JP2005030708A - Cooling structure for semiconductor for controlling geothermal heat pump - Google Patents

Cooling structure for semiconductor for controlling geothermal heat pump Download PDF

Info

Publication number
JP2005030708A
JP2005030708A JP2003272096A JP2003272096A JP2005030708A JP 2005030708 A JP2005030708 A JP 2005030708A JP 2003272096 A JP2003272096 A JP 2003272096A JP 2003272096 A JP2003272096 A JP 2003272096A JP 2005030708 A JP2005030708 A JP 2005030708A
Authority
JP
Japan
Prior art keywords
heat
circuit
semiconductor
heat pump
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003272096A
Other languages
Japanese (ja)
Inventor
Atsushi Okamoto
淳 岡本
Original Assignee
Sunpot Co Ltd
サンポット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunpot Co Ltd, サンポット株式会社 filed Critical Sunpot Co Ltd
Priority to JP2003272096A priority Critical patent/JP2005030708A/en
Publication of JP2005030708A publication Critical patent/JP2005030708A/en
Granted legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Compressor arrangements cooling of compressor or motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling structure that can cool a semiconductor irrespective of the load of air conditioning operation. <P>SOLUTION: A geothermal heat pump system 1 is provided with a heat collection circuit 2 for collecting geotherm, a heat pump circuit 3 associated with the heat collection circuit 2, and an air conditioning circuit 4 associated with the heat pump circuit 3 to air-condition a room. The output of a compressor 9 is controlled by inverter control by the controlling semiconductor 13, which is provided with a heat sink 14. A branch pipe 15 branching from a heat collection pipe 8 meanders through fins 14b of the heat sink 14, so that a flow of a geothermal refrigerant cools the fins 14b. Geotherm maintains a practically constant temperature throughout the year and is less susceptible to aboveground climate. Even when a load on the heat pump circuit 3 varies, the controlling semiconductor 13 can be continuously kept at a constant temperature to be able to control the compressor 9 stably. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、地中熱を利用した空調用のヒートポンプにおいて、コンプレッサを制御する制御用半導体を冷却する構造に関する。   The present invention relates to a structure for cooling a control semiconductor that controls a compressor in an air conditioning heat pump using geothermal heat.
従来、空調用の冷凍サイクルにおけるコンプレッサの出力を制御する制御用半導体を冷却する手段としては、下記特許文献1に開示されているものが知られている。当該特許文献1に開示された空調装置は、図3に示すように、冷媒配管21にそれぞれ接続されるコンプレッサ22、アキュムレータ23、室外熱交換器24、及び室内熱交換器25を備えている。また、コンプレッサ22を制御する半導体26の冷却を行う構成として、制御用半導体26と冷媒配管21或いはアキュムレータ23とを連結するヒートパイプ27を備えている。   Conventionally, as a means for cooling a control semiconductor for controlling the output of a compressor in an air-conditioning refrigeration cycle, one disclosed in Patent Document 1 below is known. As shown in FIG. 3, the air conditioner disclosed in Patent Document 1 includes a compressor 22, an accumulator 23, an outdoor heat exchanger 24, and an indoor heat exchanger 25 that are respectively connected to the refrigerant pipe 21. Further, as a configuration for cooling the semiconductor 26 that controls the compressor 22, a heat pipe 27 that connects the control semiconductor 26 and the refrigerant pipe 21 or the accumulator 23 is provided.
このように、特許文献1に開示された空調装置では、コンプレッサ22の制御用半導体26の放熱をヒートパイプ27を介して冷媒配管21やアキュムレータ23により行っている。   As described above, in the air conditioner disclosed in Patent Document 1, the control semiconductor 26 of the compressor 22 is radiated by the refrigerant pipe 21 and the accumulator 23 through the heat pipe 27.
しかしながら、冷凍サイクルにおける冷媒配管21等により半導体26の冷却を行うと、空調時の負荷の変動に伴って冷媒配管21等の温度も変化してしまう。一方、制御用半導体26は、その温度によって出力特性が変化する。このため、空調時の負荷の変動によって制御用半導体26の出力も変化してしまい、コンプレッサ22の制御を安定して行うことができないおそれがある。
特開2000−234767号公報(明細書[0027]、図1、図3)
However, when the semiconductor 26 is cooled by the refrigerant pipe 21 or the like in the refrigeration cycle, the temperature of the refrigerant pipe 21 or the like also changes as the load varies during air conditioning. On the other hand, the output characteristics of the control semiconductor 26 change depending on the temperature. For this reason, the output of the control semiconductor 26 also changes due to a change in the load during air conditioning, and the compressor 22 may not be controlled stably.
JP 2000-234767 A (Specifications [0027], FIG. 1 and FIG. 3)
本発明は、地中熱ヒートポンプ制御用半導体の冷却構造の改良を目的とし、さらに詳しくは前記不都合を解消するために、空調運転の負荷に関わりなく安定して半導体の冷却を行うことができる冷却構造を提供することを目的とする。   The present invention aims to improve a semiconductor cooling structure for controlling a geothermal heat pump, and more specifically, in order to eliminate the inconvenience, cooling capable of stably cooling a semiconductor irrespective of the load of air conditioning operation. The purpose is to provide a structure.
前記目的を達成するために、本発明の地中熱ヒートポンプ制御用半導体の冷却構造は、地中に設けられた採熱部と地上に設けられた第1熱交換器との間に採熱管を介して地中熱用冷媒を循環させて地中熱を回収する採熱回路と、前記採熱回路に並設され前記第1熱交換器により採熱を行うヒートポンプ回路とを備え、前記ヒートポンプ回路は、前記第1熱交換器により熱交換されたポンプ用冷媒を圧縮するコンプレッサと、空調に利用される第2熱交換器と、前記第2熱交換器と前記第1熱交換器との間に設けられた膨張弁とを有し、前記コンプレッサは制御用半導体によりインバータ制御が行われ、前記制御用半導体は放熱のための放熱器を有し、前記放熱器は前記第1熱交換器の上流側の採熱回路に熱的に接続されていることを特徴とする。   In order to achieve the above-mentioned object, the semiconductor heat pump control cooling structure according to the present invention includes a heat collection tube between a heat collection unit provided in the ground and a first heat exchanger provided on the ground. A heat collecting circuit that circulates a geothermal refrigerant through the heat collecting circuit and collects the ground heat; and a heat pump circuit that is arranged in parallel with the heat collecting circuit and collects heat with the first heat exchanger. Is a compressor that compresses the refrigerant for the pump heat-exchanged by the first heat exchanger, a second heat exchanger that is used for air conditioning, and a space between the second heat exchanger and the first heat exchanger. And the compressor is controlled by an inverter by a control semiconductor, the control semiconductor has a radiator for heat dissipation, and the radiator is the first heat exchanger. It is characterized by being thermally connected to the upstream heat collecting circuit. .
本発明によれば、前記コンプレッサの制御を行う制御用半導体は、地中熱用冷媒が循環されている採熱回路に熱的に接続されているため、地中に設けられた採熱部によって採熱された地中熱用冷媒により冷却される。地中の温度は一年を通じて安定しているため、空調運転の負荷に左右されることがない。従って、前記制御用半導体を安定した温度で冷却することができる。   According to the present invention, the control semiconductor for controlling the compressor is thermally connected to the heat collecting circuit in which the underground heat refrigerant is circulated, and therefore, by the heat collecting unit provided in the ground. It is cooled by the ground heat refrigerant collected. Since the underground temperature is stable throughout the year, it does not depend on the load of air conditioning operation. Therefore, the control semiconductor can be cooled at a stable temperature.
次に、本発明の地中熱ヒートポンプ制御用半導体の冷却構造の実施形態の一例について、図1及び図2を参照して説明する。本実施形態の地中熱ヒートポンプシステム1は、図1に示すように、地中熱を回収する採熱回路2と、採熱回路2に並設されるヒートポンプ回路3と、ヒートポンプ回路3に並設され室内の空調を行う空調回路4とを備えている。以下、本実施形態においては、後述の四方弁10を図1に示す位置にして暖房を行う際の作動について説明する。   Next, an example of an embodiment of a semiconductor cooling structure for controlling a geothermal heat pump according to the present invention will be described with reference to FIGS. 1 and 2. As shown in FIG. 1, the geothermal heat pump system 1 of the present embodiment includes a heat collecting circuit 2 that recovers geothermal heat, a heat pump circuit 3 provided in parallel with the heat collecting circuit 2, and a heat pump circuit 3. And an air conditioning circuit 4 for air conditioning the room. Hereinafter, in this embodiment, the operation | movement at the time of heating by making the below-mentioned four-way valve 10 into the position shown in FIG. 1 is demonstrated.
採熱回路2は、地中において地中熱用冷媒の熱交換を行う採熱部5と、ヒートポンプ回路3との熱交換が行われる第1熱交換器6と、地中熱用冷媒を循環させる地中熱用ポンプ7とを備えており、それぞれが採熱管8により連結されている。また、地中熱用冷媒の膨張収縮を吸収する膨張タンク8bが採熱管8に接続されている。なお、本実施形態においては、地中熱用冷媒に不凍液を用いている。   The heat collecting circuit 2 circulates the heat collecting section 5 that performs heat exchange of the underground heat refrigerant in the ground, the first heat exchanger 6 that performs heat exchange with the heat pump circuit 3, and the underground heat refrigerant. And a ground heat pump 7 to be connected to each other by a heat collecting pipe 8. An expansion tank 8 b that absorbs expansion and contraction of the underground heat refrigerant is connected to the heat collecting pipe 8. In the present embodiment, an antifreeze liquid is used as the underground heat refrigerant.
ヒートポンプ回路3は、採熱回路2と熱交換を行う第1熱交換器6と、ポンプ用冷媒を圧縮するコンプレッサ9と、ポンプ用冷媒の流路を切り替える四方弁10と、空調回路4との熱交換を行う第2熱交換器11と、第2熱交換器11の下流側に設けられている膨張弁12とを備えている。   The heat pump circuit 3 includes a first heat exchanger 6 that exchanges heat with the heat collecting circuit 2, a compressor 9 that compresses the pump refrigerant, a four-way valve 10 that switches a flow path of the pump refrigerant, and an air conditioning circuit 4. A second heat exchanger 11 that performs heat exchange and an expansion valve 12 that is provided on the downstream side of the second heat exchanger 11 are provided.
コンプレッサ9は、制御用半導体13によるインバータ制御によりその出力が制御されており、制御用半導体13にはヒートシンク(本発明の放熱器に相当)14が取り付けられている。また、ヒートシンク14は、図2に示すように、制御用半導体13の表面に取り付けられる接触板14aと、接触板14aの上方に向けて複数の薄板状のフィン14bとを備えている。また、このフィン14bには、採熱管8から分岐された分岐管15が蛇行して貫通しており、地中熱用冷媒が通過することによりフィン14bが冷却されるようになっている。なお、図1における符号16はアキュムレータを示す。   The output of the compressor 9 is controlled by inverter control by the control semiconductor 13, and a heat sink (corresponding to a radiator of the present invention) 14 is attached to the control semiconductor 13. As shown in FIG. 2, the heat sink 14 includes a contact plate 14a attached to the surface of the control semiconductor 13, and a plurality of thin plate-like fins 14b facing the contact plate 14a. Further, a branch pipe 15 branched from the heat collecting pipe 8 meanders and penetrates the fin 14b, and the fin 14b is cooled by passage of the underground heat refrigerant. In addition, the code | symbol 16 in FIG. 1 shows an accumulator.
空調回路4は、ヒートポンプ回路3と熱交換を行う第2熱交換器11と、空調用冷媒を循環させる空調用ポンプ17と、室内に設けられて空調を行う第3熱交換器18とが空調配管19を介して連結されている。また、第3熱交換器18の近傍には、第3熱交換器18の放熱を行って室内の空調を行うファン20が設けられている。   The air conditioning circuit 4 is air-conditioned by a second heat exchanger 11 that exchanges heat with the heat pump circuit 3, an air conditioning pump 17 that circulates an air conditioning refrigerant, and a third heat exchanger 18 that is provided indoors and performs air conditioning. They are connected via a pipe 19. In addition, a fan 20 is provided in the vicinity of the third heat exchanger 18 for performing heat radiation of the third heat exchanger 18 to air-condition the room.
次に、本実施形態の地中熱ヒートポンプシステム1の作動について説明する。システムの運転が開始されると、採熱回路2の地中熱用ポンプ7が作動し、採熱管8内を地中熱用冷媒が循環する。すると、採熱部5において地中熱が回収された地中熱用冷媒が第1熱交換器6及び分岐管15の内部を流れる。そして、第1熱交換器6においてヒートポンプ回路3と熱交換が行われ、分岐管15においてコンプレッサ9の制御用半導体13と熱交換が行われる。また、第1熱交換器6及び分岐管15において熱交換が行われた地中熱用冷媒は、地中熱用ポンプ7によって採熱管8に運ばれ、採熱管8により一定の地中熱に戻されて採熱管8内を循環する。   Next, the operation of the geothermal heat pump system 1 of the present embodiment will be described. When the operation of the system is started, the underground heat pump 7 of the heat collection circuit 2 is operated, and the underground heat refrigerant circulates in the heat collection pipe 8. Then, the underground heat refrigerant from which the underground heat is recovered in the heat collecting unit 5 flows through the first heat exchanger 6 and the branch pipe 15. The first heat exchanger 6 exchanges heat with the heat pump circuit 3, and the branch pipe 15 exchanges heat with the control semiconductor 13 of the compressor 9. The underground heat refrigerant that has undergone heat exchange in the first heat exchanger 6 and the branch pipe 15 is transported to the heat collecting pipe 8 by the ground heat pump 7, and is converted to a constant ground heat by the heat collecting pipe 8. It is returned and circulated in the heat collecting pipe 8.
一方、ヒートポンプ回路3においては、コンプレッサ9が作動してポンプ用冷媒を高温高圧の蒸気の状態にする。次に、高温高圧のポンプ用冷媒は四方弁10を介して第2熱交換器11により空調回路4と熱交換を行って凝縮液化される。次に、凝縮液化されたポンプ用冷媒は、膨張弁12で減圧膨張されて低温低圧の状態となり、第1熱交換器6において採熱回路2と熱交換を行って蒸発気化する。そして、ポンプ用冷媒は四方弁10を介してコンプレッサ9に戻される。   On the other hand, in the heat pump circuit 3, the compressor 9 is operated to bring the pumping refrigerant into a high-temperature and high-pressure steam state. Next, the high-temperature and high-pressure pump refrigerant is condensed and liquefied by exchanging heat with the air conditioning circuit 4 by the second heat exchanger 11 via the four-way valve 10. Next, the condensed refrigerant for pump is decompressed and expanded by the expansion valve 12 to be in a low temperature and low pressure state, and is vaporized by exchanging heat with the heat collecting circuit 2 in the first heat exchanger 6. Then, the pump refrigerant is returned to the compressor 9 via the four-way valve 10.
また、空調回路4においては、空調用ポンプ17が作動して空調配管19内を空調用冷媒が循環し、第2熱交換器11によって熱交換された熱が第3熱交換器18によって室内に供給される。   In the air conditioning circuit 4, the air conditioning pump 17 is activated to circulate the air conditioning refrigerant in the air conditioning pipe 19, and the heat exchanged by the second heat exchanger 11 is indoors by the third heat exchanger 18. Supplied.
本実施形態のように地中熱を利用したヒートポンプシステム1は、コンプレッサ9の出力が大きいため、このコンプレッサ9の出力をインバータ制御により制御する制御用半導体13は多くの発熱を伴う。しかしながら、本実施形態においては、この制御用半導体13のヒートシンク14が分岐管15内を流れる地中熱用冷媒により冷却される。   Since the output of the compressor 9 is large in the heat pump system 1 that uses the underground heat as in the present embodiment, the control semiconductor 13 that controls the output of the compressor 9 by inverter control is accompanied by a large amount of heat generation. However, in the present embodiment, the heat sink 14 of the control semiconductor 13 is cooled by the underground heat refrigerant flowing in the branch pipe 15.
地中熱は年間を通じてほぼ一定の温度を保っており、地上の寒暖の影響を受けにくい。従って、地上の温度の変化による空調回路4の負荷の変動、ひいてはヒートポンプ回路3の負荷の変動が生じた場合であっても、制御用半導体13は常に一定の温度に保たれる。制御用半導体13の出力はその温度によって変動し、高温になれば出力が低下するが、本実施形態においてはその温度が一定に保たれるので、負荷の大小にかかわらず常に安定したコンプレッサ9の制御を行うことができる。   Geothermal heat is maintained at almost constant temperature throughout the year and is not easily affected by the temperature of the ground. Therefore, even when the load of the air conditioning circuit 4 is changed due to the temperature change on the ground, and the load of the heat pump circuit 3 is changed, the control semiconductor 13 is always kept at a constant temperature. The output of the control semiconductor 13 fluctuates depending on the temperature, and the output decreases when the temperature becomes high. However, in this embodiment, the temperature is kept constant, so that the compressor 9 is always stable regardless of the load. Control can be performed.
また、暖房運転時は、制御用半導体13で発生した熱がヒートシンク14及び分岐管15を介して地中熱用冷媒を加熱するので、第1熱交換器6には加熱された地中熱用冷媒が送られる。これにより、第1熱交換器6における採熱量が大きくなり、暖房効率を向上させることができる。   Further, during the heating operation, the heat generated in the control semiconductor 13 heats the underground heat refrigerant through the heat sink 14 and the branch pipe 15, so that the first heat exchanger 6 has the Refrigerant is sent. Thereby, the heat collection amount in the 1st heat exchanger 6 becomes large, and heating efficiency can be improved.
なお、上記実施形態においては、ヒートポンプシステム1を用いて暖房を行う場合について説明したが、図1において四方弁10を90度回転させることにより冷房も行うことができる。また、上記実施形態においては、ヒートシンク14を分岐管15により冷却しているが、これに限らず、ヒートシンク14を直接採熱管8に取り付けてもよく、ヒートシンク14と採熱管8との間にヒートパイプ(図示せず)を介して熱的に接続してもよい。また、上記実施形態においては、第2熱交換器11によってヒートポンプ回路3から空調回路4に熱交換を行っているが、これに限らず、第2熱交換器11を介さず、ポンプ用冷媒をそのまま空調用に用いてもよい。   In addition, in the said embodiment, although the case where it heats using the heat pump system 1 was demonstrated, air conditioning can also be performed by rotating the four-way valve 10 90 degree | times in FIG. In the above embodiment, the heat sink 14 is cooled by the branch pipe 15, but the heat sink 14 may be directly attached to the heat collecting pipe 8 without being limited thereto, and heat is applied between the heat sink 14 and the heat collecting pipe 8. You may connect thermally via a pipe (not shown). Moreover, in the said embodiment, although the heat exchange is performed from the heat pump circuit 3 to the air-conditioning circuit 4 by the 2nd heat exchanger 11, it is not restricted to this, The refrigerant | coolant for pumps is not passed through the 2nd heat exchanger 11. You may use for air conditioning as it is.
地中熱ヒートポンプシステムを示す説明図。Explanatory drawing which shows a geothermal heat pump system. コンプレッサ制御用半導体の冷却構造を示す説明図。Explanatory drawing which shows the cooling structure of the semiconductor for compressor control. 従来の空調用の冷凍サイクルを示す説明図。Explanatory drawing which shows the refrigerating cycle for the conventional air conditioning.
符号の説明Explanation of symbols
1…地中熱ヒートポンプシステム、2…採熱回路、3…ヒートポンプ回路、5…採熱部、6…第1熱交換器、8…採熱管、9…コンプレッサ、11…第2熱交換器、12…膨張弁、13…制御用半導体、14…ヒートシンク(放熱器)。
DESCRIPTION OF SYMBOLS 1 ... Geothermal heat pump system, 2 ... Heat collection circuit, 3 ... Heat pump circuit, 5 ... Heat collection part, 6 ... 1st heat exchanger, 8 ... Heat collection pipe, 9 ... Compressor, 11 ... 2nd heat exchanger, 12 ... expansion valve, 13 ... control semiconductor, 14 ... heat sink (heat radiator).

Claims (1)

  1. 地中に設けられた採熱部と地上に設けられた第1熱交換器との間に採熱管を介して地中熱用冷媒を循環させて地中熱を回収する採熱回路と、前記採熱回路に並設され前記第1熱交換器により採熱を行うヒートポンプ回路とを備え、
    前記ヒートポンプ回路は、前記第1熱交換器により熱交換されたポンプ用冷媒を圧縮するコンプレッサと、空調に利用される第2熱交換器と、前記第2熱交換器と前記第1熱交換器との間に設けられた膨張弁とを有し、
    前記コンプレッサは制御用半導体によりインバータ制御が行われ、前記制御用半導体は放熱のための放熱器を有し、前記放熱器は前記第1熱交換器の上流側の採熱回路に熱的に接続されていることを特徴とする地中熱ヒートポンプ制御用半導体の冷却構造。
    A heat collecting circuit for collecting ground heat by circulating a ground heat refrigerant through a heat collecting pipe between a heat collecting section provided in the ground and a first heat exchanger provided on the ground; A heat pump circuit that is arranged in parallel with the heat collection circuit and collects heat with the first heat exchanger,
    The heat pump circuit includes a compressor that compresses the pump refrigerant heat-exchanged by the first heat exchanger, a second heat exchanger used for air conditioning, the second heat exchanger, and the first heat exchanger. And an expansion valve provided between
    The compressor is controlled by an inverter using a control semiconductor, and the control semiconductor has a radiator for heat dissipation, and the radiator is thermally connected to a heat collecting circuit upstream of the first heat exchanger. A semiconductor cooling structure for controlling a geothermal heat pump.
JP2003272096A 2003-07-08 2003-07-08 Cooling structure for semiconductor for controlling geothermal heat pump Granted JP2005030708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003272096A JP2005030708A (en) 2003-07-08 2003-07-08 Cooling structure for semiconductor for controlling geothermal heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003272096A JP2005030708A (en) 2003-07-08 2003-07-08 Cooling structure for semiconductor for controlling geothermal heat pump

Publications (1)

Publication Number Publication Date
JP2005030708A true JP2005030708A (en) 2005-02-03

Family

ID=34209755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003272096A Granted JP2005030708A (en) 2003-07-08 2003-07-08 Cooling structure for semiconductor for controlling geothermal heat pump

Country Status (1)

Country Link
JP (1) JP2005030708A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101184699B1 (en) 2011-04-04 2012-09-20 주식회사 동화엔텍 Hybrid heat pump system using geothermal or waste water heat
JP2012241984A (en) * 2011-05-20 2012-12-10 Corona Corp Geothermal heat pump device
JP2016065656A (en) * 2014-09-24 2016-04-28 東芝キヤリア株式会社 Heat pump system
CN105674433A (en) * 2016-03-04 2016-06-15 青岛海尔空调器有限总公司 Frequency converter air-conditioning system for high-temperature environment
JP2017003236A (en) * 2015-06-15 2017-01-05 サンポット株式会社 Heat pump device
WO2018207278A1 (en) * 2017-05-10 2018-11-15 三菱電機株式会社 Heat pump device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234767A (en) * 1999-02-10 2000-08-29 Mitsubishi Electric Corp Cooling device and cooling device of air-conditioner
JP2002235957A (en) * 2001-02-09 2002-08-23 Kubota Corp Terrestrial heat exchange equipment in landslide dangerous area
JP2003139352A (en) * 2001-11-02 2003-05-14 Daikin Ind Ltd Electric device unit for outdoor machine and outdoor machine for air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000234767A (en) * 1999-02-10 2000-08-29 Mitsubishi Electric Corp Cooling device and cooling device of air-conditioner
JP2002235957A (en) * 2001-02-09 2002-08-23 Kubota Corp Terrestrial heat exchange equipment in landslide dangerous area
JP2003139352A (en) * 2001-11-02 2003-05-14 Daikin Ind Ltd Electric device unit for outdoor machine and outdoor machine for air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101184699B1 (en) 2011-04-04 2012-09-20 주식회사 동화엔텍 Hybrid heat pump system using geothermal or waste water heat
JP2012241984A (en) * 2011-05-20 2012-12-10 Corona Corp Geothermal heat pump device
JP2016065656A (en) * 2014-09-24 2016-04-28 東芝キヤリア株式会社 Heat pump system
JP2017003236A (en) * 2015-06-15 2017-01-05 サンポット株式会社 Heat pump device
CN105674433A (en) * 2016-03-04 2016-06-15 青岛海尔空调器有限总公司 Frequency converter air-conditioning system for high-temperature environment
WO2018207278A1 (en) * 2017-05-10 2018-11-15 三菱電機株式会社 Heat pump device

Similar Documents

Publication Publication Date Title
JP4782462B2 (en) Geothermal heat pump device, geothermal heat device equipped with the same, and control method for geothermal heat pump device
JP5395479B2 (en) Air conditioning system
JP2006170537A (en) Heat exchange system
JP2006313034A (en) Geothermal unit
JP4229881B2 (en) Heat pump system
JP2014035109A (en) Heat pump apparatus
US20180031285A1 (en) Thermoelectric heat pump system
JP6231395B2 (en) Combined heat source heat pump device
JP2004144399A (en) Refrigeration cycle device
JP2008275214A (en) Compression type heat pump device
WO2011108068A1 (en) Air-conditioning hot-water-supplying system
JP2006292313A (en) Geothermal unit
JP2005030708A (en) Cooling structure for semiconductor for controlling geothermal heat pump
JP5537489B2 (en) Heat pump hot water supply air conditioner
JP5775596B2 (en) Hot water supply air conditioner
JP4503630B2 (en) Air conditioning system and control method thereof
JP2012247136A (en) Booster unit, and air conditioning apparatus combined with water heater including the same
JP2006017440A (en) Heat pump air conditioner
JP2014122724A (en) Air conditioner and freezer
JP4809055B2 (en) Air conditioner and other function addition equipment
KR100613502B1 (en) Heat pump type air conditioner
JP2004044818A (en) Air conditioner
KR100648300B1 (en) Heat pump type cooling and heating apparatus
KR101649447B1 (en) Geothermal heat pump system using gas
JP6143682B2 (en) Combined heat source heat pump device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111