JP5062555B2 - Energy saving air conditioning control system - Google Patents

Energy saving air conditioning control system Download PDF

Info

Publication number
JP5062555B2
JP5062555B2 JP2007124265A JP2007124265A JP5062555B2 JP 5062555 B2 JP5062555 B2 JP 5062555B2 JP 2007124265 A JP2007124265 A JP 2007124265A JP 2007124265 A JP2007124265 A JP 2007124265A JP 5062555 B2 JP5062555 B2 JP 5062555B2
Authority
JP
Japan
Prior art keywords
air
time
load
setback
conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007124265A
Other languages
Japanese (ja)
Other versions
JP2008241231A (en
Inventor
川井昌裕
秋本学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2007124265A priority Critical patent/JP5062555B2/en
Publication of JP2008241231A publication Critical patent/JP2008241231A/en
Application granted granted Critical
Publication of JP5062555B2 publication Critical patent/JP5062555B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、同一スペースに配置された複数の空調装置の空調負荷を執務環境を確保しつつ効率良く減少し、消費電力を低減する省エネ空調制御システムに関する。   The present invention relates to an energy-saving air-conditioning control system that efficiently reduces the air-conditioning load of a plurality of air-conditioners arranged in the same space while ensuring a work environment and reduces power consumption.

一般の事務所ビルにおいては、電力使用量の約40%が空調設備で消費されている。空調設備における消費電力量は、外部気象条件(外部気温、日射等)、建物の蓄熱状況(夜間、休日等)によって大きく変動し、特に夏季・冬季のピーク負荷時や休日開けの空調運転時に空調負荷が増大するので、これに伴い消費電力量も増大する。   In general office buildings, about 40% of the power consumption is consumed by air conditioning equipment. The amount of power consumed by air conditioning equipment varies greatly depending on external weather conditions (external temperature, solar radiation, etc.) and the heat storage status of the building (nighttime, holidays, etc.). Since the load increases, the power consumption increases accordingly.

従来の省エネ空調制御システムにおいて、最大負荷時のデマンド値を低減させるものとして、空調設備を通常の運転時間より早めに運転する予冷・予熱制御、さらに冷房または暖房の停止中に冷水または温水を冷温水循環用配管と空調機の熱交換器に循環させ、冷房または暖房の開始直前の冷温水循環用配管内の冷水または温水の温度と空調機の熱交換器の温度とを冷房中の冷水温度または暖房中の温水温度に近い温度に保持する運転方法などが考えられている(以下、「公知例1」という。)。また、本出願人の特許出願(以下、「公知例2」という。)において、マルチエアコンを複数のグループに分割した複数の系統により空調負荷に応じた省エネ分散制御を行うマルチエアコンの省エネ制御システムであって、空調負荷を演算するための情報を計測する計測手段と、前記計測手段により計測される計測情報に基づき予め設定された時刻での空調負荷を求め、該空調負荷レベルに対応したサーモオフ制御時間により前記複数の系統に対して所定の時間毎に所定の優先順に従ってサーモオフ制御を行う運転制御装置とを備え、前記運転制御装置は、前記空調負荷レベルが軽負荷になるほど前記サーモオフ制御時間を長くする省エネ空調制御システムを提案している。
特開2004−108658号公報 特開2006−38334号公報
In conventional energy-saving air-conditioning control systems, pre-cooling / pre-heating control that operates the air-conditioning equipment earlier than the normal operation time, as well as cooling the chilled water or hot water while the cooling or heating is stopped, to reduce the demand value at the maximum load. Circulate through the water circulation pipe and the heat exchanger of the air conditioner, and the temperature of the cold water or hot water in the cold / hot water circulation pipe just before the start of cooling or heating and the temperature of the heat exchanger of the air conditioner are the cold water temperature or heating during the cooling An operation method for maintaining the temperature close to the temperature of the hot water is considered (hereinafter referred to as “known example 1”). Further, in the applicant's patent application (hereinafter referred to as “public example 2”), an energy saving control system for a multi air conditioner that performs energy saving distributed control in accordance with an air conditioning load by a plurality of systems in which the multi air conditioner is divided into a plurality of groups. A measuring means for measuring information for calculating an air conditioning load, and an air conditioning load at a preset time based on the measurement information measured by the measuring means, and a thermo-off corresponding to the air conditioning load level. An operation control device that performs thermo-off control according to a predetermined priority order for each of the plurality of systems according to a control time, and the operation control device increases the thermo-off control time as the air conditioning load level becomes lighter. We are proposing an energy-saving air-conditioning control system that lengthens
JP 2004-108658 A JP 2006-38334 A

しかし、前記公知例1の予冷・予熱制御では、室内環境を営業開始時間に適正値収束させることに主眼がおかれ、外気条件、室内温度、空調機能力など多くのパラメータを計算して運転時間を計算し、また、冷房または暖房の停止中に冷水または温水を循環させる方法では、空調機への熱媒体の出側または入側に設置された二方弁とその前後に連通するバイパス管に設置された開閉弁のいずれか一方または双方を冷房または暖房の停止中に開いて循環ポンプの運転を続けてなければならない。近年の空調機器は、軽負荷時にインバータ制御を行う機能を有するものがあるが、軽負荷時の成績効率が上がらないという問題がある。また、公知例2においては、執務環境を確保しつつ簡単な制御により空調設備の系統別運転制御を行って特に軽負荷時の成績効率を向上させ消費電力量を低減できるものである。しかし、同一スペースに配置された複数の空調装置は、その配置位置の各種条件により空調負荷が大きく相違することが実際の空調運転の結果判明し、同一スペースに配置された複数の空調装置を全てがサーモオフ制御(間歇制御)すると、空調設備の成績係数を高める点での限界が存在することが判明した。   However, in the precooling / preheating control of the above-mentioned known example 1, the main purpose is to converge the indoor environment to an appropriate value at the business start time, and the operation time is calculated by calculating many parameters such as the outside air condition, the room temperature, and the air conditioning function. In addition, in the method of circulating cold water or hot water while cooling or heating is stopped, a two-way valve installed on the outlet side or inlet side of the heat medium to the air conditioner and a bypass pipe that communicates with the two-way valve Either or both of the installed on-off valves must be opened during cooling or heating stop to continue the operation of the circulation pump. Although some recent air conditioners have a function of performing inverter control at light loads, there is a problem that performance efficiency at light loads does not increase. Further, in the known example 2, the system-specific operation control of the air conditioning equipment is performed by simple control while ensuring the work environment, and particularly the performance efficiency at a light load can be improved and the power consumption can be reduced. However, as a result of the actual air conditioning operation, it was found that the air conditioning load of the plurality of air conditioners arranged in the same space varies greatly depending on the various conditions of the arrangement position, and all the plurality of air conditioners arranged in the same space are all However, when thermo-off control (intermittent control) was performed, it was found that there was a limit in increasing the coefficient of performance of air conditioning equipment.

本発明は、前記従来技術の持つ課題を解決するものであって、同一スペースに配置された複数の空調装置の空調負荷を執務環境を確保しつつ効率良く減少し、消費電力を低減することができる省エネ空調制御システムを提供することを目的とする。   The present invention solves the problems of the prior art, and can efficiently reduce the air conditioning load of a plurality of air conditioners arranged in the same space while ensuring a work environment, thereby reducing power consumption. The purpose is to provide an energy-saving air-conditioning control system.

本発明の省エネ空調システムは、前記課題を解決するために、同一スペースの各区画をそれぞれ空調する複数の空調装置を配置し、前記複数の空調装置をネットワークを介して制御装置に連結し、前記制御装置は前記複数の空調装置の配置された各区画毎の過去の季節、時間、日射量により変動する空調負荷実績データに基づき前記複数の空調装置のベース機、補助機への区分、セットバック時間およびセットバック温度からなる制御パターンを記憶する記憶手段を備え、前記ベース機は記憶された制御パターンに基づきセットバック時間に達するまで高負荷又は中負荷運転モードで運転し、セットバック時間経過後にセットバック温度に達するまで低負荷運転モード又は間歇運転モードで運転し、前記補助機は記憶された制御パターンに基づきセットバック時間まで高負荷又は中負荷運転し、セットバック時間経過後は送風運転モードで運転し、セットバック温度に達した後、前記ベース機及び前記補助機を所定時間送風モードで運転し、所定時間経過後、前記ベース機及び前記補助機を初期の運転モードで運転するように制御することを特徴とする。 In order to solve the above problem , the energy-saving air conditioning system of the present invention includes a plurality of air conditioners that respectively air-condition each section of the same space, and connects the plurality of air conditioners to a control device via a network, The control device is configured to classify the plurality of air conditioners into base machines and auxiliary machines based on the past air condition load data that varies depending on the past season, time, and amount of solar radiation for each section in which the plurality of air conditioners are arranged , and setback. Storage means for storing a control pattern comprising a time and a setback temperature, and the base machine operates in a high-load or medium-load operation mode until the setback time is reached based on the stored control pattern, and after the setback time has elapsed. Operate in low-load operation mode or intermittent operation mode until the setback temperature is reached, and the auxiliary machine is based on the stored control pattern. Until it comes the setback time driving a high load or middle load, after setback time is operated in the blowing operation mode, and operation after reaching the set-back temperature, the base machine and the auxiliary machine at a predetermined time air blowing mode, After a predetermined time has elapsed, the base machine and the auxiliary machine are controlled to operate in an initial operation mode .

また、本発明の省エネ空調システムは、中負荷運転、低負荷運転、間歇運転、オフ運転の各運転状態毎の電力負荷率の直近N分間における最大値、最小値、平均値、オフ回数、現在の電力負荷率のデータを複数回のサンプリングにより取得し、前記直近N分間で取得したデータと設定値との対比に基づき各運転状態における省エネ度がより向上するように前記空調装置を制御することを特徴とする。 In addition, the energy saving air conditioning system of the present invention includes the maximum value, the minimum value, the average value, the number of off times, the current value of the power load factor for each operation state of medium load operation, low load operation, intermittent operation, and off operation in the latest N minutes The power load factor data is acquired by sampling a plurality of times, and the air conditioner is controlled so that the degree of energy saving in each operation state is further improved based on the comparison between the data acquired in the last N minutes and the set value. It is characterized by.

また、本発明の省エネ空調システムは、省エネ度のランクを複数のモードに区分し、各モード毎に運転状態に応じてオフ運転への切り替え、オフ時間の長さの設定を異なるように設定することを特徴とする。 Moreover, the energy-saving air-conditioning system of this invention classifies the rank of an energy-saving degree into a some mode, and sets the setting of the length of the off time and the setting of off time according to the driving | running state for each mode so that it may differ. It is characterized by that.

同一スペースの各区画をそれぞれ空調する複数の空調装置を配置し、前記複数の空調装置をネットワークを介して制御装置に連結し、前記制御装置は前記複数の空調装置の配置された各区画毎の過去の季節、時間、日射量により変動する空調負荷実績データに基づき前記複数の空調装置のベース機、補助機への区分、セットバック時間およびセットバック温度からなる制御パターンを記憶する記憶手段を備え、前記ベース機は記憶された制御パターンに基づきセットバック時間に達するまで高負荷又は中負荷運転モードで運転し、セットバック時間経過後にセットバック温度に達するまで低負荷運転モード又は間歇運転モードで運転し、前記補助機は記憶された制御パターンに基づきセットバック時間まで高負荷又は中負荷運転し、セットバック時間経過後は送風運転モードで運転し、セットバック温度に達した後、前記ベース機及び前記補助機を所定時間送風モードで運転し、所定時間経過後、前記ベース機及び前記補助機を初期の運転モードで運転するように制御する構成により、セットバック時間経過後は、ベース機のみ低負荷運転モード又はオン、オフ制御の間歇運転モードで運転するので、全ての空調装置を室内環境に基づいて制御するシステムに比較し、執務環境を保持しつつ空調負荷を効率良く減少し、消費電力を低減することができる。
また、ベース機、補助機に区分された空調装置のスタート、リスタート、高負荷運転、中負荷運転、低負荷運転、間歇運転、オフ運転の各運転状態毎の電力負荷率の直近N分間における最大値、最小値、平均値、オフ回数、現在の電力負荷率のデータを複数回のサンプリングにより取得し、前記直近N分間で取得したデータと設定値との対比に基づき各運転状態における省エネ度がより向上するように前記空調装置を制御する構成により、直近の各空調装置の運転状態に応じきめの細かい制御が可能となり、電力消費量をより低減することができる。
省エネ度のランクを複数のモードに区分し、各モード毎にオフ運転への切り替え、オフ時間の長さの設定を異なるように設定する構成により、要求される省エネ度に応じて効率良く省エネ運転制御が可能となる。
A plurality of air conditioners that respectively air-condition each section of the same space are arranged, the plurality of air conditioners are connected to a control apparatus via a network, and the control apparatus is provided for each section in which the plurality of air conditioners are arranged. Storage means for storing a control pattern consisting of a base unit of the plurality of air conditioners, a classification to an auxiliary unit, a setback time, and a setback temperature based on past air conditioning load data that varies depending on the past season, time, and amount of solar radiation The base machine operates in the high load or medium load operation mode until the setback time is reached based on the stored control pattern, and operates in the low load operation mode or the intermittent operation mode until the setback temperature is reached after the setback time has elapsed. The auxiliary machine operates at high load or medium load until the setback time based on the stored control pattern. After click time is operated in the blowing operation mode, after reaching the set-back temperature, the base machine and the auxiliary machine is operated for a predetermined time air blowing mode, after a predetermined time has elapsed, the initial and the base machine and the auxiliary machine the configuration for controlling to operate at the operation mode, after setback time base unit only low load operation mode or on, since operating in intermittent operation mode off control, based on all of the air conditioner in the room environment Compared to a system that controls the system, the air conditioning load can be efficiently reduced while maintaining the work environment, and the power consumption can be reduced.
Also, the power load factor for each operating state of start, restart, high load operation, medium load operation, low load operation, intermittent operation, and off operation of the air conditioner divided into base machine and auxiliary machine in the last N minutes Data of maximum value, minimum value, average value, number of off times, current power load factor is obtained by sampling a plurality of times, and the energy saving degree in each operation state based on the comparison between the data obtained in the last N minutes and the set value With the configuration in which the air conditioner is controlled so as to improve further, fine control can be performed according to the latest operating state of each air conditioner, and the power consumption can be further reduced.
The energy saving rank is divided into multiple modes, and each mode is switched off and the length of the off time is set differently. Control becomes possible.

本発明の省エネ空調制御システムの実施形態を図により説明する。図1は、本発明の省エネ空調制御システムの一実施形態を説明するための建物の3階部分の図書室(空調面積544m2)の同一スペースの各区画をそれぞれ空調する複数の空調装置1、2、3、4の空調区画を示す図である。空調装置1は、東南の区画を空調し、空調装置2は、北東の区画を空調し、空調装置3は、中央部の区画を空調し、空調装置4は、南西の区画を空調する。   An embodiment of an energy saving air conditioning control system of the present invention will be described with reference to the drawings. FIG. 1 shows a plurality of air conditioners 1 and 2 that respectively air-condition each section of the same space in a library room (air-conditioning area 544 m 2) on the third floor of a building for explaining an embodiment of the energy-saving air-conditioning control system of the present invention. It is a figure which shows the 3 and 4 air-conditioning division. The air conditioner 1 air-conditions the southeast section, the air conditioner 2 air-conditions the northeast section, the air conditioner 3 air-conditions the central section, and the air conditioner 4 air-conditions the southwest section.

図2は、本発明の省エネ空調制御システムの概念を示すブロック図である。空調装置1〜4は、制御装置5とネットワークを介して連結される。制御装置5には、各空調装置1〜4の周辺区画の室内の温度、湿度を計測する室内環境センサ6、外気の温度、湿度、日射量を計測する外気環境センサ7が接続される。また、制御装置5には、空調装置1〜4が駆動することにより消費される電力量を計測する電力計8が接続される。   FIG. 2 is a block diagram showing the concept of the energy saving air conditioning control system of the present invention. The air conditioners 1 to 4 are connected to the control device 5 via a network. The control device 5 is connected to an indoor environment sensor 6 that measures the indoor temperature and humidity in the surrounding compartments of the air conditioners 1 to 4 and an outdoor air environment sensor 7 that measures the temperature, humidity, and amount of solar radiation. The control device 5 is connected to a power meter 8 that measures the amount of power consumed by driving the air conditioners 1 to 4.

制御装置5は、過去の室内環境、外気環境に応じた空調装置1〜4の制御パターンを記憶する記憶手段9を備えている。制御装置5は、運転開始時の各区画に配置された室内環境センサ6と、外気環境センサ7の計測データに基づき、記憶手段9に記憶された空調装置1〜4の制御パターンを設定する制御パターン設定手段10と、設定された制御パターンで空調装置1〜4の運転を制御する運転制御手段12を備える。   The control device 5 includes storage means 9 for storing control patterns of the air conditioners 1 to 4 according to the past indoor environment and outdoor air environment. The control device 5 is a control for setting the control patterns of the air conditioners 1 to 4 stored in the storage unit 9 based on the measurement data of the indoor environment sensor 6 and the outside air environment sensor 7 arranged in each section at the start of operation. The pattern setting means 10 and the operation control means 12 for controlling the operation of the air conditioners 1 to 4 with the set control pattern are provided.

図3は、本発明の省エネ空調制御システムの制御パターンを示す図である。本発明の制御パターンでは、空調装置1、2をベース機13とし、空調装置3,4を補助機14とするように区分する(台数制御)。ベース機13と補助機14の区分は、過去の各空調装置1〜4の空調負荷実績データに基づき設定される。同一フロアの各区画を空調する空調装置1〜4の空調負荷は季節、時間、日射量により変動するので、室内環境、外気環境の変動によりベース機13、補助機14の区分及びベース機13、補助機14の台数、セットバック時間、セットバック温度からなる制御パターンも変動する。   FIG. 3 is a diagram showing a control pattern of the energy saving air conditioning control system of the present invention. In the control pattern of the present invention, the air conditioners 1 and 2 are classified as the base machine 13 and the air conditioners 3 and 4 are classified as the auxiliary machines 14 (number control). The classification of the base machine 13 and the auxiliary machine 14 is set based on the past air conditioning load record data of the air conditioners 1 to 4. Since the air conditioning load of the air conditioners 1 to 4 that air-condition each section of the same floor varies depending on the season, time, and amount of solar radiation, the base machine 13, the auxiliary machine 14 and the base machine 13, The control pattern consisting of the number of auxiliary machines 14, the setback time, and the setback temperature also varies.

本発明の制御パターンでは、ベース機13は、図4に示されるようにセットバック時間に達するまで高負荷又は中負荷運転モードで運転し、セットバック時間経過後にセットバック温度に達するまで低負荷運転モード又はオン、オフ制御の間歇運転モードで運転するように制御し、前記補助機14はセットバック時間まで高負荷又は中負荷運転し、セットバック時間経過後は送風運転モードで運転するように制御する。セットバック温度とセットバック時間は、過去の各空調装置1〜4の空調負荷実績データに基づき設定されるので、各種条件により変化する。空調装置1〜4をベース機13と補助機14に区分(台数制御)し、セットバック時間経過後は、ベース機13のみ低負荷運転モード又はオン、オフ制御の間歇運転モードで運転するので、全ての空調装置1〜4を室内環境センサ6の計測データに基づいて間歇運転制御するシステムに比較し、執務環境を保持しつつ空調負荷を効率良く減少し、消費電力を低減することができる。   In the control pattern of the present invention, the base machine 13 is operated in the high load or medium load operation mode until the setback time is reached as shown in FIG. 4, and is operated at a low load until the setback temperature is reached after the setback time has elapsed. The auxiliary machine 14 is controlled so as to operate in the intermittent operation mode during the mode or on / off control, and is operated so as to operate in the high-load or medium-load operation until the setback time and after the setback time elapses. To do. Since the setback temperature and the setback time are set based on the past air conditioning load record data of each of the air conditioners 1 to 4, the setback temperature and the setback time vary depending on various conditions. Since the air conditioners 1 to 4 are divided into the base machine 13 and the auxiliary machine 14 (number control), after the setback time has elapsed, only the base machine 13 is operated in the low load operation mode or the intermittent operation mode of the on / off control. Compared to a system that controls intermittent operation of all the air conditioners 1 to 4 based on measurement data of the indoor environment sensor 6, it is possible to efficiently reduce the air conditioning load and reduce power consumption while maintaining the work environment.

図5は、本発明の省エネ空調制御システムの動作を示すフローチャートである。同一フロアの各区画を空調する空調装置1〜4の制御パターンが、過去の空調負荷実績データに基づき、室内環境及び外気環境に対応して記憶手段9に記憶されている。空調装置1〜4の運転開始時、室内環境センサ6、外気環境センサ7により計測されたデータが制御装置5に入力される。制御装置5は、入力された計測データと記憶手段9に記憶され制御パターンを制御パターン設定手段10により設定する。制御パターンは、空調装置1〜4のベース機13、補助機14への区分、セットバック時間およびセットバック温度の設定である。   FIG. 5 is a flowchart showing the operation of the energy saving air conditioning control system of the present invention. Control patterns of the air conditioners 1 to 4 that air-condition each section of the same floor are stored in the storage unit 9 corresponding to the indoor environment and the outdoor air environment based on the past air conditioning load record data. At the start of operation of the air conditioners 1 to 4, data measured by the indoor environment sensor 6 and the outside air environment sensor 7 are input to the control device 5. The control device 5 sets the input measurement data and the control pattern stored in the storage means 9 by the control pattern setting means 10. The control pattern is a setting of the air conditioners 1 to 4 to the base machine 13 and the auxiliary machine 14, setback time, and setback temperature.

各空調装置1〜4の運転が開始される。制御パターンで設定されたセットバック時間は、操作保持時間としてセットする。最初、操作保持時間に達するまで各空調装置1〜4は、ベース機13、補助機14の区分の相違に関わらず高負荷又は中負荷運転モードで運転する。操作保持時間が経過すると、各空調装置1〜4の内、補助機14として設定された空調装置3、4は送風運転モードに切り替えて運転する。ベース機13として設定された空調装置1、2は、操作保持時間経過後は、セットバック温度に達するまで低負荷運転モード又は間歇運転モードで運転するように制御する。セットバック時間経過後は、ベース機13のみ低負荷運転モード又はオン、オフ制御の間歇運転モードで運転するので、全ての空調装置1〜4を室内環境に基づいて制御するシステムに比較し、執務環境を保持しつつ空調負荷を効率良く減少し、消費電力を低減することができる。   The operation of each of the air conditioners 1 to 4 is started. The setback time set by the control pattern is set as the operation holding time. Initially, the air conditioners 1 to 4 operate in the high load or medium load operation mode regardless of the difference between the base machine 13 and the auxiliary machine 14 until the operation holding time is reached. When the operation holding time elapses, the air conditioners 3 and 4 set as the auxiliary machines 14 among the air conditioners 1 to 4 are operated by switching to the air blowing operation mode. The air conditioners 1 and 2 set as the base machine 13 are controlled to operate in the low load operation mode or the intermittent operation mode until the setback temperature is reached after the operation holding time has elapsed. After the setback time has elapsed, only the base unit 13 is operated in the low load operation mode or the intermittent operation mode of on / off control, so that all the air conditioners 1 to 4 are controlled based on the indoor environment. While maintaining the environment, the air-conditioning load can be reduced efficiently and the power consumption can be reduced.

図6は、図1に示される同一フロアの各区画を空調する空調装置1〜4を、従来のようにそれぞれ個別制御(台数制御無し)で運転した場合とベース機13、補助機14に区分した制御パターン(台数制御有)の場合の室温の状態を示す図である。台数制御しても同一フロアの各区画の室温が執務環境に適した状態に維持されている。   FIG. 6 is divided into a base machine 13 and an auxiliary machine 14 when the air conditioners 1 to 4 for air-conditioning each section of the same floor shown in FIG. It is a figure which shows the state of the room temperature in the case of the control pattern (with unit control). Even when the number of units is controlled, the room temperature of each section on the same floor is maintained in a state suitable for the work environment.

図7は、図1に示される同一フロアの各区画を空調する空調装置1〜4を、従来のようにそれぞれ個別制御(台数制御無し)で運転した場合、とベース機13、補助機14に区分した制御パターン(台数制御有)の場合の消費電力を示す。台数制御することにより、台数制御しない個別制御の場合に比較し20%の消費電力を低減することができた。   FIG. 7 shows the case where the air conditioners 1 to 4 for air-conditioning each section of the same floor shown in FIG. The power consumption in the case of a divided control pattern (with unit control) is shown. By controlling the number of units, it was possible to reduce power consumption by 20% compared to the case of individual control without unit control.

図8は、本発明の省エネ空調制御システムの他の実施形態を示す図である。この実施形態はより省エネ度をアップするため、ベース機、補助機に区分された空調装置の運転状態毎の電力負荷率を直近N分間で複数回サンプリングを実施してデータを取得し、そのデータに基づき省エネ度を向上するものである。   FIG. 8 is a diagram showing another embodiment of the energy saving air conditioning control system of the present invention. In this embodiment, in order to further improve the degree of energy saving, the power load factor for each operating state of the air conditioner divided into the base machine and the auxiliary machine is sampled a plurality of times in the last N minutes, and data is obtained. Based on this, the energy conservation level is improved.

ベース機13、補助機14に区分された空調装置1〜4は、スタート、リスタート、オフ、間歇運転、高負荷運転、中負荷運転、低負荷運転の複数の運転状態で運転するように制御される。これら空調装置1〜4の直近のN分間における各運転状態毎の最大電力負荷率、最低電力負荷率、平均電力負荷率、オフ回数を複数回のサンプリングにより取得する。、オフ回数は、直近N分間で定格X(%)よりも小さかった回数である。直近のN分間は、各運転状態を全て含む必要があるので運転サイクルを考慮して設定する。   The air conditioners 1 to 4 divided into the base machine 13 and the auxiliary machine 14 are controlled so as to operate in a plurality of operating states of start, restart, off, intermittent operation, high load operation, medium load operation, and low load operation. Is done. The maximum power load factor, the minimum power load factor, the average power load factor, and the number of off times for each operation state in the most recent N minutes of these air conditioners 1 to 4 are acquired by sampling a plurality of times. The number of off times is the number of times less than the rated X (%) in the last N minutes. For the most recent N minutes, it is necessary to include all the operating states, so the setting is made in consideration of the operating cycle.

サンプリングした各運転状態の電力負荷率のある時間におけるデータが電力負荷率のピークに近い場合は(+)とし、電力負荷率の谷に近い場合は(−)とし、最大電力負荷率A、最小電力負荷率Bとし、サンプリング回数をNとした場合、ある時間から電力負荷率が上昇するのか下降するのかを判断するため、SLOPE=(+)or(−)×(A−B)/Nとして演算する。   When the sampled data of each operating state at a certain time of the power load factor is close to the peak of the power load factor, it is set as (+), and when close to the trough of the power load factor, it is set as (−), and the maximum power load factor A When the power load factor is B and the number of samplings is N, SLOPE = (+) or (−) × (A−B) / N in order to determine whether the power load factor increases or decreases from a certain time. Calculate.

図8に示されるように高負荷運転時、最大電力負荷率の設定値H1、最小電力負荷率の設定値H2、平均電力負荷率の設定値H3が設定される。高負荷運転時は、各設定値H1、H2、H3以下になるよう空調装置1〜4の運転を制御する。   As shown in FIG. 8, during high load operation, a set value H1 for the maximum power load factor, a set value H2 for the minimum power load factor, and a set value H3 for the average power load factor are set. During high-load operation, the operation of the air conditioners 1 to 4 is controlled so as to be equal to or less than the set values H1, H2, and H3.

中負荷運転状態では、M1、M2、M3という設定値が設定され、中負荷運転時の最大電力負荷率がM1以下、M2以上になるように空調装置1〜4の運転を制御する。中負荷運転時の最小電力負荷率がM3より小さい場合、後述する省エネモードに応じて、前記記載のSLOPEが下降傾向の場合はオフ運転に切り替える。 In the medium load operation state, set values M1, M2, and M3 are set, and the operations of the air conditioners 1 to 4 are controlled so that the maximum power load rate during the medium load operation is M1 or less and M2 or more. When the minimum power load rate during the medium load operation is smaller than M3, the operation is switched to the off operation when the SLOPE described above tends to decrease according to the energy saving mode described later.

低負荷運転時では、設定値L1が設定され、低負荷運転時の電力負荷率が設定値L1以下の場合、後述する省エネモードに応じて、オフ運転に切り替える。   In the low load operation, the set value L1 is set, and when the power load rate during the low load operation is equal to or less than the set value L1, the operation is switched to the off operation according to the energy saving mode described later.

間歇運転状態では、オフ回数の設定値Mが設定され、間歇運転時のオフ回数が設定値Mより小さい場合には、後述する省エネモードに応じて、オフ時間を長くする。   In the intermittent operation state, a set value M of the number of off times is set, and when the number of off times during the intermittent operation is smaller than the set value M, the off time is lengthened according to the energy saving mode described later.

オフ運転状態では、定格X(%)より小さかったオフ回数の設定値Nが設定され、オフ運転状態でオフ回数が設定値N以上の場合には、後述する省エネモードに応じて、オフ時間を長くする。   In the off operation state, a set value N of the number of off times that is smaller than the rated X (%) is set, and in the off operation state, when the number of off times is equal to or more than the set value N, the off time is set according to the energy saving mode described later. Lengthen.

図8に示される直近N分間における各運転状態毎の最大電力負荷率、最低電力負荷率、平均電力負荷率、オフ回数のデータに基づき、省エネ度のランク別にインテリジェントモード、セービングモード、クールビズモードに区分し、各モード毎にオフ運転への切り替え、オフ時間の長さの設定を異なるように設定するものである。   Based on the data of maximum power load rate, minimum power load rate, average power load rate, and number of off times for each operating state in the last N minutes shown in Fig. 8, intelligent mode, saving mode and cool biz mode are classified according to rank of energy saving degree. The mode is divided and the setting of the switching to the off operation and the length of the off time is set differently for each mode.

インテリジェントモードでは、低負荷運転時に、電力負荷率が設定値L1以下の場合にオフ運転に切り替え、間歇運転時にオフ回数が設定値Mより小さい場合にオフ時間を長くし、オフ運転時に定格X(%)より小さかったオフ回数が設定値N以上の場合、オフ時間を長くする制御をする。   In the intelligent mode, when the power load factor is less than the set value L1 during low-load operation, the operation is switched to OFF, the OFF time is increased when the OFF count is less than the set value M during intermittent operation, and the rating X ( %) Less than the set value N, control is performed to increase the off time.

セービングモードでは、中負荷運転時の最小電力負荷率が設定値M3より小さい場合、SLOPEが下降傾向の場合はオフ運転に切り替え、低負荷運転時に、電力負荷率が設定値L1以下の場合にオフ運転に切り替え、間歇運転時にオフ回数が設定値Mより小さい場合にオフ時間を長くし、オフ運転時に定格X(%)より小さかったオフ回数が設定値N以上の場合、オフ時間を長くする制御をする。   In saving mode, when the minimum power load factor during medium load operation is smaller than the set value M3, switch to off operation when SLOPE tends to decrease, and off when the power load factor is less than the set value L1 during low load operation Control is switched to operation, and the off time is lengthened when the number of off times is smaller than the set value M during intermittent operation, and the off time is lengthened when the number of off times less than the rated X (%) is greater than the set value N during off operation. do.

クールビズモードでは、中負荷運転時の最小電力負荷率が設定値M3より小さい場合、SLOPEが下降傾向の場合はオフ運転に切り替え、低負荷運転時に、電力負荷率が設定値L1以下の場合にオフ運転に切り替え、間歇運転時にオフ回数が設定値Mより小さい場合にオフ時間を長くし、オフ運転時に定格X(%)より小さかったオフ回数が設定値N以上の場合、オフ時間を長くする制御をする。   In cool biz mode, when the minimum power load factor during medium load operation is smaller than the set value M3, switch to off operation when SLOPE is decreasing, and off when the power load factor is less than the set value L1 during low load operation Control is switched to operation, and the off time is lengthened when the number of off times is smaller than the set value M during intermittent operation, and the off time is lengthened when the number of off times less than the rated X (%) is greater than the set value N during off operation. do.

各モードのオフ時間の長さを変えることにより、各モード毎の省エネ度の区分を明確とする。   By changing the length of the off time in each mode, the energy saving level for each mode is clarified.

本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention.

符号の説明Explanation of symbols

1、2、3、4:空調装置、5:制御装置、6:室内環境センサ、7:外気環境センサ、8:電力計、9:記憶手段、10:制御パターン設定手段、12:運転制御手段、13:ベース機、14:補助機   1, 2, 3, 4: Air conditioning device, 5: Control device, 6: Indoor environment sensor, 7: Outside air environment sensor, 8: Wattmeter, 9: Storage means, 10: Control pattern setting means, 12: Operation control means , 13: Base machine, 14: Auxiliary machine

Claims (3)

同一スペースの各区画をそれぞれ空調する複数の空調装置を配置し、
前記複数の空調装置をネットワークを介して制御装置に連結し、
前記制御装置は前記複数の空調装置の配置された各区画毎の過去の季節、時間、日射量により変動する空調負荷実績データに基づき前記複数の空調装置のベース機、補助機への区分、セットバック時間およびセットバック温度からなる制御パターンを記憶する記憶手段を備え、
前記ベース機は記憶された制御パターンに基づきセットバック時間に達するまで高負荷又は中負荷運転モードで運転し、セットバック時間経過後にセットバック温度に達するまで低負荷運転モード又は間歇運転モードで運転し、前記補助機は記憶された制御パターンに基づきセットバック時間まで高負荷又は中負荷運転し、セットバック時間経過後は送風運転モードで運転し、セットバック温度に達した後、前記ベース機及び前記補助機を所定時間送風モードで運転し、所定時間経過後、前記ベース機及び前記補助機を初期の運転モードで運転するように制御することを特徴とする省エネ空調制御システム。
Arrange multiple air conditioners to air-condition each section of the same space,
Connecting the plurality of air conditioners to a control device via a network;
The control device is configured to classify and set the plurality of air conditioners into base machines and auxiliary machines based on the air conditioning load performance data that fluctuates depending on the past season, time, and amount of solar radiation for each section where the plurality of air conditioners are arranged. Comprising storage means for storing a control pattern comprising a back time and a set back temperature;
The base machine operates in the high load or medium load operation mode until the setback time is reached based on the stored control pattern, and operates in the low load operation mode or the intermittent operation mode until the setback temperature is reached after the setback time has elapsed. The auxiliary machine is operated at high load or medium load until the setback time based on the stored control pattern, and after the setback time has elapsed, the fan is operated in the air blowing operation mode, and after reaching the setback temperature, the base machine and the An energy-saving air-conditioning control system, wherein an auxiliary machine is operated in a ventilation mode for a predetermined time, and the base machine and the auxiliary machine are controlled to operate in an initial operation mode after a predetermined time has elapsed .
前記ベース機、前記補助機に区分された空調装置のスタート、リスタート、高負荷運転、中負荷運転、低負荷運転、間歇運転、オフ運転の各運転状態毎の電力負荷率の直近N分間における最大値、最小値、平均値、オフ回数、現在の電力負荷率のデータを複数回のサンプリングにより取得し、前記直近N分間で取得したデータと設定値との対比に基づき各運転状態における省エネ度がより向上するように前記空調装置を制御することを特徴とする請求項1に記載の省エネ空調システム。   The power load factor for each operating state of the base machine and the auxiliary machine, that is, start, restart, high load operation, medium load operation, low load operation, intermittent operation, and off operation, in the last N minutes Data of maximum value, minimum value, average value, number of off times, current power load factor is obtained by sampling a plurality of times, and the energy saving degree in each operation state based on the comparison between the data obtained in the last N minutes and the set value The energy-saving air-conditioning system according to claim 1, wherein the air-conditioning apparatus is controlled so that the air-conditioner is further improved. 省エネ度のランクを複数のモードに区分し、各モード毎に運転状態に応じてオフ運転への切り替え、オフ時間の長さの設定を異なるように設定することを特徴とする請求項2に記載の省エネ空調制御システム。   The rank of the energy saving degree is divided into a plurality of modes, and the switching to the off operation and the setting of the length of the off time are set differently depending on the operation state for each mode. Energy saving air conditioning control system.
JP2007124265A 2007-02-26 2007-05-09 Energy saving air conditioning control system Active JP5062555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007124265A JP5062555B2 (en) 2007-02-26 2007-05-09 Energy saving air conditioning control system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007045391 2007-02-26
JP2007045391 2007-02-26
JP2007124265A JP5062555B2 (en) 2007-02-26 2007-05-09 Energy saving air conditioning control system

Publications (2)

Publication Number Publication Date
JP2008241231A JP2008241231A (en) 2008-10-09
JP5062555B2 true JP5062555B2 (en) 2012-10-31

Family

ID=39912795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007124265A Active JP5062555B2 (en) 2007-02-26 2007-05-09 Energy saving air conditioning control system

Country Status (1)

Country Link
JP (1) JP5062555B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011043306A (en) * 2009-08-24 2011-03-03 Shimizu Corp Energy saving air conditioning control system
KR200466429Y1 (en) 2011-05-26 2013-05-06 박서정 Reflector for fluorescent lamp unit
CN116336625B (en) * 2023-05-18 2023-08-18 广州永昱节能科技股份有限公司 Central air conditioning cold station group control energy-saving control method, device, equipment and storage medium

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618542A (en) * 1984-06-22 1986-01-16 Matsushita Electric Ind Co Ltd Operation control device of air conditioner
JPH0444984Y2 (en) * 1986-02-28 1992-10-22
JPH01260251A (en) * 1988-04-11 1989-10-17 Matsushita Seiko Co Ltd Control device for capacity of air conditioner
JPH01285731A (en) * 1988-05-10 1989-11-16 Matsushita Electric Ind Co Ltd Operation controller for air-conditioning machine
JPH031031A (en) * 1989-05-29 1991-01-07 Daikin Ind Ltd Operation control device for air conditioning device
JPH05141743A (en) * 1991-11-18 1993-06-08 Matsushita Seiko Co Ltd Environment controller
JP3229936B2 (en) * 1998-03-31 2001-11-19 株式会社キャリバー電工 Control method of total power consumption of power equipment
JP3736969B2 (en) * 1998-05-20 2006-01-18 三菱電機株式会社 Air conditioner
JP4460716B2 (en) * 2000-04-28 2010-05-12 三菱重工業株式会社 Air conditioner
JP2002122341A (en) * 2000-10-16 2002-04-26 Daikin Ind Ltd Setback timer of air conditioner
JP2003023729A (en) * 2001-05-02 2003-01-24 Kazuo Miwa Power-saving controller and energy saving system
JP4643067B2 (en) * 2001-07-23 2011-03-02 三機工業株式会社 Energy-saving system for air conditioners
JP2004020073A (en) * 2002-06-18 2004-01-22 Fujitsu General Ltd Control method of air conditioner
JP2004108658A (en) * 2002-09-18 2004-04-08 Toyo Biru Kanri Kk Cooling and heating operation method for building
JP4446244B2 (en) * 2004-07-27 2010-04-07 清水建設株式会社 Multi air conditioner energy-saving control system
JP4525246B2 (en) * 2004-08-26 2010-08-18 ダイキン工業株式会社 Air conditioning system, air conditioning control device, and air conditioning control method
JP2006226578A (en) * 2005-02-16 2006-08-31 Daikin Ind Ltd Air conditioning system and control method
JP2006308212A (en) * 2005-04-28 2006-11-09 Shimizu Corp Air-conditioning system and its operation method

Also Published As

Publication number Publication date
JP2008241231A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP4435533B2 (en) Heat source system and control device
EP1387988B1 (en) Air-conditioning system
US11662113B2 (en) Building cooling systems with energy optimization and model predictive control
JP4905939B2 (en) Operation control method for air conditioning system
JP4832960B2 (en) Control method of water source heat pump unit system
JP4552119B2 (en) Multi air conditioner demand control system
AU2002310859A1 (en) Air-conditioning system
EP3553405B1 (en) Air conditioning system
JP6091387B2 (en) Air conditioner
JP2011043306A (en) Energy saving air conditioning control system
JP2003065588A (en) Air conditioning apparatus
CN111795481B (en) Air conditioning system and control method therefor
JP4693645B2 (en) Air conditioning system
JP5584024B2 (en) Air conditioner group control device and air conditioning system
JP6413761B2 (en) Snow and ice air conditioning system and its control device
JP2012145263A (en) Heat source system, control method therefor, and program therefor
JP5062555B2 (en) Energy saving air conditioning control system
JP4446244B2 (en) Multi air conditioner energy-saving control system
EP1953473B1 (en) Demand control system and method for multi-type air conditioner
JP5677198B2 (en) Air cooling heat pump chiller
JP4181362B2 (en) Optimal start-up controller for air conditioning system
JP7199529B2 (en) Control device, air environment adjustment system, air environment adjustment method, program, and recording medium
JP6060014B2 (en) Energy network operation control method and apparatus
JP6134511B2 (en) Air conditioner using direct expansion coil
JP2005140367A (en) Method and device for controlling heat source supply water temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120711

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120727

R150 Certificate of patent or registration of utility model

Ref document number: 5062555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3