JP3736969B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3736969B2
JP3736969B2 JP13794998A JP13794998A JP3736969B2 JP 3736969 B2 JP3736969 B2 JP 3736969B2 JP 13794998 A JP13794998 A JP 13794998A JP 13794998 A JP13794998 A JP 13794998A JP 3736969 B2 JP3736969 B2 JP 3736969B2
Authority
JP
Japan
Prior art keywords
temperature
expansion valve
refrigerant
heat exchanger
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13794998A
Other languages
Japanese (ja)
Other versions
JPH11325639A (en
Inventor
佳宏 高橋
憲和 石川
毅 小坂井
敏也 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13794998A priority Critical patent/JP3736969B2/en
Publication of JPH11325639A publication Critical patent/JPH11325639A/en
Application granted granted Critical
Publication of JP3736969B2 publication Critical patent/JP3736969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • F25B2313/02323Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Description

【0001】
【発明の属する技術分野】
この発明は、室内機を複数台備えた、いわゆる室内マルチ型の空気調和機に関するものである。
【0002】
【従来の技術】
従来、室内マルチ型の空気調和機においては、暖房時において休止室内機があると一部の冷媒が休止室内機に流れて放熱されるため、運転側室内機の性能が低下する問題がある。
この問題を解決するために、室内機各々に電子式膨張弁を設けると共に、暖房時における休止室内機の膨張弁を、同室内機における熱交換器の冷媒出入口温度の差により冷媒溜まり込みがない程度にできるだけ少しづつしか流れないように膨張弁の開度を最小開度に制御し、これにより運転側室内機の性能低下を防止すると共に、休止室内機側に冷媒が溜り込んで冷媒不足になる様なことを防止するようにしている。
【0003】
図10は、例えば実開昭62−43269号公報に示された上記した従来の室内マルチ型空気調和機の構成を示す冷媒回路図である。
図において、空気調和機は2つの室内機A,Bユニットより構成されており、ここで、1は圧縮機、2は四方弁、3は冷媒配管、4aはAユニットの室内熱交換器、4bはBユニットの室内熱交換器、5a,5bはマイコン等を利用して自由に開度調整できる電子式膨張弁、6は冷媒配管、9は室外熱交換器、13はアキュームレー、11a,11bは室内ファン、12は室外ファンであり、また室内熱交換器4a,4bの入口および出口の配管に取り付けられた入口および出口冷媒温度センサ101a,101b,102a,102bで構成されており、冷媒が実線矢印の如く流れることにより暖房運転がなされ、点線矢印の如く流れることにより冷房運転がなされる。
【0004】
以上のように構成された冷媒回路において、暖房運転時Aユニットが運転され、Bユニットが休止されて室内ユニットが一台しか運転されていない時は、Bユニットの膨張弁5bの開度をBユニットの熱交換器の冷媒出入口温度の差により、同温度差が適温となるように、すなわち冷媒が室内交換器4bに溜り込まない程度にできるだけ少しづつしか流れないように膨張弁5bの開度を決めてやる。
この時の膨張弁の開度決定は、室内熱交換器4bの入口および出口に取付けられた冷媒温度センサ101b,102bの検出温度をそれぞれT1,T2とした時、その温度差(T1−T2)が適温となるよう休止側のBユニットの膨張弁5bの開度を決定することにより成され、図10の実線矢印に示すように冷媒が流れる。
【0005】
なお、膨張弁5a,5bは0(全閉)〜100(全開)%まで開度を調整できる電子式の膨張弁が使用されている。
今、暖房運転が開始されると図10に示す実線矢印の方向に冷媒が流れ、四方弁、冷媒配管3、3a,3bを通り室内熱交換器4a,4bで熱交換され冷却されて液冷媒となる。
この液冷媒は膨張弁5a,5bで一回減圧され、冷媒配管6a,6bから6を経て膨張弁7で更に減圧され室外熱交換器9で加熱されてガス冷媒となり、四方弁2、アキュームレー13を通って圧縮機1へ戻る。
【0006】
ここで、一方の室内熱交換器ユニットであるBユニットが休止の場合の膨張弁5a,5bの開度決定のコントロールを説明する。
房運転が始まるとコントローラ100は室内熱交換器ユニットの運転が1台か2台かを確認し、2台だと各々決められた膨張弁開度となるように膨張弁5a,5bに開度を指示する。
【0007】
次に暖房運転はAユニット1台だとすると、Aユニットは決められた膨張弁5aの開度となるが、Bユニットの膨張弁5bの開度は一旦0(全閉)とされる。しかし小時間経過後、膨張弁5bは少し開けられ室内熱交換器4bの入口と出口の配管の冷媒温度センサ101bの温度T1と、102bの温度T2を検知してT1−T2を計算し、この値が熱交換器への冷媒溜まり込み量がない程度の時に示す設定値と比較し、この設定値より小さければ熱交換器には冷媒が溜まり込んでいると判断して膨張弁5bの開度は更に少し開けられ、T1−T2が設定値になるまで繰り返す。すなわちT1−T2の値が設定温度範囲内に保たれるように膨張弁5bの開度は制御される。
【0008】
なお、冷房運転時には暖房運転時におけるような冷媒の溜まり込みは発生しないので、休止ユニットがあれば休止側の膨張弁は単に閉とされる。
また、通常Aユニット、Bユニットの両方が暖房運転される場合は、公知の如くA,Bユニットのそれぞれの負荷によって各々膨張弁5a,5bの開度は決まるのでこの説明は省略する。
【0009】
【発明が解決しようとする課題】
上記に説明したように、従来の室内マルチ型の空気調和機においては、暖房時において休止ユニットがある場合、休止ユニットへの冷媒の溜まり込みを防止するために室内熱交換器の入口と出口の配管に取付けられた冷媒温度センサの温度差により電子式膨張弁の開度を制御している。
【0010】
しかしながら、通常圧縮機から吐出され室内交換器に流入する冷媒は過熱ガス状態であり、膨張弁の開度を適正開度(最小開度)とするためには、膨張弁の開度を一旦0(全閉)とし、凝縮させた液冷媒を一旦室内熱交換器および室内熱交換器の出口配管部に溜め込まなければならず、適正開度へ開度制御できれば溜まり込んだ冷媒は回収できるが初期時における正常運転を維持するためにはかなり多量の冷媒量が必要であり、結果的に封入冷媒量を多くしなければならないと言う問題があった。
【0011】
また、室内熱交換器の入口と出口の配管温度差(冷媒温度差)で電子膨張弁の制御をしているため、適正開度となった時の冷媒の室内熱交換器への溜まり込み状態は、室内熱交換器の出口部まで達していないと言うだけであって、膨張弁の開度を0(全閉)から開度制御しているため通常最小開度で安定しても室内熱交換器内には相当量の冷媒の溜まり込みがあり、正常な空気調和機の運転を維持するためには、この溜まり込む冷媒量を考慮した封入冷媒量とする必要があり、結果として封入冷媒量が多くなると言った問題があった。
【0012】
また、暖房時における休止ユニットが送風運転を行った場合、膨張弁は最小開度で制御されて圧縮機から供給される少量の冷媒を流しており、この圧縮機から供給される冷媒は通常は過熱ガスであり室内熱交換器で凝縮し液冷媒となって室外熱交換器のユニットへ返されるが、その時の凝縮による放熱分が送風運転の吹出し温度の上昇につながり、室内熱交換器の入口と出口との配管温度差(冷媒温度差)による膨張弁開度の制御では室内吸込み温度に対する吹出し温度の上昇度が把握できないと言う問題があり、吹出し温度の上昇を成り行きまかせにせざるを得ないと言った問題があった。
【0013】
【課題を解決するための手段】
この発明は、上記の問題を解決するためになされたもので、室内マルチ型の空気調和機において、暖房運転時に室内ユニットの吸込み温度を検出する吸込み温度センサと、室内熱交換器の出口もしくは中央冷媒温度を検出する出口冷媒温度センサ、中央冷媒温度センサと、冷媒流量を制御する電子式膨張弁を備えることにより、暖房運転時における休止ユニットの冷媒の溜まり込みの判定を、室内熱交換器の出口冷媒温度もしくは中央冷媒温度と室内吸込み温度の温度差により検出し、その結果に照らして電子式膨張弁の開度を適正に制御し、室内熱交換器への冷媒の溜まり込みを防止して、封入冷媒量を抑制すると共に、暖房運転時において休止且つ送風状態に設定された休止側室内機の熱交換器の出口冷媒温度と吸込み温度との温度差により、膨張弁開度を変化させ、吹出し温度の吸込み温度に対する上昇度と、予め設定された温度設定値と比較し、設定温度より小さくなるように膨張弁の開度を少しづつ調整を繰り返して、膨張弁の開度を制御することにより吹出し温度を調整することを特徴とする空気調和機を提供するものである。
【0014】
上記の手段によるこの発明においては、空気調和機が暖房運転で暖房運転ユニットと、休止ユニットとが混在する時、休止ユニットの電子式膨張弁の所定開度は0%(全閉)に近い微小開度に設定し、次いで休止ユニットの熱交換器の出口冷媒温度と休止ユニットの吸込み温度との温度差を検出して予め設定した所定の設定値と比較して、その値が所定値以下ならば電子式膨張弁の開度を一定量アップする。
【0015】
この操作を定期的に繰り返し、休止ユニットの熱交換器の出口冷媒温度と休止ユニットの吸込み温度との温度差が所定の設定値を越えたら電子式膨張弁の開度は安定することになる。
【0016】
このように電子式膨張弁の開度を制御することによって、休止ユニットの室内熱交換器に溜まり込む冷媒量を、室内熱交換器に溜り込む以前に冷媒の溜り込みを検出することによって最低限にすることができ、冷媒の封入量を抑制するとともに冷媒の溜り込みによる冷媒不足も防止することができる。
【0017】
また、休止ユニットが単に送風運転している場合には、吹出し温度を熱交換器の中央冷媒温度から検出し、予め設定した所定の設定値と比較して、その値が所定値以下ならば電子式膨張弁の開度を一定量絞る。この操作を定期的に繰り返し、休止ユニットの熱交換器の中央冷媒温度と休止ユニットの吸込み温度との温度差が所定の設定値以下になれば電子式膨張弁の開度は安定することになる。
このように電子式膨張弁の開度を制御することによって、室温の上昇を抑制し快適性を向上させることができる。
【0018】
【発明の実施の形態】
実施の形態1.
以下、この発明の第1の実施の形態を図1から図5を用いて説明する。図1は第1の実施の形態による空気調和機の系統構成図である。図において空気調和機は室外機ユニットCと、2つの室内機でユニットA,Bより構成されている。
ここで、1は圧縮機、2は四方弁、3は冷媒配管、4aはユニットAの室内熱交換器、4bはユニットBの室内熱交換器、5a,5bはマイコン等を利用して自由に開度を調整できる電子式膨張弁、6は冷媒配管、9は室外熱交換器、11a,11bは室内ファン、12は室外ファン、13はアキュームレータ、102a,102bは室内熱交換器4a,4bの出口配管に取付けられた出口冷媒温度センサ、103a,103bは室内ユニットA,Bの各々の吸込み空気の温度を検出することができる個所に取付けられた吸込み温度センサ、100は上記出口冷媒温度センサ102a,102b,および吸込み温度センサ103a,103b,および電子式膨張弁5a,5bを制御するコントローラで構成されており、冷媒が実線矢印の如く流れることにより暖房運転がなされる。
【0019】
このように構成された空気調和機の暖房運転時において、室内ユニットAは暖房運転,室内ユニットBは休止とすると、休止ユニットである室内ユニットBは室内空調空間の温度分布の均一化を図るために送風運転をしている。そして、この状態における休止ユニットである室内ユニットBの電子式膨張弁5bの開度は、冷媒が室内熱交換器4b等に溜まり込まない程度に、すなわち冷媒が溜まり込まない程度にできるだけ少しづつしか流れないような開度に決めてやる。以下にこの場合における電子式膨張弁5bの開度決定の一連の動作について説明する。
なお、電子式膨張弁5a,5bは0(全閉)〜100%(全開)までの開度調整をマイコン等でコントロールできる膨張弁が使用されているもので、これら電子式膨張弁5a,5bは以下の説明では単に膨張弁と略記する。
【0020】
まず、暖房運転が開始されると図1に示す矢印の方向に冷媒は流れ、四方弁2、冷媒配管3、3a,3bを通り室内熱交換器4a,4bで熱交換されて液冷媒となり、膨張弁5a,5bで減圧され、冷媒配管6a,6b、6を経て室外熱交換器9で加熱されガス冷媒となり、四方弁2、アキュームレータ13を経て圧縮機1へ戻る。
【0021】
暖房運転が始まるとコントローラ100は室内器の運転が1台か、2台かを確認し、ユニットBは休止、ユニットAの1台だけが暖房運転だとすると、運転側の室内ユニットAはその与えられた負荷に応じた膨張弁開度になるよう膨張弁5aが開度指示され、休止側の室内ユニットBの膨張弁5bの開度は次に述べる所定の値に設定される。
【0022】
この時の休止ユニットである室内ユニットBに与えられる膨張弁開度について図2を用いて説明する。
図2は、休止ユニット(ただし送風運転)に与える膨張弁開度と冷媒流量、吹出し空気温度の吸込み温度に対する上昇温度、休止側の室内熱交換器に溜り込む冷媒量の関係を示す特性図である。
【0023】
この図2によれば、休止ユニットに与える膨張弁開度が0%(全閉)の場合、休止ユニットに流れる冷媒量、および吹出し温度に対する上昇温度は共に0となるが、室内熱交換器に溜まり込む冷媒量は最大となる。膨張弁の開度を0%(全閉)から開いて行くと、室内熱交換器に溜まり込む冷媒量は減少して行くが、休止ユニットに流れる冷媒流量は増加し、吹出し温度の吸込み温度に対する上昇度も増加する。
【0024】
一般的に膨張弁の開度に対する室内熱交換器に溜まり込む冷媒量の増加と、吹出し温度の吸込み温度に対する上昇度は相反する関係にあり、その他の与えられた条件を含めて最も適切な膨張弁の開度を選択するのが通常であり、個々の空気調和機において適切と言える休止ユニットの膨張弁開度が存在する。
【0025】
図3は膨張弁の流量のばらつき特性を示した概念図である。
一般的に膨張弁には機械的な製造誤差による影響と、経年変化による影響により冷媒流量のずれ(流量ばらつき)が発生する。従って、図2に示す室内熱交換器への冷媒溜まり込み量と、吹出し温度の吸込み温度に対する上昇度の関係から適切な休止ユニットの膨張弁開度を決定しても、図3に示すように冷媒流量のずれが発生するため必ずしも適切な休止ユニットの膨張弁開度が得られるとは限らないと言った別の問題が発生する。
【0026】
また、流量0となる膨張弁の開度は必ずしも開度0%ではなく、ある程度の開度になった時点で冷媒の流量が得られる特性となる膨張弁が多く、上記の流量のずれにより流量0となる膨張弁開度もずれ(膨張弁開度ばらつき)が発生する。
【0027】
以上の点から休止ユニットの膨張弁開度は、図2より得られた冷媒が多量に溜まり込まない程度の微小な値、すなわち適正膨張弁開度よりも低めに設定されるのが通例である。
しかし、同時に冷媒流量を微小とする目的のために膨張弁開度を低めの設定にしすぎると、膨張弁開度のずれ(膨張弁開度のばらつき)により流量0となり、室内熱交換器に溜まり込む冷媒量が大となってしまう可能性が高くなる。
また、流量0を回避するために膨張弁開度を高めに設定すると室内熱交換器に溜まり込む冷媒量は少なくなるが、冷媒の流量が増大し、吹出し温度の吸込み温度に対する上昇度が大きくなってしまう。
【0028】
そこで、適切な膨張弁開度を得るための手段を図5に基づいて以下に説明する。
図5は膨張弁開度の決定手順を示すフローチャートで、休止ユニットBの膨張弁開度を所定の開度に設定後、圧縮機を運転し、室内熱交換器の出口冷媒温度センサ102bにより出口冷媒温度T2を検出すると共に、吸込み温度センサ103bにより吸込み温度T1を検出する。そして、出口冷媒温度と吸込み温度との温度差(T2−T1)を計算し、この温度差(T2−T1)が予め設定された温度の設定値と比較し、設定温度より小さければ熱交換器には冷媒が溜まり込んでいるので、膨張弁開度を少し開けるように修正する。
【0029】
つぎに、再度、出口冷媒温度と吸込み温度との温度差(T2−T1)を計算し、この温度差(T2−T1)が予め設定された温度の設定値と比較し、設定温度より小さければ膨張弁開度を少し開けるように修正する。このように膨張弁開度を少しづつ調整して上記の出口冷媒温度と吸込み温度との温度差(T2−T1)の値が設定値以上になるまで繰り返す。
【0030】
ここで、図4を用いて温度差(T2−T1)の設定値について説明する。
図4は膨張弁の開度変化に対する運転特性を示したもので、休止ユニットが送風運転を実施している場合、風量は通常の暖房運転時とほぼ等しく室内熱交換器の熱交換能力は暖房運転とほぼ等しくなっている。
休止ユニットの場合、通常の暖房運転の時と比較し膨張弁開度は極めて小さく設定され、冷媒流量はごく僅かな量となる。暖房時室内熱交換器は圧縮機から流れてくる高温過熱ガスを冷却し液冷媒とするが、休止ユニットの場合、暖房運転時と比較し熱交換能力はほぼ等しいにも拘わらず(暖房運転時の冷媒流量)>>(休止時の冷媒流量)となっているため、休止ユニットの冷媒は通常の暖房時に比べて遥かに冷却する。
【0031】
この関係は冷媒流量を決定する膨張弁開度と密接な関係にあり、膨張弁開度を小さくして行くほど冷媒温度は低下し、ある開度からは吸込み温度と冷媒温度とが一致する。この特性を利用して冷媒流量および冷媒が流れているか否かの判断が可能であり、ほぼ適正な冷媒流量を確保するための熱交換器の出口冷媒温度と吸込み温度との温度差(T2−T1)の値の範囲を決定し、膨張弁開度を制御することによって最終的に最適開度を得ることができる。
【0032】
従って、上記した特性の相関を利用して、膨張弁開度の最適値を設定すると共に、この最適値と熱交換器の出口冷媒温度と吸込み温度との温度差(T2−T1)の値とを比較して膨張弁の開度を修正して、繰り返し調整を行い最適な膨張弁開度に到達することができると共に、膨張弁の機械的公差のばらつき、および経時劣化による開度のずれに対してもその影響を排除することができる。
なお、この実施の形態における目的を達成する上で、室内熱交換器の出口冷媒温度センサ102a,102bは膨張弁と室内熱交換器を接続する配管のいずれかの個所に設置すれば良いものである。
【0033】
実施の形態2.
この発明の第1の実施の形態においては、熱交換器の出口冷媒温度と吸込み温度との温度差(T2−T1)の値とを比較して膨張弁の開度を決定したが、図1の冷媒回路構成により、暖房運転および暖房休止ユニットの吹出し温度の制御を行うことができる。すなわち、室内熱交換器4a,4b、室内熱交換器の出口冷媒温度センサ102a,102b、および室内吸込み温度センサ103a,103bにおいて、室内吸込み温度センサ103a,103bにより検出された室内吸込み温度に対する熱交換器の出口冷媒温度を出口冷媒温度センサ102a,102bにより検出し、吸込み温度に対する吹出し温度の上昇度の相関、および吹出し温度に対する出口冷媒温度との相関から吹出し温度そのものを膨張弁開度によって制御することが可能となる。
【0034】
図6および図7は、この実施の形態2を説明するための膨張弁開度変化に対する運転特性を示したもので、図6により膨張弁開度を大きくすることによって冷媒流量が増大し、吹出し温度は上昇し、結果として(吹出し温度−吸込み温度)は上昇する特性となる。この特性を利用して、熱交換器の出口冷媒温度と吸込み温度との温度差(T2−T1)により図8の膨張弁開度の決定手順を示すフローチャートのように膨張弁開度を変化させ、吹出し温度の吸込み温度に対する上昇度と、予め設定された温度設定値と比較し、設定温度より小さくなるように膨張弁の開度を少しづつ調整を繰り返して、膨張弁の開度を制御することにより吹出し温度を調整でき、結果として休止ユニットの室温の上昇を抑制することができ、快適性の向上につなげることができる。
【0035】
また、図7により膨張弁開度を変化させた時の熱交換器の出口冷媒温度T2と吹出し温度の変化の特性を利用して、この相関から熱交換器出口冷媒温度T2を膨張弁開度でコントロールすることによって吹き出し温度を制御することもできる。
【0036】
実施の形態3.
次に、この発明の第3の実施の形態を図9を用いて説明する。図9は実施の形態1に用いた図1の冷媒回路に対して、室内熱交換器の出口冷媒温度センサ102a,102bの代わりに室内熱交換器の中央冷媒温度を検出するための中央冷媒温度センサ104a,104bを取付けることにより、(室内熱交換器の中央冷媒温度−吸込み温度)を検出し、この値と予め設定した温度と比較して前記した実施の形態1および実施の形態2と同様に膨張弁開度の制御行って適正な膨張弁の開度を決定することができる。
【0037】
【発明の効果】
この発明によれば、各々個別に運転、休止できる複数台の室内機を備えた空気調和機において、前記室内機に各々電子式膨張弁と、熱交換器の出口冷媒温度を検出する出口冷媒温度センサ、および吸込み温度を検出する吸込み温度センサとを備えてなり、暖房運転時において休止側室内機の熱交換器の出口冷媒温度と、吸込み温度との温度差を検出し、この温度差が予め設定された温度の設定値と比較し、設定温度より小さければ膨張弁開度を少し開けるように修正し、前記温度差の値が設定値以上になるまで繰り返し調整を行い、冷媒の溜まり込みがないように前記電子式膨張弁を適正開度に制御するとともに、暖房運転時において休止且つ送風状態に設定された休止側室内機の熱交換器の出口冷媒温度と吸込み温度との温度差により、膨張弁開度を変化させ、吹出し温度の吸込み温度に対する上昇度と、予め設定された温度設定値と比較し、設定温度より小さくなるように膨張弁の開度を少しづつ調整を繰り返して、膨張弁の開度を制御することにより吹出し温度を調整するものである。これによって休止ユニットの室内熱交換器への冷媒の溜まり込み量を最低限にすることが可能となり、さらには空気調和機に封入する冷媒量を最低限に抑制しつつ、かつ冷媒不足での運転をも防止することができる。
また、膨張弁の機械的公差によるばらつきや経時劣化による冷媒流量のずれに対しても、常に最適な膨張弁の開度となるように制御することが可能となり、その影響を排除することができる。
【0038】
また、室内熱交換器の暖房時における暖房運転ユニット、および休止ユニットに対して室内熱交換器の出口冷媒温度もしくは中央冷媒温度と吸込み温度との温度差により、膨張弁開度を変化させ、吹出し温度の吸込み温度に対する上昇度と、予め設定された温度設定値と比較し、設定温度より小さくなるように膨張弁の開度を少しづつ調整を繰り返して、膨張弁の開度を制御することにより吹出し温度を調整でき、結果として休止ユニットの室温の上昇を抑制することができ、快適性の向上が図れる。
【図面の簡単な説明】
【図1】 この発明による第1の実施の形態の系統構成を示す図である。
【図2】 この発明による第1の実施の形態における膨張弁開度変化に対する空気調和機の運転特性を示す図である。
【図3】 この発明による第1の実施の形態における膨張弁開度変化と冷媒流量の関係特性を示す説明図である。
【図4】 この発明による第1の実施の形態における膨張弁開度変化に対する空気調和機の運転特性を示す説明図である。
【図5】 この発明による第1の実施の形態における膨張弁開度の決定手順を示すフローチャートである。
【図6】 この発明による第2の実施の形態における膨張弁開度変化に対する空気調和機の運転特性を示す図である。
【図7】 この発明による第2の実施の形態における膨張弁開度変化に対する空気調和機の運転特性を示す図である。
【図8】 この発明による第2の実施の形態における膨張弁開度の決定手順を示すフローチャートである。
【図9】 この発明による第3の実施の形態の系統構成を示す図である。
【図10】 従来の空気調和機の系統構成を示す図である。
【符号の説明】
1 圧縮機、 2 四方弁、 3,3a,3b 冷媒配管、 4a,4b 室内熱交換器、 5a,5b 電子式膨張弁、 6,6a,6b 冷媒配管、 9室外熱交換器、 11a,11b 室内送風機、 12 室外送風機、 100 コントロー、 102a,102b 出口冷媒温度センサ、 103a,103b 吸込み温度センサ、 104a,104b 中央冷媒温度センサ、 A 室内ユニットA, B 室内ユニットB, C 室外ユニット。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a so-called indoor multi-type air conditioner including a plurality of indoor units.
[0002]
[Prior art]
Conventionally, in an indoor multi-type air conditioner, if there is a pause indoor unit during heating, a part of the refrigerant flows into the pause indoor unit to radiate heat, so that there is a problem that the performance of the driving indoor unit is degraded.
In order to solve this problem, each indoor unit is provided with an electronic expansion valve, and the expansion valve of the paused indoor unit during heating is free from refrigerant accumulation due to the difference in the refrigerant inlet / outlet temperature of the heat exchanger in the indoor unit. The opening degree of the expansion valve is controlled to the minimum opening degree so as to flow only as little as possible, thereby preventing the performance of the operation-side indoor unit from deteriorating and the refrigerant pooling on the idle indoor unit side resulting in insufficient refrigerant I try to prevent such things.
[0003]
FIG. 10 is a refrigerant circuit diagram showing a configuration of the above-described conventional indoor multi-type air conditioner disclosed in, for example, Japanese Utility Model Laid-Open No. 62-43269.
In the figure, the air conditioner is composed of two indoor units A and B units, where 1 is a compressor, 2 is a four-way valve, 3 is a refrigerant pipe, 4a is an indoor heat exchanger of the A unit, 4b. the indoor heat exchanger B units, 5a, electronic expansion valve 5b is freely opening control using the microcomputer or the like, 6 refrigerant pipe, 9 outdoor heat exchanger, 13 Akyumure data, 11a, 11b is an indoor fan, 12 is an outdoor fan, and includes inlet and outlet refrigerant temperature sensors 101a, 101b, 102a, and 102b attached to the inlet and outlet pipes of the indoor heat exchangers 4a and 4b. Flows as indicated by solid arrows, and heating operation is performed, and cooling operations are performed by flowing as indicated by dotted arrows.
[0004]
In the refrigerant circuit configured as described above, when the A unit is operated during heating operation and the B unit is stopped and only one indoor unit is operated, the opening degree of the expansion valve 5b of the B unit is set to B The opening of the expansion valve 5b is adjusted so that the temperature difference becomes an appropriate temperature due to the difference in the refrigerant inlet / outlet temperature of the unit heat exchanger, that is, the refrigerant flows only as little as possible so that the refrigerant does not accumulate in the indoor exchanger 4b. I will decide.
The opening of the expansion valve at this time is determined when the detected temperatures of the refrigerant temperature sensors 101b and 102b attached to the inlet and outlet of the indoor heat exchanger 4b are T1 and T2, respectively, and the temperature difference (T1-T2). Is determined by determining the opening degree of the expansion valve 5b of the B unit on the pause side so that the temperature becomes an appropriate temperature, and the refrigerant flows as shown by solid line arrows in FIG.
[0005]
The expansion valves 5a and 5b are electronic expansion valves whose opening degree can be adjusted from 0 (fully closed) to 100 (fully open)%.
Now, when the heating operation is started, the refrigerant flows in the direction of the solid arrow shown in FIG. 10, passes through the four-way valve, the refrigerant pipes 3, 3a, 3b, is heat-exchanged and cooled by the indoor heat exchangers 4a, 4b, and then the liquid refrigerant. It becomes.
The liquid refrigerant is decompressed once by the expansion valves 5a and 5b, further decompressed by the expansion valve 7 through the refrigerant pipes 6a and 6b, and further heated by the outdoor heat exchanger 9 to become a gas refrigerant. The four-way valve 2, the accumulator Back through the data 13 to the compressor 1.
[0006]
Here, the control for determining the opening degree of the expansion valves 5a and 5b when the B unit, which is one indoor heat exchanger unit, is at rest will be described.
Warm tufts when the driver starts the controller 100 operation of the indoor heat exchanger unit confirms whether two or one, but two when each the expansion valve opening degree which is determined as the expansion valve 5a, opened 5b Indicate the degree.
[0007]
Next, assuming that the heating operation is one A unit, the A unit has a predetermined opening degree of the expansion valve 5a, but the opening degree of the expansion valve 5b of the B unit is once set to 0 (fully closed). However, after a short time has passed, the expansion valve 5b is opened slightly, and the temperature T1 of the refrigerant temperature sensor 101b of the inlet and outlet piping of the indoor heat exchanger 4b and the temperature T2 of 102b are detected and T1-T2 is calculated. Compared with the set value when the value is less than the amount of refrigerant accumulated in the heat exchanger, if the value is smaller than this set value, it is determined that the refrigerant is accumulated in the heat exchanger and the opening of the expansion valve 5b Is further opened, and the process is repeated until T1-T2 reaches the set value. That is, the opening degree of the expansion valve 5b is controlled so that the value of T1-T2 is maintained within the set temperature range.
[0008]
In the cooling operation, the refrigerant does not accumulate as in the heating operation. Therefore, if there is a pause unit, the pause-side expansion valve is simply closed.
Further, when both the A unit and the B unit are normally operated for heating, the opening degree of the expansion valves 5a and 5b is determined by the respective loads of the A and B units as is well known, and therefore this description is omitted.
[0009]
[Problems to be solved by the invention]
As described above, in the conventional indoor multi-type air conditioner, when there is a pause unit during heating, the inlet and outlet of the indoor heat exchanger are prevented in order to prevent refrigerant from being accumulated in the pause unit. The opening degree of the electronic expansion valve is controlled by the temperature difference of the refrigerant temperature sensor attached to the pipe.
[0010]
However, the refrigerant that is normally discharged from the compressor and flows into the indoor exchanger is in a superheated gas state. In order to set the opening of the expansion valve to an appropriate opening (minimum opening), the opening of the expansion valve is temporarily set to 0. (Fully closed) and the condensed liquid refrigerant must be temporarily stored in the indoor heat exchanger and the outlet piping of the indoor heat exchanger. If the opening degree can be controlled to an appropriate opening degree, the accumulated refrigerant can be recovered but initially In order to maintain normal operation at that time, a considerably large amount of refrigerant is required, and as a result, there is a problem that the amount of enclosed refrigerant must be increased.
[0011]
In addition, because the electronic expansion valve is controlled by the pipe temperature difference (refrigerant temperature difference) between the inlet and outlet of the indoor heat exchanger, the state of the refrigerant in the indoor heat exchanger when the opening is appropriate Is simply said that it has not reached the outlet of the indoor heat exchanger, and since the opening degree of the expansion valve is controlled from 0 (fully closed), the indoor There is a considerable amount of refrigerant accumulated in the exchanger, and in order to maintain normal air conditioner operation, it is necessary to set the amount of enclosed refrigerant in consideration of the amount of accumulated refrigerant. There was a problem that said the amount would increase.
[0012]
In addition, when the pause unit during heating performs a blowing operation, the expansion valve is controlled at the minimum opening and a small amount of refrigerant supplied from the compressor flows, and the refrigerant supplied from this compressor is usually It is superheated gas, condensed in the indoor heat exchanger and converted into liquid refrigerant and returned to the outdoor heat exchanger unit, but the heat released by the condensation at that time leads to an increase in the blowout temperature of the air blowing operation, and the inlet of the indoor heat exchanger The control of the expansion valve opening by the pipe temperature difference (refrigerant temperature difference) between the outlet and the outlet has a problem that it is impossible to grasp the degree of increase in the blowout temperature relative to the indoor suction temperature, and the rise in the blowout temperature must be allowed to occur. There was a problem that said.
[0013]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problem. In an indoor multi-type air conditioner, an intake temperature sensor that detects an intake temperature of an indoor unit during heating operation, and an outlet or center of an indoor heat exchanger By including an outlet refrigerant temperature sensor that detects the refrigerant temperature, a central refrigerant temperature sensor, and an electronic expansion valve that controls the refrigerant flow rate, it is possible to determine whether or not the refrigerant has accumulated in the pause unit during heating operation. Detection is based on the temperature difference between the outlet refrigerant temperature or the central refrigerant temperature and the indoor suction temperature, and the opening of the electronic expansion valve is appropriately controlled in light of the result to prevent the refrigerant from accumulating in the indoor heat exchanger. , while suppressing the enclosed refrigerant amount, the temperature difference between quiescent and the outlet refrigerant temperature and the suction temperature of the heat exchanger of the set cylinder side indoor unit blowing state during the heating operation The expansion valve opening is changed, the degree of increase of the blowout temperature relative to the suction temperature is compared with a preset temperature setting value, and the adjustment of the expansion valve opening is repeated little by little so that it becomes smaller than the set temperature. The present invention provides an air conditioner that adjusts the blowing temperature by controlling the opening of an expansion valve .
[0014]
In the present invention according to the above means, when the air conditioner is in the heating operation and the heating operation unit and the pause unit coexist, the predetermined opening degree of the electronic expansion valve of the pause unit is very small close to 0% (fully closed). Then, the temperature difference between the outlet refrigerant temperature of the heat exchanger of the pause unit and the suction temperature of the pause unit is detected and compared with a preset value set in advance. Increase the opening of the electronic expansion valve by a certain amount.
[0015]
When this operation is periodically repeated and the temperature difference between the outlet refrigerant temperature of the heat exchanger of the pause unit and the suction temperature of the pause unit exceeds a predetermined set value, the opening degree of the electronic expansion valve becomes stable.
[0016]
By controlling the opening of the electronic expansion valve in this way, the amount of refrigerant accumulated in the indoor heat exchanger of the pause unit can be minimized by detecting the accumulation of refrigerant before accumulating in the indoor heat exchanger. It is possible to reduce the amount of refrigerant enclosed and to prevent a shortage of refrigerant due to the accumulation of the refrigerant.
[0017]
Further, when the pause unit is simply performing the air blowing operation, the blow-out temperature is detected from the central refrigerant temperature of the heat exchanger, and compared with a predetermined set value set in advance. Reduce the opening of the expansion valve by a certain amount. When this operation is periodically repeated and the temperature difference between the central refrigerant temperature of the heat exchanger of the pause unit and the suction temperature of the pause unit becomes a predetermined set value or less, the opening of the electronic expansion valve becomes stable. .
Thus, by controlling the opening degree of the electronic expansion valve, it is possible to suppress an increase in room temperature and improve comfort.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a system configuration diagram of an air conditioner according to a first embodiment. In the figure, the air conditioner is composed of an outdoor unit C and two units A and B.
Here, 1 is a compressor, 2 is a four-way valve, 3 is a refrigerant pipe, 4a is an indoor heat exchanger of unit A, 4b is an indoor heat exchanger of unit B, and 5a and 5b are freely available using a microcomputer or the like. Electronic expansion valve whose opening degree can be adjusted, 6 is a refrigerant pipe, 9 is an outdoor heat exchanger, 11a and 11b are indoor fans, 12 is an outdoor fan, 13 is an accumulator, 102a and 102b are indoor heat exchangers 4a and 4b Outlet refrigerant temperature sensors 103a and 103b attached to the outlet pipes, suction temperature sensors attached to portions where the intake air temperatures of the indoor units A and B can be detected, and 100 the outlet refrigerant temperature sensor 102a. , 102b, suction temperature sensors 103a, 103b, and controllers for controlling the electronic expansion valves 5a, 5b. The refrigerant is as indicated by solid arrows. The heating operation is performed by being.
[0019]
In the heating operation of the air conditioner configured as described above, when the indoor unit A is in the heating operation and the indoor unit B is in the inactive state, the indoor unit B as the inactive unit aims to make the temperature distribution in the indoor air-conditioned space uniform. The fan is running. In this state, the opening of the electronic expansion valve 5b of the indoor unit B that is a pause unit flows as little as possible so that the refrigerant does not accumulate in the indoor heat exchanger 4b or the like, that is, the refrigerant does not accumulate. Decide the opening so that there is no. A series of operations for determining the opening degree of the electronic expansion valve 5b in this case will be described below.
The electronic expansion valves 5a and 5b use expansion valves that can be controlled by a microcomputer or the like to adjust the opening from 0 (fully closed) to 100% (fully open). These electronic expansion valves 5a and 5b Is simply abbreviated as an expansion valve in the following description.
[0020]
First, when the heating operation is started, the refrigerant flows in the direction of the arrow shown in FIG. 1, passes through the four-way valve 2 and the refrigerant pipes 3, 3 a, 3 b, is heat-exchanged by the indoor heat exchangers 4 a, 4 b, and becomes liquid refrigerant, The pressure is reduced by the expansion valves 5 a and 5 b, is heated by the outdoor heat exchanger 9 through the refrigerant pipes 6 a, 6 b and 6, becomes a gas refrigerant, and returns to the compressor 1 through the four-way valve 2 and the accumulator 13.
[0021]
When the heating operation is started, the controller 100 confirms whether the indoor unit is operated by one or two units. If the unit B is inactive and only one unit A is in the heating operation, the operation-side indoor unit A is given. The opening degree of the expansion valve 5a is instructed so that the opening degree of the expansion valve corresponds to the load, and the opening degree of the expansion valve 5b of the indoor unit B on the pause side is set to a predetermined value described below.
[0022]
The expansion valve opening degree given to the indoor unit B which is a pause unit at this time will be described with reference to FIG.
FIG. 2 is a characteristic diagram showing the relationship between the expansion valve opening and the refrigerant flow rate given to the pause unit (however, the air blowing operation), the rising temperature of the blown air temperature with respect to the suction temperature, and the amount of refrigerant accumulated in the pause-side indoor heat exchanger. is there.
[0023]
According to FIG. 2, when the expansion valve opening given to the pause unit is 0% (fully closed), the refrigerant amount flowing to the pause unit and the temperature rise with respect to the discharge temperature are both 0, but the indoor heat exchanger The amount of refrigerant that accumulates is maximized. When the opening of the expansion valve is opened from 0% (fully closed), the amount of refrigerant that accumulates in the indoor heat exchanger decreases, but the refrigerant flow rate that flows to the pause unit increases, and the blowout temperature relative to the suction temperature The rise will also increase.
[0024]
In general, the increase in the amount of refrigerant that accumulates in the indoor heat exchanger with respect to the opening of the expansion valve and the increase in the blow-out temperature with respect to the suction temperature are in a contradictory relationship, and the most appropriate expansion including other given conditions Normally, the opening of the valve is selected, and there is an expansion valve opening of a pause unit that can be said to be appropriate in each air conditioner.
[0025]
FIG. 3 is a conceptual diagram showing the variation characteristic of the flow rate of the expansion valve.
In general, an expansion valve has a refrigerant flow rate deviation (flow rate variation) due to the influence of mechanical manufacturing errors and the influence of aging. Therefore, even if the expansion valve opening of an appropriate pause unit is determined from the relationship between the amount of refrigerant accumulated in the indoor heat exchanger shown in FIG. 2 and the degree of increase of the blowing temperature with respect to the suction temperature, as shown in FIG. Another problem arises that the expansion of the refrigerant flow rate does not always result in an appropriate expansion valve opening of the pause unit.
[0026]
Further, the opening degree of the expansion valve at which the flow rate becomes 0 is not necessarily 0%, and there are many expansion valves that have a characteristic that the flow rate of the refrigerant can be obtained when the opening degree reaches a certain degree. The expansion valve opening that becomes zero also deviates (expansion valve opening variation).
[0027]
From the above points, the expansion valve opening of the pause unit is usually set to a minute value that does not allow a large amount of refrigerant obtained from FIG. 2, that is, to be set lower than the appropriate expansion valve opening. .
However, if the expansion valve opening is set too low for the purpose of reducing the refrigerant flow rate at the same time, the flow rate becomes 0 due to the deviation of the expansion valve opening (variation of the expansion valve opening), and is accumulated in the indoor heat exchanger. There is a high possibility that the amount of refrigerant to be charged becomes large.
Also, if the expansion valve opening is set to a high value in order to avoid the flow rate of 0, the amount of refrigerant that accumulates in the indoor heat exchanger decreases, but the flow rate of the refrigerant increases and the degree of increase in the blow-out temperature relative to the suction temperature increases. End up.
[0028]
Accordingly, means for obtaining an appropriate expansion valve opening will be described below with reference to FIG.
FIG. 5 is a flowchart showing a procedure for determining the expansion valve opening. After setting the expansion valve opening of the suspension unit B to a predetermined opening, the compressor is operated, and the outlet is detected by the outlet refrigerant temperature sensor 102b of the indoor heat exchanger. The refrigerant temperature T2 is detected, and the suction temperature sensor 103b detects the suction temperature T1. Then, a temperature difference (T2-T1) between the outlet refrigerant temperature and the suction temperature is calculated, and the temperature difference (T2-T1) is compared with a preset value of a preset temperature. Since the refrigerant has accumulated in the valve, the opening of the expansion valve is corrected to be slightly opened.
[0029]
Next, the temperature difference (T2−T1) between the outlet refrigerant temperature and the suction temperature is calculated again, and this temperature difference (T2−T1) is compared with a preset temperature setting value. Correct the opening of the expansion valve so that it opens slightly. Thus, the expansion valve opening is adjusted little by little, and the process is repeated until the value of the temperature difference (T2-T1) between the outlet refrigerant temperature and the suction temperature becomes equal to or greater than the set value.
[0030]
Here, the set value of the temperature difference (T2-T1) will be described with reference to FIG.
Fig. 4 shows the operating characteristics with respect to changes in the opening of the expansion valve. When the pause unit is performing air blowing operation, the air volume is almost the same as in normal heating operation, and the heat exchange capacity of the indoor heat exchanger is heating. It is almost equal to driving.
In the case of the resting unit, the opening degree of the expansion valve is set to be extremely small as compared with the normal heating operation, and the refrigerant flow rate is very small. The indoor heat exchanger during heating cools the hot superheated gas flowing from the compressor and turns it into a liquid refrigerant. However, in the case of a sleep unit, the heat exchange capacity is almost the same as during heating operation (during heating operation). Refrigerant flow) >> (refrigerant flow rate at rest), the refrigerant of the rest unit cools much more than during normal heating.
[0031]
This relationship is closely related to the opening degree of the expansion valve that determines the refrigerant flow rate, and the refrigerant temperature decreases as the opening degree of the expansion valve decreases, and the suction temperature and the refrigerant temperature coincide with each other from a certain degree of opening. Using this characteristic, it is possible to determine the refrigerant flow rate and whether or not the refrigerant is flowing, and the temperature difference (T2−) between the outlet refrigerant temperature and the suction temperature of the heat exchanger for ensuring a substantially appropriate refrigerant flow rate. The optimum opening can be finally obtained by determining the range of the value of T1) and controlling the opening of the expansion valve.
[0032]
Therefore, by utilizing the correlation between the characteristics described above, an optimum value of the expansion valve opening is set, and the optimum value and the value of the temperature difference (T2-T1) between the outlet refrigerant temperature of the heat exchanger and the suction temperature are determined. In order to correct the expansion valve opening and make repeated adjustments to reach the optimal expansion valve opening, the variation in mechanical tolerance of the expansion valve and the deviation of the opening due to deterioration over time The influence can be eliminated.
In order to achieve the object in this embodiment, the outlet refrigerant temperature sensors 102a and 102b of the indoor heat exchanger may be installed in any part of the piping connecting the expansion valve and the indoor heat exchanger. is there.
[0033]
Embodiment 2. FIG.
In the first embodiment of the present invention, the opening degree of the expansion valve is determined by comparing the value of the temperature difference (T2-T1) between the outlet refrigerant temperature of the heat exchanger and the suction temperature. With this refrigerant circuit configuration, it is possible to control the air outlet temperature of the heating operation and heating pause unit. That is, the indoor heat exchanger 4a, 4b, the outlet refrigerant temperature sensor 102a of the indoor heat exchanger, 102b, and the indoor suction temperature sensor 103a, in 103b, the indoor suction temperature sensor 103a, the heat exchanger for the indoor suction temperature detected by 103b The outlet refrigerant temperature is detected by outlet refrigerant temperature sensors 102a and 102b, and the outlet temperature itself is controlled by the opening of the expansion valve based on the correlation between the increase in the outlet temperature with respect to the suction temperature and the outlet refrigerant temperature with respect to the outlet temperature. It becomes possible.
[0034]
FIGS. 6 and 7 show operating characteristics with respect to changes in the expansion valve opening for explaining the second embodiment. By increasing the expansion valve opening in FIG. The temperature rises, and as a result, (blowing temperature−suction temperature) increases. Using this characteristic, the expansion valve opening is changed as shown in the flowchart of the procedure for determining the expansion valve opening in FIG. 8 based on the temperature difference (T2−T1) between the outlet refrigerant temperature and the suction temperature of the heat exchanger. Compare the degree of increase of the blowing temperature with respect to the suction temperature and the preset temperature setting value, and adjust the opening degree of the expansion valve little by little so as to become smaller than the set temperature to control the opening degree of the expansion valve As a result, the blowout temperature can be adjusted, and as a result, an increase in the room temperature of the pause unit can be suppressed, leading to an improvement in comfort.
[0035]
Further, by utilizing the characteristics of the change in the outlet refrigerant temperature T2 and the outlet temperature of the heat exchanger when the expansion valve opening is changed as shown in FIG. It is also possible to control the blowing temperature by controlling with.
[0036]
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 9 shows the refrigerant temperature in the center for detecting the refrigerant temperature in the indoor heat exchanger instead of the outlet refrigerant temperature sensors 102a and 102b in the indoor heat exchanger, compared to the refrigerant circuit in FIG. 1 used in the first embodiment. By attaching the sensors 104a and 104b, (the central refrigerant temperature of the indoor heat exchanger−the suction temperature) is detected, and this value is compared with a preset temperature, similar to the first and second embodiments described above. The appropriate opening degree of the expansion valve can be determined by controlling the opening degree of the expansion valve.
[0037]
【The invention's effect】
According to the present invention, in an air conditioner including a plurality of indoor units that can be individually operated and stopped, each of the indoor units includes an electronic expansion valve and an outlet refrigerant temperature that detects an outlet refrigerant temperature of the heat exchanger. Sensor, and a suction temperature sensor that detects the suction temperature, and detects the temperature difference between the outlet refrigerant temperature of the heat exchanger of the pause indoor unit and the suction temperature during heating operation, and this temperature difference is Compared with the set value of the set temperature, if the temperature is lower than the set temperature, correct the opening of the expansion valve slightly, and make adjustments repeatedly until the temperature difference value exceeds the set value. The electronic expansion valve is controlled to an appropriate opening degree so that there is no temperature difference between the outlet refrigerant temperature and the suction temperature of the heat exchanger of the pause-side indoor unit that is set to the paused and blowing state during the heating operation, Swelling Change the valve opening, compare the degree of rise of the blowout temperature with respect to the suction temperature and the preset temperature setting value, and gradually adjust the opening of the expansion valve so that it becomes smaller than the set temperature. The blow-off temperature is adjusted by controlling the opening degree. As a result, it is possible to minimize the amount of refrigerant accumulated in the indoor heat exchanger of the pause unit, and furthermore, the amount of refrigerant enclosed in the air conditioner is minimized and the operation is performed with insufficient refrigerant. Can also be prevented.
In addition, it is possible to always control the expansion valve so that the opening degree of the expansion valve is optimal even with respect to variations due to mechanical tolerances of the expansion valve and refrigerant flow deviation due to deterioration over time, and the influence can be eliminated. .
[0038]
In addition, the opening degree of the expansion valve is changed by the temperature difference between the outlet refrigerant temperature of the indoor heat exchanger or the central refrigerant temperature and the suction temperature with respect to the heating operation unit during heating of the indoor heat exchanger and the pause unit. By comparing the degree of increase of the temperature with respect to the suction temperature and a preset temperature set value, and adjusting the opening of the expansion valve little by little so as to be smaller than the set temperature, and controlling the opening of the expansion valve The blowout temperature can be adjusted, and as a result, an increase in the room temperature of the pause unit can be suppressed, and the comfort can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a system configuration of a first embodiment according to the present invention.
FIG. 2 is a diagram showing operating characteristics of the air conditioner with respect to a change in the expansion valve opening in the first embodiment according to the present invention.
FIG. 3 is an explanatory diagram showing a relational characteristic between an expansion valve opening change and a refrigerant flow rate in the first embodiment according to the present invention.
FIG. 4 is an explanatory diagram showing operating characteristics of the air conditioner with respect to a change in the expansion valve opening according to the first embodiment of the present invention.
FIG. 5 is a flowchart showing a procedure for determining an expansion valve opening degree in the first embodiment according to the present invention.
FIG. 6 is a diagram showing the operating characteristics of the air conditioner with respect to changes in the expansion valve opening in the second embodiment according to the present invention.
FIG. 7 is a diagram showing operating characteristics of an air conditioner with respect to a change in expansion valve opening degree in a second embodiment according to the present invention.
FIG. 8 is a flowchart showing a procedure for determining an expansion valve opening degree in a second embodiment according to the present invention.
FIG. 9 is a diagram showing a system configuration of a third embodiment according to the present invention.
FIG. 10 is a diagram showing a system configuration of a conventional air conditioner.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor, 2 Four way valve, 3, 3a, 3b Refrigerant piping, 4a, 4b Indoor heat exchanger, 5a, 5b Electronic expansion valve, 6, 6a, 6b Refrigerant piping, 9 Outdoor heat exchanger, 11a, 11b Indoor blower, 12 outdoor blower, 100 controller, 102a, 102b outlet refrigerant temperature sensor, 103a, 103b suction temperature sensor, 104a, 104b central coolant temperature sensor, A indoor units A, B indoor unit B, C outdoor unit.

Claims (2)

各々個別に運転、休止できる複数台の室内機を備えた空気調和機において、前記室内機に各々電子式膨張弁と、熱交換器の出口冷媒温度を検出する出口冷媒温度センサ、および吸込み温度を検出する吸込み温度センサとを備えてなり、暖房運転時において休止側室内機の熱交換器の出口冷媒温度と、吸込み温度との温度差を検出し、この温度差が予め設定された温度の設定値と比較し、設定温度より小さければ膨張弁開度を少し開けるように修正し、前記温度差の値が設定値以上になるまで繰り返し調整を行い、冷媒の溜まり込みがないように前記電子式膨張弁を適正開度に制御するとともに、暖房運転時において休止且つ送風状態に設定された休止側室内機の熱交換器の出口冷媒温度と吸込み温度との温度差により、膨張弁開度を変化させ、吹出し温度の吸込み温度に対する上昇度と、予め設定された温度設定値と比較し、設定温度より小さくなるように膨張弁の開度を少しづつ調整を繰り返して、膨張弁の開度を制御することにより吹出し温度を調整することを特徴とする空気調和機。In an air conditioner having a plurality of indoor units that can be individually operated and stopped, each of the indoor units has an electronic expansion valve, an outlet refrigerant temperature sensor that detects an outlet refrigerant temperature of the heat exchanger, and an intake temperature. A suction temperature sensor that detects the temperature difference between the refrigerant temperature at the outlet of the heat exchanger of the pause-side indoor unit and the suction temperature during heating operation, and this temperature difference is set to a preset temperature. If the temperature is smaller than the set temperature, the expansion valve opening is corrected to be slightly opened, and the adjustment is repeated until the temperature difference value is equal to or greater than the set value, so that the refrigerant does not accumulate. While controlling the expansion valve to an appropriate opening degree , the expansion valve opening degree is changed depending on the temperature difference between the outlet refrigerant temperature and the suction temperature of the heat exchanger of the dormant indoor unit that is set to the paused and blowing state during heating operation. Let Compare the degree of increase of the blow-out temperature with respect to the suction temperature and a preset temperature set value, and adjust the opening of the expansion valve little by little so as to be smaller than the set temperature, thereby controlling the opening of the expansion valve The air conditioner characterized by adjusting the blowing temperature by means of the above. 各々個別に運転、休止できる複数台の室内機を備えた空気調和機において、前記室内機に各々電子式膨張弁と、熱交換器の中央冷媒温度を検出する中央冷媒温度センサ、および吸込み温度を検出する吸込み温度センサとを備えてなり、暖房運転時において休止側室内機の熱交換器の中央冷媒温度と、吸込み温度との温度差を検出し、この温度差が予め設定された温度の設定値と比較し、設定温度より小さければ膨張弁開度を少し開けるように修正し、前記温度差の値が設定値以上になるまで繰り返し調整を行い、冷媒の溜まり込みがないように前記電子式膨張弁を適正開度に制御するとともに、暖房運転時において休止且つ送風状態に設定された休止側室内機の熱交換器の中央冷媒温度と吸込み温度との温度差により、膨張弁開度を変化させ、吹出し温度の吸込み温度に対する上昇度と、予め設定された温度設定値と比較し、設定温度より小さくなるように膨張弁の開度を少しづつ調整を繰り返して、膨張弁の開度を制御することにより吹出し温度を調整することを特徴とする空気調和機。In an air conditioner having a plurality of indoor units that can be individually operated and stopped, each of the indoor units has an electronic expansion valve, a central refrigerant temperature sensor that detects a central refrigerant temperature of the heat exchanger, and a suction temperature. A suction temperature sensor that detects the temperature difference between the central refrigerant temperature of the heat exchanger of the pause side indoor unit and the suction temperature during heating operation, and this temperature difference is set to a preset temperature. If the temperature is smaller than the set temperature, the expansion valve opening is corrected to be slightly opened, and the adjustment is repeated until the temperature difference value is equal to or greater than the set value, so that the refrigerant does not accumulate. While controlling the expansion valve to an appropriate opening degree , the expansion valve opening degree is changed depending on the temperature difference between the central refrigerant temperature and the suction temperature of the heat exchanger of the pause-side indoor unit that is set to the paused and blown state during heating operation Let Compare the degree of increase of the blow-out temperature with respect to the suction temperature and a preset temperature set value, and adjust the opening of the expansion valve little by little so as to be smaller than the set temperature, thereby controlling the opening of the expansion valve The air conditioner characterized by adjusting the blowing temperature by means of the above.
JP13794998A 1998-05-20 1998-05-20 Air conditioner Expired - Fee Related JP3736969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13794998A JP3736969B2 (en) 1998-05-20 1998-05-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13794998A JP3736969B2 (en) 1998-05-20 1998-05-20 Air conditioner

Publications (2)

Publication Number Publication Date
JPH11325639A JPH11325639A (en) 1999-11-26
JP3736969B2 true JP3736969B2 (en) 2006-01-18

Family

ID=15210486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13794998A Expired - Fee Related JP3736969B2 (en) 1998-05-20 1998-05-20 Air conditioner

Country Status (1)

Country Link
JP (1) JP3736969B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100546616B1 (en) * 2004-01-19 2006-01-26 엘지전자 주식회사 controling method in the multi airconditioner
JP4877052B2 (en) * 2006-07-12 2012-02-15 パナソニック株式会社 Multi-room air conditioner
JP4758367B2 (en) * 2007-02-13 2011-08-24 シャープ株式会社 Air conditioner
JP5062555B2 (en) * 2007-02-26 2012-10-31 清水建設株式会社 Energy saving air conditioning control system
JP4898610B2 (en) * 2007-09-12 2012-03-21 三菱重工業株式会社 Valve opening pulse setting method for electric expansion valve and multi-type air conditioner
JP2011202833A (en) * 2010-03-25 2011-10-13 Toshiba Carrier Corp Air conditioner
JP2014034301A (en) * 2012-08-09 2014-02-24 Denso Corp Refrigeration cycle device
WO2017168504A1 (en) * 2016-03-28 2017-10-05 三菱電機株式会社 Air conditioner
KR102332091B1 (en) * 2017-09-14 2021-11-30 한온시스템 주식회사 Air conditioning system for automotive vehicles
DE112017008064T5 (en) * 2017-09-20 2020-06-18 Mitsubishi Electric Corporation air conditioning

Also Published As

Publication number Publication date
JPH11325639A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
JP4134069B2 (en) Multi air conditioner system and valve opening control method of multi air conditioner system
KR100484800B1 (en) Compressor's Operating Method in Air Conditioner
CN111780362B (en) Air conditioner and control method thereof
US5074120A (en) Multi-type air-conditioning system with fast hot starting for heating operation
US20060123810A1 (en) Method for operating air conditioner
US7380407B2 (en) Multi air conditioning system and method for operating the same
JP3736969B2 (en) Air conditioner
JP4290480B2 (en) Temperature control method
JPH08219530A (en) Air-conditioner
JP3181116B2 (en) Air conditioner
JP4302874B2 (en) Air conditioner
KR100565995B1 (en) Method for Operating of Multi Type Air-conditioner by Install Position of Indoor-unit
US5507155A (en) Compressor control apparatus and method for an automobile air-conditioning system
JPH1183128A (en) Highly efficient multiple air conditioning system
JPH10185370A (en) Defrosting operation changing device and method of air conditioner
JP3225738B2 (en) Air conditioner
JP3306455B2 (en) Air conditioner
JP2523534B2 (en) Air conditioner
JP3357823B2 (en) Air conditioner
JP2757900B2 (en) Air conditioner
JP3401873B2 (en) Control device for air conditioner
JPH0114864Y2 (en)
KR100625567B1 (en) Air conditioner
JPH05272820A (en) Air conditioner
JP2689025B2 (en) Multi-room air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050810

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees