JP4166051B2 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP4166051B2
JP4166051B2 JP2002227201A JP2002227201A JP4166051B2 JP 4166051 B2 JP4166051 B2 JP 4166051B2 JP 2002227201 A JP2002227201 A JP 2002227201A JP 2002227201 A JP2002227201 A JP 2002227201A JP 4166051 B2 JP4166051 B2 JP 4166051B2
Authority
JP
Japan
Prior art keywords
pump
fan
air
heat source
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002227201A
Other languages
Japanese (ja)
Other versions
JP2004069134A (en
Inventor
康夫 高木
徹也 船津
一徳 岩渕
君永 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002227201A priority Critical patent/JP4166051B2/en
Publication of JP2004069134A publication Critical patent/JP2004069134A/en
Application granted granted Critical
Publication of JP4166051B2 publication Critical patent/JP4166051B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術の分野】
本発明は、例えば、ビルや病院などの建家内の冷暖房を行う空調システムに関する。
【0002】
【従来の技術】
一般に、ビルの空調システムにおける部屋温度の制御方式には、部屋の温度を測定してこれが目標値になるように、熱源機が製造する冷水または温水の流量を制御する定風量制御方式(CAV方式)と、冷水または温水の水量は一定で風量を変える可変風量制御方式(VAV方式)とがある。また、両者を組み合わせたハイブリッド方式もある。
【0003】
定風量制御方式では、冷水(温水)の流量を制御するために水循環系にポンプとバルブとを設け、ポンプは一定回転数で水を送り出す一方、バルブで所望の流量に調節する。この定風量制御方法ではポンプ動力が中問負荷のときに無駄になるので、近年ではバルブではなくインバータ制御ポンプにより流量制御が行われる場合が増えてきた。
【0004】
一方、可変風量制御方式では空調ファンが一定回転数で空気を循環させ、その空気流量をダンパーで調節するものである。この空気の流量調節により室温を目標値に制御する。この場合も省エネルギーの観点からダンパーではなくインバータ制御ファンにて空気流量を制御することが近年行われるようになっている。
【0005】
このように、従来の空調システムの制御では、部屋温度のフィードバックによりバルブやダンパーを制御し、または、インバータ制御ポンプやインバータ制御ファンを制御することにより、部屋温度を所定の値に制御している。
【0006】
一方、冷却塔は熱源機の発生する熱を大気中に放散するための装置であるが、従来は一定温度の冷却水を製造するように制御されている。空調用では一般的に約32℃程度である。
【0007】
【発明が解決しようとする課題】
ところが、従来の空調システムでは、水流量または空気流量のみを操作して室温を制御しているので、必ずしも最もエネルギー消費が少ない状態で運用されるとは限らない。
【0008】
冷水戻り温度と冷凍機成績係数(COP)との間、ファンやポンプに関し、その流量と所要動力との間には密接な相関関係がある。冷水戻り温度は一般的には高いほうが冷凍機成績係数(COP)は高くなる。また、ファンやポンプの所要動力は良く知られているように流量の3乗に比例する。特に、インバータ制御ファンとインバータ制御ポンプとを備えた空調システムでは、水流量と空気流量とをどのようにも調節可能であるが、室温のみにより制御しているので、必ずしも最もエネルギー消費が少ない点で運用されるとは限らなかった。
【0009】
いま、図4に示すような空調システムを考える。熱源機である冷凍機1の温度をTr、その基準温度をTr、ポンプ2による冷却流量をF、その基準流量をFW0、ポンプ2の動力をPpump、その基準動力をPpump0、空調コイル3の温度をTc、その基準温度をTc、ファン4による空調風量をFa、その基準風量をFa、ファン4の動力をPfan、その基準動力をPfan0、室内5の室内温度をTa、その基準温度をTaとする。
【0010】
ポンプ2の動力Ppumpの関係式は(1)式に示され、ファン4の動力Pfanの関係式は(2)式で示される。また、ポンプ2の動力とファン4の動力との合計f(Tc)を(3)式に示す。
【0011】
【数1】

Figure 0004166051
(1)式に示されるように、ポンプ2の動力Ppumpは流量Fの3乗に比例し、また必要流量は負荷が変わらなければ温度差に反比例する。同様に、ファン4の動力Pfanも、(2)式に示すように流量Faの3乗に比例し、また必要流量は負荷が変わらなければ温度差に反比例する。
【0012】
図5は、(3)式のポンプ2の動力とファン4の動力との合計f(Tc)を空調コイル温度Tcについてプロットした特性図である。図5に示すように、総動力f(Tc)は空調コイル温度Tcにより大きく変化する。
【0013】
しかるに、従来の空調システムでは部屋温度のみによりポンプ2またはファン4の制御を行っているので、ポンプ2の動力およびファン4の動力の両者の最小化は考慮されておらず、例えば、運用点1にて運用されていた。
【0014】
一方、冷却塔の製造する冷却水に関しても、冷却水温度が低いほど冷凍機1の成績係数(COP)は改善しその消費動力は低減するが、冷却水温度を低くするためには冷却塔ファンの消費動力が増大するという特性を有する。
【0015】
図6は、熱源機(冷凍機)がガス炊きボイラによる蒸気吸収式冷凍機である場合の冷却水温度に対する冷却塔ファンの消費動力(電力消費量)およびガス消費量の関係を示す特性図である。図6から明らかなように、冷却水温度によりガスおよび電気の総合動力コストは変化する。特に、時間帯により電気料金は大きく変化するので、従来の一定冷却水温度制御では動力コストが最小化されないという問題があった。
【0016】
また、熱源機である冷凍機1は冷温水の送り温度(Chilled Water Supply Temperature)によってもその効率は変化する。その一例を図7に示す。
【0017】
特性曲線S1は負荷(Load)が100%、特性曲線S2は負荷(Load)が78%、特性曲線S3は負荷(Load)が57%、特性曲線S4は負荷(Load)が37%の時の特性曲線をそれぞれ示している。従来は、このような冷凍機1の運用最適化は考慮されず常に一定の温度で運用されるのが一般であった。
【0018】
本発明の目的は、最適な省エネルギー化を図った空調運転を行うことができる空調システムを提供することである。
【0019】
【課題を解決するための手段】
請求項1の発明に係る空調システムは、空調用の冷温水を生産する熱源機と、前記熱源機で生産された冷温水の熱を空気に熱交換する空調コイルと、前記熱源機と前記空調コイルとの間の水循環を受け持つポンプと、冷暖房される部屋と前記空調コイルとの間の空気循環を担当するファンと、前記熱源機の動力、前記ファンの動力、前記ポンプの動力を含む下記式で示される空調所要動力Jを評価関数とし、前記熱源機、前記ポンプ、前記ファンの運用の制約条件下で前記空調コイルのコイル温度と前記熱源機の冷温水温度を変数とし、非線形または線形計画法を用いて空調所要動力Jを最小化する前記空調コイルのコイル温度目標値と前記熱源機の冷温水温度目標値を求める最適化制御器と、前記コイル温度および前記冷温水温度が前記最適制御器で求められたコイル温度目標値および冷温水温度目標値になるように前記ファンおよび前記ポンプを制御するローカル制御器とを備えたことを特徴とする。
Figure 0004166051
ここで、QHVACは冷凍機1の負荷、ηは効率(ηchillerは冷凍機1の効率、ηpumpはポンプの効率、ηfanはファンの効率)、Pは定格動力(Ppumpはポンプの定格動力、Pfanはファンの定格動力)、Fは流量(Fwaterは冷温水の流量、Fairはファン4空気流量)。
【0020】
請求項1の発明に係る空調システムにおいては、最適化制御器は、冷温水を生産する熱源機の動力、空調コイルで熱交換された空気を送出するファンの動力、熱源機からの冷温水を送出するポンプの動力を含む空調所要動力が最小になるように、空調コイルのコイル温度目標値と熱源機の冷温水温度目標値を求める。ローカル制御器は、コイル温度および冷温水温度が最適制御器で求められたコイル温度目標値および冷温水温度目標値になるように、ファンおよびポンプを制御する。
【0021】
請求項2の発明に係る空調システムは、空調用の冷温水を生産する熱源機と、前記熱源機の発生する熱を冷却水で熱交換し大気中に放散する冷却塔と、前記熱源機で生産された冷温水の熱を空気に熱交換する空調コイルと、前記冷却塔と前記熱源機との間の冷却水循環を受け持つ冷却水ポンプと、前記熱源機と前記空調コイルとの間の水循環を受け持つポンプと、冷暖房される部屋と前記空調コイルとの間の空気循環を担当するファンと、前記熱源機の動力、前記ファンの動力、前記ポンプの動力を含む下記式で示される空調所要動力Jを評価関数とし、前記熱源機、前記冷却塔、前記冷却水ポンプ、前記ポンプ、前記ファンの運用の制約条件下で前記空調コイルのコイル温度と前記熱源機の冷温水温度と前記冷却塔の冷却水温度を変数とし、非線形または線形計画法を用いて空調所要動力Jを最小化する前記空調コイルのコイル温度目標値と前記熱源機の冷温水温度目標値と前記冷却塔の冷却水温度目標値とを求める最適化制御器と、前記コイル温度、前記冷温水温度および前記冷却水温度が前記最適制御器で求められたコイル温度目標値、冷温水温度目標値および冷却水温度目標値になるように前記ファン、前記ポンプおよび前記冷却水ポンプを制御するローカル制御器とを備えたことを特徴とする。
Figure 0004166051
ここで、QHVACは冷凍機1の負荷、ηは効率(ηchillerは冷凍機1の効率、ηpumpはポンプの効率、ηfanはファンの効率)、Pは定格動力(Ppumpはポンプの定格動力、Pfanはファンの定格動力)、Fは流量(Fwaterは冷温水の流量、Fairはファン4空気流量)。
【0022】
請求項2の発明に係る空調システムにおいては、最適化制御器は、熱源機の動力、ファンの動力、ポンプの動力を含む空調所要動力が最小になるように、空調コイルのコイル温度目標値と熱源機の冷温水温度目標値と冷却塔の冷却水温度目標値とを求める。ローカル制御器は、コイル温度、冷温水温度および冷却水温度が最適制御器で求められたコイル温度目標値、冷温水温度目標値および冷却水温度目標値になるように、ファン、ポンプおよび冷却水ポンプを制御する。
【0023】
請求項3の発明に係る空調システムは、空調用の冷温水を生産する熱源機と、前記熱源機で生産された冷温水の熱を空気に熱交換する空調コイルと、前記熱源機と前記空調コイルとの間の水循環を受け持つポンプと、冷暖房される部屋と前記空調コイルとの間の空気循環を担当するファンと、前記熱源機の動力、前記ファンの動力、前記ポンプの動力を含む下記式で示される空調所要動力Jを評価関数とし、前記熱源機、前記ポンプ、前記ファンの運用の制約条件下で前記空調コイルのコイル温度と前記熱源機の冷温水温度を変数とし、非線形または線形計画法を用いて空調所要動力Jを最小化する前記空調コイルのコイル温度目標値と前記熱源機の冷温水温度目標値を求める最適化制御器と、前記コイル温度および前記冷温水温度が前記最適制御器で求められたコイル温度目標値および冷温水温度目標値になるように前記ファンおよび前記ポンプに搬送熱量を指示するモデル予測制御アルゴリズムを有した協調制御器と、前記協調制御器からの前記ファンおよび前記ポンプの搬送熱量に基づいて前記ファンおよび前記ポンプの回転数を制御するローカル制御装置とを備えたことを特徴とする。
Figure 0004166051
ここで、QHVACは冷凍機1の負荷、ηは効率(ηchillerは冷凍機1の効率、ηpumpはポンプの効率、ηfanはファンの効率)、Pは定格動力(Ppumpはポンプの定格動力、Pfanはファンの定格動力)、Fは流量(Fwaterは冷温水の流量、Fairはファン4空気流量)。
【0024】
請求項3の発明に係る空調システムにおいては、最適化制御器は、熱源機の動力、ファンの動力、ポンプの動力を含む空調所要動力が最小になるように、空調コイルのコイル温度目標値と熱源機の冷温水温度目標値を求める。協調制御器はモデル予測制御アルゴリズムを有し、コイル温度および冷温水温度が前記最適制御器で求められたコイル温度目標値および冷温水温度目標値になるように、ファンおよびポンプに搬送熱量を指示する。ローカル制御器は、協調制御器からのファンおよびポンプの搬送熱量に基づいてファンおよびポンプの回転数を制御する。
【0025】
請求項4の発明に係る空調システムは、空調用の冷温水を生産する熱源機と、前記熱源機の発生する熱を冷却水で熱交換し大気中に放散する冷却塔と、前記熱源機で生産された冷温水の熱を空気に熱交換する空調コイルと、前記冷却塔と前記熱源機との間の冷却水循環を受け持つ冷却水ポンプと、前記熱源機と前記空調コイルとの間の水循環を受け持つポンプと、冷暖房される部屋と前記空調コイルとの間の空気循環を担当するファンと、前記熱源機の動力、前記ファンの動力、前記ポンプの動力を含む下記式で示される空調所要動力Jを評価関数とし、前記熱源機、前記冷却塔、前記冷却水ポンプ、前記ポンプ、前記ファンの運用の制約条件下で前記空調コイルのコイル温度と前記熱源機の冷温水温度と前記冷却塔の冷却水温度を変数とし、非線形または線形計画法を用いて空調所要動力Jを最小化する前記空調コイルのコイル温度目標値と前記熱源機の冷温水温度目標値と前記冷却塔の冷却水温度目標値とを求める最適化制御器と、前記コイル温度、前記冷温水温度および前記冷却水温度が前記最適制御器で求められたコイル温度目標値、冷温水温度目標値および冷却水温度目標値になるように前記ファン、前記ポンプおよび前記冷却水ポンプに搬送熱量を指示するモデル予測制御アルゴリズムを有した協調制御器と、前記協調制御器からの前記ファン、前記ポンプおよび前記冷却水ポンプの搬送熱量に基づいて前記ファン、前記ポンプ、前記冷却水ポンプの回転数を制御するローカル制御装置とを備えたことを特徴とする。
Figure 0004166051
ここで、QHVACは冷凍機1の負荷、ηは効率(ηchillerは冷凍機1の効率、ηpumpはポンプの効率、ηfanはファンの効率)、Pは定格動力(Ppumpはポンプの定格動力、Pfanはファンの定格動力)、Fは流量(Fwaterは冷温水の流量、Fairはファン4空気流量)。
【0027】
請求項4の発明に係る空調システムにおいては、最適化制御器は、ファンの動力、ポンプの動力を含む空調所要動力が最小になるように、空調コイルのコイル温度目標値と熱源機の冷温水温度目標値と冷却塔の冷却水温度目標値とを求める。協調制御器はモデル予測制御アルゴリズムを有し、コイル温度、冷温水温度および冷却水温度が最適制御器で求められたコイル温度目標値、冷温水温度目標値および冷却水温度目標値になるように、ファン、ポンプおよび冷却水ポンプに搬送熱量を指示する。ローカル制御器は、協調制御器からのファン、ポンプおよび冷却水ポンプの搬送熱量に基づいて、ファン、ポンプ、冷却水ポンプの回転数を制御する。
【0028】
請求項5の発明に係る空調システムは、請求項3の発明において、前記ローカル制御器は、予め設定された空気流量とファン回転数との関係を表す関数、冷温水流量とポンプ回転数との関係を表す関数を有することを特徴とする。
【0029】
請求項5の発明に係る空調システムにおいては、請求項3の発明の作用に加え、ローカル制御器は、予め設定された空気流量とファン回転数との関係を表す関数、冷温水流量とポンプ回転数との関係を表す関数を用いて、回転数制御することにより流量制御を行う。
【0030】
請求項6の発明に係る空調システムは、請求項4の発明において、前記ローカル制御器は、予め設定された空気流量とファン回転数との関係を表す関数、冷温水流量とポンプ回転数との関係を表す関数、冷却水流量と冷却水ポンプ回転数との関係を表す関数を有することを特徴とする。
【0031】
請求項6の発明に係る空調システムにおいては、請求項4の発明の作用に加え、ローカル制御器は、予め設定された空気流量とファン回転数との関係を表す関数、冷温水流量とポンプ回転数との関係を表す関数、冷却水流量と冷却水ポンプ回転数との関係を表す関数を用いて、回転数制御することにより流量制御を行う。
【0032】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。図1は本発明の実施の形態に係る空調システムの構成図である。冷却塔6からの冷却水は冷却水ポンプ7により熱源機である冷凍機1に供給される。冷却水ポンプ7はローカル制御器8aによりインバータ9aを介して制御される。ローカル制御器8aは冷却塔6の冷却水温度Tclをフィードバックし冷却水温度が所定の設定値になるように制御する。同様に、冷凍機1からの冷温水はポンプ2により空調コイル3に供給される。ポンプ2はローカル制御器8bによりインバータ9bを介して制御される。ローカル制御器8bは冷凍機1の冷温水温度Trをフィードバックし冷温水温度Trが所定の設定値になるように制御する。
【0033】
また、空調コイル3からの空気はファン4により室内5に供給される。ファン4はローカル制御器8cによりインバータ9cを介して制御される。ローカル制御器8cは空調コイル3の空調コイル温度Tcをフィードバックし空調コイル温度Tcが所定の設定値になるように制御する。また、ダンパ10はローカル制御器8dにより制御される。
【0034】
このように、本発明の実施の形態における空調システムでは、冷却塔6の冷却水の温度を変化させる機能、冷房負荷量または暖房負荷量に応じて熱源機である冷凍機1の冷温水の出力温度を変化させる機能、冷房負荷量または暖房負荷量に応じて空調コイル3の温度を変化させる機能を有している。
【0035】
最適化制御器11は、空調システムのエネルギー消費が最も少なくなるように、熱源機出力温度Tr、コイル温度Tc、および冷却水温度Tclの目標値を設定するものであり、気温と空調負荷とを入力して、最も省エネルギーを実現する熱源機(冷凍機)出力温度目標値Tr*、コイル温度目標値Tc*、冷却水温度目標値Tcl*を線形または非線形計画法により求める。
【0036】
協調制御器12は、熱源機(冷凍機)出力温度目標値Tr*、コイル温度目標値Tc*、冷却水温度目標値Tcl*を実現するために、冷却水ポンプ7、ポンプ2、ファン4に搬送熱量を指示するものであり、冷却水ポンプ7の回転数、ポンプ2の回転数、ファン4の回転数を操作し、コイル温度Tc、熱源機冷温水温度Tr、冷却水温度Tclを所定の設定値に制御するアルゴリズムとして、モデル予測制御アルゴリズムを有する。ローカル制御器8a、8b、8cは、協調制御器12から、冷却水ポンプ7、ポンプ2、ファン4に搬送熱量を受けて、冷却水ポンプ7、ポンプ2、ファン4の回転数を指示する。
【0037】
次に、最適化制御器11について説明する。最適化制御器11では、冷凍機出力温度目標値Tr*、コイル温度目標値Tc*、冷却水温度目標値Tcl*を、下式の総合動力Jが最小になるように求める。
【0038】
【数2】
Figure 0004166051
ここで、QHVACは冷凍機1の負荷、ηは効率(ηchillerは冷凍機1の効率、ηpumpはポンプの効率、ηfanはファン4の効率)、Pは定格動力(Ppumpはポンプの定格動力、Pfanはファン4の定格動力)、Fは流量(Fwaterは冷温水の流量、Fairはファン4の空気流量)である。また、この評価関数は以下の制約条件を考慮して最小化される。
【0039】
(制約条件)
【数3】
Figure 0004166051
)式は空調コイル3部分で成立する熱量計算式であり、()式は冷凍機1部分での温度範囲の制約条件である。ポンプ2や冷却塔6についても同様に制約条件を設定することが可能である。
【0040】
この場合、最適化すべき評価関数の変数として、熱源機消費エネルギー(QHVAC)、ファン動力Pfan、ポンプ動力Ppump等を入力し、制約条件として熱源機の負荷許容範囲、冷温水、冷却水許容範囲、インバータファンやポンプの許容運転範囲等を入力することになる。
【0041】
ポンプ動力Ppump、ファン動力Pfanは、流量Fの概ね3乗に比例するので、(4)式で消費エネルギーを表現でき、それを制約条件下で最小化することにより、所望の最適温度目標値を得る。最適化制御器11では、非線形または線形計画法を所定の時間周期で解くことになる。例えば、冷凍機1、冷却塔6、冷却水ポンプ7、ポンプ2、ファン4等の特性カーブに微小偏差を加えて複数の最適解を求め、その平均値またはメディアンを最適運転指示値とする。
【0042】
このように、最適化制御器11は、気温と空調負荷とを入力して、最も省エネルギーを実現する冷凍機出力温度目標値Tr*、コイル温度目標値Tc*、冷却水温度目標値Tcl*を求め、求めたこれら目標値は協調制御器12に入力される。
【0043】
次に、協調制御器12について説明する。協調制御器12は制御アルゴリズムとしてモデル予測制御アルゴリズムを有し、冷凍機出力温度目標値Tr*、コイル温度目標値Tc*、冷却水温度目標値Tcl*が与えられると、冷凍機出力温度Tr、コイル温度Tc、冷却水温度Tclがそれぞれその目標値になるように、冷却水ポンプ7の回転数、ポンプ2の回転数、ファン4の回転数を操作する指令をローカル制御器8a、8b、8cに出力する。
【0044】
すなわち、協調制御器12のモデル予測制御アルゴリズムは、冷却水ポンプ7、ポンプ2およびファン4の運搬すべき熱量を算出する。ローカル制御器8a、8b、8cは、この搬送熱量を受けて、冷却水ポンプ7、ポンプ2およびファン4の回転数を制御する。この場合、ローカル制御器8aには、冷却水ポンプ回転数と冷却水ポンプ7を流れる冷却水流量との関係を表す関数が予め記憶されており、ローカル制御器8bには、ポンプ回転数とポンプ2を流れる冷温水の流量との関係を表す関数が予め記憶されており、同様に、ローカル制御器8cには、ファン回転数とファン4を流れる空気流量との関係を表す関数が予め記憶されている。従って、ローカル制御器8a、8b、8cは回転数制御(流量制御)することにより温度制御することになる。
【0045】
ここで、本発明の実施の形態では、制御すべき温度は3種類あり、同時にその制御端も3台のインバータ9a、9b、9cである。そして、それぞれの冷却水ポンプ7、ポンプ2、ファン4には運用制限がかかっている。このような複雑な制御系を安定に操作するには、操作量の制限を直接に考慮した最適化制御が最も優れている。このような制御方式をモデル予測制御方式と呼び、従来は化学プラントの分野で使われてきた。
【0046】
本発明の実施の形態では、このモデル予測制御方式を用いることにより、制約の多いビルなどの空調系に適した協調制御方式を実現する。モデル予測制御アルゴリズムの構成を図2に示す。このモデル予測制御アルゴリズムは、制御しようとする対象の予測モデル13を内部に持ち、操作量出力部14からの操作量および制御対象15の制御量を入力し、操作量の制御量に対する影響を常に評価しながら、最適化計算16により多数の制御量を同時に制御する。さらに、本発明の実施の形態では、ビル空調システムの空調コイル3や冷凍機1の温度などが下式に示すように、流量と温度の掛け算に関係し双線形系となっている。
【0047】
【数4】
Figure 0004166051
この空調システムを単純にポンプ2やファン4の回転数変化による流量操作だけで制御しようとすると、そのときの空調コイル3や冷凍機1、部屋の温度により大きく特性が変化し大変安定性の悪いものとなる。
【0048】
そこで、モデル予測制御アルゴリズムを有した協調制御器12が出力するのは、冷却水ポンプ7、ポンプ2、ファン4の搬送熱量とし、それを受けて実際に流量を制御するPID調節系のローカル制御器8a、8b、8cを設け、カスケード制御系を採用している。
【0049】
この構成により、協調制御器12によるモデル予測制御は、線形システムを制御することになり温度によらず安定した応答が得られる。一方、PID調節系は搬送熱量を目標値として、冷却水ポンプ7、ポンプ2、ファン4の回転数を制御する。搬送熱量や空気、水の流量は実際には測定していないので、前述のように回転数から流量を校正カーブにより算出する関数を持たせている。温度は図1に示したように測定しているので、搬送熱量は下式により容易に計算できる。
【0050】
【数5】
Figure 0004166051
この空調システムによる制御動作の一例を図3に示す。この実施の形態では、ダンパー制御との協調を保つために空気流量変化に制限値を設けた場合を示している。このように、多数の制御量を制限を満たしながら制御できる。
【0051】
ここで、本発明の空調システムをビルエネルギー管理システムに組み込んでシステムを構成すると、他のさまざまなビルエネルギー管理システムと協調を図ることができ、さらに全体としての最適化を図ることができる。特に、最適化制御器11と協調制御器12とをビル管理システムに組み込むのが、最も他の制御システムとの整合性がよい。また、本発明の空調システムを熱源機制御装置に組み込むこともできる。近年、熱源機の制御装置も容量が大きくなり、本システムを包含させることもできる。これにより安価なシステムを実現することができる。
【0052】
また、空調システムの一部、例えば、冷凍機1と冷却塔6に関する最適協調制御システム、冷凍機1と空調コイル3に関する最適協調制御システムもまったく同様に構成することができる。ビル等の状態によっては、インバータ化できないポンプやファンが存在することが多く、このような簡略システムは、そのようなケースに省エネを実現することができる。
【0053】
例えば、ビルや商店、地域などに冷水または温水を供給する少なくとも1台の熱源機を有する空調システムに対して、冷房負荷量または暖房負荷量に応じて熱源機の冷水または温水の出力温度または空調コイルの温度を変化させる。このような機能をビルエネルギー管理システムに組み込むようにしても良いし、熱源機制御装置に組み込むようにしても良い。
【0054】
【発明の効果】
以上述べたように、本発明によれば、冷却水温度、冷凍機冷温水温度、空調コイル温度を最適化計算により常に最適効率で運用できるように目標値を計算することにより、最適省エネルギー空調運転が可能となる。
【0055】
また、冷却水温度と所要電力および所要ガスは密接な関係にあり、時間帯別に電力料金は大きく異なるので,省エネルギーおよび省コストの最適運転はそれに応じて、時間帯による冷却水温度、冷凍機冷温水温度、空調コイル温度の最適スケジューリングにより大幅な省コストを図ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る空調システムの構成図。
【図2】本発明の実施の形態における協調制御器のモデル予測制御アルゴリズムの構成図。
【図3】本発明の実施の形態に係る空調システムによる制御動作の一例を示す特性図。
【図4】従来の空調システムの構成図。
【図5】従来の空調システムにおけるポンプ動力とファン動力との合計を空調コイル温度についてプロットした特性図。
【図6】従来の空調システムの冷凍機がガス炊きボイラによる蒸気吸収式冷凍機である場合の冷却水温度に対する冷却塔ファンの消費動力(電力消費量)およびガス消費量の関係を示す特性図。
【図7】従来の空調システムの熱源機が吸収式冷凍機である場合の成績係数(COP)と冷温水の送り温度との関係を示す特性図。
【符号の説明】
1…冷凍機、2…ポンプ、3…空調コイル、4…ファン、5…室内、6…冷却塔、7…冷却水ポンプ、8…ローカル制御器、9…インバータ、10…ダンパ、11…最適化制御器、12…協調制御器、13予測モデル、14…操作量出力部、15…制御対象、16…最適化計算[0001]
[Field of the Invention]
The present invention relates to an air conditioning system that performs cooling and heating in a building such as a building or a hospital.
[0002]
[Prior art]
In general, a room temperature control method in a building air conditioning system is a constant air volume control method (CAV method) that controls the flow rate of cold water or hot water produced by a heat source device so that the temperature of a room is measured and becomes a target value. ) And a variable air volume control method (VAV method) in which the amount of cold water or hot water is constant and the air volume is changed. There is also a hybrid system combining both.
[0003]
In the constant air flow rate control method, a pump and a valve are provided in the water circulation system to control the flow rate of cold water (hot water), and the pump sends out water at a constant rotation speed while adjusting the flow rate to a desired value with the valve. In this constant air flow rate control method, the pump power is wasted when the load is moderate, and in recent years, the flow control is performed not by a valve but by an inverter control pump.
[0004]
On the other hand, in the variable air volume control system, the air conditioning fan circulates air at a constant rotation speed and adjusts the air flow rate with a damper. The room temperature is controlled to the target value by adjusting the air flow rate. Also in this case, in recent years, the air flow rate is controlled by an inverter control fan instead of a damper from the viewpoint of energy saving.
[0005]
As described above, in the control of the conventional air conditioning system, the room temperature is controlled to a predetermined value by controlling the valve and the damper by feedback of the room temperature, or by controlling the inverter control pump and the inverter control fan. .
[0006]
On the other hand, the cooling tower is a device for dissipating the heat generated by the heat source device into the atmosphere, but conventionally it is controlled so as to produce cooling water at a constant temperature. For air conditioning, it is generally about 32 ° C.
[0007]
[Problems to be solved by the invention]
However, since the conventional air conditioning system controls the room temperature by operating only the water flow rate or the air flow rate, it is not always operated in a state where the energy consumption is the least.
[0008]
There is a close correlation between the cold water return temperature and the coefficient of performance (COP) of the refrigerator, and the flow rate and required power for fans and pumps. Generally, the higher the cold water return temperature, the higher the refrigerator coefficient of performance (COP). The required power of the fan or pump is proportional to the cube of the flow rate as is well known. In particular, in an air conditioning system equipped with an inverter control fan and an inverter control pump, the water flow rate and air flow rate can be adjusted in any way. It was not necessarily operated by.
[0009]
Consider an air conditioning system as shown in FIG. The temperature of the refrigerator 1 as a heat source device is Tr, the reference temperature is Tr 0 , the cooling flow rate by the pump 2 is F W , the reference flow rate is F W0 , the power of the pump 2 is P pump , the reference power is P pump0 , The temperature of the air conditioning coil 3 is Tc, the reference temperature is Tc 0 , the air conditioning air volume by the fan 4 is Fa, the reference air volume is Fa 0 , the power of the fan 4 is P fan , the reference power is P fan0 , and the room temperature of the room 5 Is Ta, and its reference temperature is Ta 0 .
[0010]
The relational expression of the power P pump of the pump 2 is represented by the expression (1), and the relational expression of the power P fan of the fan 4 is represented by the expression (2). Further, the total f (Tc) of the power of the pump 2 and the power of the fan 4 is shown in the equation (3).
[0011]
[Expression 1]
Figure 0004166051
As shown in the equation (1), the power P pump of the pump 2 is proportional to the cube of the flow rate FW , and the required flow rate is inversely proportional to the temperature difference unless the load changes. Similarly, the power P fan of the fan 4 is also proportional to the cube of the flow rate Fa as shown in the equation (2), and the required flow rate is inversely proportional to the temperature difference unless the load changes.
[0012]
FIG. 5 is a characteristic diagram in which the total f (Tc) of the power of the pump 2 and the power of the fan 4 in the formula (3) is plotted with respect to the air conditioning coil temperature Tc. As shown in FIG. 5, the total power f (Tc) varies greatly depending on the air conditioning coil temperature Tc.
[0013]
However, in the conventional air conditioning system, since the pump 2 or the fan 4 is controlled only by the room temperature, minimization of both the power of the pump 2 and the power of the fan 4 is not considered. It was operated in.
[0014]
On the other hand, as for the cooling water produced by the cooling tower, the coefficient of performance (COP) of the refrigerator 1 is improved and the power consumption is reduced as the cooling water temperature is lower. It has the characteristic that the power consumption increases.
[0015]
FIG. 6 is a characteristic diagram showing the relationship between the cooling tower fan power consumption (electric power consumption) and the gas consumption amount with respect to the cooling water temperature when the heat source machine (refrigeration machine) is a steam absorption refrigerator using a gas-fired boiler. is there. As is apparent from FIG. 6, the total power cost of gas and electricity varies depending on the cooling water temperature. In particular, since the electricity rate varies greatly depending on the time of day, there is a problem that the power cost is not minimized by the conventional constant cooling water temperature control.
[0016]
Moreover, the efficiency of the refrigerator 1 as a heat source device also changes depending on the feed temperature of the cold / hot water (Chilled Water Supply Temperature). An example is shown in FIG.
[0017]
The characteristic curve S1 is when the load is 100%, the characteristic curve S2 is when the load is 78%, the characteristic curve S3 is when the load is 57%, and the characteristic curve S4 is when the load is 37%. Each characteristic curve is shown. Conventionally, operation optimization of the refrigerator 1 is not considered and it is generally operated at a constant temperature.
[0018]
The objective of this invention is providing the air-conditioning system which can perform the air-conditioning driving | operation which aimed at the optimal energy saving.
[0019]
[Means for Solving the Problems]
An air conditioning system according to a first aspect of the present invention includes a heat source device that produces cold / hot water for air conditioning, an air conditioning coil that exchanges heat of cold / hot water produced by the heat source device with air, the heat source device, and the air conditioner. A pump responsible for water circulation between the coil, a fan in charge of air circulation between the air-conditioning coil and the air-conditioned room, the following formula including the power of the heat source machine, the power of the fan, and the power of the pump As an evaluation function, the air conditioning required power J shown in the above is used as an evaluation function, and the coil temperature of the air conditioning coil and the cold / hot water temperature of the heat source machine are variables under the constraint conditions of the operation of the heat source machine, the pump, and the fan. and optimization controller to determine the hot and cold water temperature target value of the coil temperature target value of the air-conditioning coil to minimize the air conditioning power required J and the heat source unit by using the law, the coil temperature and the cold water temperature is the lowest Coil temperature target value determined by the controller and controls the fan and the pump so that the hot and cold water temperature target value, characterized in that a local controller.
Figure 0004166051
Where Q HVAC is the load of the refrigerator 1, η is the efficiency (η chiller is the efficiency of the refrigerator 1, η pump is the efficiency of the pump, η fan is the efficiency of the fan), P is the rated power (P pump is the pump's efficiency) Rated power, P fan is the rated power of the fan, F is the flow rate (F water is the flow rate of cold / hot water, F air is the fan 4 air flow rate).
[0020]
In the air conditioning system according to the first aspect of the invention, the optimization controller uses the power of the heat source machine that produces cold / hot water, the power of the fan that sends out the air heat-exchanged by the air conditioning coil, and the cold / hot water from the heat source machine. The coil temperature target value of the air conditioning coil and the cold / hot water temperature target value of the heat source unit are obtained so that the required air conditioning power including the power of the pump to be delivered is minimized. The local controller controls the fan and the pump so that the coil temperature and the cold / hot water temperature become the coil temperature target value and the cold / hot water temperature target value obtained by the optimum controller.
[0021]
An air conditioning system according to a second aspect of the present invention includes a heat source unit that produces cold / hot water for air conditioning, a cooling tower that exchanges heat generated by the heat source unit with cooling water and dissipates it into the atmosphere, and the heat source unit. An air conditioning coil for exchanging heat of the produced cold / hot water into air, a cooling water pump responsible for cooling water circulation between the cooling tower and the heat source unit, and a water circulation between the heat source unit and the air conditioning coil. Air conditioning required power J represented by the following formula including the pump in charge, the fan in charge of air circulation between the air-conditioning coil and the air-conditioning room, the power of the heat source machine, the power of the fan, and the power of the pump As an evaluation function, and the coil temperature of the air conditioning coil, the cold / hot water temperature of the heat source machine, and the cooling tower cooling under the constraint conditions of operation of the heat source machine, the cooling tower, the cooling water pump, the pump, and the fan With water temperature as a variable Using non-linear or linear programming optimization control for obtaining a coolant temperature target value of the coil temperature target value of the air-conditioning coil to minimize the air conditioning power required J and hot and cold water temperature target value of the heat source unit and the cooling tower And the fan, the pump so that the coil temperature, the cold / hot water temperature, and the cooling water temperature become the coil temperature target value, the cold / hot water temperature target value, and the cooling water temperature target value obtained by the optimum controller. And a local controller for controlling the cooling water pump.
Figure 0004166051
Where Q HVAC is the load of the refrigerator 1, η is the efficiency (η chiller is the efficiency of the refrigerator 1, η pump is the efficiency of the pump, η fan is the efficiency of the fan), P is the rated power (P pump is the pump's efficiency) Rated power, P fan is the rated power of the fan, F is the flow rate (F water is the flow rate of cold / hot water, F air is the fan 4 air flow rate).
[0022]
In the air conditioning system according to the second aspect of the present invention, the optimization controller includes the coil temperature target value of the air conditioning coil so that the power required for air conditioning including the power of the heat source unit, the power of the fan, and the power of the pump is minimized. The target value for the cold / hot water temperature of the heat source unit and the target value for the cooling water temperature of the cooling tower are obtained. The local controller adjusts the fan, pump, and cooling water so that the coil temperature, cold / hot water temperature, and cooling water temperature become the coil temperature target value, cold / hot water temperature target value, and cooling water temperature target value obtained by the optimal controller. Control the pump.
[0023]
An air conditioning system according to a third aspect of the present invention includes a heat source device that produces cold / hot water for air conditioning, an air conditioning coil that exchanges heat of cold / hot water produced by the heat source device with air, the heat source device, and the air conditioner. A pump responsible for water circulation between the coil, a fan in charge of air circulation between the air-conditioning coil and the air-conditioned room, the following formula including the power of the heat source machine, the power of the fan, and the power of the pump As an evaluation function, the air conditioning required power J shown in the above is used as an evaluation function, and the coil temperature of the air conditioning coil and the cold / hot water temperature of the heat source machine are variables under the constraint conditions of the operation of the heat source machine, the pump, and the fan. and optimization controller to determine the hot and cold water temperature target value of the coil temperature target value of the air-conditioning coil to minimize the air conditioning power required J and the heat source unit by using the law, the coil temperature and the cold water temperature is the lowest A cooperative controller having a model predictive control algorithm that instructs the fan and the pump to convey heat quantity so as to be the coil temperature target value and the cold / hot water temperature target value obtained by the controller, and the cooperative controller from the cooperative controller And a local control device for controlling the rotational speeds of the fan and the pump based on the amount of heat transported by the fan and the pump.
Figure 0004166051
Where Q HVAC is the load of the refrigerator 1, η is the efficiency (η chiller is the efficiency of the refrigerator 1, η pump is the efficiency of the pump, η fan is the efficiency of the fan), P is the rated power (P pump is the pump's efficiency) Rated power, P fan is the rated power of the fan, F is the flow rate (F water is the flow rate of cold / hot water, F air is the fan 4 air flow rate).
[0024]
In the air conditioning system according to the invention of claim 3, the optimization controller includes the coil temperature target value of the air conditioning coil and the coil temperature target value so as to minimize the power required for air conditioning including the power of the heat source unit, the power of the fan, and the power of the pump. Find the target value of the cold / hot water temperature of the heat source unit. The coordinating controller has a model predictive control algorithm and instructs the fan and pump to transfer heat so that the coil temperature and chilled / hot water temperature become the coil temperature target value and chilled / hot water temperature target value obtained by the optimal controller. To do. The local controller controls the rotation speed of the fan and the pump based on the heat of conveyance of the fan and the pump from the cooperative controller.
[0025]
An air conditioning system according to a fourth aspect of the present invention includes a heat source unit that produces cold / hot water for air conditioning, a cooling tower that exchanges heat generated by the heat source unit with cooling water and dissipates it into the atmosphere, and the heat source unit. An air conditioning coil for exchanging heat of the produced cold / hot water into air, a cooling water pump responsible for cooling water circulation between the cooling tower and the heat source unit, and a water circulation between the heat source unit and the air conditioning coil. Air conditioning required power J represented by the following formula including the pump in charge, the fan in charge of air circulation between the air-conditioning coil and the air-conditioning room, the power of the heat source machine, the power of the fan, and the power of the pump As an evaluation function, and the coil temperature of the air conditioning coil, the cold / hot water temperature of the heat source machine, and the cooling tower cooling under the constraint conditions of operation of the heat source machine, the cooling tower, the cooling water pump, the pump, and the fan With water temperature as a variable Using non-linear or linear programming optimization control for obtaining a coolant temperature target value of the coil temperature target value of the air-conditioning coil to minimize the air conditioning power required J and hot and cold water temperature target value of the heat source unit and the cooling tower And the fan, the pump so that the coil temperature, the cold / hot water temperature, and the cooling water temperature become the coil temperature target value, the cold / hot water temperature target value, and the cooling water temperature target value obtained by the optimum controller. And a cooperative controller having a model predictive control algorithm for instructing the cooling water pump to convey heat, the fan from the cooperative controller, the pump, and the fan based on the conveying heat of the cooling water pump, the pump And a local control device for controlling the rotational speed of the cooling water pump.
Figure 0004166051
Where Q HVAC is the load of the refrigerator 1, η is the efficiency (η chiller is the efficiency of the refrigerator 1, η pump is the efficiency of the pump, η fan is the efficiency of the fan), P is the rated power (P pump is the pump's efficiency) Rated power, P fan is the rated power of the fan, F is the flow rate (F water is the flow rate of cold / hot water, F air is the fan 4 air flow rate).
[0027]
In the air conditioning system according to the fourth aspect of the present invention, the optimization controller includes the coil temperature target value of the air conditioning coil and the cold / hot water of the heat source so that the required power for air conditioning including the power of the fan and the power of the pump is minimized. A temperature target value and a cooling tower temperature target value for the cooling tower are obtained. The cooperative controller has a model predictive control algorithm so that the coil temperature, cold / hot water temperature and cooling water temperature become the coil temperature target value, cold / hot water temperature target value and cooling water temperature target value obtained by the optimal controller. Instruct the amount of heat transported to the fan, pump and cooling water pump. The local controller controls the number of rotations of the fan, the pump, and the cooling water pump based on the conveyance heat amount of the fan, the pump, and the cooling water pump from the cooperative controller.
[0028]
The air conditioning system according to a fifth aspect of the present invention is the air conditioning system according to the third aspect of the present invention, wherein the local controller includes a function representing a relationship between a preset air flow rate and a fan rotational speed, a cold / hot water flow rate and a pump rotational speed. It has a function representing a relationship.
[0029]
In the air conditioning system according to the fifth aspect of the invention, in addition to the operation of the third aspect of the invention, the local controller includes a function representing the relationship between the preset air flow rate and the fan rotational speed, the cold / hot water flow rate and the pump rotation. The flow rate is controlled by controlling the number of rotations using a function representing the relationship with the number.
[0030]
The air conditioning system according to a sixth aspect of the present invention is the air conditioning system according to the fourth aspect of the present invention, wherein the local controller includes a function representing a relationship between a preset air flow rate and a fan rotational speed, a cold / hot water flow rate and a pump rotational speed. It has a function representing a relationship, and a function representing a relationship between the coolant flow rate and the coolant pump rotational speed.
[0031]
In the air conditioning system according to the sixth aspect of the invention, in addition to the operation of the fourth aspect of the invention, the local controller includes a function representing the relationship between the preset air flow rate and the fan rotation speed, the cold / hot water flow rate and the pump rotation. The flow rate is controlled by controlling the number of revolutions using a function representing the relationship with the number and a function representing the relationship between the cooling water flow rate and the number of rotations of the cooling water pump.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of an air conditioning system according to an embodiment of the present invention. The cooling water from the cooling tower 6 is supplied to the refrigerator 1 which is a heat source machine by a cooling water pump 7. The cooling water pump 7 is controlled by the local controller 8a through the inverter 9a. The local controller 8a feeds back the cooling water temperature Tcl of the cooling tower 6 and controls the cooling water temperature to be a predetermined set value. Similarly, cold / hot water from the refrigerator 1 is supplied to the air conditioning coil 3 by the pump 2. The pump 2 is controlled by the local controller 8b via the inverter 9b. The local controller 8b feeds back the cold / hot water temperature Tr of the refrigerator 1 so as to control the cold / hot water temperature Tr to a predetermined set value.
[0033]
Air from the air conditioning coil 3 is supplied to the room 5 by the fan 4. The fan 4 is controlled by the local controller 8c through the inverter 9c. The local controller 8c feeds back the air conditioning coil temperature Tc of the air conditioning coil 3 and controls the air conditioning coil temperature Tc to be a predetermined set value. The damper 10 is controlled by the local controller 8d.
[0034]
As described above, in the air conditioning system according to the embodiment of the present invention, the function of changing the temperature of the cooling water in the cooling tower 6, the cooling load amount or the heating load amount, the output of the cold / hot water of the refrigerator 1 as the heat source device It has a function of changing the temperature, and a function of changing the temperature of the air conditioning coil 3 in accordance with the cooling load or the heating load.
[0035]
The optimization controller 11 sets target values for the heat source device output temperature Tr, the coil temperature Tc, and the cooling water temperature Tcl so that the energy consumption of the air conditioning system is minimized. Input the heat source machine (refrigerator) output temperature target value Tr *, coil temperature target value Tc *, and coolant temperature target value Tcl * that achieves the most energy saving by linear or nonlinear programming.
[0036]
In order to realize the heat source machine (refrigeration machine) output temperature target value Tr *, the coil temperature target value Tc *, and the cooling water temperature target value Tcl *, the cooperative controller 12 provides the cooling water pump 7, the pump 2, and the fan 4. The amount of heat transported is instructed, and the rotation speed of the cooling water pump 7, the rotation speed of the pump 2, and the rotation speed of the fan 4 are operated, and the coil temperature Tc, the heat source machine cold / hot water temperature Tr, and the cooling water temperature Tcl are set to predetermined values. A model predictive control algorithm is provided as an algorithm for controlling the set value. The local controllers 8 a, 8 b, and 8 c receive the amount of heat transferred from the cooperative controller 12 to the cooling water pump 7, the pump 2, and the fan 4 and instruct the rotation speeds of the cooling water pump 7, the pump 2, and the fan 4.
[0037]
Next, the optimization controller 11 will be described. The optimization controller 11 obtains the refrigerator output temperature target value Tr *, the coil temperature target value Tc *, and the cooling water temperature target value Tcl * so that the total power J of the following equation is minimized.
[0038]
[Expression 2]
Figure 0004166051
Here, Q HVAC is the load of the refrigerator 1, η is the efficiency (η chiller is the efficiency of the refrigerator 1, η pump is the efficiency of the pump 2 , η fan is the efficiency of the fan 4), P is the rated power (P pump is The rated power of the pump 2 , P fan is the rated power of the fan 4, and F is the flow rate (F water is the flow rate of cold / hot water, and F air is the air flow rate of the fan 4). This evaluation function is minimized in consideration of the following constraints.
[0039]
(Restrictions)
[Equation 3]
Figure 0004166051
Equation ( 5 ) is a calorific value calculation formula established in the air conditioning coil 3 portion, and equation ( 6 ) is a temperature range constraint condition in the refrigerator 1 portion. Restrictions can be similarly set for the pump 2 and the cooling tower 6.
[0040]
In this case, heat source machine consumption energy (Q HVAC ), fan power P fan, pump power P pump, etc. are input as variables of the evaluation function to be optimized, and the allowable load range of the heat source machine, cold / hot water, cooling water as constraints The allowable range, the allowable operating range of the inverter fan and pump, etc. are input.
[0041]
Since the pump power P pump and the fan power P fan are approximately proportional to the cube of the flow rate F, the consumption energy can be expressed by the equation (4), and by minimizing it under the constraint conditions, the desired optimum temperature target Get the value. The optimization controller 11 solves the nonlinear or linear programming with a predetermined time period. For example, a plurality of optimum solutions are obtained by adding minute deviations to the characteristic curves of the refrigerator 1, the cooling tower 6, the cooling water pump 7, the pump 2, the fan 4, etc., and the average value or median is set as the optimum operation instruction value.
[0042]
Thus, the optimization controller 11 inputs the air temperature and the air conditioning load, and sets the refrigerator output temperature target value Tr *, the coil temperature target value Tc *, and the cooling water temperature target value Tcl * that realize the most energy saving. The obtained target values are input to the cooperative controller 12.
[0043]
Next, the cooperative controller 12 will be described. The cooperative controller 12 has a model predictive control algorithm as a control algorithm. When the refrigerator output temperature target value Tr *, the coil temperature target value Tc *, and the coolant temperature target value Tcl * are given, the refrigerator output temperature Tr, Commands for operating the rotation speed of the cooling water pump 7, the rotation speed of the pump 2, and the rotation speed of the fan 4 so that the coil temperature Tc and the cooling water temperature Tcl become the target values, respectively. Output to.
[0044]
That is, the model predictive control algorithm of the cooperative controller 12 calculates the amount of heat that the cooling water pump 7, the pump 2, and the fan 4 should carry. The local controllers 8a, 8b, and 8c receive the amount of heat transported and control the rotational speeds of the cooling water pump 7, the pump 2, and the fan 4. In this case, the local controller 8a stores in advance a function representing the relationship between the cooling water pump rotational speed and the cooling water flow rate flowing through the cooling water pump 7, and the local controller 8b stores the pump rotational speed and the pump. 2 is stored in advance. Similarly, the local controller 8c stores in advance a function indicating the relationship between the fan speed and the air flow rate through the fan 4. ing. Therefore, the local controllers 8a, 8b, and 8c perform temperature control by controlling the rotation speed (flow rate control).
[0045]
Here, in the embodiment of the present invention, there are three types of temperatures to be controlled, and at the same time, the control ends are also the three inverters 9a, 9b, 9c. In addition, operation restrictions are imposed on each of the cooling water pump 7, the pump 2, and the fan 4. In order to stably operate such a complicated control system, the optimization control that directly considers the limitation of the operation amount is the best. Such a control method is called a model predictive control method and has been used in the field of chemical plants.
[0046]
In the embodiment of the present invention, by using this model predictive control method, a cooperative control method suitable for an air conditioning system such as a building with many restrictions is realized. The configuration of the model predictive control algorithm is shown in FIG. This model predictive control algorithm has a predictive model 13 to be controlled inside, inputs the operation amount from the operation amount output unit 14 and the control amount of the control target 15, and always affects the influence of the operation amount on the control amount. While evaluating, a large number of controlled variables are simultaneously controlled by the optimization calculation 16. Further, in the embodiment of the present invention, the temperature of the air conditioning coil 3 and the refrigerator 1 of the building air conditioning system is a bilinear system related to the multiplication of the flow rate and the temperature as shown in the following equation.
[0047]
[Expression 4]
Figure 0004166051
If this air conditioning system is controlled simply by operating the flow rate by changing the rotational speed of the pump 2 or the fan 4, the characteristics change greatly depending on the temperature of the air conditioning coil 3, the refrigerator 1 and the room at that time, and the stability is very poor. It will be a thing.
[0048]
Therefore, the cooperative controller 12 having the model predictive control algorithm outputs the heat quantity of the cooling water pump 7, the pump 2, and the fan 4, and the local control of the PID adjustment system that actually controls the flow rate in response thereto. Units 8a, 8b and 8c are provided and a cascade control system is employed.
[0049]
With this configuration, the model predictive control by the cooperative controller 12 controls the linear system, and a stable response can be obtained regardless of the temperature. On the other hand, the PID adjustment system controls the number of rotations of the cooling water pump 7, the pump 2, and the fan 4 with the conveyance heat amount as a target value. Since the conveyance heat quantity, the air flow rate, and the water flow rate are not actually measured, as described above, a function for calculating the flow rate from the rotation speed by a calibration curve is provided. Since the temperature is measured as shown in FIG. 1, the amount of heat transported can be easily calculated by the following equation.
[0050]
[Equation 5]
Figure 0004166051
An example of the control operation by this air conditioning system is shown in FIG. In this embodiment, a case is shown in which a limit value is provided for the change in air flow rate in order to maintain coordination with damper control. In this way, a large number of control amounts can be controlled while satisfying the restrictions.
[0051]
Here, when the air conditioning system of the present invention is incorporated into a building energy management system to constitute a system, it can be coordinated with other various building energy management systems, and further optimization as a whole can be achieved. In particular, incorporating the optimization controller 11 and the cooperative controller 12 in the building management system is most consistent with other control systems. In addition, the air conditioning system of the present invention can be incorporated into a heat source machine control device. In recent years, the capacity of the control device of the heat source machine has also increased, and this system can be included. Thereby, an inexpensive system can be realized.
[0052]
Also, a part of the air conditioning system, for example, the optimum cooperative control system related to the refrigerator 1 and the cooling tower 6 and the optimal cooperative control system related to the refrigerator 1 and the air conditioning coil 3 can be configured in exactly the same manner. Depending on the state of the building or the like, there are many pumps and fans that cannot be converted into inverters, and such a simplified system can realize energy saving in such a case.
[0053]
For example, for an air conditioning system having at least one heat source unit that supplies cold water or hot water to buildings, shops, areas, etc., the output temperature or air conditioning of the cold source or hot water of the heat source unit according to the cooling load or heating load Change the coil temperature. Such a function may be incorporated into a building energy management system or may be incorporated into a heat source machine control device.
[0054]
【The invention's effect】
As described above, according to the present invention, the optimum energy-saving air-conditioning operation is achieved by calculating the target value so that the cooling water temperature, the refrigerator cold / hot water temperature, and the air-conditioning coil temperature can always be operated at the optimum efficiency by the optimization calculation. Is possible.
[0055]
In addition, the cooling water temperature is closely related to the required power and required gas, and the electricity charge varies greatly depending on the time of day. Significant cost savings can be achieved by optimal scheduling of water temperature and air conditioning coil temperature.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an air conditioning system according to an embodiment of the present invention.
FIG. 2 is a configuration diagram of a model predictive control algorithm of a cooperative controller according to an embodiment of the present invention.
FIG. 3 is a characteristic diagram showing an example of a control operation by the air conditioning system according to the embodiment of the present invention.
FIG. 4 is a configuration diagram of a conventional air conditioning system.
FIG. 5 is a characteristic diagram in which the sum of pump power and fan power in a conventional air conditioning system is plotted with respect to the air conditioning coil temperature.
FIG. 6 is a characteristic diagram showing the relationship between the cooling tower fan power consumption (electric power consumption) and the gas consumption amount with respect to the cooling water temperature when the conventional air-conditioning system refrigerator is a steam absorption refrigerator using a gas-fired boiler. .
FIG. 7 is a characteristic diagram showing the relationship between the coefficient of performance (COP) and the feed temperature of cold / hot water when the heat source unit of the conventional air conditioning system is an absorption refrigerator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Refrigerator, 2 ... Pump, 3 ... Air conditioning coil, 4 ... Fan, 5 ... Indoor, 6 ... Cooling tower, 7 ... Cooling water pump, 8 ... Local controller, 9 ... Inverter, 10 ... Damper, 11 ... Optimum Control controller, 12 ... cooperative controller, 13 prediction model, 14 ... manipulated variable output unit, 15 ... controlled object, 16 ... optimization calculation

Claims (6)

空調用の冷温水を生産する熱源機と、前記熱源機で生産された冷温水の熱を空気に熱交換する空調コイルと、前記熱源機と前記空調コイルとの間の水循環を受け持つポンプと、冷暖房される部屋と前記空調コイルとの間の空気循環を担当するファンと、前記熱源機の動力、前記ファンの動力、前記ポンプの動力を含む下記式で示される空調所要動力Jを評価関数とし、前記熱源機、前記ポンプ、前記ファンの運用の制約条件下で前記空調コイルのコイル温度と前記熱源機の冷温水温度を変数とし、非線形または線形計画法を用いて空調所要動力Jを最小化する前記空調コイルのコイル温度目標値と前記熱源機の冷温水温度目標値を求める最適化制御器と、前記コイル温度および前記冷温水温度が前記最適制御器で求められたコイル温度目標値および冷温水温度目標値になるように前記ファンおよび前記ポンプを制御するローカル制御器とを備えたことを特徴とする空調システム。
Figure 0004166051
ここで、QHVACは冷凍機1の負荷、ηは効率(ηchillerは冷凍機1の効率、ηpumpはポンプの効率、ηfanはファンの効率)、Pは定格動力(Ppumpはポンプの定格動力、Pfanはファンの定格動力)、Fは流量(Fwaterは冷温水の流量、Fairはファン4空気流量)。
A heat source machine that produces cold / hot water for air conditioning, an air conditioning coil that exchanges heat of the cold / hot water produced by the heat source machine with air, a pump that is responsible for water circulation between the heat source machine and the air conditioning coil, A fan in charge of air circulation between a room to be air-conditioned and the air-conditioning coil, the power of the heat source device, the power of the fan, and the power of the pump, and the power required for air-conditioning J represented by the following formula as an evaluation function Using the nonlinear or linear programming method to minimize the air conditioning power requirement J using the coil temperature of the air conditioning coil and the cold / hot water temperature of the heat source machine as variables under the constraint conditions of operation of the heat source unit, the pump, and the fan the coil temperature target value of the air-conditioning coil and the optimization controller to determine the hot and cold water temperature target value of the heat source machines, the coil temperature and the cold water temperature is the optimum controller in the obtained coil temperature target value Air conditioning system characterized by comprising a local controller for controlling the fan and the pump so that the hot and cold water temperature target value and.
Figure 0004166051
Where Q HVAC is the load of the refrigerator 1, η is the efficiency (η chiller is the efficiency of the refrigerator 1, η pump is the efficiency of the pump, η fan is the efficiency of the fan), P is the rated power (P pump is the pump's efficiency) Rated power, P fan is the rated power of the fan, F is the flow rate (F water is the flow rate of cold / hot water, F air is the fan 4 air flow rate).
空調用の冷温水を生産する熱源機と、前記熱源機の発生する熱を冷却水で熱交換し大気中に放散する冷却塔と、前記熱源機で生産された冷温水の熱を空気に熱交換する空調コイルと、前記冷却塔と前記熱源機との間の冷却水循環を受け持つ冷却水ポンプと、前記熱源機と前記空調コイルとの間の水循環を受け持つポンプと、冷暖房される部屋と前記空調コイルとの間の空気循環を担当するファンと、前記熱源機の動力、前記ファンの動力、前記ポンプの動力を含む下記式で示される空調所要動力Jを評価関数とし、前記熱源機、前記冷却塔、前記冷却水ポンプ、前記ポンプ、前記ファンの運用の制約条件下で前記空調コイルのコイル温度と前記熱源機の冷温水温度と前記冷却塔の冷却水温度を変数とし、非線形または線形計画法を用いて空調所要動力Jを最小化する前記空調コイルのコイル温度目標値と前記熱源機の冷温水温度目標値と前記冷却塔の冷却水温度目標値とを求める最適化制御器と、前記コイル温度、前記冷温水温度および前記冷却水温度が前記最適制御器で求められたコイル温度目標値、冷温水温度目標値および冷却水温度目標値になるように前記ファン、前記ポンプおよび前記冷却水ポンプを制御するローカル制御器とを備えたことを特徴とする空調システム。
Figure 0004166051
ここで、QHVACは冷凍機1の負荷、ηは効率(ηchillerは冷凍機1の効率、ηpumpはポンプの効率、ηfanはファンの効率)、Pは定格動力(Ppumpはポンプの定格動力、Pfanはファンの定格動力)、Fは流量(Fwaterは冷温水の流量、Fairはファン4空気流量)。
Heat source machine that produces cold / hot water for air conditioning, cooling tower that exchanges heat generated by the heat source machine with cooling water and dissipates it to the atmosphere, and heat of cold / hot water produced by the heat source machine to heat An air conditioning coil to be exchanged, a cooling water pump responsible for cooling water circulation between the cooling tower and the heat source machine, a pump responsible for water circulation between the heat source machine and the air conditioning coil, a room to be air-conditioned and the air conditioning The heat source machine, the cooling, and the heat source machine, the cooling, using the fan in charge of air circulation between the coil, the power of the heat source machine, the power of the fan, and the required air conditioning power J represented by the following formula including the power of the pump as an evaluation function Non-linear or linear programming method with the coil temperature of the air conditioning coil, the cold / hot water temperature of the heat source unit, and the cooling water temperature of the cooling tower as variables under the constraint conditions of operation of the tower, the cooling water pump, the pump, and the fan Using air conditioning And optimization controller for obtaining a coolant temperature target value for the hot and cold water temperature target value of the coil temperature target value of the air-conditioning coil to minimize the main power J and the heat source unit and the cooling tower, the coil temperature, the cold Local for controlling the fan, the pump, and the cooling water pump so that the water temperature and the cooling water temperature become the coil temperature target value, the cold / hot water temperature target value, and the cooling water temperature target value obtained by the optimum controller. An air conditioning system comprising a controller.
Figure 0004166051
Where Q HVAC is the load of the refrigerator 1, η is the efficiency (η chiller is the efficiency of the refrigerator 1, η pump is the efficiency of the pump, η fan is the efficiency of the fan), P is the rated power (P pump is the pump's efficiency) Rated power, P fan is the rated power of the fan, F is the flow rate (F water is the flow rate of cold / hot water, F air is the fan 4 air flow rate).
空調用の冷温水を生産する熱源機と、前記熱源機で生産された冷温水の熱を空気に熱交換する空調コイルと、前記熱源機と前記空調コイルとの間の水循環を受け持つポンプと、冷暖房される部屋と前記空調コイルとの間の空気循環を担当するファンと、前記熱源機の動力、前記ファンの動力、前記ポンプの動力を含む下記式で示される空調所要動力Jを評価関数とし、前記熱源機、前記ポンプ、前記ファンの運用の制約条件下で前記空調コイルのコイル温度と前記熱源機の冷温水温度を変数とし、非線形または線形計画法を用いて空調所要動力Jを最小化する前記空調コイルのコイル温度目標値と前記熱源機の冷温水温度目標値を求める最適化制御器と、前記コイル温度および前記冷温水温度が前記最適制御器で求められたコイル温度目標値および冷温水温度目標値になるように前記ファンおよび前記ポンプに搬送熱量を指示するモデル予測制御アルゴリズムを有した協調制御器と、前記協調制御器からの前記ファンおよび前記ポンプの搬送熱量に基づいて前記ファンおよび前記ポンプの回転数を制御するローカル制御装置とを備えたことを特徴とする空調システム。
Figure 0004166051
ここで、QHVACは冷凍機1の負荷、ηは効率(ηchillerは冷凍機1の効率、ηpumpはポンプの効率、ηfanはファンの効率)、Pは定格動力(Ppumpはポンプの定格動力、Pfanはファンの定格動力)、Fは流量(Fwaterは冷温水の流量、Fairはファン4空気流量)。
A heat source machine that produces cold / hot water for air conditioning, an air conditioning coil that exchanges heat of the cold / hot water produced by the heat source machine with air, a pump that is responsible for water circulation between the heat source machine and the air conditioning coil, A fan in charge of air circulation between a room to be air-conditioned and the air-conditioning coil, the power of the heat source device, the power of the fan, and the power of the pump, and the power required for air-conditioning J represented by the following formula as an evaluation function Using the nonlinear or linear programming method to minimize the air conditioning power requirement J using the coil temperature of the air conditioning coil and the cold / hot water temperature of the heat source machine as variables under the constraint conditions of operation of the heat source unit, the pump, and the fan the coil temperature target value of the air-conditioning coil and the optimization controller to determine the hot and cold water temperature target value of the heat source machines, the coil temperature and the cold water temperature is the optimum controller in the obtained coil temperature target value And a cooperative controller having a model predictive control algorithm for instructing the fan and the pump to convey heat quantity so that the target temperature of the hot / cold water becomes a target value, and based on the conveyed heat quantity of the fan and the pump from the cooperative controller An air conditioning system comprising: a local control device that controls the rotational speed of the fan and the pump.
Figure 0004166051
Where Q HVAC is the load of the refrigerator 1, η is the efficiency (η chiller is the efficiency of the refrigerator 1, η pump is the efficiency of the pump, η fan is the efficiency of the fan), P is the rated power (P pump is the pump's efficiency) Rated power, P fan is the rated power of the fan, F is the flow rate (F water is the flow rate of cold / hot water, F air is the fan 4 air flow rate).
空調用の冷温水を生産する熱源機と、前記熱源機の発生する熱を冷却水で熱交換し大気中に放散する冷却塔と、前記熱源機で生産された冷温水の熱を空気に熱交換する空調コイルと、前記冷却塔と前記熱源機との間の冷却水循環を受け持つ冷却水ポンプと、前記熱源機と前記空調コイルとの間の水循環を受け持つポンプと、冷暖房される部屋と前記空調コイルとの間の空気循環を担当するファンと、前記熱源機の動力、前記ファンの動力、前記ポンプの動力を含む下記式で示される空調所要動力Jを評価関数とし、前記熱源機、前記冷却塔、前記冷却水ポンプ、前記ポンプ、前記ファンの運用の制約条件下で前記空調コイルのコイル温度と前記熱源機の冷温水温度と前記冷却塔の冷却水温度を変数とし、非線形または線形計画法を用いて空調所要動力Jを最小化する前記空調コイルのコイル温度目標値と前記熱源機の冷温水温度目標値と前記冷却塔の冷却水温度目標値とを求める最適化制御器と、前記コイル温度、前記冷温水温度および前記冷却水温度が前記最適制御器で求められたコイル温度目標値、冷温水温度目標値および冷却水温度目標値になるように前記ファン、前記ポンプおよび前記冷却水ポンプに搬送熱量を指示するモデル予測制御アルゴリズムを有した協調制御器と、前記協調制御器からの前記ファン、前記ポンプおよび前記冷却水ポンプの搬送熱量に基づいて前記ファン、前記ポンプ、前記冷却水ポンプの回転数を制御するローカル制御装置とを備えたことを特徴とする空調システム。
Figure 0004166051
ここで、QHVACは冷凍機1の負荷、ηは効率(ηchillerは冷凍機1の効率、ηpumpはポンプの効率、ηfanはファンの効率)、Pは定格動力(Ppumpはポンプの定格動力、Pfanはファンの定格動力)、Fは流量(Fwaterは冷温水の流量、Fairはファン4空気流量)。
Heat source machine that produces cold / hot water for air conditioning, cooling tower that exchanges heat generated by the heat source machine with cooling water and dissipates it to the atmosphere, and heat of cold / hot water produced by the heat source machine to heat An air conditioning coil to be exchanged, a cooling water pump responsible for cooling water circulation between the cooling tower and the heat source machine, a pump responsible for water circulation between the heat source machine and the air conditioning coil, a room to be air-conditioned and the air conditioning The heat source machine, the cooling, and the heat source machine, the cooling, using the fan in charge of air circulation between the coil, the power of the heat source machine, the power of the fan, and the required air conditioning power J represented by the following formula including the power of the pump as an evaluation function Non-linear or linear programming method with the coil temperature of the air conditioning coil, the cold / hot water temperature of the heat source unit, and the cooling water temperature of the cooling tower as variables under the constraint conditions of operation of the tower, the cooling water pump, the pump, and the fan Using air conditioning And optimization controller for obtaining a coolant temperature target value for the hot and cold water temperature target value of the coil temperature target value of the air-conditioning coil to minimize the main power J and the heat source unit and the cooling tower, the coil temperature, the cold The amount of heat transferred to the fan, the pump, and the cooling water pump is set so that the water temperature and the cooling water temperature become the coil temperature target value, the cold / hot water temperature target value, and the cooling water temperature target value obtained by the optimal controller. A cooperative controller having a model predictive control algorithm to instruct, and the number of revolutions of the fan, the pump, and the cooling water pump based on the amount of conveyance heat of the fan, the pump, and the cooling water pump from the cooperative controller An air conditioning system comprising a local control device for control.
Figure 0004166051
Where Q HVAC is the load of the refrigerator 1, η is the efficiency (η chiller is the efficiency of the refrigerator 1, η pump is the efficiency of the pump, η fan is the efficiency of the fan), P is the rated power (P pump is the pump's efficiency) Rated power, P fan is the rated power of the fan, F is the flow rate (F water is the flow rate of cold / hot water, F air is the fan 4 air flow rate).
前記ローカル制御器は、予め設定された空気流量とファン回転数との関係を表す関数、冷温水流量とポンプ回転数との関係を表す関数を有することを特徴とする請求項3記載の空調システム。4. The air conditioning system according to claim 3, wherein the local controller has a function representing a relationship between a preset air flow rate and a fan rotational speed, and a function representing a relationship between a cold / hot water flow rate and a pump rotational speed. . 前記ローカル制御器は、予め設定された空気流量とファン回転数との関係を表す関数、冷温水流量とポンプ回転数との関係を表す関数、冷却水流量と冷却水ポンプ回転数との関係を表す関数を有することを特徴とする請求項4記載の空調システム。The local controller has a function representing a relationship between a preset air flow rate and a fan rotational speed, a function representing a relationship between a cold / hot water flow rate and a pump rotational speed, and a relationship between the cooling water flow rate and the cooling water pump rotational speed. The air conditioning system according to claim 4, further comprising a function to represent.
JP2002227201A 2002-08-05 2002-08-05 Air conditioning system Expired - Fee Related JP4166051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002227201A JP4166051B2 (en) 2002-08-05 2002-08-05 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002227201A JP4166051B2 (en) 2002-08-05 2002-08-05 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2004069134A JP2004069134A (en) 2004-03-04
JP4166051B2 true JP4166051B2 (en) 2008-10-15

Family

ID=32014302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002227201A Expired - Fee Related JP4166051B2 (en) 2002-08-05 2002-08-05 Air conditioning system

Country Status (1)

Country Link
JP (1) JP4166051B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102535583A (en) * 2011-12-05 2012-07-04 渤海大学 Method for collocating constant-pressure dispersed variable-flow cluster type water pumps
WO2013140670A1 (en) 2012-03-21 2013-09-26 株式会社 東芝 Heat recovery plant system, heat recovery plant control device, and heat recovery plant control method
US9454160B2 (en) 2012-03-21 2016-09-27 Kabushiki Kaisha Toshiba Thermal recycling plant system, apparatus for controlling a thermal recycling plant and method of controlling a thermal recycling plant

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4402645B2 (en) * 2005-12-06 2010-01-20 株式会社山武 Control system analyzer and program
JP4834503B2 (en) * 2006-09-21 2011-12-14 新晃工業株式会社 Commercial air conditioning control system
JP4936961B2 (en) 2007-04-04 2012-05-23 株式会社東芝 Air conditioning system controller
EP2012068A1 (en) * 2007-06-04 2009-01-07 RHOSS S.p.A. Method for regulating the delivery temperature of a service fluid in output from a refrigerating machine
JP5132334B2 (en) 2008-01-28 2013-01-30 株式会社東芝 Air conditioning control device and air conditioning control system using the same
JP5299680B2 (en) * 2008-02-13 2013-09-25 株式会社日立プラントテクノロジー Cooling system and cooling method
JP5005578B2 (en) * 2008-02-21 2012-08-22 高砂熱学工業株式会社 Air conditioning control system, air conditioning control program, and air conditioning control method
CN102112819B (en) 2008-10-29 2013-07-31 三菱电机株式会社 Air conditioner
WO2016194190A1 (en) * 2015-06-04 2016-12-08 三菱電機株式会社 Control device for heat-pump-using system, and heat-pump-using system provided with same
WO2018078709A1 (en) 2016-10-24 2018-05-03 三菱電機株式会社 Air conditioner system, air conditioner control device, air conditioner method, and program
CN109974077B (en) * 2019-03-14 2024-06-11 深圳市宏事达能源科技有限公司 Intelligent hydraulic balance control system device adopting datum point tracking method
JP7499577B2 (en) * 2020-01-23 2024-06-14 三菱重工サーマルシステムズ株式会社 Air conditioning system control device, air conditioning system, air conditioning system control method and program
JP7439629B2 (en) * 2020-04-09 2024-02-28 三菱電機株式会社 air conditioning system
CN113865014B (en) * 2021-09-14 2023-03-24 浙江中控技术股份有限公司 Energy consumption coordination optimization method, device and equipment for large-scale cold water air-conditioning system
JP7453294B2 (en) 2022-08-25 2024-03-19 株式会社中部プラントサービス Control method for cooling water system equipment, control device for cooling water system equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102535583A (en) * 2011-12-05 2012-07-04 渤海大学 Method for collocating constant-pressure dispersed variable-flow cluster type water pumps
WO2013140670A1 (en) 2012-03-21 2013-09-26 株式会社 東芝 Heat recovery plant system, heat recovery plant control device, and heat recovery plant control method
US9454160B2 (en) 2012-03-21 2016-09-27 Kabushiki Kaisha Toshiba Thermal recycling plant system, apparatus for controlling a thermal recycling plant and method of controlling a thermal recycling plant

Also Published As

Publication number Publication date
JP2004069134A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
JP4166051B2 (en) Air conditioning system
JP4936961B2 (en) Air conditioning system controller
JP4505363B2 (en) Control method of cold / hot water in air conditioning system
JP4630702B2 (en) Heat source system optimum operation control device
US11662113B2 (en) Building cooling systems with energy optimization and model predictive control
AU2002310859B2 (en) Air-conditioning system
CN104024749B (en) Air-conditioning system that adjusts temperature and humidity
EP1946020B1 (en) System and method for controlling the operation of a heat pump and of supplemental heating
US20090171862A1 (en) Energy control system
CN108489012A (en) Cold source of air conditioning energy efficiency model control method based on load prediction and constraint
JP4422572B2 (en) Cold / hot water control method for cold / hot heat source machine
CN103958985B (en) Refrigerant-cycle systems
JP6324628B2 (en) Heat pump utilization system control device and heat pump utilization system including the same
WO2012173240A1 (en) Heat source system and control method of same
US20080277488A1 (en) Method for Controlling HVAC Systems
JP2007127321A (en) Cold water load factor controller for refrigerator
JP2014035092A (en) Air conditioning system
US6357245B1 (en) Apparatus for making hot-water by air conditioner/heater
JP2013139923A (en) Air-conditioning system for adjusting temperature and humidity
WO2020165992A1 (en) Air conditioning system, air conditioning apparatus, operation control method, and program
JP4112868B2 (en) Air conditioning system
JP2015169367A (en) Air conditioning system and air conditioning system control method
JP2014126234A (en) Heat load processing system
JP5062555B2 (en) Energy saving air conditioning control system
JP4594146B2 (en) Optimum control method for variable air volume of air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080729

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees