0034】暖房運転の場合には、圧力目標値演算機2
4は過冷却度の全てがあらかじめ設定された範囲に入る
ような熱源側膨張弁22の液側圧力を演算により求め
る。熱源側膨張弁開度決定機25は、液側圧力検知機2
3によって検知される液側圧力を、圧力目標値演算機2
4の演算結果に一致するように熱源側膨張弁22の開度
を決定する。
In the heating operation, the pressure target value calculator 2
4 calculates the liquid side pressure of the heat source side expansion valve 22 so that all of the degree of subcooling falls within a preset range. The heat source side expansion valve opening degree determining device 25 is used as the liquid side pressure detector 2
The liquid side pressure detected by 3 is calculated by the pressure target value calculator 2
The opening degree of the heat source side expansion valve 22 is determined so as to match the calculation result of No. 4.

【0035】冷房運転の場合には、熱源側膨張弁22は
全開とする。171,172,173は、PID制御を
採用した送風ファン回転数決定機である。そして、温度
検出端101,102,103によって検知された空調
空間121,122,123の温度を、空調温度設定機
151,152,153で設定された各温度に一致する
よう送風ファン111,112,113の回転数を決定
する。なお、ここに回転数と熱伝達率の関係等は別途実
験等により求められている。
In the cooling operation, the heat source side expansion valve 22 is fully opened. Reference numerals 171, 172 and 173 are blower fan rotation speed decision machines adopting PID control. The temperature of the air-conditioned spaces 121, 122, 123 detected by the temperature detecting ends 101, 102, 103 is made equal to the respective temperatures set by the air-conditioning temperature setting machines 151, 152, 153, and the blower fans 111, 112 ,. The rotation speed of 113 is determined. The relationship between the number of rotations and the heat transfer coefficient, etc., has been obtained separately by experiments.

【0036】181,182,183は、PID制御を
採用した流量弁開度決定機であり、温度検出端101,
102,103によって検知された空調空間121,1
22,123の温度を、空調温度設定機151,15
2,153で設定された各温度に一致するよう流量調整
弁91,92,93の開度を決定する。流量弁開度変換
機21は、流量弁開度決定機181,182,183で
決定された流量調整弁91,92,93の各開度f1 ,
f2 ,f3 を、送風ファン回転数決定機171,17
2,173で決定された送風ファン111,112,1
13の回転数に応じて変換する。
Reference numerals 181, 182, 183 denote flow valve opening degree determining devices adopting PID control, and the temperature detecting ends 101,
Air-conditioned space 121,1 detected by 102,103
The temperature of the air conditioner temperature setting device 151,15
The openings of the flow rate adjusting valves 91, 92, 93 are determined so as to match the respective temperatures set by 2, 153. The flow valve opening degree converter 21 includes the respective opening degrees f1 of the flow rate adjusting valves 91, 92, 93 determined by the flow rate valve opening degree determiners 181, 182, 183.
Blowers f2 and f3 are determined by the blower fan rotation speed determiners 171 and 17
Blower fans 111, 112, 1 determined in No. 2, 173
Convert according to the number of rotations of 13.

【0037】送風ファン回転数決定機171,172,
173で決定された送風ファン111,112,113
の回転数の全てが、送風ファン111,112,113
各々の上限値以上の場合、流量弁開度変換機21は、後
に示す数式2に基づいて、各流量弁開度決定機181,
182,183で決定された各開度f1 ,f2 ,f3を
各流量調整弁91,92,93の各開度の上限値に変換
し、その変換結果を、後に示す数式1に基づいて変換を
行う。
Blower fan rotation speed decision machines 171, 172
Blower fans 111, 112, 113 determined in 173
All the rotation speeds of the blower fans 111, 112, 113
When the upper limit values are not less than the respective upper limit values, the flow valve opening degree converter 21 determines each flow valve opening degree determining unit 181, based on the following mathematical formula 2.
Each opening f1, f2, f3 determined by 182, 183 is converted into an upper limit value of each opening of each flow rate adjusting valve 91, 92, 93, and the conversion result is converted based on the following formula 1. To do.

【0038】また、送風ファン回転数決定機171,1
72,173で決定された送風ファン111,112,
113の回転数の少なくとも1つが、送風ファン11
1,112,113各々の上限値未満の場合には、流量
弁開度変換器21は流量弁開度決定機181,182,
183で決定された各開度f1 ,f2 ,f3 を数式1に
基づいて変換を行う。
Further, the blower fan rotation speed determining device 171,1
72, 173 blower fans 111, 112,
At least one of the rotation speeds of 113 is the blower fan 11
When it is less than the upper limit value of each of 1, 112 and 113, the flow valve opening converter 21 determines the flow valve opening determiners 181, 182.
Each opening f1, f2, f3 determined in 183 is converted based on the equation (1).

【0039】このとき圧縮機1は、全空調空間で要求さ
れる空調能力が出せるよう能力が制御されている。そし
て、これは、圧力検出端17によって検知される圧力を
あらかじめ定められた値に一致するように制御すること
によってなされる。さてここで、流量弁開度変換機21
の演算の内容を数値を具体的に挙げて説明する。
At this time, the capacity of the compressor 1 is controlled so that the air conditioning capacity required in the entire air-conditioned space can be obtained. This is done by controlling the pressure detected by the pressure detection end 17 so as to match a predetermined value. Now, here, the flow valve opening degree converter 21
The contents of the calculation of will be described with specific numerical values.

【0040】流量調整弁91,92,93の開度の操作
幅を0〜100%とする。この場合、流量調整弁91,
92,93の開度の上限値は、すべて100%となる。
以下、これを具体例に基づいて説明する。 ui =fi /(max(F)) F :fi /Vi ui :i番目の流量調整弁の変換後の開度 fi :i番目の流量弁開度決定手段が決定した流量調整
弁開度,または下記式2に基づく変換後の流量調整弁開
度。
The operation range of the opening of the flow rate adjusting valves 91, 92, 93 is set to 0 to 100%. In this case, the flow rate adjusting valve 91,
The upper limit values of the opening degrees of 92 and 93 are all 100%.
Hereinafter, this will be described based on a specific example. ui = fi / (max (F)) F: fi / Vi ui: The opening of the i-th flow control valve after conversion fi: The flow control valve opening determined by the i-th flow valve opening determining means, or The flow control valve opening after conversion based on the following equation 2.

【0041】Vi :i番目の流量調整弁の最大開度。 max(F):送風ファンの回転数が最大でない室内ユ
ニット中で、Fの最大値を選び出す関数。 ここに、式2は、 ui =min(fi ,Vi ) ui :i番目の流量調整弁の変換後の開度。
Vi: Maximum opening of the i-th flow rate adjusting valve. max (F): A function that selects the maximum value of F in the indoor unit in which the rotation speed of the blower fan is not the maximum. Here, the equation 2 is: ui = min (fi, Vi) ui: The opening degree of the i-th flow rate adjusting valve after conversion.

【0042】fi :i番目の流量弁開度決定手段が決定
した流量調整弁開度。 Vi :i番目の流量調整弁の最大開度。 min(fi ,Vi ):fi とVi の小さい方の値をと
る演算子 <具体例1:全流量調整弁開度が上限値未満の場合>流
量弁開度決定機181,182,183で決定された各
開度f1 ,f2 ,f3 を各々30%、60%、80%と
する。 (1)送風ファン回転数決定機で決定された送風ファン
の回転数の全てが上限値以上の場合。
Fi: the flow control valve opening determined by the i-th flow valve opening determining means. Vi: Maximum opening of the i-th flow rate adjusting valve. min (fi, Vi): Operator that takes the smaller value of fi and Vi <Specific example 1: When the total flow control valve opening is less than the upper limit> Determined by the flow valve opening determiners 181, 182, 183 The respective opening degrees f1, f2, f3 are set to 30%, 60% and 80%, respectively. (1) When all the rotation speeds of the blower fan determined by the blower fan rotation speed determination device are equal to or higher than the upper limit value.

【0043】まず、Fを計算すると、全流量調整弁の開
度上限値は100%なので F1 =30/100=0.3 F2 =60/100=0.6 F3 =80/100=0.8 となり、最大値は0.8となるので、数式1を用いる
と、 u1 =30/0.8=37.5% u2 =60/0.8=75% u3 =80/0.8=100% と変換される。よって、流量調整弁91,92,93の
開度は、各々37.5%、75%、100%となる。 (2)送風ファン回転数決定機で決定された送風ファン
の回転数の少なくとも1つが上限値未満の場合。
First, when F is calculated, the upper limit value of the opening of all the flow rate adjusting valves is 100%. F1 = 30/100 = 0.3 F2 = 60/100 = 0.6 F3 = 80/100 = 0.8 Since the maximum value is 0.8, using the formula 1, u1 = 30 / 0.8 = 37.5% u2 = 60 / 0.8 = 75% u3 = 80 / 0.8 = 100% Is converted to. Therefore, the openings of the flow rate adjusting valves 91, 92, 93 are 37.5%, 75%, and 100%, respectively. (2) When at least one of the rotation speeds of the blower fan determined by the blower fan rotation speed determination device is less than the upper limit value.

【0044】まず、数式2を用いると、 u1 =min(30,100)=30% u2 =min(60,100)=60% u3 =min(80,100)=80% となり、本式に基づく変換による変更はない。First, using Equation 2, u1 = min (30,100) = 30% u2 = min (60,100) = 60% u3 = min (80,100) = 80%, which is based on this equation. No change due to conversion.

【0045】次に、Fを計算すると、 F1 =30/100=0.3 F2 =60/100=0.6 F3 =80/100=0.8 となり、最大値は0.8となるので、数式1を用いる
と、 u1 =30/0.8=37.5% u2 =60/0.8=75% u3 =80/0.8=100% と変換される。
Next, when F is calculated, F1 = 30/100 = 0.3 F2 = 60/100 = 0.6 F3 = 80/100 = 0.8 and the maximum value is 0.8. Using Equation 1, u1 = 30 / 0.8 = 37.5% u2 = 60 / 0.8 = 75% u3 = 80 / 0.8 = 100%.

【0046】よって、流量調整弁91,92,93の開
度は、各々37.5%、75%、100%となる。 <具体例2:少なくとも1つの流量調整弁開度が上限値
の場合>流量弁開度決定機181,182,183で決
定された各開度f1 ,f2 ,f3 を各々30%、60
%、120%とする。 A)送風ファン回転数決定機で決定された送風ファンの
回転数の全てが上限値以上の場合。
Therefore, the openings of the flow rate adjusting valves 91, 92, 93 are 37.5%, 75% and 100%, respectively. <Specific Example 2: When at least one flow rate control valve opening is the upper limit> The respective opening degrees f1, f2 and f3 determined by the flow rate valve opening determiners 181, 182 and 183 are 30% and 60, respectively.
% And 120%. A) When all the rotation speeds of the blower fan determined by the blower fan rotation number determination device are equal to or higher than the upper limit value.

【0047】まず、Fを計算すると、全流量調整弁の開
度上限値は100%なので F1 = 30/100=0.3 F2 = 60/100=0.6 F3 =120/100=1.2 となり、最大値は1.2となるので、数式1を用いる
と、 u1 = 30/1.2= 25% u2 = 60/1.2= 50% u3 =120/1.2=100% と変換される。よって、流量調整弁91,92,93の
開度は、各々25%、50%、100%となる。 B)送風ファン回転数決定機で決定された送風ファンの
回転数の少なくとも1つが上限値未満の場合。
First, when F is calculated, the opening upper limit value of the total flow rate adjusting valve is 100%. F1 = 30/100 = 0.3 F2 = 60/100 = 0.6 F3 = 120/100 = 1.2 Since the maximum value is 1.2, using Equation 1, u1 = 30 / 1.2 = 25% u2 = 60 / 1.2 = 50% u3 = 120 / 1.2 = 100% To be done. Therefore, the openings of the flow rate adjusting valves 91, 92, 93 are 25%, 50%, and 100%, respectively. B) When at least one of the rotation speeds of the blower fan determined by the blower fan rotation speed determination device is less than the upper limit value.

【0048】まず、数式2を用いると、 u1 =min( 30,100)= 30 u2 =min( 60,100)= 60 u3 =min(120,100)=100 となる。First, using Equation 2, u1 = min (30,100) = 30 u2 = min (60,100) = 60 u3 = min (120,100) = 100.

【0049】次に、Fを計算すると、 F1 = 30/100=0.3 F2 = 60/100=0.6 F3 =100/100=1.0 となり、最大値は1.0となるので、数式1を用いる
と、 u1 = 30/1.0= 30% u2 = 60/1.0= 60% u3 =100/1.0=100% と変換される。よって、流量調整弁91,92,93の
開度は、各々30%、60%、100%となる。
Next, when F is calculated, F1 = 30/100 = 0.3 F2 = 60/100 = 0.6 F3 = 100/100 = 1.0, and the maximum value is 1.0. Using Equation 1, u1 = 30 / 1.0 = 30% u2 = 60 / 1.0 = 60% u3 = 100 / 1.0 = 100% Therefore, the openings of the flow rate adjusting valves 91, 92, 93 are 30%, 60%, and 100%, respectively.

【0050】具体例1では、全送風ファンが最大回転数
であっても、それ未満であっても流量調整弁の開度には
影響がない。本具体例は、流量弁開度決定機181,1
82,183で決定された開度の全てが、流量調整弁9
1,92,93の開度の上限値たる100%未満の場合
である。そして、これは圧縮機吐出圧が大等のため、空
調能力に余裕があり、流量を絞っていることを意味す
る。従って、全空調空間で空調能力を下げたい場合であ
る。このとき、流量調整弁の開度は流量弁開度変換機2
1により大きくなるように変換される。流量調整弁の開
度が大きくなるように変換されるということは、一見空
調能力が大きくなる傾向であるが、その分、能力制御に
より送風ファンあるいは圧縮機の回転数(吐出圧や吐出
量)がより一層下がるので、より少ない入力で同じ空調
能力が発揮できることとなる。
In the first specific example, the opening of the flow rate adjusting valve is not affected even if all the blowing fans have the maximum rotation speed or less than the maximum rotation speed. In this specific example, the flow valve opening determiners 181, 1
82, 183 are all of the opening degrees determined by the flow rate adjusting valve 9
This is the case where the upper limit of the opening of 1, 92, 93 is less than 100%. And, this means that the compressor discharge pressure is large, so that the air conditioning capacity has a margin and the flow rate is throttled. Therefore, it is a case where it is desired to reduce the air conditioning capacity in the entire air-conditioned space. At this time, the opening of the flow rate adjusting valve is determined by the flow valve opening converter 2
It is converted to be larger by 1. The fact that the flow control valve is converted to a larger opening tends to increase the air conditioning capacity, but the capacity control controls the rotation speed of the blower fan or compressor (discharge pressure and discharge amount). Is further reduced, so that the same air conditioning capacity can be exhibited with less input.

【0051】具体例2では、全送風ファンが最大回転数
か否かで、必要とされている空調能力が装置が発揮可能
な最大能力を超えているか否かを判断している。本具体
例は、各流量弁開度決定機181,182,183で決
定された開度の少なくとも1つが対応する流量調整弁の
上限値を超えている場合であり、より多くの空調能力を
必要としている空調空間が存在する場合である。
In the specific example 2, it is determined whether or not the required air conditioning capacity exceeds the maximum capacity that the device can exhibit, depending on whether or not all the blower fans have the maximum rotation speed. This specific example is a case where at least one of the openings determined by the flow valve opening determiners 181, 182, 183 exceeds the upper limit value of the corresponding flow rate adjusting valve, and more air conditioning capacity is required. This is the case when there is an air-conditioned space.

【0052】このとき、全送風ファンが最大回転数であ
ると、より多くの空調能力を必要としている空調空間
は、そこに設置されている利用側ユニットで発揮できる
以上の空調負荷であるとみなされる。このため、当該空
調空間の流量調整弁の開度は全開にするが、他の空調空
間の流量調整弁は対応する流量弁開度決定器が決定した
開度で操作されることとなる。
At this time, if all the blower fans have the maximum number of rotations, the air-conditioned space that requires more air-conditioning capacity is considered to have an air-conditioning load that can be exerted by the user side units installed therein. Be done. Therefore, the opening of the flow rate adjusting valve of the air-conditioned space is fully opened, but the flow rate adjusting valves of the other air-conditioned spaces are operated at the openings determined by the corresponding flow valve opening degree determiners.

【0053】一方、送風ファンの少なくとも1つが最大
回転数未満であると、全空調空間で要求される全空調負
荷が空気調和装置で発揮できる範囲内であるとみなされ
る。そして、各流量弁開度決定機181,182,18
3で決定された開度が最大でない流量調整弁の開度は、
より小さくなるように流量弁開度変換機21で変換され
る。一方、利用側ユニットの空調能力に対する各空調空
間の空調負荷の割合が最も大きい利用側ユニットにある
流量弁開度決定機は、対応する流量調整弁の開度を最大
に決定する。従って、開度が最大でない流量調整弁の開
度を小さくなるように変換し、これにより浮いた能力を
利用側ユニットの空調能力に対する負荷が最も大きいも
のに最優先して分配することとなる。
On the other hand, when at least one of the blower fans is less than the maximum rotation speed, it is considered that the total air conditioning load required in the entire air conditioning space is within the range that can be exhibited by the air conditioner. Then, the flow valve opening determiners 181, 182, 18
The opening of the flow rate control valve whose opening determined in 3 is not the maximum is
It is converted by the flow valve opening converter 21 so as to be smaller. On the other hand, the flow valve opening degree determining device in the use side unit in which the ratio of the air conditioning load of each air conditioning space to the air conditioning capacity of the use side unit is the largest determines the opening degree of the corresponding flow rate adjusting valve to the maximum. Therefore, the opening of the flow rate adjusting valve whose opening is not the maximum is converted so as to be small, and the floating capacity is distributed to the one having the largest load on the air conditioning capacity of the usage side unit with the highest priority.

【0054】なお、利用側ユニットについては、この際
以下のような操作をも行う。冷房運転時には、休止して
いる利用側ユニットの流量調整弁の開度を微開とする。
利用側膨張弁は休止中の利用側熱交換器の過熱度をあら
かじめ定められた範囲に入るように操作されているの
で、これにより利用側ユニットが運転中であっても、休
止していても、ほぼ同様の冷媒分布となる。
Regarding the utilization side unit, the following operation is also performed at this time. During the cooling operation, the opening degree of the flow rate adjusting valve of the resting use side unit is slightly opened.
Since the use-side expansion valve is operated so that the superheat degree of the use-side heat exchanger that is not in operation falls within a predetermined range, this allows the use-side unit to be operated or stopped. , The refrigerant distribution is almost the same.

【0055】暖房運転時には、休止している利用側ユニ
ットの流量調整弁を全閉、利用側膨張弁は微開とする。
この時、前記のように熱源器側膨張弁により熱源器側膨
張弁液側の圧力が制御されているので、これにより利用
側ユニットが運転中であっても、休止中であっても、ほ
ぼ同様の冷媒分布となる。以上、本発明を実施例に基づ
いて説明してきたが、本発明は何も上記実施例に限定さ
れないのは勿論である。すなわち、例えば以下のような
ものも本発明に含まれる。
During the heating operation, the flow rate adjusting valve of the inactive unit on the utilization side is fully closed, and the expansion valve on the utilization side is slightly opened.
At this time, as described above, the pressure on the liquid side of the expansion valve on the heat source device side is controlled by the expansion valve on the heat source device side. The refrigerant distribution is similar. Although the present invention has been described above based on the embodiments, it goes without saying that the present invention is not limited to the above embodiments. That is, for example, the following is also included in the present invention.

【0056】(1)実施例では、1台の熱源側ユニット
と3台の利用側ユニットが接続された多室型空気調和装
置としたが、利用側ユニットの数は4台、5台等として
いる。また、熱源側ユニットはパラレル駆動の複数台と
している。 (2)制御機の構成はPID制御としたが、モデル追従
制御等他の制御方式を用いている。
(1) In the embodiment, the multi-room type air conditioner in which one heat source side unit and three use side units are connected is used. However, the number of use side units is 4, 5, etc. There is. The heat source side unit is a plurality of units driven in parallel. (2) Although the controller has PID control, other control methods such as model following control are used.

【0057】(3)封入される冷媒は特に限定されるも
のではなく、また単一冷媒でなく混合冷媒としている。 (4)設備量の面から送風ファンは、その電動機や強度
からくる最大回転数が熱交換器の冷却能力の飽和状態に
なるようにするのが普通であるが、電動機の規格等の都
合で必ずしも両者が一致するとは限らないため、いずれ
かその一方で全上限値判断手段の作用する最大回転数と
している。
(3) The refrigerant to be enclosed is not particularly limited and is not a single refrigerant but a mixed refrigerant. (4) From the viewpoint of the amount of equipment, it is usual that the blower fan is designed so that the maximum number of rotations due to its electric motor and strength is saturated with the cooling capacity of the heat exchanger. Since they do not always match, either one is set to the maximum number of revolutions on which the upper limit determination means operates.

【0058】(5)利用を休止しているユニット中の冷
媒は、停止経過後1時間をすぎれば内部の冷媒は完全に
おちつくものとして、膨張弁等は自動的に微開から全開
となるようにしている。 (6)製造等の都合で、本発明の必要不可欠の構成要素
(要件、手段)を物理的、機械的に複数のものとした
り、逆に複数の構成要素を一体としたり、あるいは適宜
これらを組み合わせたりしている。
(5) As for the refrigerant in the unit which is not in use, the refrigerant inside is completely chilled after one hour has passed since the stop, and the expansion valve and the like are automatically opened from slightly opened to fully opened. I have to. (6) For the convenience of manufacturing, the essential components (requirements, means) of the present invention may be physically or mechanically plural, or conversely, the plural components may be integrated, or these may be appropriately combined. I have combined them.

【0059】具体的には、請求項1に記載した各設定温
度記憶手段、各流量弁開度決定手段、各膨張弁開度決定
手段等は、一カ所に集中して設けている等である。
Specifically, each set temperature storage means, each flow valve opening degree determining means, each expansion valve opening degree determining means and the like described in claim 1 are provided centrally in one place. .

【0060】[0060]

【発明の効果】以上説明してきたように、本発明に係る
多室型空気調和装置においては、利用側熱交換器のガス
側に設置された流量調整弁で空調空間の温度を制御し、
利用側熱交換器の液側に設置された利用側膨張弁で各利
用側熱交換器出口の過熱度若しくは過冷却度を制御する
ことにより、空調空間の温度制御の応答性が改善され
る。更に、各空調空間の負荷の相違が大きいときでも効
率の良い空調運転が実現できる。このため、高い快適性
と省エネが達成される。
As described above, in the multi-room air conditioner according to the present invention, the temperature of the air-conditioned space is controlled by the flow rate adjusting valve installed on the gas side of the utilization side heat exchanger,
By controlling the degree of superheat or the degree of subcooling at the outlet of each use side heat exchanger by the use side expansion valve installed on the liquid side of the use side heat exchanger, the responsiveness of the temperature control of the air-conditioned space is improved. Furthermore, efficient air conditioning operation can be realized even when there is a large difference in load between the air-conditioned spaces. Therefore, high comfort and energy saving are achieved.

【0061】特に、冷媒運転時においては、室内熱交換
器ガス側の弁の開度を変更することによって、従来の多
室形空気調和機では不可能であった各利用側熱交換器の
蒸発圧力の個別の制御が可能となる。特に、暖房運転時
においては、空調能力があまり必要でない利用側ユニッ
トは、利用熱交換器ガス側の流量弁を絞るため、熱交換
器内に冷媒が必要以上に溜り込むこともない。また、休
止ユニットでは流量弁を全閉し、膨張弁を微開にして運
転時と同等量の冷媒を貯溜するので、利用側ユニット停
止時に液冷媒が流出してシステムの運転状態を悪化させ
ることもなく、更に始動もスムーズとなる。これらのた
めファンの風量を強制的に下げたり、空調能力のいらな
いところや休止室内機へも必要以上の冷媒を流すことも
ない。
In particular, during the refrigerant operation, by changing the opening degree of the valve on the gas side of the indoor heat exchanger, the evaporation of each heat exchanger on the usage side, which is not possible with the conventional multi-chamber air conditioner. Individual control of pressure is possible. In particular, during the heating operation, the use-side unit that does not need much air conditioning capacity throttles the flow valve on the heat-exchanger-use gas side, so that the refrigerant does not accumulate more than necessary in the heat exchanger. Also, in the pause unit, the flow valve is fully closed and the expansion valve is slightly opened to store the same amount of refrigerant as during operation, so liquid refrigerant flows out when the usage-side unit is stopped and the operating state of the system is deteriorated. Without it, the start will be smoother. For these reasons, the air volume of the fan is not forcibly reduced, and unnecessary refrigerant is not allowed to flow to places where the air-conditioning capacity is not needed or to the suspended indoor units.

【0062】また、熱源側膨張弁、休止時の利用側膨張
弁、流量調整弁の操作を合わせることにより、各空調空
間の負荷状態、室内ユニットの運転、休止に拘わらず、
全運転状態にわたって冷凍サイクル内の冷媒分布をほぼ
一定にできる。このため、効率の良い運転と共に、余分
な冷媒を充填する必要がなく、ひいては冷媒の充填量を
少なくすることができる。また、アキュームレータを小
さくして、室外ユニットの形状を小さくすることも可能
となる。
Further, by combining the operations of the heat source side expansion valve, the use side expansion valve at rest, and the flow rate adjusting valve, regardless of the load state of each air-conditioned space, the operation of the indoor unit, and the rest,
The refrigerant distribution in the refrigeration cycle can be made almost constant over all operating conditions. For this reason, it is not necessary to fill the extra refrigerant with efficient operation, and the filling amount of the refrigerant can be reduced. Also, the accumulator can be reduced in size to reduce the size of the outdoor unit.

【0063】また、各利用側ユニットの空調能力に対す
る負荷の割合に、大きなばらつきがあっても、数式1と
数式2を用いることにより、負荷の割合が大きい利用側
ユニットに優先的に能力を分配することが可能となり、
ひいては、空気調和装置が実際に設置されるばらつきに
よらず、上記効果を最大限発揮させることができる。
Further, even if there is a large variation in the load ratio with respect to the air conditioning capacity of each use side unit, the use of Formula 1 and Formula 2 allows the use side units having a large load ratio to be preferentially distributed in capacity. It becomes possible to
As a result, the above effects can be maximized regardless of variations in the actual installation of the air conditioner.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多室型空気調和装置の冷房時の制御系
を示すブロック図である。
FIG. 1 is a block diagram showing a control system during cooling of a multi-room air conditioner of the present invention.

【図2】本発明の多室型空気調和装置の暖房時の制御系
を示すブロック図である。
FIG. 2 is a block diagram showing a control system during heating of the multi-room air conditioner of the present invention.

【図3】本発明の多室型空気調和装置の構成図である。FIG. 3 is a configuration diagram of a multi-room air conditioner of the present invention.

【図4】従来の多室型空気調和装置の制御系を示すブロ
ック図である。
FIG. 4 is a block diagram showing a control system of a conventional multi-room air conditioner.

【図5】従来の多室型空気調和装置の構成図である。FIG. 5 is a configuration diagram of a conventional multi-room air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 熱源側熱交換器 4 アキュムレータ 5 熱源機 61,62,63 利用側ユニット 71,72,73 利用側熱交換器 81,82,83 利用側膨張弁 91,92,93 流量調整弁 101,102,103 空調空間の温度検出端 111,112,113 送風ファン 121,122,123 空調空間 13 ガス側管路 14 液側管路 151,152,153 空調温度設定機 161,162,163 利用側膨張弁開度決定機 17 圧力検出端 171,172,173 送風ファン回転数決定機 181,182,183 流量調整弁開度決定機 191,192,193 過熱度検知機 201,202,203 過冷却度検知機 21 流量弁開度変換機 22 熱源側膨張弁 23 液側圧力検出端 24 圧力目標値演算機 25 熱源側膨張弁開度決定機 1 Compressor 2 Four-way valve 3 Heat source side heat exchanger 4 Accumulator 5 Heat source unit 61, 62, 63 Use side unit 71, 72, 73 Use side heat exchanger 81, 82, 83 Use side expansion valve 91, 92, 93 Flow rate Adjusting valve 101, 102, 103 Air-conditioning space temperature detection end 111, 112, 113 Blower fan 121, 122, 123 Air-conditioning space 13 Gas-side pipeline 14 Liquid-side pipeline 151, 152, 153 Air-conditioning temperature setting machine 161, 162 163 Use-side expansion valve opening determiner 17 Pressure detection end 171,172,173 Blower fan rotation speed determiner 181,182,183 Flow adjustment valve opening determiner 191,192,193 Superheat detector 201,202,203 Supercooling degree detector 21 Flow rate valve opening converter 22 Heat source side expansion valve 23 Liquid side pressure detection end 24 Pressure target value calculator 25 Heat source Expansion valve opening determining machine

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、弁、熱交換器、膨張弁等からな
る熱源ユニットと、熱交換器、熱交換器のガス側の流量
調整弁、熱交換器の液側の膨張弁等からなる複数の利用
側ユニットとを、ガス用配管、液用配管等に接続してな
る多室型空気調和装置において、 冷房運転時に上記各利用側ユニットが設置された各空調
空間の温度を測定する各温度測定手段と、 上記各空調空間の設定温度を入力された上記憶する各設
定温度記憶手段と、 前記各温度測定手段の測定値と該当する上記各空調空間
の設定値との差をもとめ、これから各空調空間の温度が
各設定温度に一致するように上記各流量調整弁の開度を
決定する各流量弁開度決定手段と、 前記各流量弁開度決定手段で決定された開度に基づいて
上記各流量調整弁を操作する各流量調整弁操作手段と、 上記各利用側熱交換器の各出口過熱度を検出する各出口
過熱度検出手段と、 前記各出口過熱度検出手段の検出した各出口過熱度をあ
らかじめ定められた各範囲に入るように上記各利用側膨
張弁の開度を決定する各膨張弁開度決定手段と、 前記各膨張弁開度決定手段で決定された開度に基づいて
上記各利用側膨張弁を操作する各利用側膨張弁操作手段
とを有していることを特徴とする多室型空気調和装置。
1. A heat source unit comprising a compressor, a valve, a heat exchanger, an expansion valve, etc., a heat exchanger, a gas side flow rate adjusting valve of the heat exchanger, a liquid side expansion valve of the heat exchanger, etc. In a multi-room air conditioner in which a plurality of use side units are connected to gas pipes, liquid pipes, etc., the temperature of each air-conditioned space in which each of the use side units is installed is measured during cooling operation. Temperature measuring means, each set temperature storage means for inputting and storing the set temperature of each air-conditioned space, and determining the difference between the measured value of each temperature measuring means and the corresponding set value of each air-conditioned space, From each of the flow valve opening degree determining means for determining the opening degree of each of the flow rate adjusting valves so that the temperature of each air-conditioned space matches each set temperature, and to the opening degree determined by each of the flow valve opening degree determining means. Flow control valve operating means for operating each flow control valve based on the above The outlet superheat detection means for detecting the outlet superheat degree of each of the use side heat exchangers, and the outlet superheat degree detected by the outlet superheat degree detection means so as to fall within each of the predetermined ranges. Expansion valve opening degree determining means for determining the opening degree of each usage side expansion valve, and each usage side expansion for operating each usage side expansion valve based on the opening degree determined by each expansion valve opening degree determining means A multi-room air conditioner having a valve operating means.
【請求項2】 圧縮機、弁、熱交換器、膨張弁等からな
る熱源ユニットと、熱交換器、熱交換器のガス側の流量
調整弁、熱交換器の液側の膨張弁等からなる複数の利用
側ユニットとを、ガス用配管、液用配管等にて接続して
なる多室型空気調和装置において、 暖房運転時に上記各利用側ユニットが設置された各空調
空間の温度を測定する各温度測定手段と、 上記各空調空間の設定温度を入力された上記憶する各設
定温度記憶手段と、 前記各温度測定手段の測定値と該当する上記各空調空間
の設定値との差をもとめ、これから各空調空間の温度を
各設定温度に一致するように上記各流量調整弁の開度を
決定する各流量弁開度決定手段と、 前記各流量弁開度決定手段で決定された開度に基づいて
上記各流量調整弁を操作する各流量調整弁操作手段と、 上記各利用側熱交換器の各出口過冷却度を検出する各出
口過冷却度検出手段と前記各出口過冷却度検出手段の検
出した各出口過冷却度をあらかじめ定められた各範囲に
入るように上記各利用側膨張弁の開度を決定する各膨張
弁開度決定手段と、 前記各膨張弁開度決定手段で決定された開度に基づいて
上記各利用側膨張弁を操作する各利用側膨張弁操作手段
とを有していることを特徴とする多室型空気調和装置。
2. A heat source unit comprising a compressor, a valve, a heat exchanger, an expansion valve, etc., a heat exchanger, a gas side flow rate adjusting valve of the heat exchanger, a liquid side expansion valve of the heat exchanger, etc. In a multi-room air conditioner in which multiple usage-side units are connected by gas piping, liquid piping, etc., measure the temperature of each air-conditioned space where each usage-side unit is installed during heating operation. Each temperature measurement means, each set temperature storage means for inputting and storing the set temperature of each air-conditioned space, and obtaining the difference between the measured value of each temperature measuring means and the corresponding set value of each air-conditioned space The flow valve opening degree determining means for determining the opening degree of each flow rate adjusting valve so that the temperature of each air-conditioned space matches the set temperature, and the opening degree determined by each flow valve opening degree determining means. Each flow rate adjusting valve operator who operates each of the above flow rate adjusting valves based on And each outlet supercooling degree detecting means for detecting each outlet supercooling degree of each of the utilization side heat exchangers and each outlet supercooling degree detected by each outlet supercooling degree detecting means within each predetermined range. Each expansion valve opening degree determining means for determining the opening degree of each usage side expansion valve so as to enter, and operating each of the usage side expansion valves based on the opening degree determined by each expansion valve opening degree determining means A multi-chamber type air conditioner comprising: each use-side expansion valve operating means.
【請求項3】 各利用側ユニットに送風する能力可変な
各送風ファンと、 前記各温度測定手段により、検出された各空調空間の温
度を参照して各空調空間の温度を設定値にするように前
記各送風ファンの回転数を決定する各送風ファン回転数
決定手段と、 前記各送風ファン回転数決定手段で決定された回転数に
基づいて各送風ファンを制御する各送風ファン制御手段
と、 前記各送風ファン回転数決定手段で決定された回転数の
全てが前記各送風ファン回転数各々の上限値以上か否か
を判断する全上限値判断手段と、 前記全上限値判断手段が全て上限以上と判断したときに
は、前記各流量弁開度決定手段の決定した開度を下記式
1に基づいて変換し、逆に少なくとも1つが前記各送風
ファンの回転数の上限値未満の場合には、前記各流量弁
開度決定手段の決定した開度を下記式2に基づいて変換
し、更にその変換結果を下記式1に基づいて変換するプ
ロセッサーを有する等した各流量弁開度変換手段と、 前記各流量弁開度変換手段によって決定された開度に基
づいて上記各流量調整弁を操作する各流量調整弁操作手
段とを有していることを特徴とする請求項1記載の多室
型空気調和装置。ここに、式1は、 ui =fi /(max(F)) F :fi /Vi ui :i番目の流量調整弁の変換後の開度 fi :i番目の流量弁開度決定手段が決定した流量調整
弁開度、または下記式2に基づく変換後の流量調整弁開
度。 Vi :i番目の流量調整弁の最大開度。 max(F):送風ファンの回転数が最大でない室内ユ
ニット中で、Fの最大値を選び出す関数。 ここに、式2は、 ui =min(fi ,Vi ) ui :i番目の流量調整弁の変換後の開度。 fi :i番目の流量弁開度決定手段が決定した流量調整
弁開度。 Vi :i番目の流量調整弁の最大開度。 min(fi ,Vi ):fi とVi の小さい方の値をと
る演算子
3. The temperature of each air-conditioned space is set to a set value by referring to the detected temperature of each air-conditioned space by each air-blowing fan whose capacity is variable to each usage-side unit and each temperature measuring means. Each blower fan rotation speed determining means for determining the rotation speed of each blower fan, each blower fan control means for controlling each blower fan based on the rotation speed determined by each blower fan rotation speed determining means, All upper limit value determining means for determining whether or not all of the rotation speeds determined by the respective blower fan rotation speed determining means are equal to or higher than the respective upper limit values of the respective blower fan rotation speeds, and all of the upper limit value determining means are upper limit values. When it is determined that the above, the opening determined by each flow valve opening determining means is converted based on the following formula 1, and conversely, when at least one is less than the upper limit value of the rotation speed of each blower fan, Opening each flow valve Each flow valve opening conversion means having a processor for converting the opening determined by the determining means based on the following equation 2 and further converting the conversion result based on the following equation 1, The multi-room air conditioner according to claim 1, further comprising: flow rate adjusting valve operating means for operating the flow rate adjusting valves based on the opening degree determined by the converting means. Here, the formula 1 is ui = fi / (max (F)) F: fi / Vi ui: The opening degree of the i-th flow control valve after conversion fi: The i-th flow valve opening determining means is determined. The flow control valve opening or the flow control valve opening after conversion based on the following equation 2. Vi: Maximum opening of the i-th flow rate adjusting valve. max (F): A function that selects the maximum value of F in the indoor unit in which the rotation speed of the blower fan is not the maximum. Here, the equation 2 is: ui = min (fi, Vi) ui: The opening degree of the i-th flow rate adjusting valve after conversion. fi: the flow control valve opening determined by the i-th flow valve opening determining means. Vi: Maximum opening of the i-th flow rate adjusting valve. min (fi, Vi): operator that takes the smaller value of fi and Vi
【請求項4】 各利用側ユニットに送風する能力可変な
各送風ファンと、 前記各温度測定手段により検出された各空調空間の温度
を参照して空調空間の温度を各設定値にするように前記
各送風ファンの回転数を決定する各送風ファン回転数決
定手段と、 前記各送風ファン回転数決定手段で決定された回転数に
基づいて各送風ファンを制御する各送風ファン制御手段
と、 前記各送風ファン回転数決定手段で決定された回転数の
全てが前記各送風ファン回転数各々の上限値以上か否か
を判断する全上限値判断手段と、 前記全上限値判断手段が全て上限値以上と判断したとき
には、前記各流量弁開度決定手段の決定した開度を下記
式1に基づいて変換し、逆に少なくとも1つが前記各送
風ファンの回転数の上限値未満の場合には、前記各流量
弁開度決定手段の決定した開度を下記式2に基づいて変
換し、更にその変換結果を下記式1に基づいて変換する
各流量弁開度変換手段と、 前記各流量弁開度変換手段によって決定された開度に基
づいて上記各流量調整弁を操作する各流量調整弁操作手
段とを有していることを特徴とする請求項2記載の多室
型空気調和装置。 ここに、式1は、 ui =fi /(max(F)) F :fi /Vi ui :i番目の流量調整弁の変換後の開度。 fi :i番目の流量弁開度決定手段が決定した流量調整
弁開度、または下記式2に基づく変換後の流量調整弁開
度。 Vi :i番目の流量調整弁の最大開度。 max(F):送風ファンの回転数が最大でない室内ユ
ニット中で、Fの最大値を選び出す関数。 ここに、式2は、 ui =min(fi ,Vi ) ui :i番目の流量調整弁の変換後の開度。 fi :i番目の流量弁開度決定手段が決定した流量調整
弁開度。 Vi :i番目の流量調整弁の最大開度。 min(fi ,Vi ):fi とVi の小さい方の値をと
る演算子
4. The temperature of the air-conditioned space is set to each set value by referring to each air-blowing fan whose capacity is variable to each user-side unit and the temperature of each air-conditioned space detected by each of the temperature measuring means. Each blower fan rotation speed determining means for determining the rotation speed of each blower fan, each blower fan control means for controlling each blower fan based on the rotation speed determined by each blower fan rotation speed determining means, and All upper limit value determination means for determining whether or not all of the rotation speeds determined by each blower fan rotation speed determination means are equal to or more than the respective upper limit values of the respective blower fan rotation speeds, and all of the upper limit value determination means are upper limit values. When it is determined that the above, the opening determined by each flow valve opening determining means is converted based on the following formula 1, and conversely, when at least one is less than the upper limit value of the rotation speed of each blower fan, Opening each flow valve It is determined by each flow valve opening conversion means for converting the opening determined by the determination means based on the following equation 2 and further converting the conversion result based on the following equation 1 and each of the flow valve opening conversion means. The multi-room air conditioner according to claim 2, further comprising: each flow rate adjusting valve operating means for operating each of the flow rate adjusting valves based on the opening degree. Here, Formula 1 is ui = fi / (max (F)) F: fi / Viui: The opening degree after conversion of the i-th flow regulating valve. fi: the flow control valve opening determined by the i-th flow valve opening determining means, or the flow control valve opening after conversion based on the following equation (2). Vi: Maximum opening of the i-th flow rate adjusting valve. max (F): A function that selects the maximum value of F in the indoor unit in which the rotation speed of the blower fan is not the maximum. Here, the equation 2 is: ui = min (fi, Vi) ui: The opening degree of the i-th flow rate adjusting valve after conversion. fi: the flow control valve opening determined by the i-th flow valve opening determining means. Vi: Maximum opening of the i-th flow rate adjusting valve. min (fi, Vi): operator that takes the smaller value of fi and Vi
【請求項5】 利用側ユニットの全熱交換器出口の過冷
却度を検出する各過冷却度検出手段と、 上記熱源側の膨張弁の液側圧力を検出する液側圧力検出
手段と、 前記各過冷却度検出手段と前記液側圧力検出手段の現在
の検出結果をもとにあらかじめ定められた範囲に全過冷
却度が入ることとなる液側圧力の目標値を演算により求
める圧力目標値演算手段と、 液側圧力が、前記圧力目標値演算手段の演算結果に一致
するように上記熱源側の膨張弁を操作する熱源側膨張弁
操作手段とを有していることを特徴とする請求項4記載
の多室型空気調和装置。
5. A subcooling degree detecting means for detecting a subcooling degree at an outlet of a total heat exchanger of a utilization side unit, a liquid side pressure detecting means for detecting a liquid side pressure of the expansion valve on the heat source side, A pressure target value obtained by calculation of a liquid side pressure target value at which the total supercooling degree falls within a predetermined range based on the current detection results of each subcooling degree detection means and the liquid side pressure detection means. A heat source side expansion valve operating means for operating the expansion valve on the heat source side so that the liquid side pressure matches the calculation result of the pressure target value calculation means. Item 4. The multi-room air conditioner according to Item 4.
【請求項6】 休止している利用側ユニットがあれば、
これを検出して、その流量調整弁を微開として、内部の
冷媒を排出させる流量調整弁微開操作制御手段を有して
いることを特徴とする請求項3記載の多室型空気調和装
置。
6. If there is a dormant user unit,
4. The multi-room air conditioner according to claim 3, further comprising a flow rate adjustment valve fine opening operation control unit that detects this and finely opens the flow rate adjustment valve to discharge the internal refrigerant. .
【請求項7】 休止している利用側ユニットがあればこ
れを検出して、その流量調整弁を全閉とし、対応する利
用側の膨張弁を微開として、内部に前記利用側ユニット
運転時と同等量の冷媒を貯溜させる流量調整弁、膨張弁
微開制御手段を有していることを特徴とする請求項5記
載の多室型空気調和装置。
7. When there is a suspended user side unit, this is detected, the flow control valve is fully closed, the corresponding expansion valve on the user side is slightly opened, and when the user side unit is in operation. 6. The multi-room air conditioner according to claim 5, further comprising a flow rate adjusting valve for accumulating an amount of refrigerant equivalent to the above, and an expansion valve slight opening control means.
JP31838594A 1994-12-21 1994-12-21 Multi-room type air conditioner Pending JPH08178448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31838594A JPH08178448A (en) 1994-12-21 1994-12-21 Multi-room type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31838594A JPH08178448A (en) 1994-12-21 1994-12-21 Multi-room type air conditioner

Publications (1)

Publication Number Publication Date
JPH08178448A true JPH08178448A (en) 1996-07-12

Family

ID=18098568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31838594A Pending JPH08178448A (en) 1994-12-21 1994-12-21 Multi-room type air conditioner

Country Status (1)

Country Link
JP (1) JPH08178448A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308392A (en) * 2005-07-08 2005-11-04 Mitsubishi Electric Corp Air conditioner
JP2009250479A (en) * 2008-04-03 2009-10-29 Sharp Corp Air conditioner
US7824725B2 (en) 2007-03-30 2010-11-02 The Coca-Cola Company Methods for extending the shelf life of partially solidified flowable compositions
CN106545958A (en) * 2016-10-11 2017-03-29 广东美的暖通设备有限公司 The decision method that multiple on-line system and its indoor set refrigerating capacity are not enough
JP2019163907A (en) * 2018-03-20 2019-09-26 三菱電機株式会社 Air conditioner and air conditioning system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308392A (en) * 2005-07-08 2005-11-04 Mitsubishi Electric Corp Air conditioner
JP4566845B2 (en) * 2005-07-08 2010-10-20 三菱電機株式会社 Air conditioner
US7824725B2 (en) 2007-03-30 2010-11-02 The Coca-Cola Company Methods for extending the shelf life of partially solidified flowable compositions
JP2009250479A (en) * 2008-04-03 2009-10-29 Sharp Corp Air conditioner
CN106545958A (en) * 2016-10-11 2017-03-29 广东美的暖通设备有限公司 The decision method that multiple on-line system and its indoor set refrigerating capacity are not enough
CN106545958B (en) * 2016-10-11 2019-07-26 广东美的暖通设备有限公司 Multi-line system and its insufficient determination method of indoor unit refrigerating capacity
JP2019163907A (en) * 2018-03-20 2019-09-26 三菱電機株式会社 Air conditioner and air conditioning system

Similar Documents

Publication Publication Date Title
KR101462745B1 (en) Control device for an air-conditioning device and air-conditioning device provided therewith
AU2016202855B2 (en) Refrigeration apparatus
JP5046895B2 (en) Air conditioner and operation control method thereof
JP6493432B2 (en) Air conditioner
EP3690356A1 (en) Refrigeration cycle device
JP5689079B2 (en) Refrigeration cycle equipment
WO2019116599A1 (en) Air-conditioning device and air-conditioning system
JP2001248937A (en) Heat pump hot water supply air conditioner
US20060207273A1 (en) Method of controlling over-load cooling operation of air conditioner
JP2018204898A (en) Control device of multiple air conditioner, multiple air conditioner, control method of multiple air conditioner, and control program of multiple air conditioner
JPH04131645A (en) Defrosting operation control device for air conditioner
JP2010007996A (en) Trial operation method of air conditioner and air conditioner
KR20060124960A (en) Cool mode control method of air conditioner
JPH08178448A (en) Multi-room type air conditioner
KR101064412B1 (en) Method and apparatus for sensing refrigerants leakage of multi type air conditioner
CN114127479B (en) Refrigerating device
JP2007315648A (en) Refrigerating device
JP2003254635A (en) Multi-chamber type air conditioner
JP2001012787A (en) Multi-chamber type air conditioner, having not less than two pieces of bypass line, and bypassing amount control method thereof
CN113883579A (en) Water system air conditioner
JPH09178247A (en) Controller for multi-room air conditioning equipment
JPH07158937A (en) Controller for refrigerating cycle
KR101075299B1 (en) Air conditioner and method of controlling the same
JP2003042585A (en) Air conditioner
JP3834905B2 (en) Multi-room air conditioner