JP5046895B2 - Air conditioner and operation control method thereof - Google Patents

Air conditioner and operation control method thereof Download PDF

Info

Publication number
JP5046895B2
JP5046895B2 JP2007315668A JP2007315668A JP5046895B2 JP 5046895 B2 JP5046895 B2 JP 5046895B2 JP 2007315668 A JP2007315668 A JP 2007315668A JP 2007315668 A JP2007315668 A JP 2007315668A JP 5046895 B2 JP5046895 B2 JP 5046895B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
temperature
outlet
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007315668A
Other languages
Japanese (ja)
Other versions
JP2009139014A (en
Inventor
直史 竹中
慎一 若本
圭介 外囿
史武 畝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007315668A priority Critical patent/JP5046895B2/en
Publication of JP2009139014A publication Critical patent/JP2009139014A/en
Application granted granted Critical
Publication of JP5046895B2 publication Critical patent/JP5046895B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

この発明は、1台の室外機に複数台の室内機を接続し、各室内機の電子式膨張弁で各室内機に分配する冷媒流量を制御する多室形空気調和装置に関し、特に、冷房運転時に成績係数COP(Coefficient of Performance)が高い状態で運転を行い、省エネルギ化を図ることができる空気調和装置およびその運転制御方法に関するものである。   The present invention relates to a multi-room air conditioner in which a plurality of indoor units are connected to a single outdoor unit, and a refrigerant flow rate distributed to each indoor unit is controlled by an electronic expansion valve of each indoor unit. The present invention relates to an air conditioner that can be operated with a high coefficient of performance (COP) during operation and can save energy, and an operation control method thereof.

近年、1台の室外機に複数台の室内機を接続した多室形空気調和装置が、室外の省スペース性や小電源容量の利点から、その需要を伸ばしている。従来、この多室形空気調和装置において、冷房運転時に運転中の室内機の容量が異なっていても、各室内機の冷媒配管内に備えられた絞り手段を用いて各室内熱交換器出口の冷媒の過熱度SHを個々に制御することにより、各室内機へ供給する冷媒流量を適正に制御することが提案されている。例えば、特許文献1,2に記載された従来の多室形空気調和装置では、能力ランクが異なる複数の室内熱交換器出口の過熱度SHを一定に制御することにより必要能力に応じた冷媒流量制御を行っていた。   In recent years, demand for a multi-room air conditioner in which a plurality of indoor units are connected to a single outdoor unit has increased due to the advantages of outdoor space saving and small power supply capacity. Conventionally, in this multi-room air conditioner, even if the capacity of the indoor unit being operated during the cooling operation is different, the expansion means provided in the refrigerant pipe of each indoor unit is used to It has been proposed to appropriately control the flow rate of refrigerant supplied to each indoor unit by individually controlling the superheat degree SH of the refrigerant. For example, in the conventional multi-room air conditioners described in Patent Documents 1 and 2, the refrigerant flow rate according to the required capacity is controlled by controlling the degree of superheat SH at a plurality of indoor heat exchanger outlets having different capacity ranks to be constant. I was doing control.

また、従来、室外熱交換器の能力を効率よく利用するために、室外熱交換器出口の冷媒の過冷却度SCを制御する冷媒循環式熱移動装置が提案されている。例えば、特許文献3に記載された従来の冷媒循環式熱移動装置では、バイパス配管内に備えられた絞り手段を用いて室外熱交換器出口の冷媒の過冷却度SCを制御していた。   Conventionally, in order to efficiently use the capacity of the outdoor heat exchanger, a refrigerant circulation heat transfer device that controls the degree of supercooling SC of the refrigerant at the outlet of the outdoor heat exchanger has been proposed. For example, in the conventional refrigerant circulation heat transfer device described in Patent Document 3, the degree of supercooling SC of the refrigerant at the outlet of the outdoor heat exchanger is controlled using the throttle means provided in the bypass pipe.

特開平5−79721号公報JP-A-5-79721 特開2005−16782号公報JP 2005-16782 A 特開平11−182944号公報JP 11-182944 A

この種の多室形空気調和装置では、空気の温度条件、熱負荷、および室内機の運転台数などの条件が異なれば、COPが高い状態で運転できる好適な冷媒充填量は異なるが、通常は冷媒回路内の冷媒充填量は容易に変更できない。
従来の多室形空気調和装置では、室内熱交換器出口の冷媒の過熱度SHの制御により各室内機の冷媒流量を制御しているので、空気の温度条件、熱負荷、および室内機の運転台数などの条件により冷媒充填量が適正でない場合、余剰冷媒が発生する虞がある。そして、余剰冷媒が発生した場合には、余剰冷媒が高圧側の要素機器に滞留することで必要以上に圧縮動力が増大し、効率的な運転を行うことができないという課題があった。
In this type of multi-room air conditioner, if the conditions such as the temperature condition of the air, the heat load, and the number of operating indoor units are different, the preferred refrigerant charge amount that can be operated with a high COP is different. The refrigerant charge amount in the refrigerant circuit cannot be easily changed.
In the conventional multi-room air conditioner, the refrigerant flow rate of each indoor unit is controlled by controlling the superheat degree SH of the refrigerant at the outlet of the indoor heat exchanger, so that the air temperature conditions, the heat load, and the operation of the indoor unit If the refrigerant charging amount is not appropriate due to conditions such as the number of units, excess refrigerant may be generated. Then, when surplus refrigerant is generated, the surplus refrigerant stays in the high-pressure element device, so that there is a problem that the compression power increases more than necessary and efficient operation cannot be performed.

また、従来の冷媒循環式熱移動装置では、室内機側の絞り手段については制御を行わず、室外熱交換器出口の冷媒の過冷却度SCのみを制御しているので、空気の温度条件、および熱負荷の変化などにより絞り手段の冷媒の入口状態および出口状態が変わってしまうため、各室内機に流入する冷媒流量を適切に調整できず、効率的な運転を行うことができないという課題があった。   Further, in the conventional refrigerant circulation heat transfer device, the throttle means on the indoor unit side is not controlled, and only the supercooling degree SC of the refrigerant at the outdoor heat exchanger outlet is controlled. Since the refrigerant inlet state and outlet state of the throttle means change due to changes in the heat load and the like, there is a problem that the refrigerant flow rate flowing into each indoor unit cannot be adjusted appropriately and efficient operation cannot be performed. there were.

この発明は、上記課題を解決するためになされたもので、適切な冷媒流量制御を行うとともに、高圧側の要素機器に滞留する余剰冷媒の処理を行うことにより、空気の温度条件、室内機の運転台数、熱負荷、および封入された冷媒量に合わせて効率的な運転を行い、省エネルギ化を図ることができる空気調和装置およびその運転制御方法を得ることを目的とする。   The present invention has been made to solve the above-mentioned problems, and performs appropriate refrigerant flow rate control and processing of surplus refrigerant staying in the high-pressure side element device, so that the temperature conditions of the air, the indoor unit It is an object of the present invention to obtain an air conditioner and an operation control method thereof that can perform efficient operation in accordance with the number of operating units, heat load, and amount of refrigerant enclosed, and can save energy.

この発明による空気調和装置は、圧縮機、室外熱交換器、およびアキュムレータを有した室外機と、室内熱交換器、および上記室内熱交換器の第1絞り手段を有した複数の室内機と、制御手段と、を備え、液配管の一端を上記室外熱交換器の出口に接続し、他端を分岐してそれぞれ上記第1絞り手段を介して上記室内熱交換器の入口に接続し、かつガス配管の一端を上記アキュムレータに接続し、他端を分岐してそれぞれ上記室内熱交換器の出口に接続して、冷媒が上記圧縮機、上記室外熱交換器、上記第1絞り手段、上記室内熱交換器、上記アキュムレータ、上記圧縮機の順に環状に循環する冷媒回路を構成して冷房運転を行う。さらに、本空気調和装置は、上記液配管とアキュムレータとを連通するバイパス配管と、上記バイパス配管に配設された第2絞り手段と、上記室内熱交換器の出口の冷媒温度を検出する冷媒温度検出手段および蒸発温度を検出する蒸発温度検出手段と、上記室外熱交換器の出口の冷媒温度を検出する冷媒温度検出手段および凝縮温度を検出する凝縮温度検出手段と、上記液配管の上記室外熱交換器の出口の冷媒と上記バイパス配管の上記第2絞り手段の出口の冷媒との間で熱交換を行う内部熱交換器と、を備えている。そして、上記制御手段が、上記室内熱交換器それぞれの出口の冷媒の凝縮温度と冷媒温度との差温に基づいて冷媒の過熱度を算出し、該過熱度に基づいて上記第1絞り手段の開度を制御して上記室内熱交換器それぞれに流入する冷媒流量を調整するとともに、上記室外熱交換器の出口の冷媒の過冷却度に閾値を設け、上記室外熱交換器の出口の冷媒の蒸発温度と冷媒温度との差温に基づいて冷媒の過冷却度を算出し、算出された当該過冷却度が所定の範囲内の場合には当該過冷却度に基づいて上記第2絞り手段の開度を制御し、算出された当該過冷却度が所定の範囲外の場合には上記バイパス配管の上記内部熱交換器の出口の冷媒の凝縮温度と冷媒温度との差温に基づいて冷媒の過熱度を算出し、算出された当該過熱度に基づいて上記第2絞り手段の開度を制御して上記室外熱交換器の出口に滞留する余剰冷媒を上記バイパス配管を介して上記アキュムレータに戻すように構成されている。
An air conditioner according to the present invention includes a compressor, an outdoor heat exchanger, an outdoor unit having an accumulator, an indoor heat exchanger, and a plurality of indoor units having a first throttle means of the indoor heat exchanger, Control means, one end of the liquid pipe is connected to the outlet of the outdoor heat exchanger, the other end is branched and connected to the inlet of the indoor heat exchanger via the first throttle means, and One end of the gas pipe is connected to the accumulator, the other end is branched and connected to the outlet of the indoor heat exchanger, and the refrigerant is the compressor, the outdoor heat exchanger, the first throttle means, the indoor A refrigerant circuit that circulates in the order of the heat exchanger, the accumulator, and the compressor is configured to perform the cooling operation. The air conditioner further includes a bypass pipe that communicates the liquid pipe and the accumulator, a second throttle means disposed in the bypass pipe, and a refrigerant temperature that detects a refrigerant temperature at the outlet of the indoor heat exchanger. A detecting means, an evaporating temperature detecting means for detecting the evaporating temperature, a refrigerant temperature detecting means for detecting the refrigerant temperature at the outlet of the outdoor heat exchanger, a condensing temperature detecting means for detecting the condensing temperature, and the outdoor heat of the liquid pipe. An internal heat exchanger that exchanges heat between the refrigerant at the outlet of the exchanger and the refrigerant at the outlet of the second throttling means of the bypass pipe. The control means calculates the degree of superheat of the refrigerant based on the difference between the refrigerant condensing temperature and the refrigerant temperature at the outlet of each of the indoor heat exchangers, and based on the degree of superheat, the first throttle means The amount of refrigerant flowing into each of the indoor heat exchangers is adjusted by controlling the opening, and a threshold is set for the degree of refrigerant subcooling at the outlet of the outdoor heat exchanger, and the refrigerant at the outlet of the outdoor heat exchanger is adjusted . A subcooling degree of the refrigerant is calculated based on a difference temperature between the evaporation temperature and the refrigerant temperature, and when the calculated subcooling degree is within a predetermined range, the second throttling means is operated based on the subcooling degree. When the calculated degree of supercooling is outside a predetermined range, the degree of refrigerant is controlled based on the difference between the refrigerant condensing temperature and the refrigerant temperature at the outlet of the internal heat exchanger of the bypass pipe. The degree of superheat is calculated, and the second throttle is calculated based on the calculated degree of superheat. The excess refrigerant by controlling the opening means staying in the outlet of the outdoor heat exchanger via the bypass pipe is configured to return to the accumulator.

この発明によれば、空気の温度条件、室内機の運転台数、熱負荷の変動などの条件に対して冷媒充填量が適正でない場合にも、適切な冷媒流量の制御を行うことができるとともに、余剰冷媒を処理することによりCOPが高い状態での運転を維持することができるので、効率的な運転を行うことができ、省エネルギ化を図ることができる。   According to the present invention, it is possible to appropriately control the refrigerant flow rate even when the refrigerant charging amount is not appropriate for conditions such as air temperature conditions, the number of indoor units operated, and fluctuations in heat load. Since the operation with the high COP can be maintained by processing the surplus refrigerant, efficient operation can be performed and energy saving can be achieved.

以下、この発明の実施の形態を、図を用いて説明する。
実施の形態1.
図1はこの発明の実施の形態1に係る空気調和装置を示す冷媒回路図である。
Embodiments of the present invention will be described below with reference to the drawings.
Embodiment 1 FIG.
1 is a refrigerant circuit diagram showing an air-conditioning apparatus according to Embodiment 1 of the present invention.

図1において、この空気調和装置は、1台の室外機に対して2台の室内機を備えた冷房専用の空気調和装置であり、冷媒を圧縮するための圧縮機1、室外熱交換器2、室外の空気を室外熱交換器2に導入する室外ファン2−aおよびアキュムレータ7を有する室外ユニットAと、室内熱交換器5および室内の空気を室内熱交換器5に導入する室内ファン5−aからなる室内機を2台有する室内ユニットBと、要素機器を駆動を制御する制御手段19と、を備える。なお、この実施の形態1では、室内ユニットBが2台の室内機を有するものとしているが、室内機の台数は2台に限定されるのではなく、3台以上の室内機を有していてもよい。   In FIG. 1, this air conditioner is an air conditioner dedicated to cooling provided with two indoor units for one outdoor unit, and includes a compressor 1 for compressing refrigerant and an outdoor heat exchanger 2. An outdoor unit A having an outdoor fan 2-a and an accumulator 7 for introducing outdoor air into the outdoor heat exchanger 2, and an indoor fan 5-introducing the indoor heat exchanger 5 and the indoor air into the indoor heat exchanger 5. The indoor unit B which has two indoor units which consist of a, and the control means 19 which controls a drive of elemental equipment are provided. In the first embodiment, the indoor unit B has two indoor units. However, the number of indoor units is not limited to two, but has three or more indoor units. May be.

圧縮機吐出側配管20の一端が圧縮機1の冷媒吐出口に接続され、他端が室外熱交換器2の入口に接続されている。液配管3の一端が室外熱交換器2の出口に接続され、他端が分岐して各室内熱交換器5の入口に接続されている。ガス配管6の一端がアキュムレータ7の上部に接続され、他端が分岐して各室内熱交換器5の出口に接続されている。圧縮機吸入側配管21の一端が圧縮機1の冷媒吸入口に接続され、他端がアキュムレータ7の上部に接続されている。さらに、バイパス配管8の一端が液配管3に接続され、他端がガス配管6に接続されている。また、第1絞り手段としての電子式膨張弁4が各室内機への分岐後の液配管3にそれぞれ設置され、第2絞り手段としての電子式膨張弁9がバイパス配管8に設置されている。   One end of the compressor discharge side pipe 20 is connected to the refrigerant discharge port of the compressor 1, and the other end is connected to the inlet of the outdoor heat exchanger 2. One end of the liquid pipe 3 is connected to the outlet of the outdoor heat exchanger 2, and the other end is branched and connected to the inlet of each indoor heat exchanger 5. One end of the gas pipe 6 is connected to the upper portion of the accumulator 7, and the other end is branched and connected to the outlet of each indoor heat exchanger 5. One end of the compressor suction side pipe 21 is connected to the refrigerant suction port of the compressor 1, and the other end is connected to the upper portion of the accumulator 7. Further, one end of the bypass pipe 8 is connected to the liquid pipe 3 and the other end is connected to the gas pipe 6. Moreover, the electronic expansion valve 4 as the first throttle means is installed in the liquid pipe 3 after branching to each indoor unit, and the electronic expansion valve 9 as the second throttle means is installed in the bypass pipe 8. .

冷媒の吐出圧力を検出する吐出圧力検出器11が圧縮機吐出側配管20に設けられ、冷媒の吸入圧力を検出する吸入圧力検出器12が圧縮機吸入側配管21に設けられている。冷媒温度検出器14が液配管3の室外熱交換器2の出口近傍に配設されている。冷媒温度検出器15、16が液配管3およびガス配管6の室内熱交換器5の出入り口近傍に配設されている。なお、冷媒温度検出器14〜16は、冷媒の温度を直接測る代わりに各配管の表面温度を測っても同様の効果が得られる。室内温度検出器17および外気温度検出器18が室内熱交換器5および室外熱交換器2のそれぞれの空気側に設けられ、空気側の代表温度として、例えば吸い込み温度を測る。なお、吐出圧力検出器11および吸入圧力検出器11,12が冷媒圧力検出手段に相当し、冷媒温度検出器14,15,16が冷媒温度検出手段に相当する。   A discharge pressure detector 11 for detecting the discharge pressure of the refrigerant is provided in the compressor discharge side pipe 20, and a suction pressure detector 12 for detecting the suction pressure of the refrigerant is provided in the compressor suction side pipe 21. A refrigerant temperature detector 14 is disposed near the outlet of the outdoor heat exchanger 2 in the liquid pipe 3. Refrigerant temperature detectors 15 and 16 are disposed in the vicinity of the entrance / exit of the indoor heat exchanger 5 in the liquid pipe 3 and the gas pipe 6. The refrigerant temperature detectors 14 to 16 can obtain the same effect by measuring the surface temperature of each pipe instead of directly measuring the refrigerant temperature. An indoor temperature detector 17 and an outdoor air temperature detector 18 are provided on the air side of each of the indoor heat exchanger 5 and the outdoor heat exchanger 2 and measure, for example, the suction temperature as a representative temperature on the air side. The discharge pressure detector 11 and the suction pressure detectors 11 and 12 correspond to refrigerant pressure detection means, and the refrigerant temperature detectors 14, 15, and 16 correspond to refrigerant temperature detection means.

制御手段19は、吐出圧力検出器11、吸入圧力検出器12、冷媒温度検出器14〜16、室内温度検出器17および外気温度検出器18の検出信号に基づいて、圧縮機1の駆動、室外ファン2−aのファンモータの駆動、電子式膨張弁4および9の開度、室内ファン5−aのファンモータの駆動を制御する。また、制御手段19は後述する温度、圧力の計測結果から各制御値を決定する関数などが格納されたメモリ19aを備えている。   The control means 19 drives the compressor 1 based on detection signals from the discharge pressure detector 11, the suction pressure detector 12, the refrigerant temperature detectors 14 to 16, the indoor temperature detector 17 and the outside air temperature detector 18. The driving of the fan motor of the fan 2-a, the opening degree of the electronic expansion valves 4 and 9, and the driving of the fan motor of the indoor fan 5-a are controlled. In addition, the control means 19 includes a memory 19a in which a function for determining each control value from temperature and pressure measurement results described later is stored.

このように構成された空気調和装置の動作について説明する。
まず、アキュムレータ7内の低温・低圧の冷媒ガスが圧縮機吸入側配管21を介して圧縮機1に吸入され、圧縮機1により圧縮され、高温・高圧の冷媒ガスとなって吐出され、圧縮機吐出側配管20を介して室外熱交換器2に導入される。室外熱交換器2に導入された高温・高圧の冷媒ガスは、室外ファン2−aにより室外熱交換器2に導入された室外の空気と熱交換され、室外の空気を加熱しながら、中温・高圧の冷媒となる。さらに、中温・高圧の冷媒は、液配管3を流通し、電子式膨張弁4にて減圧されて低温・低圧の気液二相状態の冷媒となり、液配管3を流通して室内熱交換器5に導入される。室内熱交換器5に導入された低温・低圧の気液二相状態の冷媒は、室内ファン5−aにより室内熱交換器5に導入された室内の空気と熱交換され、室内の空気を冷却しながら、低温・低圧の冷媒蒸気に変化する。低温・低圧の冷媒蒸気は、ガス配管6を流通してアキュムレータ7に戻される。アキュムレータ7に戻された冷媒は気液分離され、低温・低圧の冷媒ガスが圧縮機吸入側配管21を介して圧縮機1に吸入される。
The operation of the air conditioner configured as described above will be described.
First, the low-temperature and low-pressure refrigerant gas in the accumulator 7 is sucked into the compressor 1 through the compressor suction side pipe 21, is compressed by the compressor 1, and is discharged as high-temperature and high-pressure refrigerant gas. It is introduced into the outdoor heat exchanger 2 through the discharge side pipe 20. The high-temperature and high-pressure refrigerant gas introduced into the outdoor heat exchanger 2 is heat-exchanged with the outdoor air introduced into the outdoor heat exchanger 2 by the outdoor fan 2-a, and while the outdoor air is heated, It becomes a high-pressure refrigerant. Further, the medium-temperature and high-pressure refrigerant flows through the liquid pipe 3 and is decompressed by the electronic expansion valve 4 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant, and flows through the liquid pipe 3 and passes through the indoor heat exchanger. 5 is introduced. The low-temperature, low-pressure gas-liquid two-phase refrigerant introduced into the indoor heat exchanger 5 is heat-exchanged with the indoor air introduced into the indoor heat exchanger 5 by the indoor fan 5-a to cool the indoor air. However, it changes to low-temperature and low-pressure refrigerant vapor. The low-temperature and low-pressure refrigerant vapor flows through the gas pipe 6 and is returned to the accumulator 7. The refrigerant returned to the accumulator 7 is separated into gas and liquid, and low-temperature and low-pressure refrigerant gas is sucked into the compressor 1 through the compressor suction side pipe 21.

ここで、冷媒充填量が適正な冷媒量よりも多い場合には、余剰冷媒は室外熱交換器2から液配管3、およびバイパス配管8を流通し、電子式膨張弁9にて減圧されて低温・低圧の気液二相状態の冷媒となり、バイパス配管8を流通して、ガス配管6を流れる冷房を行った後の冷媒蒸気と合流し、アキュムレータ7に戻される。   Here, when the refrigerant charging amount is larger than the appropriate refrigerant amount, the surplus refrigerant flows from the outdoor heat exchanger 2 through the liquid pipe 3 and the bypass pipe 8 and is decompressed by the electronic expansion valve 9 to be cooled at a low temperature. It becomes a low-pressure gas-liquid two-phase refrigerant, flows through the bypass pipe 8, joins with the refrigerant vapor after cooling through the gas pipe 6, and returns to the accumulator 7.

このように、冷媒が、図1に実線の矢印で示されるように、圧縮機1→圧縮機吐出側配管20→室外熱交換器2→液配管3→電子式膨張弁4→室内熱交換器5→ガス配管6→アキュムレータ7→圧縮機吸入側配管21→圧縮機1の順で冷媒回路内を循環し、冷房運転が行われるとともに、余剰冷媒が室外熱交換器2→液配管3→バイパス配管8→電子式膨張弁9→ガス配管6→アキュムレータ7と流動する。   Thus, as indicated by solid arrows in FIG. 1, the refrigerant is compressor 1 → compressor discharge side pipe 20 → outdoor heat exchanger 2 → liquid pipe 3 → electronic expansion valve 4 → indoor heat exchanger. 5 → Gas pipe 6 → Accumulator 7 → Compressor suction side pipe 21 → Compressor 1 is circulated in the refrigerant circuit in order and cooling operation is performed, and excess refrigerant is added to the outdoor heat exchanger 2 → liquid pipe 3 → bypass. Pipe 8 → electronic expansion valve 9 → gas pipe 6 → accumulator 7 flows.

つぎに、バイパス配管8を使用して余剰冷媒を処理した場合としなかった場合のサイクルの挙動、およびCOPについて図2〜図7を用いて説明する。図2は冷媒回路内の冷媒充填量M[kg]に対する高圧側圧力P[MPa]の変化を示し、図3は冷媒回路内の冷媒充填量M[kg]に対する室外熱交換器出口の過冷却度SC[℃]の変化を示し、図4は冷媒回路内の冷媒充填量M[kg]に対する室外熱交換器出口の冷媒温度Tref[℃]の変化を示し、図5は冷媒回路内の冷媒充填量M[kg]に対するCOP[−]の変化を示し、図6は余剰冷媒処理の制御を行わなかった場合のP−h線図を示し、図7は余剰冷媒処理の制御を行った場合のP−h線図を示している。なお、各図において、A点は冷媒充填量Mが過少な場合、B点は冷媒充填量Mが適正になっている場合、C、D点は冷媒充填量Mが過大な場合である。 Next, the behavior of the cycle and the COP when the surplus refrigerant is treated using the bypass pipe 8 and when the surplus refrigerant is not treated will be described with reference to FIGS. FIG. 2 shows a change in the high-pressure side pressure P H [MPa] with respect to the refrigerant charge amount M [kg] in the refrigerant circuit, and FIG. 3 shows the excess of the outdoor heat exchanger outlet with respect to the refrigerant charge amount M [kg] in the refrigerant circuit. FIG. 4 shows the change in the refrigerant temperature T ref [° C.] at the outlet of the outdoor heat exchanger with respect to the refrigerant charge amount M [kg] in the refrigerant circuit, and FIG. 6 shows a change in COP [−] with respect to the refrigerant charge amount M [kg], FIG. 6 shows a Ph diagram when the surplus refrigerant process is not controlled, and FIG. 7 performs the surplus refrigerant process control. The Ph diagram in this case is shown. In each figure, point A is when the refrigerant charging amount M is too small, point B is when the refrigerant charging amount M is appropriate, and points C and D are when the refrigerant charging amount M is excessive.

バイパス回路を使用せず余剰冷媒を処理しなかった場合には、図2〜図4より、冷媒充填量の増大に対して高圧側圧力P、および過冷却度SCは増大し、室外熱交換器出口の冷媒温度Trefは減少することがわかる。そして、図6に示されるように、冷媒充填量MがA点からB点まで増大すると、冷媒を高圧側圧力Pまで圧縮する圧縮機の入力仕事は増大するものの、室外熱交換器出口の比エンタルピhref[kJ/kg]も大きく減少する。そこで、冷媒を高圧側圧力Pまで圧縮する圧縮機の入力仕事の増大分の割合に対して、室外熱交換器出口の比エンタルピhrefが減少することによる冷房能力の増大分の割合が大きくなることから、COPは上昇することがわかる。一方、図6に示されるように、冷媒充填量MがB点からC点、D点と増大すると、冷媒を高圧側圧力Pまで圧縮する圧縮機の入力仕事は増大するものの、室外熱交換器出口の比エンタルピhrefがあまり減少しなくなる。そこで、冷媒を高圧側圧力Pまで圧縮する圧縮機の入力仕事の増大分の割合に対して、室外熱交換器出口の比エンタルピhrefが減少することによる冷房能力の増大分の割合が小さくなることから、COPは低下することがわかる。従って、図5に示されるように、COPは、冷媒充填量Mの増大に対して増大し、B点で極大値をとり、その後減少する。 When the surplus refrigerant is not processed without using the bypass circuit, as shown in FIGS. 2 to 4, the high pressure side pressure P H and the degree of supercooling SC increase as the refrigerant charging amount increases, and the outdoor heat exchange is performed. It can be seen that the refrigerant temperature Tref at the outlet of the vessel decreases. Then, as shown in FIG. 6, the refrigerant filling amount M of the increases from point A to point B, although the input work of a compressor for compressing refrigerant to a high pressure side pressure P H is increased, the outdoor heat exchanger outlet The specific enthalpy h ref [kJ / kg] is also greatly reduced. Therefore, with respect to the percentage of increase of the input work of a compressor for compressing refrigerant to a high pressure side pressure P H, the ratio of the amount of increase in the cooling capacity due to the specific enthalpy h ref of the outdoor heat exchanger outlet is significantly reduced From this, it can be seen that COP increases. On the other hand, as shown in FIG. 6, C-point refrigerant charge M from point B, increasing the D point, although the input work of a compressor for compressing refrigerant to a high pressure side pressure P H is increased, the outdoor heat exchanger The specific enthalpy h ref at the outlet of the vessel will not decrease much. Therefore, with respect to the percentage of increase of the input work of a compressor for compressing refrigerant to a high pressure side pressure P H, the ratio of the amount of increase in the cooling capacity due to the specific enthalpy h ref of the outdoor heat exchanger outlet is reduced smaller Therefore, it can be seen that COP decreases. Therefore, as shown in FIG. 5, the COP increases with an increase in the refrigerant charging amount M, takes a maximum value at the point B, and then decreases.

一方、バイパス回路を使用して余剰冷媒を処理した場合には、圧縮機で圧縮し、室外熱交換器で冷却した一部の冷媒をそのままアキュムレータに戻すことになるため、高圧側圧力P、室外熱交換器出口の過冷却度SC、および室外熱交換器出口の冷媒温度Trefは、冷媒充填量MがB点以上でほぼ一定となる。そこで、冷媒充填量MがB点以上で高圧側圧力Pがほぼ一定となるので、図7に示されるように、C、DのサイクルがBのサイクルとほぼ等しくなり、余剰冷媒を処理しない場合に比べて圧縮機の入力仕事を減らすことができる。また、圧縮機入口のSHを減少させることにより、吸入冷媒の比エントロピs[kJ/(kg・K)]が減少し、圧縮機の入力仕事を減らすことができる。これらの効果により、図5に示されるように、冷媒充填量Mが適正量(B点)よりも過大であっても、そのCOPは、適正な冷媒量の場合とほとんど変わらなくなる。 On the other hand, when treated with excess refrigerant by using a bypass circuit, since compressed by the compressor, will return a portion of refrigerant cooled in the outdoor heat exchanger directly to the accumulator, the high side pressure P H, The degree of supercooling SC at the outlet of the outdoor heat exchanger and the refrigerant temperature T ref at the outlet of the outdoor heat exchanger become substantially constant when the refrigerant charging amount M is at or above the B point. Therefore, the refrigerant filling amount M of the high-pressure side pressure P H is substantially constant at least point B, as shown in FIG. 7, C, cycle D is approximately equal to the cycle of the B, it does not process the excess refrigerant Compared to the case, the input work of the compressor can be reduced. Further, by reducing the SH at the compressor inlet, the specific entropy s [kJ / (kg · K)] of the suction refrigerant is reduced, and the input work of the compressor can be reduced. Due to these effects, as shown in FIG. 5, even if the refrigerant charging amount M is larger than the appropriate amount (point B), the COP is almost the same as the case of the appropriate refrigerant amount.

このように、冷媒充填量Mが適正量よりも過大である場合には、余剰冷媒を処理することによって、高圧側圧力P、室外熱交換器出口の過冷却度SC、および室外熱交換器出口の冷媒温度Trefが一定となる。このことから、高圧側圧力P、室外熱交換器出口の過冷却度SC、および室外熱交換器出口の冷媒温度Trefの一定となる値を制御目標値P 、SC、Tref として設定し、いずれかの指標によって、電子式膨張弁9の制御を行うことで、COPが高い状態で空気調和装置を運転することができる。 As described above, when the refrigerant charging amount M is larger than the appropriate amount, the excess refrigerant is processed to thereby increase the high-pressure side pressure P H , the degree of supercooling SC at the outdoor heat exchanger outlet, and the outdoor heat exchanger. The refrigerant temperature T ref at the outlet becomes constant. From this, the constant values of the high-pressure side pressure P H , the degree of supercooling SC at the outlet of the outdoor heat exchanger, and the refrigerant temperature T ref at the outlet of the outdoor heat exchanger are set to control target values P H * , SC * , T ref By setting as * and controlling the electronic expansion valve 9 according to any index, the air conditioner can be operated with a high COP.

例えば、高圧側圧力Pを制御指標にとった場合には、現在の高圧側圧力Pが高圧側圧力の制御目標値P よりも大きな場合は電子式膨張弁9の開度を開き、小さな場合には電子式膨張弁9の開度を閉じるように制御すればよい。同様に、室外熱交換器出口の過冷却度SCを制御指標にとった場合には、現在の過冷却度SCが過冷却度の制御目標値SCよりも大きな場合は電子式膨張弁9の開度を開き、小さな場合には電子式膨張弁9の開度を閉じるように制御すればよい。また、室外熱交換器出口の冷媒温度Trefを制御指標にとった場合には、現在の冷媒温度Trefが冷媒温度の制御目標値Tref よりも大きな場合は電子式膨張弁9の開度を閉じ、小さな場合には電子式膨張弁9の開度を開くように制御すればよい。 For example, when taking a high-pressure side pressure P H in the control indicator, if the current high-pressure side pressure P H is larger than the control target value P H * of the high-pressure side pressure to open the opening of the electronic expansion valve 9 In the case where it is small, the opening degree of the electronic expansion valve 9 may be controlled to be closed. Similarly, when the supercooling degree SC at the outlet of the outdoor heat exchanger is taken as a control index, if the current supercooling degree SC is larger than the control target value SC * of the supercooling degree, the electronic expansion valve 9 The opening degree may be opened, and if the opening degree is small, the opening degree of the electronic expansion valve 9 may be closed. When the refrigerant temperature T ref at the outlet of the outdoor heat exchanger is taken as a control index, if the current refrigerant temperature T ref is larger than the refrigerant temperature control target value T ref *, the electronic expansion valve 9 is opened. The degree may be closed, and if small, the opening of the electronic expansion valve 9 may be controlled to open.

なお、冷媒充填量Mが適正な充填量よりも過小である場合には、より多くの冷媒を室内機に送るために電子式膨張弁9は全閉にしたほうが良いが、例えば高圧側圧力Pを制御指標にとった場合には、冷媒充填量Mが過小であると、高圧側圧力Pが高圧側圧力の制御目標値P に届かないため、全閉になってもさらに閉じようとする制御を行い、上述の制御方法により、全閉を実現することができる。 If the refrigerant charging amount M is less than the appropriate charging amount, the electronic expansion valve 9 should be fully closed in order to send more refrigerant to the indoor unit. For example, the high pressure side pressure P when taking the H to the control indicator, the refrigerant charge M is too small, since the high-pressure side pressure P H does not reach the control target value P H * of the high-pressure side pressure, closed further be fully closed It is possible to achieve full closure by the control method described above.

ついで、熱負荷が大きな場合、小さな場合の各場合における電子式膨張弁4の開度に対するCOPの変化、および室内熱交換器出口の過熱度に対するCOPの変化について図8および図9を用いて説明する。図8は室内機の絞り手段の開度Cv[−]に対するCOP[−]の変化を示し、図9は室内熱交換器出口の過熱度SH[℃]に対するCOP[−]の変化を示している。   Next, the change in COP with respect to the opening degree of the electronic expansion valve 4 in each case when the heat load is large and small, and the change in COP with respect to the degree of superheat at the outlet of the indoor heat exchanger will be described with reference to FIGS. To do. FIG. 8 shows the change in COP [−] with respect to the opening degree Cv [−] of the throttle means of the indoor unit, and FIG. 9 shows the change in COP [−] with respect to the degree of superheat SH [° C.] at the outlet of the indoor heat exchanger. Yes.

図8より、熱負荷により電子式膨張弁4の出入り口の状態が変化するため、高いCOPを得るに好適な電子式膨張弁4の開度Cvが熱負荷の大きさにより変化することがわかる。また、図9より、高いCOPを得るに好適な室内熱交換器出口の過熱度SHが熱負荷の大きさに拘わらずほぼ一定になることがわかる。そこで、熱負荷によらず、室内熱交換器出口の過熱度SHを一定になるように電子式膨張弁4の開度Cvを制御すればCOPが高い状態で運転を行うことができる。なお、空気の温度が変化した場合も同様である。   From FIG. 8, it can be seen that the state of the entrance / exit of the electronic expansion valve 4 changes depending on the thermal load, so that the opening Cv of the electronic expansion valve 4 suitable for obtaining a high COP changes depending on the magnitude of the thermal load. Further, FIG. 9 shows that the degree of superheat SH at the outlet of the indoor heat exchanger suitable for obtaining a high COP becomes substantially constant regardless of the magnitude of the heat load. Therefore, if the degree of opening Cv of the electronic expansion valve 4 is controlled so that the degree of superheat SH at the outlet of the indoor heat exchanger becomes constant regardless of the heat load, the operation can be performed with a high COP. The same applies when the temperature of the air changes.

以上のように、各室内熱交換器5出口の冷媒の過熱度SHを算出して、算出された過熱度SHに基づいて各室内熱交換器5の絞り手段(電子式膨張弁4)を用いて各室内機に流入する冷媒流量を制御するとともに、室外機出口に滞留する余剰冷媒をアキュムレータ7に戻すようにバイパス配管8の絞り手段(電子式膨張弁9)を用いて制御することにより、空気の温度条件や熱負荷が変動したり、冷媒充填量が適正でなく余剰冷媒が発生したりする等、運転条件が変動しても、COPが高い状態で空気調和装置を運転できる。   As described above, the superheat degree SH of the refrigerant at the outlet of each indoor heat exchanger 5 is calculated, and the throttle means (electronic expansion valve 4) of each indoor heat exchanger 5 is used based on the calculated superheat degree SH. By controlling the flow rate of the refrigerant flowing into each indoor unit using the throttle means (electronic expansion valve 9) of the bypass pipe 8 so as to return the excess refrigerant staying at the outlet of the outdoor unit to the accumulator 7, The air conditioner can be operated with a high COP even if the operating conditions fluctuate, such as fluctuations in the air temperature condition and thermal load, or the refrigerant charging amount is not appropriate and surplus refrigerant is generated.

つぎに、室内熱交換器5の出口での冷媒の過熱度SHに基づいて電子式膨張弁4の開度(Cν4)を制御して熱交換器5に流入する冷媒流量を調整する方法について図10を参照しつつ説明する。図10は電子式膨張弁9による室外熱交換器2の出口での冷媒の過冷却度SCの制御を説明するフローチャートであり、図中、便宜上、ステップ1〜5をS1〜S5としている。ここでは、制御手段19は、電子式膨張弁4の開度(Cν4)を、一定の間隔、例えば1分間隔で室内熱交換器5の出口での冷媒の過熱度SHの現在値と目標値の差をもとに比例制御を行っている。 Next, a method for adjusting the flow rate of the refrigerant flowing into the heat exchanger 5 by controlling the opening degree (C ν4 ) of the electronic expansion valve 4 based on the superheat degree SH of the refrigerant at the outlet of the indoor heat exchanger 5. This will be described with reference to FIG. FIG. 10 is a flowchart for explaining the control of the degree of supercooling SC of the refrigerant at the outlet of the outdoor heat exchanger 2 by the electronic expansion valve 9. In the drawing, steps 1 to 5 are designated S1 to S5 for convenience. Here, the control means 19 sets the opening degree (C ν4 ) of the electronic expansion valve 4 to the current value of the superheat degree SH of the refrigerant at the outlet of the indoor heat exchanger 5 and the target at a constant interval, for example, 1 minute. Proportional control is performed based on the difference in values.

まず、ステップ1において、制御機器の制御値である電子式膨張弁4の開度(Cν4)の初期値を出力する。ついで、ステップ2において、冷媒温度検出器16による検出温度と冷媒温度検出器15による検出温度との温度差、または吸入圧力検出器12による検出圧力に基づく蒸発温度と冷媒温度検出器15による検出温度との温度差をもとに、現在の室内熱交換器5の出口での冷媒の過熱度SHを算出する。ここで、制御手段19が吸入圧力検出器12の検出圧力に基づいて蒸発温度を算出しており、制御手段19が吸入圧力検出器12とともに蒸発温度検出手段を構成する。また、吸入圧力検出器12の検出圧力に基づいて算出された冷媒の蒸発温度は、室内熱交換器5の入口での冷媒温度に一致することから、冷媒温度検出器16も蒸発温度検出手段として機能する。ついで、ステップ3において、式(1)により、算出された過熱度SHの目標値(目標過熱度SH)からの差異が設定した許容範囲ε内に入っているかの確認を行う。
|SH−SH|<ε ・・・式(1)
First, in step 1, an initial value of the opening degree (C ν4 ) of the electronic expansion valve 4 that is a control value of the control device is output. Next, in step 2, the temperature difference between the temperature detected by the refrigerant temperature detector 16 and the temperature detected by the refrigerant temperature detector 15, or the evaporation temperature based on the pressure detected by the suction pressure detector 12 and the temperature detected by the refrigerant temperature detector 15. Based on the difference in temperature, the superheat degree SH of the refrigerant at the outlet of the current indoor heat exchanger 5 is calculated. Here, the control means 19 calculates the evaporation temperature based on the detected pressure of the suction pressure detector 12, and the control means 19 constitutes the evaporation temperature detection means together with the suction pressure detector 12. Further, since the refrigerant evaporation temperature calculated based on the detected pressure of the suction pressure detector 12 matches the refrigerant temperature at the inlet of the indoor heat exchanger 5, the refrigerant temperature detector 16 is also used as the evaporation temperature detecting means. Function. Next, carried out in step 3 by the equation (1), if the difference from the calculated degree of superheat target value of SH (the target degree of superheat SH *) is within the allowable range epsilon 1 set confirmation.
| SH-SH * | <ε 1 Formula (1)

現在の過熱度SHの目標過熱度SHからの差異が設定した許容範囲内に入っている場合には、電子式膨張弁4の開度(Cν4)を維持して運転する。また、当該差異が設定した許容範囲内に入っていない場合には、ステップ4に移行する。 When the difference between the current superheat degree SH and the target superheat degree SH * is within the set allowable range, the electronic expansion valve 4 is operated while maintaining the opening degree (C ν4 ). If the difference is not within the set allowable range, the process proceeds to step 4.

ステップ4では、現在の過熱度SHと目標過熱度SHとの差異に基づいて電子式膨張弁4の開度の調整量ΔCν4を算出し、ステップ5に移行する。ここでは、電子式膨張弁4の開度の調整量ΔCν4は式(2)に基づいて算出される。
ΔCν4=f(SH−SH) ・・・式(2)
なお、関数f(SH−SH)は、簡易的にはシステムに適当な定数aを設定して、a×(SH−SH)と設定すればよい。また、aを定数とおく代わりに、SHの時系列データをもとにaを変更すれば、収束性を早めることができる。
In step 4, the adjustment amount ΔC ν4 of the opening degree of the electronic expansion valve 4 is calculated based on the difference between the current superheat degree SH and the target superheat degree SH *, and the process proceeds to step 5. Here, the adjustment amount ΔC ν4 of the opening degree of the electronic expansion valve 4 is calculated based on the equation (2).
ΔC ν4 = f 1 (SH-SH * ) (2)
The function f 1 (SH-SH * ) may be simply set to a 1 × (SH-SH * ) by setting an appropriate constant a 1 for the system. Further, if a 1 is changed based on SH time-series data instead of setting a 1 as a constant, convergence can be accelerated.

ついで、ステップ5では、算出された電子式膨張弁4の開度の調整量ΔCν4に基づいて電子式膨張弁4の開度を修正、出力し、ステップ2に戻る。これにより、現在の過熱度SHが目標過熱度SHよりも大きな場合には、電子式膨張弁4の開度を現在値と目標値との差(SH−SH)に基づいて開ける。一方、現在の過熱度SHが目標過熱度SHよりも小さな場合には、電子式膨張弁4の開度を現在値と目標値との差(SH−SH)に基づいて閉める。そして、この制御指標が許容範囲内に収まるまで、ステップ2からステップ5の制御を続ける。 Next, in step 5, the opening degree of the electronic expansion valve 4 is corrected and output based on the calculated adjustment amount ΔC ν4 of the opening degree of the electronic expansion valve 4, and the process returns to step 2. Thereby, when the present superheat degree SH is larger than the target superheat degree SH * , the opening degree of the electronic expansion valve 4 is opened based on the difference (SH-SH * ) between the current value and the target value. On the other hand, when the current superheat degree SH is smaller than the target superheat degree SH * , the opening degree of the electronic expansion valve 4 is closed based on the difference between the current value and the target value (SH-SH * ). Then, the control from step 2 to step 5 is continued until this control index falls within the allowable range.

なお、上記説明では、圧縮機吸入側配管21に設けられた吸入圧力検出器12により冷媒圧力を検出するものとしているが、冷媒圧力は、圧縮機吸入側配管21内の冷媒圧力に限定されるものではなく、電子式膨張弁4から圧縮機1吸入口に至る配管の中のいずれかの配管内の冷媒圧力であればよい。   In the above description, the refrigerant pressure is detected by the suction pressure detector 12 provided in the compressor suction side pipe 21, but the refrigerant pressure is limited to the refrigerant pressure in the compressor suction side pipe 21. The refrigerant pressure in any one of the pipes from the electronic expansion valve 4 to the compressor 1 suction port may be used.

つぎに、余剰冷媒をバイパス配管8を介してアキュムレータ7に戻す方法として、室外熱交換器2の出口での冷媒の過冷却度SCに基づいて電子式膨張弁9の開度(Cν9)を制御する場合について説明する。図11は電子式膨張弁9による室外熱交換器2の出口での冷媒の過冷却度SCの制御を説明するフローチャートであり、図中、便宜上、ステップ11〜15をS11〜S15としている。ここでは、制御手段19は、電子式膨張弁9の開度(Cν9)を、一定の間隔、例えば1分間隔で室外熱交換器2の出口での冷媒の過冷却度SCの現在値と目標値の差をもとに比例制御を行っている。 Next, as a method of returning surplus refrigerant to the accumulator 7 via the bypass pipe 8, the opening degree (C ν9 ) of the electronic expansion valve 9 is determined based on the degree of refrigerant subcooling SC at the outlet of the outdoor heat exchanger 2. The case of controlling will be described. FIG. 11 is a flowchart for explaining the control of the degree of refrigerant supercooling SC at the outlet of the outdoor heat exchanger 2 by the electronic expansion valve 9. In the drawing, steps 11 to 15 are designated S11 to S15 for convenience. Here, the control means 19 sets the opening degree (C ν9 ) of the electronic expansion valve 9 to the current value of the refrigerant subcooling SC at the outlet of the outdoor heat exchanger 2 at a constant interval, for example, 1 minute interval. Proportional control is performed based on the difference in target values.

まず、ステップ11において、制御機器の初期値である電子式膨張弁9の開度(Cν9)の初期値を出力する。ついで、ステップ12において、吐出圧力検出器11による検出圧力に基づく凝縮温度と冷媒温度検出器14による検出温度との温度差をもとに、現在の室外熱交換器2の出口での冷媒の過冷却度SCを算出する。ここで、制御手段19が吐出圧力検出器11の検出圧力に基づいて凝縮温度を算出しており、制御手段19が吐出圧力検出器11とともに凝縮温度検出手段を構成する。ついで、ステップ13において、式(3)により、算出された過冷却度SCの目標値(目標過冷却度SC)からの差異が設定した許容範囲ε内に入っているかの確認を行う。
|SC−SC|<ε ・・・式(3)
First, in step 11, an initial value of the opening degree (C ν9 ) of the electronic expansion valve 9 that is an initial value of the control device is output. Next, in step 12, based on the temperature difference between the condensation temperature based on the pressure detected by the discharge pressure detector 11 and the temperature detected by the refrigerant temperature detector 14, the refrigerant excess at the outlet of the current outdoor heat exchanger 2 is detected. The degree of cooling SC is calculated. Here, the control means 19 calculates the condensation temperature based on the detected pressure of the discharge pressure detector 11, and the control means 19 constitutes the condensation temperature detection means together with the discharge pressure detector 11. Next, we performed in step 13, by the equation (3), if the difference from the calculated subcooling degree target value of SC (target degree of supercooling SC *) is within the allowable range ε within 2 set the confirmation.
| SC-SC * | <ε 2 Formula (3)

現在の過冷却度SCの目標過冷却度SCからの差異が設定した許容範囲内に入っている場合には、電子式膨張弁9の開度(Cν9)を維持して運転する。また、当該差異が設定した許容範囲内に入っていない場合には、ステップ14に移行する。 When the difference between the current supercooling degree SC and the target supercooling degree SC * is within the set allowable range, the electronic expansion valve 9 is operated while maintaining the opening degree (C ν9 ). If the difference is not within the set allowable range, the process proceeds to step 14.

ステップ14では、現在の過冷却度SCの目標過冷却度SCからの差異に基づいて電子式膨張弁9の開度の調整量ΔCν9を算出し、ステップ15に移行する。ここでは、電子式膨張弁9の開度の調整量ΔCν9は式(4)に基づいて算出される。
ΔCν9=f(SC−SC) ・・・式(4)
なお、関数f(SC−SC)は、簡易的にはシステムに適当な定数aを設定して a×(SC−SC)と設定すればよい。また、aを定数とおく代わりに、SCの時系列データをもとにaを変更すれば、収束性を早めることができる。
In step 14, the adjustment amount ΔC ν9 of the opening degree of the electronic expansion valve 9 is calculated based on the difference between the current supercooling degree SC and the target supercooling degree SC *, and the process proceeds to step 15. Here, the adjustment amount ΔC ν9 of the opening degree of the electronic expansion valve 9 is calculated based on the equation (4).
ΔC ν9 = f 2 (SC−SC * ) (4)
The function f 2 (SC-SC * ) may be simply set to a 2 × (SC-SC * ) by setting an appropriate constant a 2 for the system. In addition, instead of setting a 2 as a constant, if a 2 is changed based on SC time-series data, convergence can be accelerated.

なお、上記説明では、圧縮機吐出側配管20に設けられた吐出圧力検出器11により冷媒圧力を検出するものとしているが、冷媒圧力は、圧縮機吐出側配管20内の冷媒圧力に限定されるものではなく、圧縮機1吐出口から電子式膨張弁4に至る配管の中のいずれかの配管内の冷媒圧力であればよい。   In the above description, the refrigerant pressure is detected by the discharge pressure detector 11 provided in the compressor discharge side pipe 20. However, the refrigerant pressure is limited to the refrigerant pressure in the compressor discharge side pipe 20. The refrigerant pressure in any one of the pipes from the compressor 1 discharge port to the electronic expansion valve 4 may be used.

ついで、ステップ15では、算出された電子式膨張弁9の開度の調整量ΔCν9に基づいて電子式膨張弁9の開度を修正、出力し、ステップ12に戻る。これにより、現在の過冷却度SCが目標過冷却度SCよりも大きな場合には、電子式膨張弁9の開度を現在値と目標値の差(SC−SC)に基づいて開ける。一方、現在の過冷却度SCが目標過冷却度SCよりも小さな場合には、電子式膨張弁9の開度を現在値と目標値の差(SC−SC)に基づいて閉める。そして、この制御指標が許容範囲内に収まるまで、ステップ12からステップ15の制御を続ける。 Next, in step 15, the opening degree of the electronic expansion valve 9 is corrected and output based on the calculated adjustment amount ΔC ν9 of the electronic expansion valve 9, and the process returns to step 12. Thereby, when the current supercooling degree SC is larger than the target supercooling degree SC * , the opening degree of the electronic expansion valve 9 is opened based on the difference between the current value and the target value (SC-SC * ). On the other hand, when the current supercooling degree SC is smaller than the target supercooling degree SC * , the opening degree of the electronic expansion valve 9 is closed based on the difference between the current value and the target value (SC-SC * ). Then, the control from step 12 to step 15 is continued until the control index falls within the allowable range.

ここで、上記ステップ12では、吐出圧力検出器11による検出圧力に基づく凝縮温度と冷媒温度検出器14による検出温度との温度差をもとに、現在の室外熱交換器2の出口での冷媒の過冷却度SCを算出するものとして説明しているが、室内熱交換器5の冷媒が気液二相流となる室内熱交換器の中心付近に室内熱交換器側冷媒温度検出器を設置し、室内熱交換器側冷媒温度検出器による検出温度と冷媒温度検出器14による検出温度との温度差をもとに、室外熱交換器2の出口での冷媒の過冷却度SCを算出してもよい。   Here, in step 12, the refrigerant at the outlet of the current outdoor heat exchanger 2 is based on the temperature difference between the condensation temperature based on the pressure detected by the discharge pressure detector 11 and the temperature detected by the refrigerant temperature detector 14. However, the indoor heat exchanger-side refrigerant temperature detector is installed near the center of the indoor heat exchanger where the refrigerant in the indoor heat exchanger 5 becomes a gas-liquid two-phase flow. The refrigerant subcooling degree SC at the outlet of the outdoor heat exchanger 2 is calculated based on the temperature difference between the temperature detected by the indoor heat exchanger side refrigerant temperature detector and the temperature detected by the refrigerant temperature detector 14. May be.

つぎに、圧縮機1の回転数(f)および室外ファン2−aの回転数(F)の制御の一例を説明する。図12は室外機の圧縮機1および室外ファン2−aによる低圧側圧力Pおよび高圧側圧力Pの制御を説明するフローチャートであり、図中、便宜上、ステップ21〜25をS21〜S25としている。ここでは、制御手段19は、圧縮機1の回転数(f)および室外ファン2−aの回転数(F)を、一定の間隔、例えば1分間隔で低圧側圧力P、および高圧側圧力Pの現在値と目標値との差をもとに比例制御を行う。 Next, an example of the control of the rotational speed (f) of the compressor 1 and the rotational speed (F 0 ) of the outdoor fan 2-a will be described. Figure 12 is a flowchart illustrating control of the low side pressure P L and the high side pressure P H by the compressor 1 and the outdoor fan 2-a of the outdoor unit, in the figure for convenience, the steps 21 to 25 as S21~S25 Yes. Here, the control means 19 sets the rotation speed (f) of the compressor 1 and the rotation speed (F 0 ) of the outdoor fan 2-a to a low pressure side pressure P L and a high pressure side at regular intervals, for example, 1 minute intervals. performing based on proportional control the difference between the current value and the target value of the pressure P H.

まず、ステップ21において、制御機器の初期値である圧縮機1の回転数(f)および室外ファン2−aの回転数(F)の初期値を出力する。ついで、ステップ22において、吐出圧力検出器11、および吐出圧力検出器12により、現在の低圧側圧力P、および高圧側圧力Pを計測する。ついで、ステップ23において、式(5)(6)により、計測された低圧側圧力P、および高圧側圧力Pの目標値(目標低圧側圧力P 、および目標高圧側圧力P )からの差異が設定した許容範囲ε、ε内に入っているかの確認を行う。
|P−P |<ε ・・・式(5)
|P−P |<ε ・・・式(6)
First, in step 21, initial values of the rotation speed (f) of the compressor 1 and the rotation speed (F 0 ) of the outdoor fan 2-a, which are initial values of the control device, are output. Next, in step 22, the discharge pressure detector 11 and the discharge pressure detector 12, measures the current on the low-pressure side pressure P L, and the high-pressure side pressure P H. Next, at step 23, by the equation (5) (6), measured low side pressure P L, and the target value of the high-pressure side pressure P H (target low-pressure side pressure P L *, and the target high-pressure side pressure P H * ) Is confirmed to be within the set allowable ranges ε 3 and ε 4 .
| P L −P L * | <ε 3 (5)
| P H −P H * | <ε 4 Formula (6)

現在の低圧側圧力P、および高圧側圧力Pの目標低圧側圧力P 、および目標高圧側圧力P からの差異が設定した許容範囲内に入っている場合には、圧縮機1の回転数(f)および室外ファン2−aの回転数(F)を維持して運転する。また、当該差異が設定した許容範囲内に入っていない場合には、ステップ24に移行する。 If the difference between the current low pressure side pressure P L and the high pressure side pressure P H from the target low pressure side pressure P L * and the target high pressure side pressure P H * is within the set allowable range, the compressor The engine is operated while maintaining the rotation speed (f) of 1 and the rotation speed (F 0 ) of the outdoor fan 2-a. If the difference is not within the set allowable range, the process proceeds to step 24.

ステップ24では、現在の低圧側圧力P、および高圧側圧力Pの目標低圧側圧力P 、および目標高圧側圧力P からの差異に基づいて圧縮機1の回転数の調整量Δfおよび室外ファン2−aの回転数の調整量ΔFを算出し、ステップ25に移行する。ここでは、圧縮機1の回転数の調整量Δfおよび室外ファン2−aの回転数の調整量ΔFは式(7)(8)に基づいて算出される。
Δf=f(P−P ) ・・・式(7)
ΔFo=f(P−P ) ・・・式(8)
なお、関数f(P−P )、f(P−P )は、簡易的にシステムに適当な定数a、aを設定してa×(P−P )、a×(P−P )と設定すればよい。また、a、aを定数とおく代わりに、P、Pの時系列データをもとにa、aを変更すれば、収束性を早めることができる。
In step 24, the amount of adjustment of the rotational speed of the compressor 1 based on the difference between the current low pressure side pressure P L and the high pressure side pressure P H from the target low pressure side pressure P L * and the target high pressure side pressure P H *. Δf and the adjustment amount ΔF 0 of the rotational speed of the outdoor fan 2-a are calculated, and the routine proceeds to step 25. Here, the rotation speed adjustment amount Δf of the compressor 1 and the rotation speed adjustment amount ΔF 0 of the outdoor fan 2-a are calculated based on the equations (7) and (8).
Δf = f 3 (P L −P L * ) (7)
ΔF o = f 4 (P H −P H * ) (8)
Note that the functions f 3 (P L -P L * ) and f 4 (P H -P H * ) are simply set as appropriate constants a 3 and a 4 for the system, and a 3 × (P L − P L * ), a 4 × (P H -P H * ) may be set. In addition, instead of setting a 3 and a 4 as constants, convergence can be accelerated by changing a 3 and a 4 based on time-series data of P L and P H.

ついで、ステップ25では、算出された圧縮機1の回転数の調整量Δfおよび室外ファン2−aの回転数の調整量ΔFに基づいて圧縮機1の回転数および室外ファン2−aの回転数を修正、出力し、ステップ22に戻る。これにより、現在の低圧側圧力Pが目標低圧側圧力P よりも大きな場合には、圧縮機1の回転数を現在値と目標値の差(P−P )に基づいて大きくする。一方、現在の低圧側圧力Pが目標低圧側圧力P よりも小さな場合には、圧縮機1の回転数を現在値と目標値の差(P−P )に基づいて小さくする。また、現在の高圧側圧力Pが目標高圧側圧力P よりも大きな場合には、室外ファン2−aの回転数を現在値と目標値の差(P−P )に基づいて大きくする。一方、現在の高圧側圧力Pが目標高圧側圧力P よりも小さな場合には、室外ファン2−aの回転数を現在値と目標値の差(P−P )に基づいて小さくする。そして、この制御指標が許容範囲内に収まるまで、ステップ22からステップ25の制御を続ける。 Then, in step 25, the rotational speed and the rotation of the outdoor fan 2-a of the compressor 1 based on the rotation speed of the adjustment amount [Delta] F 0 of the adjustment amount Δf and outdoor fan 2-a of the calculated compressor 1 rpm The number is corrected and output, and the process returns to step 22. Thereby, when the current low pressure side pressure P L is larger than the target low pressure side pressure P L * , the rotation speed of the compressor 1 is determined based on the difference between the current value and the target value (P L −P L * ). Enlarge. On the other hand, when the current low-pressure side pressure P L is smaller than the target low-pressure side pressure P L * , the rotational speed of the compressor 1 is reduced based on the difference between the current value and the target value (P L −P L * ). To do. Further, if the current high-pressure side pressure P H is larger than the target high-pressure side pressure P H * is based on the rotational speed of the outdoor fan 2-a to the difference between the current value and the target value (P H -P H *) Make it bigger. On the other hand, when the current high-pressure side pressure P H is smaller than the target high-pressure side pressure P H * is based on the rotational speed of the outdoor fan 2-a to the difference between the current value and the target value (P H -P H *) And make it smaller. Then, the control from step 22 to step 25 is continued until this control index falls within the allowable range.

なお、高低圧の目標値は、外気温度、室内温度や熱負荷に応じて制御目標値を変更すれば、COPが高い状態での運転ができる。また、この実施の形態1では、電子式膨張弁4を室内熱交換器出口のSH制御に、電子式膨張弁9を室外熱交換器出口のSC制御に、圧縮機1、および室外ファン2−aを高圧側圧力、および低圧側圧力の制御に用いたが、室外ファン2−aの制御値を一定値に設定し、電子式膨張弁9で高圧側圧力の制御を行うと簡易的に制御できる。さらに、この実施の形態1では、圧縮機1や室外ファン2−aなどの制御機器と、高圧側圧力P、低圧側圧力Pなどの制御指標を1対1で制御するように設定したが、制御指標と制御機器のマトリクスを組み、制御を行うことで、収束性を早めることができる。なお、室内温度の制御方法としては、冷房運転をしているすべての部屋の室内温度があらかじめ設定した設定温度になれば、圧縮機を止めればよい。しかし、室内温度があらかじめ設定した設定温度に近づいた時点で目標低圧側圧力PL を高くなるように変更し、冷房能力が必要能力(熱負荷)に合うように制御すれば、高圧側圧力PHおよび低圧側圧力PLの圧力差が小さくなり、圧縮機入力を抑えた状態で運転できるため、COPが高い状態で運転を継続できる。 Note that the high and low pressure target values can be operated with a high COP if the control target value is changed in accordance with the outside air temperature, the room temperature, and the heat load. In the first embodiment, the electronic expansion valve 4 is used for SH control at the outlet of the indoor heat exchanger, the electronic expansion valve 9 is used for SC control at the outlet of the outdoor heat exchanger, the compressor 1, and the outdoor fan 2- a is used for controlling the high-pressure side pressure and the low-pressure side pressure. However, when the control value of the outdoor fan 2-a is set to a constant value and the electronic expansion valve 9 controls the high-pressure side pressure, the control is simplified. it can. Further, in the first embodiment, a control device such as the compressor 1 and the outdoor fan 2-a, the high side pressure P H, was set to control a one-to-one control indicators such as the low-pressure side pressure P L However, the convergence can be accelerated by combining the control index and the control device matrix and performing the control. As a method for controlling the room temperature, the compressor may be stopped if the room temperature of all the rooms in the cooling operation reaches a preset temperature. However, if the target low pressure side pressure P L * is changed to be higher when the room temperature approaches the preset temperature, and the cooling capacity is controlled to match the required capacity (heat load), the high pressure side pressure Since the pressure difference between P H and the low-pressure side pressure P L becomes smaller and the compressor can be operated with a reduced input, the operation can be continued with a high COP.

また、今回は、室外熱交換器2の出口での冷媒の過冷却度SCや高圧側圧力Pの制御目標値SC*、P *を一定値に設定して制御したが、室外熱交換器2の性能を鑑みて、熱負荷が大きな場合にはSC*やP *を大きくなるように変更し、熱負荷が小さな場合にはSC*やP *を小さくなるように変更すれば、よりCOPが高い状態で運転を行うことができる。さらに、通常、室外熱交換器2は大きく、空気の風量も大きく設計されているため、室外熱交換器2の出口の冷媒温度Trefは外気温度にほぼ近い温度となる。そこで、冷媒温度の制御目標値Tref *を熱負荷等に関わらず、外気温度から1〜10℃高い値、例えば5℃程度高い値に設定してこれを制御すれば、過冷却度SCや、高圧側圧力Pを制御指標とした場合よりも簡便に、COPが高い状態で運転を行うことができる。 Also, this time, the control target value SC of the supercooling degree SC and the high side pressure P H of the refrigerant at the outlet of the outdoor heat exchanger 2 *, was controlled by setting the P H * to a constant value, the outdoor heat exchanger in view of the performance of the vessel 2, when the thermal load is large is changed to increase the SC * or P H *, when the thermal load is small if changed to be small SC * or P H * The operation can be performed in a state where the COP is higher. Furthermore, since the outdoor heat exchanger 2 is usually large and the air volume is designed to be large, the refrigerant temperature T ref at the outlet of the outdoor heat exchanger 2 is a temperature substantially close to the outdoor air temperature. Therefore, if the control target value T ref * of the refrigerant temperature is set to a value that is 1 to 10 ° C. higher than the outside air temperature, for example, about 5 ° C., regardless of the heat load or the like, , conveniently than when the high side pressure P H as a control index, COP can perform operation in a state of high.

また、室内ファン5−aの回転数は、全速とするか、リモコンによる設定を行えばよい。さらに、顕熱比SHF(Sensible Heat Factor)などの制御指標をもとに運転を行えば、室内の快適性を確保した運転を行うことができる。   Further, the rotational speed of the indoor fan 5-a may be set to full speed or set by a remote controller. Furthermore, if the operation is performed based on a control index such as a sensible heat ratio SHF (Sensible Heat Factor), it is possible to perform an operation in which indoor comfort is ensured.

実施の形態2.
図13はこの発明の実施の形態2に係る空気調和装置を示す冷媒回路図である。
図13において、四方切替弁10が、圧縮機1から吐出された高温・高圧の冷媒が室外熱交換器2、または室内熱交換器5に供給され、室内熱交換器、または室外熱交換器から吐出された低温・低圧の冷媒がアキュムレータ7に戻されるように配設されている。
なお、他の構成は、上記実施の形態1と同様に構成されている。つまり、上記実施の形態1による空気調和装置は、冷房専用の空調機として動作するものであるが、この実施の形態2による空気調和装置は、四方切替弁10による冷媒流路を切り換えることにより、冷暖切換型の空調機として動作する。
Embodiment 2. FIG.
FIG. 13 is a refrigerant circuit diagram showing an air-conditioning apparatus according to Embodiment 2 of the present invention.
In FIG. 13, the four-way switching valve 10 supplies the high-temperature and high-pressure refrigerant discharged from the compressor 1 to the outdoor heat exchanger 2 or the indoor heat exchanger 5, and from the indoor heat exchanger or the outdoor heat exchanger. The discharged low-temperature and low-pressure refrigerant is disposed so as to be returned to the accumulator 7.
Other configurations are the same as those in the first embodiment. That is, the air conditioner according to the first embodiment operates as an air conditioner dedicated to cooling, but the air conditioner according to the second embodiment switches the refrigerant flow path by the four-way switching valve 10, It operates as a cooling / heating switching type air conditioner.

この実施の形態2による空気調和装置の暖房運転について説明する。
まず、アキュムレータ7内の低温・低圧の冷媒ガスが圧縮機吸入側配管21を介して圧縮機1に吸入され、圧縮機1により圧縮され、高温・高圧の冷媒ガスとなって吐出される。高温・高圧の冷媒ガスは、四方切替弁10およびガス配管6を介して室内熱交換器5に導入される。室内熱交換器5に導入された高温・高圧の冷媒ガスは、室内ファン5−aにより室内熱交換器5に導入された室内の空気と熱交換され、室内の空気を加熱しながら温度が下がる。そして、室内熱交換器5から吐出された冷媒は、電子式膨張弁4で絞られて減圧され、低温・低圧の気液二相状態に変化する。気液二相状態の冷媒は、液配管3を介して室外熱交換器2に導入され、室外ファン2−aにより室外熱交換器2に導入された室外の空気と熱交換され、室外の空気を冷却して低温低圧の冷媒ガスに変化する。その後、冷媒ガスは、四方切替弁10を通りアキュムレータ7に戻される。アキュムレータ7に戻された冷媒ガスは気液分離され、低温・低圧の冷媒ガスが圧縮機吸入側配管21を介して圧縮機1に吸入される。
A heating operation of the air conditioner according to the second embodiment will be described.
First, the low-temperature and low-pressure refrigerant gas in the accumulator 7 is sucked into the compressor 1 through the compressor suction-side pipe 21, compressed by the compressor 1, and discharged as high-temperature and high-pressure refrigerant gas. The high-temperature and high-pressure refrigerant gas is introduced into the indoor heat exchanger 5 through the four-way switching valve 10 and the gas pipe 6. The high-temperature and high-pressure refrigerant gas introduced into the indoor heat exchanger 5 is heat-exchanged with the indoor air introduced into the indoor heat exchanger 5 by the indoor fan 5-a, and the temperature is lowered while heating the indoor air. . Then, the refrigerant discharged from the indoor heat exchanger 5 is throttled and depressurized by the electronic expansion valve 4, and changes to a low-temperature and low-pressure gas-liquid two-phase state. The refrigerant in the gas-liquid two-phase state is introduced into the outdoor heat exchanger 2 through the liquid pipe 3, and heat is exchanged with the outdoor air introduced into the outdoor heat exchanger 2 by the outdoor fan 2-a. Is cooled to change to low-temperature and low-pressure refrigerant gas. Thereafter, the refrigerant gas passes through the four-way switching valve 10 and is returned to the accumulator 7. The refrigerant gas returned to the accumulator 7 is gas-liquid separated, and the low-temperature and low-pressure refrigerant gas is sucked into the compressor 1 via the compressor suction side pipe 21.

このように、暖房運転では、冷媒が、図13に点線の矢印で示されるように、圧縮機1→四方切替弁10→ガス配管6→室内熱交換器5→電子式膨張弁4→液配管3→室外熱交換器2→四方切替弁10→アキュムレータ7→圧縮機吸入側配管21→圧縮機1の順で冷媒回路内を循環する。   Thus, in the heating operation, as indicated by the dotted arrow in FIG. 13, the refrigerant is the compressor 1, the four-way switching valve 10, the gas pipe 6, the indoor heat exchanger 5, the electronic expansion valve 4, and the liquid pipe. It circulates in the refrigerant circuit in the order of 3 → outdoor heat exchanger 2 → four-way switching valve 10 → accumulator 7 → compressor suction side pipe 21 → compressor 1.

つぎに、この実施の形態2による空気調和装置の冷房運転について説明する。
まず、アキュムレータ7内の低温・低圧の冷媒ガスが圧縮機吸入側配管21を介して圧縮機1に吸入され、圧縮機1により圧縮され、高温・高圧の冷媒ガスとなって吐出される。高温・高圧の冷媒ガスは、四方切替弁10および圧縮機吐出側配管20を介して室外熱交換器2に導入される。室外熱交換器2に導入された高温・高圧の冷媒ガスは、室外ファン2−aにより室外熱交換器2に導入された室外の空気と熱交換され、室外の空気を加熱しながら中温・高圧の冷媒となる。さらに、中温・高圧の冷媒は、液配管3を流通し、電子式膨張弁4にて減圧されて低温・低圧の気液二相状態の冷媒となり、液配管3を流通して室内熱交換器5に導入される。室内熱交換器5に導入された低温・低圧の気液二相状態の冷媒は、室内ファン5−aにより室内熱交換器5に導入された室内の空気と熱交換され、室内の空気を冷却しながら、低温・低圧の冷媒蒸気に変化する。低温・低圧の冷媒蒸気は、ガス配管6を流通してアキュムレータ7に戻される。アキュムレータ7に戻された冷媒は気液分離され、低温・低圧の冷媒ガスが圧縮機吸入側配管21を介して圧縮機1に吸入される。
Next, the cooling operation of the air-conditioning apparatus according to Embodiment 2 will be described.
First, the low-temperature and low-pressure refrigerant gas in the accumulator 7 is sucked into the compressor 1 through the compressor suction-side pipe 21, compressed by the compressor 1, and discharged as high-temperature and high-pressure refrigerant gas. The high-temperature and high-pressure refrigerant gas is introduced into the outdoor heat exchanger 2 through the four-way switching valve 10 and the compressor discharge side pipe 20. The high-temperature and high-pressure refrigerant gas introduced into the outdoor heat exchanger 2 is heat-exchanged with the outdoor air introduced into the outdoor heat exchanger 2 by the outdoor fan 2-a, and the medium-temperature and high-pressure is heated while heating the outdoor air. It becomes a refrigerant. Further, the medium-temperature and high-pressure refrigerant flows through the liquid pipe 3 and is decompressed by the electronic expansion valve 4 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant, and flows through the liquid pipe 3 and passes through the indoor heat exchanger. 5 is introduced. The low-temperature, low-pressure gas-liquid two-phase refrigerant introduced into the indoor heat exchanger 5 is heat-exchanged with the indoor air introduced into the indoor heat exchanger 5 by the indoor fan 5-a to cool the indoor air. However, it changes to low-temperature and low-pressure refrigerant vapor. The low-temperature and low-pressure refrigerant vapor flows through the gas pipe 6 and is returned to the accumulator 7. The refrigerant returned to the accumulator 7 is separated into gas and liquid, and low-temperature and low-pressure refrigerant gas is sucked into the compressor 1 through the compressor suction side pipe 21.

このように、冷房運転では、冷媒が、図13に実線の矢印で示されるように、圧縮機1→圧縮機吐出側配管20→室外熱交換器2→液配管3→電子式膨張弁4→室内熱交換器5→ガス配管6→アキュムレータ7→圧縮機吸入側配管21→圧縮機1の順で冷媒回路内を循環する。   Thus, in the cooling operation, as indicated by the solid arrow in FIG. 13, the refrigerant is compressor 1 → compressor discharge side pipe 20 → outdoor heat exchanger 2 → liquid pipe 3 → electronic expansion valve 4 → It circulates in the refrigerant circuit in the order of the indoor heat exchanger 5 → the gas pipe 6 → the accumulator 7 → the compressor suction side pipe 21 → the compressor 1.

この実施の形態2においても、冷房運転時に、上記実施の形態1と同様に、室内熱交換器5出口の冷媒の過熱度SHを算出して、算出された過熱度SHに基づいて電子式膨張弁4の開度を制御して、室内熱交換器5に流入する冷媒流量を制御するとともに、電子式膨張弁9の開度を制御して、室外熱交換器2出口に滞留する余剰冷媒をバイパス配管8を介してアキュムレータ7に戻すようにすることで、冷房運転時に空気の温度条件、熱負荷条件等が変動した場合にも、室内機の容量に応じた冷媒流量の配分を効率的に行えるとともに、余剰冷媒を処理することで高圧側圧力を適正化し、余計な圧縮動力の入力を防ぐことができ、COPが高い状態で運転できる。   Also in the second embodiment, during the cooling operation, similarly to the first embodiment, the superheat degree SH of the refrigerant at the outlet of the indoor heat exchanger 5 is calculated, and the electronic expansion is performed based on the calculated superheat degree SH. The opening degree of the valve 4 is controlled to control the flow rate of the refrigerant flowing into the indoor heat exchanger 5, and the opening degree of the electronic expansion valve 9 is controlled so that the excess refrigerant staying at the outlet of the outdoor heat exchanger 2 is removed. By returning to the accumulator 7 via the bypass pipe 8, the distribution of the refrigerant flow according to the capacity of the indoor unit can be efficiently performed even when the air temperature condition, heat load condition, etc. fluctuate during cooling operation. In addition to being able to do so, it is possible to optimize the high-pressure side pressure by treating the surplus refrigerant, prevent the input of extra compression power, and operate with a high COP.

実施の形態3.
図14はこの発明の実施の形態3に係る空気調和装置を示す冷媒回路図である。
図14において、内部熱交換器30が、液配管3とバイパス配管8の電子式膨張弁9のアキュムレータ側との間で熱交換可能に配設されている。
なお、他の構成は上記実施の形態2と同様に構成されている。
Embodiment 3 FIG.
FIG. 14 is a refrigerant circuit diagram showing an air-conditioning apparatus according to Embodiment 3 of the present invention.
In FIG. 14, an internal heat exchanger 30 is disposed so that heat can be exchanged between the liquid pipe 3 and the accumulator side of the electronic expansion valve 9 of the bypass pipe 8.
Other configurations are the same as those in the second embodiment.

この実施の形態3では、余剰冷媒のもつ冷却エネルギの有効利用のために、内部熱交換器30を用いて、液配管3を流通する冷媒とバイパス配管8を流通する冷媒との間で熱交換させて、液配管3の冷媒を冷却すれば、COPの向上につながる。   In the third embodiment, heat exchange is performed between the refrigerant flowing through the liquid pipe 3 and the refrigerant flowing through the bypass pipe 8 using the internal heat exchanger 30 in order to effectively use the cooling energy of the surplus refrigerant. If the refrigerant in the liquid pipe 3 is cooled, the COP is improved.

この空気調和装置の冷房運転において、冷媒充填量が過大である場合には、高圧側圧力P、室外熱交換器2出口の過冷却度SC、室外熱交換器2出口の冷媒温度Trefを制御指標として、上記実施の形態1と同様に余剰冷媒の処理を行えば、COPが高い状態で運転できる。しかし、冷媒充填量が過少である場合には、上記方法では電子式膨張弁9が全閉となり、内部熱交換器30を使用することができない。そこで、高圧側圧力P、室外熱交換器2出口の過冷却度SC、室外熱交換器2出口の冷媒温度Trefに閾値を設け、P、SC、Trefが例えばP 、SC、Tref よりも低くなった場合には、冷媒充填量が過小であると判断して、電子式膨張弁9の制御方法を切り替え、バイパス配管8の内部熱交換器30の出口の冷媒の過熱度に基づいて電子式膨張弁9の開度を制御すれば、冷媒充填量が過大である場合に、バイパス配管を使用して余剰冷媒を処理するとともに、冷媒充填量が過小である場合に、内部熱交換器30により室内機に流入する冷媒温度を下げることができ、冷媒充填量がどのような場合にも、各冷媒充填量に対して、COPが高い状態で運転を行うことができる。 In the cooling operation of the air conditioner, when the refrigerant charging amount is excessive, the high pressure side pressure P H , the degree of supercooling SC at the outlet of the outdoor heat exchanger 2, and the refrigerant temperature T ref at the outlet of the outdoor heat exchanger 2 are set. If the surplus refrigerant is processed as a control index in the same manner as in the first embodiment, operation can be performed with a high COP. However, when the refrigerant charging amount is too small, the electronic expansion valve 9 is fully closed by the above method, and the internal heat exchanger 30 cannot be used. Therefore, thresholds are set for the high pressure side pressure P H , the degree of supercooling SC at the outlet of the outdoor heat exchanger 2, and the refrigerant temperature T ref at the outlet of the outdoor heat exchanger 2, and P H , SC, T ref are, for example, P H * , SC *, T ref * if it becomes lower than, it is determined that the amount of refrigerant charging is excessively small, the switching control method of the electronic expansion valve 9, the refrigerant at the outlet of the internal heat exchanger 30 of the bypass pipe 8 If the opening degree of the electronic expansion valve 9 is controlled on the basis of the degree of superheat of the refrigerant, when the refrigerant filling amount is excessive, the excess refrigerant is processed using the bypass pipe and the refrigerant filling amount is too small. In addition, the temperature of the refrigerant flowing into the indoor unit can be lowered by the internal heat exchanger 30, and the operation can be performed in a state where the COP is high with respect to each refrigerant filling amount regardless of the refrigerant filling amount. it can.

なお、室外熱交換器出口の過冷却度SCや、冷媒温度Tref、高圧側圧力P等を制御する方法は、フロン系冷媒、炭化水素系冷媒、アンモニア等、高圧側で冷媒が凝縮、低圧側で冷媒が蒸発する蒸気圧縮式冷凍サイクルを用いる空気調和装置に対して有効である。 Incidentally, and degree of supercooling SC of the outdoor heat exchanger outlet refrigerant temperature T ref, a method of controlling a high side pressure P H and the like, fluorocarbon refrigerant, a hydrocarbon-based refrigerant, ammonia, refrigerant on the high pressure side condenser, This is effective for an air conditioner using a vapor compression refrigeration cycle in which the refrigerant evaporates on the low pressure side.

また、二酸化炭素のような使用条件により高圧側が臨界圧力を超える冷媒を用いる場合には、高圧側圧力Pが臨界圧力よりも低い場合には、上記制御方法により制御できるが、高圧側圧力Pが臨界圧力よりも高くなった場合には凝縮温度を定義できなくなるため、過冷却度SCの代わりに室外熱交換器2の出口の冷媒温度、または室外熱交換器2の出口の冷媒温度と外気温度の差を制御すれば、COPが高い状態での運転を行うことができる。さらに、臨界圧力以上の凝縮温度の定義として、当該圧力で比熱が最も大きな温度(擬臨界温度)や臨界圧力の比エンタルピと当該圧力から求められる温度等を擬似的な凝縮温度T'と仮定し、擬似的な過冷却度SC'(=T'−T)を一定値になるように制御した場合にも、室内温度Tが変動した場合に冷媒と室内空気の温度差を適切にとることができ、COPが高い状態で運転することができる。 In addition, when a refrigerant whose high pressure side exceeds the critical pressure is used under the use conditions such as carbon dioxide, the high pressure side pressure P H can be controlled by the above control method when the high pressure side pressure PH is lower than the critical pressure. When H becomes higher than the critical pressure, the condensation temperature cannot be defined. Therefore, the refrigerant temperature at the outlet of the outdoor heat exchanger 2 or the refrigerant temperature at the outlet of the outdoor heat exchanger 2 is used instead of the degree of supercooling SC. By controlling the difference in the outside air temperature, it is possible to perform the operation with a high COP. Furthermore, as the definition of the condensation temperature above the critical pressure, the temperature having the largest specific heat at that pressure (pseudocritical temperature), the specific enthalpy of the critical pressure and the temperature obtained from the pressure are assumed to be the pseudo condensation temperature T c ′. and, even when the pseudo supercooling degree SC of the '(= T c' -T d ) was controlled at a constant value, suitably the temperature difference between the refrigerant and the indoor air when the indoor temperature T i has fluctuated And can be operated with a high COP.

この発明の実施の形態1に係る空気調和装置を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the air conditioning apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和装置の冷媒回路の冷凍サイクルにおける冷媒量と高圧側圧力との関係を示す図である。It is a figure which shows the relationship between the refrigerant | coolant amount and the high voltage | pressure side pressure in the refrigerating cycle of the refrigerant circuit of the air conditioning apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和装置の冷媒回路の冷凍サイクルにおける冷媒量と過冷却度との関係を示す図である。It is a figure which shows the relationship between the refrigerant | coolant amount and the supercooling degree in the refrigerating cycle of the refrigerant circuit of the air conditioning apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和装置の冷媒回路の冷凍サイクルにおける冷媒量と室外熱交換器出口の冷媒温度との関係を示す図である。It is a figure which shows the relationship between the refrigerant | coolant amount in the refrigerating cycle of the refrigerant circuit of the air conditioning apparatus which concerns on Embodiment 1 of this invention, and the refrigerant | coolant temperature of an outdoor heat exchanger exit. この発明の実施の形態1に係る空気調和装置の冷媒回路の冷凍サイクルにおける冷媒量とCOPとの関係を示す図である。It is a figure which shows the relationship between the refrigerant | coolant amount and COP in the refrigerating cycle of the refrigerant circuit of the air conditioning apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和装置の冷媒回路の冷凍サイクルにおけるバイパス回路を使用しない場合の圧力−比エンタルピ線図である。It is a pressure-specific enthalpy diagram when not using the bypass circuit in the refrigerating cycle of the refrigerant circuit of the air harmony device concerning Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和装置の冷媒回路の冷凍サイクルにおけるバイパス回路を使用した場合の圧力−比エンタルピ線図である。It is a pressure-specific enthalpy diagram at the time of using the bypass circuit in the refrigerating cycle of the refrigerant circuit of the air conditioning apparatus concerning Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和装置の冷媒回路の冷凍サイクルにおける電子式膨張弁4の開度とCOPとの関係を示す図である。It is a figure which shows the relationship between the opening degree of the electronic expansion valve 4, and COP in the refrigerating cycle of the refrigerant circuit of the air conditioning apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和装置の冷媒回路の冷凍サイクルにおける過熱度とCOPとの関係を示す図である。It is a figure which shows the relationship between the superheat degree and COP in the refrigerating cycle of the refrigerant circuit of the air conditioning apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和装置における室内熱交換器出口の冷媒の過熱度を制御指標としたときの運転制御のフローチャートである。It is a flowchart of operation control when the superheat degree of the refrigerant | coolant of the indoor heat exchanger exit in the air conditioning apparatus which concerns on Embodiment 1 of this invention is made into a control parameter | index. この発明の実施の形態1に係る空気調和装置における室外熱交換器出口の冷媒の過冷却度を制御指標としたときの運転制御のフローチャートである。It is a flowchart of operation control when the supercooling degree of the refrigerant | coolant of the outdoor heat exchanger exit in the air conditioning apparatus which concerns on Embodiment 1 of this invention is made into a control parameter | index. この発明の実施の形態1に係る空気調和装置における圧縮機および室外ファンの回転数を制御指標としたときの運転制御のフローチャートである。It is a flowchart of operation control when the rotation speed of the compressor and outdoor fan in the air conditioning apparatus which concerns on Embodiment 1 of this invention is made into a control parameter | index. この発明の実施の形態2に係る空気調和装置を示す冷媒回路図である。It is a refrigerant circuit figure which shows the air conditioning apparatus which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る空気調和装置を示す冷媒回路図である。It is a refrigerant circuit figure which shows the air conditioning apparatus which concerns on Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 圧縮機、2 室外熱交換器、3 液配管、4 電子式膨張弁(第1絞り手段)、5 室内熱交換器、6 ガス配管、7 アキュムレータ、8 バイパス配管、9 電子式膨張弁(第2絞り手段)、11 吐出圧力検出器(冷媒圧力検出手段、凝縮温度検出手段)、12 吸入圧力検出器(冷媒圧力検出手段、蒸発温度検出手段)、14,15 冷媒温度検出器(冷媒温度検出手段)、16 冷媒温度検出器(冷媒温度検出手段、蒸発温度検出手段)、18 外気温度検出器、19 制御手段、20 圧縮機吐出側配管、21 圧縮機吸入側配管、30 内部熱交換器。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Outdoor heat exchanger, 3 Liquid piping, 4 Electronic expansion valve (1st throttle means), 5 Indoor heat exchanger, 6 Gas piping, 7 Accumulator, 8 Bypass piping, 9 Electronic expansion valve (No. 2 throttle means), 11 discharge pressure detector (refrigerant pressure detection means, condensation temperature detection means), 12 suction pressure detector (refrigerant pressure detection means, evaporation temperature detection means), 14, 15 refrigerant temperature detector (refrigerant temperature detection) Means), 16 refrigerant temperature detector (refrigerant temperature detection means, evaporation temperature detection means), 18 outside air temperature detector, 19 control means, 20 compressor discharge side piping, 21 compressor suction side piping, 30 internal heat exchanger.

Claims (8)

圧縮機、室外熱交換器、およびアキュムレータを有した室外機と、
室内熱交換器、および上記室内熱交換器の第1絞り手段を有した複数の室内機と、
制御手段と、を備え、
液配管の一端を上記室外熱交換器の出口に接続し、他端を分岐してそれぞれ上記第1絞り手段を介して上記室内熱交換器の入口に接続し、かつガス配管の一端を上記アキュムレータに接続し、他端を分岐してそれぞれ上記室内熱交換器の出口に接続して、冷媒が上記圧縮機、上記室外熱交換器、上記第1絞り手段、上記室内熱交換器、上記アキュムレータ、上記圧縮機の順に環状に循環する冷媒回路を構成して冷房運転を行う空気調和装置において、
上記液配管とアキュムレータとを連通するバイパス配管と、
上記バイパス配管に配設された第2絞り手段と、
上記室内熱交換器の出口の冷媒温度を検出する冷媒温度検出手段および蒸発温度を検出する蒸発温度検出手段と、
上記室外熱交換器の出口の冷媒温度を検出する冷媒温度検出手段および凝縮温度を検出する凝縮温度検出手段と、
上記液配管の上記室外熱交換器の出口の冷媒と上記バイパス配管の上記第2絞り手段の出口の冷媒との間で熱交換を行う内部熱交換器と、を備え、
上記制御手段が、
上記室内熱交換器それぞれの出口の冷媒の蒸発温度と冷媒温度との差温に基づいて冷媒の過熱度を算出し、該過熱度に基づいて上記第1絞り手段の開度を制御して上記室内熱交換器それぞれに流入する冷媒流量を調整するとともに、
上記室外熱交換器の出口の冷媒の過冷却度に閾値を設け、上記室外熱交換器の出口の冷媒の凝縮温度と冷媒温度との差温に基づいて冷媒の過冷却度を算出し、算出された当該過冷却度が所定の範囲内の場合には当該過冷却度に基づいて上記第2絞り手段の開度を制御し、算出された当該過冷却度が所定の範囲外の場合には上記バイパス配管の上記内部熱交換器の出口の冷媒の蒸発温度と冷媒温度との差温に基づいて冷媒の過熱度を算出し、算出された当該過熱度に基づいて上記第2絞り手段の開度を制御して上記室外熱交換器の出口に滞留する余剰冷媒を上記バイパス配管を介して上記アキュムレータに戻すように構成されていることを特徴とする空気調和装置。
An outdoor unit having a compressor, an outdoor heat exchanger, and an accumulator;
A plurality of indoor units having an indoor heat exchanger and a first throttle means of the indoor heat exchanger;
Control means,
One end of the liquid pipe is connected to the outlet of the outdoor heat exchanger, the other end is branched and connected to the inlet of the indoor heat exchanger via the first throttle means, and one end of the gas pipe is connected to the accumulator. The other end is branched and connected to the outlet of the indoor heat exchanger, and the refrigerant is the compressor, the outdoor heat exchanger, the first throttle means, the indoor heat exchanger, the accumulator, In an air conditioner that performs a cooling operation by configuring a refrigerant circuit that circulates in an annular order in the order of the compressors,
A bypass pipe communicating the liquid pipe and the accumulator;
A second throttle means disposed in the bypass pipe;
Refrigerant temperature detection means for detecting the refrigerant temperature at the outlet of the indoor heat exchanger and evaporation temperature detection means for detecting the evaporation temperature;
Refrigerant temperature detection means for detecting the refrigerant temperature at the outlet of the outdoor heat exchanger and condensation temperature detection means for detecting the condensation temperature;
An internal heat exchanger that exchanges heat between the refrigerant at the outlet of the outdoor heat exchanger of the liquid pipe and the refrigerant at the outlet of the second throttling means of the bypass pipe,
The control means is
The degree of superheat of the refrigerant is calculated based on the difference between the refrigerant evaporation temperature and the refrigerant temperature at the outlet of each of the indoor heat exchangers, and the opening degree of the first throttle means is controlled based on the degree of superheat. While adjusting the flow rate of refrigerant flowing into each indoor heat exchanger,
A threshold is set for the degree of refrigerant subcooling at the outlet of the outdoor heat exchanger, and the degree of refrigerant subcooling is calculated based on the difference between the refrigerant condensing temperature and the refrigerant temperature at the outlet of the outdoor heat exchanger. When the calculated degree of supercooling is within a predetermined range, the opening degree of the second throttle means is controlled based on the degree of supercooling, and when the calculated degree of supercooling is outside the predetermined range. The degree of superheat of the refrigerant is calculated based on the difference between the refrigerant evaporation temperature and the refrigerant temperature at the outlet of the internal heat exchanger of the bypass pipe, and the second throttle means is opened based on the calculated degree of superheat. The air conditioner is configured to return the excess refrigerant remaining at the outlet of the outdoor heat exchanger to the accumulator through the bypass pipe by controlling the degree.
圧縮機、室外熱交換器、およびアキュムレータを有した室外機と、
室内熱交換器、および上記室内熱交換器の第1絞り手段を有した複数の室内機と、
制御手段と、を備え、
液配管の一端を上記室外熱交換器の出口に接続し、他端を分岐してそれぞれ上記第1絞り手段を介して上記室内熱交換器の入口に接続し、かつガス配管の一端を上記アキュムレータに接続し、他端を分岐してそれぞれ上記室内熱交換器の出口に接続して、冷媒が上記圧縮機、上記室外熱交換器、上記第1絞り手段、上記室内熱交換器、上記アキュムレータ、上記圧縮機の順に環状に循環する冷媒回路を構成して冷房運転を行う空気調和装置において、
上記液配管とアキュムレータとを連通するバイパス配管と、
上記バイパス配管に配設された第2絞り手段と、
上記室内熱交換器の出口の冷媒温度を検出する冷媒温度検出手段および蒸発温度を検出する蒸発温度検出手段と、
上記室外熱交換器の出口の冷媒温度を検出する冷媒温度検出手段と
上記液配管の上記室外熱交換器の出口の冷媒と上記バイパス配管の上記第2絞り手段の出口の冷媒との間で熱交換を行う内部熱交換器と、を備え、
上記制御手段が、
上記室内熱交換器それぞれの出口の冷媒の蒸発温度と冷媒温度との差温に基づいて冷媒の過熱度を算出し、該過熱度に基づいて上記第1絞り手段の開度を制御して上記室内熱交換器それぞれに流入する冷媒流量を調整するとともに、
上記室外熱交換器の出口の冷媒温度に閾値を設け、上記室外熱交換器の出口の冷媒温度が所定の範囲内の場合には該冷媒温度に基づいて上記第2絞り手段の開度を制御し、上記室外熱交換器の出口の冷媒温度が所定の範囲外の場合には上記バイパス配管の上記内部熱交換器の出口の冷媒の蒸発温度と冷媒温度との差温に基づいて冷媒の過熱度を算出し、算出された当該過熱度に基づいて上記第2絞り手段の開度を制御して上記室外熱交換器の出口に滞留する余剰冷媒を上記バイパス配管を介して上記アキュムレータに戻すように構成されていることを特徴とする空気調和装置。
An outdoor unit having a compressor, an outdoor heat exchanger, and an accumulator;
A plurality of indoor units having an indoor heat exchanger and a first throttle means of the indoor heat exchanger;
Control means,
One end of the liquid pipe is connected to the outlet of the outdoor heat exchanger, the other end is branched and connected to the inlet of the indoor heat exchanger via the first throttle means, and one end of the gas pipe is connected to the accumulator. The other end is branched and connected to the outlet of the indoor heat exchanger, and the refrigerant is the compressor, the outdoor heat exchanger, the first throttle means, the indoor heat exchanger, the accumulator, In an air conditioner that performs a cooling operation by configuring a refrigerant circuit that circulates in an annular order in the order of the compressors,
A bypass pipe communicating the liquid pipe and the accumulator;
A second throttle means disposed in the bypass pipe;
Refrigerant temperature detection means for detecting the refrigerant temperature at the outlet of the indoor heat exchanger and evaporation temperature detection means for detecting the evaporation temperature;
Refrigerant temperature detection means for detecting the refrigerant temperature at the outlet of the outdoor heat exchanger ;
An internal heat exchanger that exchanges heat between the refrigerant at the outlet of the outdoor heat exchanger of the liquid pipe and the refrigerant at the outlet of the second throttling means of the bypass pipe ,
The control means is
The degree of superheat of the refrigerant is calculated based on the difference between the refrigerant evaporation temperature and the refrigerant temperature at the outlet of each of the indoor heat exchangers, and the opening degree of the first throttle means is controlled based on the degree of superheat. While adjusting the flow rate of refrigerant flowing into each indoor heat exchanger,
A threshold is set for the refrigerant temperature at the outlet of the outdoor heat exchanger, and when the refrigerant temperature at the outlet of the outdoor heat exchanger is within a predetermined range, the opening degree of the second throttle means is controlled based on the refrigerant temperature. If the refrigerant temperature at the outlet of the outdoor heat exchanger is outside the predetermined range, the refrigerant is overheated based on the difference between the refrigerant evaporation temperature and the refrigerant temperature at the outlet of the internal heat exchanger in the bypass pipe. And the excess refrigerant staying at the outlet of the outdoor heat exchanger is returned to the accumulator through the bypass pipe by controlling the opening degree of the second throttle means based on the calculated degree of superheat. It is comprised in the air conditioning apparatus characterized by the above-mentioned.
圧縮機、室外熱交換器、およびアキュムレータを有した室外機と、
室内熱交換器、および上記室内熱交換器の第1絞り手段を有した複数の室内機と、
制御手段と、を備え、
液配管の一端を上記室外熱交換器の出口に接続し、他端を分岐してそれぞれ上記第1絞り手段を介して上記室内熱交換器の入口に接続し、かつガス配管の一端を上記アキュムレータに接続し、他端を分岐してそれぞれ上記室内熱交換器の出口に接続して、冷媒が上記圧縮機、上記室外熱交換器、上記第1絞り手段、上記室内熱交換器、上記アキュムレータ、上記圧縮機の順に環状に循環する冷媒回路を構成して冷房運転を行う空気調和装置において、
上記液配管とアキュムレータとを連通するバイパス配管と、
上記バイパス配管に配設された第2絞り手段と、
上記室内熱交換器の出口の冷媒温度を検出する冷媒温度検出手段および蒸発温度を検出する蒸発温度検出手段と、
上記圧縮機の出口から上記第1絞り手段に至る配管内の高圧側冷媒の圧力を検出する冷媒圧力検出手段と、
上記液配管の上記室外熱交換器の出口の冷媒と上記バイパス配管の上記第2絞り手段の出口の冷媒との間で熱交換を行う内部熱交換器と、を備え、
上記制御手段が、
上記室内熱交換器それぞれの出口の冷媒の蒸発温度と冷媒温度との差温に基づいて冷媒の過熱度を算出し、該過熱度に基づいて上記第1絞り手段の開度を制御して上記室内熱交換器それぞれに流入する冷媒流量を調整するとともに、
上記高圧側冷媒の圧力に閾値を設け、該高圧側冷媒の圧力が所定の範囲内の場合には該高圧側冷媒の圧力に基づいて上記第2絞り手段の開度を制御し、上記高圧側冷媒の圧力が所定の範囲外の場合には上記バイパス配管の上記内部熱交換器の出口の冷媒の蒸発温度と冷媒温度との差温に基づいて冷媒の過熱度を算出し、算出された当該過熱度に基づいて上記第2絞り手段の開度を制御して上記室外熱交換器の出口に滞留する余剰冷媒を上記バイパス配管を介して上記アキュムレータに戻すように構成されていることを特徴とする空気調和装置。
An outdoor unit having a compressor, an outdoor heat exchanger, and an accumulator;
A plurality of indoor units having an indoor heat exchanger and a first throttle means of the indoor heat exchanger;
Control means,
One end of the liquid pipe is connected to the outlet of the outdoor heat exchanger, the other end is branched and connected to the inlet of the indoor heat exchanger via the first throttle means, and one end of the gas pipe is connected to the accumulator. The other end is branched and connected to the outlet of the indoor heat exchanger, and the refrigerant is the compressor, the outdoor heat exchanger, the first throttle means, the indoor heat exchanger, the accumulator, In an air conditioner that performs a cooling operation by configuring a refrigerant circuit that circulates in an annular order in the order of the compressors,
A bypass pipe communicating the liquid pipe and the accumulator;
A second throttle means disposed in the bypass pipe;
Refrigerant temperature detection means for detecting the refrigerant temperature at the outlet of the indoor heat exchanger and evaporation temperature detection means for detecting the evaporation temperature;
Refrigerant pressure detection means for detecting the pressure of the high-pressure side refrigerant in the pipe from the outlet of the compressor to the first throttle means;
An internal heat exchanger that exchanges heat between the refrigerant at the outlet of the outdoor heat exchanger of the liquid pipe and the refrigerant at the outlet of the second throttling means of the bypass pipe ;
The control means is
The degree of superheat of the refrigerant is calculated based on the difference between the refrigerant evaporation temperature and the refrigerant temperature at the outlet of each of the indoor heat exchangers, and the opening degree of the first throttle means is controlled based on the degree of superheat. While adjusting the flow rate of refrigerant flowing into each indoor heat exchanger,
A threshold value is provided for the pressure of the high-pressure side refrigerant, and when the pressure of the high-pressure side refrigerant is within a predetermined range, the opening degree of the second throttle means is controlled based on the pressure of the high-pressure side refrigerant, When the pressure of the refrigerant is outside the predetermined range, the degree of superheat of the refrigerant is calculated based on the temperature difference between the refrigerant evaporation temperature and the refrigerant temperature at the outlet of the internal heat exchanger of the bypass pipe. Based on the degree of superheat, the opening degree of the second throttle means is controlled to return the excess refrigerant staying at the outlet of the outdoor heat exchanger to the accumulator through the bypass pipe. Air conditioner to do.
圧縮機、室外熱交換器、およびアキュムレータを有した室外機と、
室内熱交換器、および上記室内熱交換器の第1絞り手段を有した複数の室内機と、を備え、
液配管の一端を上記室外熱交換器の出口に接続し、他端を分岐してそれぞれ上記第1絞り手段を介して上記室内熱交換器の入口に接続し、かつガス配管の一端を上記アキュムレータに接続し、他端を分岐してそれぞれ上記室内熱交換器の出口に接続して、冷媒が上記圧縮機、上記室外熱交換器、上記第1絞り手段、上記室内熱交換器、上記アキュムレータ、上記圧縮機の順に環状に循環する冷媒回路を構成し、さらにバイパス配管を上記液配管と上記アキュムレータとを連通するように配設し、第2絞り手段を上記バイパス配管に配設し、かつ上記液配管の上記室外熱交換器の出口の冷媒と上記バイパス配管の上記第2絞り手段の出口の冷媒との間で熱交換を行う内部熱交換器を配設して冷房運転を行う空気調和装置の運転制御方法において、
上記室内熱交換器それぞれの出口の冷媒の蒸発温度と冷媒温度とを測定し、測定された冷媒の蒸発温度と冷媒温度との差温に基づいて冷媒の過熱度を算出し、該過熱度に基づいて上記第1絞り手段の開度を制御して上記室内熱交換器それぞれに流入する冷媒流量を調整するとともに、
上記室外熱交換器の出口の冷媒の過冷却度に閾値を設け、上記室外熱交換器の出口の冷媒の凝縮温度と冷媒温度とを測定し、測定された冷媒の凝縮温度と冷媒温度との差温に基づいて冷媒の過冷却度を算出し、算出された該過冷却度が所定の範囲内の場合には該過冷却度に基づいて上記第2絞り手段の開度を制御し、算出された該過冷却度が所定の範囲外の場合には上記バイパス配管の上記内部熱交換器の出口の冷媒の蒸発温度と冷媒温度とを測定し、測定された冷媒の蒸発温度と冷媒温度との差温に基づいて冷媒の過熱度を算出し、算出された当該過熱度に基づいて上記第2絞り手段の開度を制御して上記室外熱交換器の出口に滞留する余剰冷媒を上記バイパス配管を介して上記アキュムレータに戻すことを特徴とする空気調和装置の運転制御方法。
An outdoor unit having a compressor, an outdoor heat exchanger, and an accumulator;
An indoor heat exchanger, and a plurality of indoor units having a first throttle means of the indoor heat exchanger,
One end of the liquid pipe is connected to the outlet of the outdoor heat exchanger, the other end is branched and connected to the inlet of the indoor heat exchanger via the first throttle means, and one end of the gas pipe is connected to the accumulator. The other end is branched and connected to the outlet of the indoor heat exchanger, and the refrigerant is the compressor, the outdoor heat exchanger, the first throttle means, the indoor heat exchanger, the accumulator, A refrigerant circuit that circulates in an annular order in the order of the compressor is configured, and further, a bypass pipe is arranged to communicate the liquid pipe and the accumulator, a second throttle means is arranged in the bypass pipe, and An air conditioner that performs cooling operation by disposing an internal heat exchanger that exchanges heat between the refrigerant at the outlet of the outdoor heat exchanger in the liquid pipe and the refrigerant at the outlet of the second throttle means in the bypass pipe. In the operation control method
The refrigerant evaporating temperature and the refrigerant temperature at the outlet of each of the indoor heat exchangers are measured, and the degree of superheating of the refrigerant is calculated based on the difference between the measured refrigerant evaporating temperature and the refrigerant temperature. And adjusting the flow rate of the refrigerant flowing into each of the indoor heat exchangers by controlling the opening of the first throttle means based on the
A threshold is set for the degree of subcooling of the refrigerant at the outlet of the outdoor heat exchanger, the refrigerant condensation temperature and refrigerant temperature at the outlet of the outdoor heat exchanger are measured, and the measured refrigerant condensation temperature and refrigerant temperature are Based on the differential temperature, the degree of supercooling of the refrigerant is calculated, and when the calculated degree of supercooling is within a predetermined range, the opening degree of the second throttle means is controlled based on the degree of supercooling and calculated. If the degree of supercooling is outside a predetermined range, the refrigerant evaporating temperature and the refrigerant temperature at the outlet of the internal heat exchanger of the bypass pipe are measured, and the measured refrigerant evaporating temperature and refrigerant temperature are measured. The degree of superheat of the refrigerant is calculated based on the difference in temperature, and the degree of opening of the second throttle means is controlled based on the calculated degree of superheat, so that the excess refrigerant staying at the outlet of the outdoor heat exchanger is bypassed by the bypass. Operation of an air conditioner characterized by returning to the accumulator via a pipe Your way.
上記圧縮機の出口から上記第1絞り手段に至る配管内の高圧側冷媒の圧力が臨界圧力以上の場合には、上記室外熱交換器出口の冷媒温度、又は上記室外熱交換器の出口の冷媒温度と外気温度との差温に基づいて上記第2絞り手段の開度を制御し、上記高圧側冷媒の圧力が臨界圧力より低い場合には、上記室外熱交換器の出口の冷媒の凝縮温度と冷媒温度とを測定し、測定された冷媒の凝縮温度と冷媒温度との差温に基づいて冷媒の過冷却度を算出し、算出された当該過冷却度に基づいて上記第2絞り手段の開度を制御することを特徴とする請求項4記載の空気調和装置の運転制御方法。 When the pressure of the high-pressure side refrigerant in the pipe from the compressor outlet to the first throttle means is equal to or higher than the critical pressure, the refrigerant temperature at the outlet of the outdoor heat exchanger or the refrigerant at the outlet of the outdoor heat exchanger When the opening of the second throttle means is controlled based on the difference between the temperature and the outside air temperature, and the pressure of the high-pressure side refrigerant is lower than the critical pressure , the condensation temperature of the refrigerant at the outlet of the outdoor heat exchanger And the refrigerant temperature are calculated, the degree of subcooling of the refrigerant is calculated based on the difference between the measured refrigerant condensing temperature and the refrigerant temperature, and the second throttle means is calculated based on the calculated degree of subcooling. The operation control method for an air conditioner according to claim 4 , wherein the opening is controlled. 上記圧縮機の出口から上記第1絞り手段に至る配管内の高圧側冷媒の圧力が臨界圧力以上の場合には、臨界圧力以上の凝縮温度の定義として、当該圧力で比熱が最も大きな温度、又は臨界圧力の比エンタルピと当該圧力から求められる温度を擬似的な凝縮温度と定義し、定義された上記擬似的な凝縮温度と上記室外熱交換器の出口の冷媒温度との差温に基づいて過冷却度を算出することを特徴とする請求項4記載の空気調和装置の運転制御方法。 When the pressure of the high-pressure side refrigerant in the pipe from the outlet of the compressor to the first throttle means is equal to or higher than the critical pressure, the condensation temperature equal to or higher than the critical pressure is defined as the temperature having the highest specific heat at the pressure, or The specific enthalpy of the critical pressure and the temperature obtained from the pressure are defined as a pseudo condensing temperature, and the temperature is determined based on the difference between the defined pseudo condensing temperature and the refrigerant temperature at the outlet of the outdoor heat exchanger. 5. The operation control method for an air conditioner according to claim 4, wherein the degree of cooling is calculated . 圧縮機、室外熱交換器、およびアキュムレータを有した室外機と、
室内熱交換器、および上記室内熱交換器の第1絞り手段を有した複数の室内機と、を備え、
液配管の一端を上記室外熱交換器の出口に接続し、他端を分岐してそれぞれ上記第1絞り手段を介して上記室内熱交換器の入口に接続し、かつガス配管の一端を上記アキュムレータに接続し、他端を分岐してそれぞれ上記室内熱交換器の出口に接続して、冷媒が上記圧縮機、上記室外熱交換器、上記第1絞り手段、上記室内熱交換器、上記アキュムレータ、上記圧縮機の順に環状に循環する冷媒回路を構成し、さらにバイパス配管を上記液配管と上記アキュムレータとを連通するように配設し、かつ第2絞り手段を上記バイパス配管に配設し、上記室外熱交換器の出口の冷媒温度を検出する冷媒温度検出手段を配設し、上記液配管の上記室外熱交換器の出口の冷媒と上記バイパス配管の上記第2絞り手段の出口の冷媒との間で熱交換を行う内部熱交換器を配設して冷房運転を行う空気調和装置の運転制御方法において、
上記室内熱交換器それぞれの出口の冷媒の蒸発温度と冷媒温度とを測定し、測定された蒸発温度と冷媒温度との差温に基づいて冷媒の過熱度を算出し、該過熱度に基づいて上記第1絞り手段の開度を制御して上記室内熱交換器それぞれに流入する冷媒流量を調整するとともに、
上記室外熱交換器の出口の冷媒温度に閾値を設け、上記室外熱交換器の出口の冷媒温度を測定し、測定された該冷媒温度が所定の範囲内の場合には該冷媒温度に基づいて上記第2絞り手段の開度を制御し、測定された冷媒温度が所定の範囲外の場合には、上記バイパス配管の上記内部熱交換器の出口の冷媒の蒸発温度と冷媒温度とを測定し、測定された蒸発温度と冷媒温度との差温に基づいて過熱度を算出し、算出された当該過熱度に基づいて上記第2絞り手段の開度を制御して上記室外熱交換器の出口に滞留する余剰冷媒を上記バイパス配管を介して上記アキュムレータに戻すことを特徴とする空気調和装置の運転制御方法。
An outdoor unit having a compressor, an outdoor heat exchanger, and an accumulator;
An indoor heat exchanger, and a plurality of indoor units having a first throttle means of the indoor heat exchanger,
One end of the liquid pipe is connected to the outlet of the outdoor heat exchanger, the other end is branched and connected to the inlet of the indoor heat exchanger via the first throttle means, and one end of the gas pipe is connected to the accumulator. The other end is branched and connected to the outlet of the indoor heat exchanger, and the refrigerant is the compressor, the outdoor heat exchanger, the first throttle means, the indoor heat exchanger, the accumulator, A refrigerant circuit that circulates in an annular order in the order of the compressor is configured, and further, a bypass pipe is arranged to communicate the liquid pipe and the accumulator, and a second throttle means is arranged in the bypass pipe, Refrigerant temperature detection means for detecting the refrigerant temperature at the outlet of the outdoor heat exchanger is disposed , and the refrigerant at the outlet of the outdoor heat exchanger in the liquid pipe and the refrigerant at the outlet of the second throttle means in the bypass pipe Heat exchange between Operation control method of an air conditioner which performs cooling operation by disposing the heat exchanger,
The refrigerant evaporating temperature and the refrigerant temperature at the outlet of each of the indoor heat exchangers are measured, the degree of superheating of the refrigerant is calculated based on the difference between the measured evaporating temperature and the refrigerant temperature, and based on the degree of superheating. While adjusting the flow rate of the refrigerant flowing into each of the indoor heat exchangers by controlling the opening of the first throttle means,
A threshold value is set for the refrigerant temperature at the outlet of the outdoor heat exchanger, the refrigerant temperature at the outlet of the outdoor heat exchanger is measured, and when the measured refrigerant temperature is within a predetermined range, the refrigerant temperature is based on the refrigerant temperature. The opening degree of the second throttle means is controlled, and when the measured refrigerant temperature is outside a predetermined range, the refrigerant evaporation temperature and the refrigerant temperature at the outlet of the internal heat exchanger of the bypass pipe are measured. The degree of superheat is calculated based on the difference between the measured evaporation temperature and the refrigerant temperature, and the opening of the second throttle means is controlled based on the calculated degree of superheat , and the outlet of the outdoor heat exchanger The surplus refrigerant | coolant which accumulates in is returned to the said accumulator via the said bypass piping, The operation control method of the air conditioning apparatus characterized by the above-mentioned.
圧縮機、室外熱交換器、およびアキュムレータを有した室外機と、
室内熱交換器、および上記室内熱交換器の第1絞り手段を有した複数の室内機と、を備え、
液配管の一端を上記室外熱交換器の出口に接続し、他端を分岐してそれぞれ上記第1絞り手段を介して上記室内熱交換器の入口に接続し、かつガス配管の一端を上記アキュムレータに接続し、他端を分岐してそれぞれ上記室内熱交換器の出口に接続して、冷媒が上記圧縮機、上記室外熱交換器、上記第1絞り手段、上記室内熱交換器、上記アキュムレータ、上記圧縮機の順に環状に循環する冷媒回路を構成し、さらにバイパス配管を上記液配管と上記アキュムレータとを連通するように配設し、かつ第2絞り手段を上記バイパス配管に配設し、上記液配管の上記室外熱交換器の出口の冷媒と上記バイパス配管の上記第2絞り手段の出口の冷媒との間で熱交換を行う内部熱交換器を配設して冷房運転を行う空気調和装置の運転制御方法において、
上記室内熱交換器それぞれの出口の冷媒の蒸発温度と冷媒温度とを測定し、測定された蒸発温度と冷媒温度との差温に基づいて冷媒の過熱度を算出し、該過熱度に基づいて上記第1絞り手段の開度を制御して上記室内熱交換器それぞれに流入する冷媒流量を調整するとともに、
上記高圧側冷媒の圧力に閾値を設け、上記高圧側冷媒の圧力を測定し、測定された上記高圧側冷媒の圧力が所定の範囲内の場合には該高圧側冷媒の圧力に基づいて上記第2絞り手段の開度を制御し、上記高圧側冷媒の圧力が所定の範囲外の場合には上記バイパス配管の上記内部熱交換器の出口の冷媒の蒸発温度と冷媒温度を測定し、測定された蒸発温度と冷媒温度との差温に基づいて冷媒の過熱度を算出し、算出された当該過熱度に基づいて上記第2絞り手段の開度を制御して上記室外熱交換器の出口に滞留する余剰冷媒を上記バイパス配管を介して上記アキュムレータに戻すことを特徴とする空気調和装置の運転制御方法。
An outdoor unit having a compressor, an outdoor heat exchanger, and an accumulator;
An indoor heat exchanger, and a plurality of indoor units having a first throttle means of the indoor heat exchanger,
One end of the liquid pipe is connected to the outlet of the outdoor heat exchanger, the other end is branched and connected to the inlet of the indoor heat exchanger via the first throttle means, and one end of the gas pipe is connected to the accumulator. The other end is branched and connected to the outlet of the indoor heat exchanger, and the refrigerant is the compressor, the outdoor heat exchanger, the first throttle means, the indoor heat exchanger, the accumulator, A refrigerant circuit that circulates in an annular order in the order of the compressor is configured, and further, a bypass pipe is arranged to communicate the liquid pipe and the accumulator, and a second throttle means is arranged in the bypass pipe, An air conditioner that performs cooling operation by disposing an internal heat exchanger that exchanges heat between the refrigerant at the outlet of the outdoor heat exchanger in the liquid pipe and the refrigerant at the outlet of the second throttle means in the bypass pipe. In the operation control method
The refrigerant evaporating temperature and the refrigerant temperature at the outlet of each of the indoor heat exchangers are measured, the degree of superheating of the refrigerant is calculated based on the difference between the measured evaporating temperature and the refrigerant temperature, and based on the degree of superheating. While adjusting the flow rate of the refrigerant flowing into each of the indoor heat exchangers by controlling the opening of the first throttle means,
A threshold value is set for the pressure of the high-pressure side refrigerant, the pressure of the high-pressure side refrigerant is measured, and when the measured pressure of the high-pressure side refrigerant is within a predetermined range, the second pressure is measured based on the pressure of the high-pressure side refrigerant. 2 The opening degree of the throttle means is controlled, and when the pressure of the high-pressure side refrigerant is outside a predetermined range, the refrigerant evaporating temperature and refrigerant temperature at the outlet of the internal heat exchanger of the bypass pipe are measured and measured. The degree of superheat of the refrigerant is calculated based on the difference between the evaporated temperature and the refrigerant temperature, and the opening degree of the second throttle means is controlled based on the calculated degree of superheat to the outlet of the outdoor heat exchanger. An operation control method for an air conditioner, wherein the excess refrigerant that remains is returned to the accumulator through the bypass pipe.
JP2007315668A 2007-12-06 2007-12-06 Air conditioner and operation control method thereof Active JP5046895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007315668A JP5046895B2 (en) 2007-12-06 2007-12-06 Air conditioner and operation control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007315668A JP5046895B2 (en) 2007-12-06 2007-12-06 Air conditioner and operation control method thereof

Publications (2)

Publication Number Publication Date
JP2009139014A JP2009139014A (en) 2009-06-25
JP5046895B2 true JP5046895B2 (en) 2012-10-10

Family

ID=40869794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007315668A Active JP5046895B2 (en) 2007-12-06 2007-12-06 Air conditioner and operation control method thereof

Country Status (1)

Country Link
JP (1) JP5046895B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107883617A (en) * 2016-09-30 2018-04-06 博格思众公司 Refrigerant liquid gas separating device with electronic device cooling

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9068766B2 (en) 2010-04-05 2015-06-30 Mitsubishi Electric Corporation Air-conditioning and hot water supply combination system
JP5593905B2 (en) * 2010-07-16 2014-09-24 ダイキン工業株式会社 Refrigeration equipment
JP5765990B2 (en) * 2011-03-29 2015-08-19 三菱電機株式会社 Indoor unit and air conditioner
KR101900901B1 (en) * 2012-05-30 2018-09-27 삼성전자주식회사 Air conditional and method for controlling the same
WO2014128831A1 (en) * 2013-02-19 2014-08-28 三菱電機株式会社 Air conditioning device
CN105588358A (en) * 2014-11-13 2016-05-18 海信(山东)空调有限公司 Air supplementing and enthalpy increasing air conditioner system and air conditioner
JP6149912B2 (en) * 2015-10-16 2017-06-21 ダイキン工業株式会社 Heat pump type heating device
CN105928244A (en) * 2016-06-24 2016-09-07 海信(山东)空调有限公司 Air conditioner refrigerant circulating system, air conditioner and air conditioner control method
CN107560073B (en) * 2017-08-30 2020-06-30 青岛海尔空调器有限总公司 Air conditioner and fault detection and processing method of supercooling pipe set of air conditioner
US11525598B2 (en) 2018-09-28 2022-12-13 Mitsubishi Electric Corporation Air-conditioning apparatus
JP7481658B2 (en) * 2020-12-01 2024-05-13 ダイキン工業株式会社 Refrigeration Cycle System

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263051A (en) * 1989-03-31 1990-10-25 Mitsubishi Electric Corp Refrigerating plant
JPH03168566A (en) * 1989-11-28 1991-07-22 Toshiba Corp Operation of refrigeration cycle device
JP3056554B2 (en) * 1991-09-18 2000-06-26 松下精工株式会社 Air conditioner
JP3541394B2 (en) * 1993-03-11 2004-07-07 三菱電機株式会社 Air conditioner
JPH07294032A (en) * 1994-04-25 1995-11-10 Mitsubishi Heavy Ind Ltd Refrigerating cycle
JPH085185A (en) * 1994-06-16 1996-01-12 Mitsubishi Electric Corp Refrigerating cycle system
JPH1089778A (en) * 1996-09-10 1998-04-10 Hoshizaki Electric Co Ltd Deep freezer
JPH11182944A (en) * 1997-12-18 1999-07-06 Yamaha Motor Co Ltd Refrigerant circulation type heat transfer device
JP2005098635A (en) * 2003-09-26 2005-04-14 Zexel Valeo Climate Control Corp Refrigeration cycle
JP4442237B2 (en) * 2004-01-30 2010-03-31 三菱電機株式会社 Air conditioner
JP4670329B2 (en) * 2004-11-29 2011-04-13 三菱電機株式会社 Refrigeration air conditioner, operation control method of refrigeration air conditioner, refrigerant amount control method of refrigeration air conditioner
JP4245044B2 (en) * 2006-12-12 2009-03-25 ダイキン工業株式会社 Refrigeration equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107883617A (en) * 2016-09-30 2018-04-06 博格思众公司 Refrigerant liquid gas separating device with electronic device cooling
CN107883617B (en) * 2016-09-30 2021-06-22 博格思众公司 Refrigerant liquid-gas separator with electronics cooling

Also Published As

Publication number Publication date
JP2009139014A (en) 2009-06-25

Similar Documents

Publication Publication Date Title
JP5046895B2 (en) Air conditioner and operation control method thereof
US10323862B2 (en) Air conditioning unit having dynamic target condensing and evaporating values based on load requirements
JP5042058B2 (en) Heat pump type hot water supply outdoor unit and heat pump type hot water supply device
JP4670329B2 (en) Refrigeration air conditioner, operation control method of refrigeration air conditioner, refrigerant amount control method of refrigeration air conditioner
US8353173B2 (en) Refrigerating cycle apparatus and operation control method therefor
JP3679323B2 (en) Refrigeration cycle apparatus and control method thereof
CN102865646B (en) Air-conditioning apparatus
KR101479458B1 (en) Refrigeration device
US10955160B2 (en) Air conditioner including a plurality of utilization units connected in parallel to a heat source unit
US11268737B2 (en) Refrigeration cycle apparatus
JP5034066B2 (en) Air conditioner
WO2008032578A1 (en) Refrigeration device
WO2014203364A1 (en) Heat pump apparatus
JP4273493B2 (en) Refrigeration air conditioner
JP2006284175A (en) Air conditioning device
US11112151B2 (en) Heat source unit for refrigeration apparatus including a heat-source-side heat exchanger having a heat exchange region of variable size
JP3903342B2 (en) Air conditioner
JP6577264B2 (en) Air conditioner
WO2015115546A1 (en) Refrigeration device
WO2019017370A1 (en) Freezer
JP3668750B2 (en) Air conditioner
KR102165354B1 (en) An air conditioning system and a method for controlling the same
JP7375167B2 (en) heat pump
WO2017094172A1 (en) Air conditioning device
JP3661014B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5046895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250