JP4181362B2 - Optimal start-up controller for air conditioning system - Google Patents

Optimal start-up controller for air conditioning system Download PDF

Info

Publication number
JP4181362B2
JP4181362B2 JP2002249690A JP2002249690A JP4181362B2 JP 4181362 B2 JP4181362 B2 JP 4181362B2 JP 2002249690 A JP2002249690 A JP 2002249690A JP 2002249690 A JP2002249690 A JP 2002249690A JP 4181362 B2 JP4181362 B2 JP 4181362B2
Authority
JP
Japan
Prior art keywords
heat source
air conditioner
time
start time
optimum start
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002249690A
Other languages
Japanese (ja)
Other versions
JP2004085141A (en
Inventor
賢一 二口
英弥 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2002249690A priority Critical patent/JP4181362B2/en
Publication of JP2004085141A publication Critical patent/JP2004085141A/en
Application granted granted Critical
Publication of JP4181362B2 publication Critical patent/JP4181362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、多目的インテリジェントビル、オフィスビル、住居ビルなどの各種ビルに用いて好適な空調システムの最適起動制御装置に関し、予め定められたスケジュール時刻に室内温度が目標室内温度となるように空調機およびこの空調機への熱源水を供給する熱源機を前倒し運転する空調システムの最適起動制御装置に関するものである。
【0002】
【従来の技術】
図7に従来の空調システムの最適起動制御装置を使用した空調システムの計装図を示す。同図において、1は熱源機、2は熱源機側の管路(熱源機側管路)、3はサプライヘッダ、4はレターンヘッダ、5は空調機、6は空調機5への熱源水の供給通路に設けられた空調機バルブ、7は往水管路、8は還水管路、9は空調機5へのサプライヘッダ3からの往水の温度TSを検出する温度計、10は空調機5からのレターンヘッダ4への還水の温度TRを検出する温度計、11は空調機コントローラ、12は熱源コントローラ、13はサプライヘッダ3とレターンヘッダ4との間に設けられたバイパス管路、14は空調機最適起動時刻演算装置である。空調機5は冷温水用のコイル(空調機コイル)5Aとファン5Bとを備えている。
【0003】
〔通常の空調制御〕
この空調システムにおいて、熱源機1からの送水は、熱源機側管路2からサプライヘッダ3を経て往水管路7により往水として空調機5のコイル5Aへ供給され、空調機バルブ6を通り、還水管路8により還水としてレターンヘッダ4へ至り、再び熱源機1より圧送され、以上の経路を循環する。なお、熱源機1は、ポンプを含んでいるものとする。
【0004】
この際、熱源機1の運転が熱源コントローラ12によって制御され、空調機バルブ6の開度や空調機5の運転(ファン5Bの起動や停止)が空調機コントローラ11によって制御される。空調機コントローラ11は、空調機5からの給気が供給される空調制御対象室(図示せず)の室内温度(計測値)tpvと目標室内温度tspとが一致するように空調機バルブ6の開度および空調機5の運転を制御する。
【0005】
この空調システムでは、上述した通常の空調制御に入る前に、予め定められた時刻に室内温度tpvが目標室内温度tspとなるように空調機5および熱源機1の運転を予め定められた時刻より前に開始する。このように予め定められた時刻より前の運転を「前倒し運転」という。前倒し運転では、次のようにして空調機5および熱源機1の起動時刻を決定してそれぞれを起動する最適起動制御が行われる。
【0006】
空調機コントローラ11には予め空調機スケジュール時刻TSSH が設定されている。空調機コントローラ11は、この空調機スケジュール時刻TSSHを空調機最適起動時刻演算装置14へ送り、予め定められた空調機スケジュール時刻TSSH に室内温度tpvが目標室内温度tspとなるように、空調機5およびこの空調機5への熱源水を供給する熱源機1を前倒し運転する。
【0007】
〔最適起動制御▲1▼〕
最適起動制御の一例を図8に示すタイムチャートを用いて説明する。なお、このタイムチャートは、冷房を行う際のタイムチャートである。
【0008】
空調機最適起動時刻演算装置14は、空調機スケジュール時刻TSSH に達する以前の所定時刻から定期的に、室内温度tpvと目標室内温度tspと還水温度(熱源水の配管内保有水温度)TRpv(計測値)とに基づき、現在の室内温度tpvを目標室内温度tspとするために必要な空調機5の運転時間を空調機最適起動時間toss として求める。そして、この求めた空調機最適起動時間toss を空調機スケジュール時刻TSSH から差し引いて空調機最適起動時刻TAoss を求める。
【0009】
空調機コントローラ11は、現時刻が空調機最適起動時刻TAoss に達すると、空調機バルブ6を開くとともに(図8(d)に示すt1点)、熱源機(冷凍機)1を起動し(図8(e)に示すt1点)、空調機5の運転を開始する(図8(a)に示すt1点)。これにより、熱源機1により冷却された熱源水が空調機5のコイル(冷水コイル)5Aに供給され、熱源水と空気との熱交換によって得られた空調機5からの冷気によって空調制御対象室内の予冷が開始される。そして、現時刻が空調機スケジュール時刻TSSH に達した時点より(図8に示すt2点)、通常の空調制御に入る。
【0010】
〔最適起動制御▲2▼〕
最適起動制御の他の例を図9に示すタイムチャートを用いて説明する。なお、このタイムチャートも、上述した最適起動制御▲1▼と同様、冷房を行う際のタイムチャートである。
【0011】
空調機最適起動時刻演算装置14は、室内温度tpvと目標室内温度tspと熱源水の配管内保有水温度TRpvとに基づき、現在の室内温度tpvを目標室内温度tspとするために必要な空調機最適起動時間toss を求める。そして、この求めた空調機最適起動時間toss を空調機スケジュール時刻TSSH から差し引いて空調機最適起動時刻TAoss を求める。また、空調機最適起動時刻TAoss から予め固定時間として定められた熱源機前倒運転時間tGを差し引いて熱源機前倒起動時刻TGを求める。
【0012】
熱源コントローラ12は、現時刻が熱源機前倒起動時刻TGに達すると、熱源機(冷凍機)1を起動する(図9(e)に示すt0点)。これにより、熱源機側管路2およびバイパス管路13を通してサプライヘッダ3とレターンヘッダ4との間を熱源水が循環し、熱源機側の管路内保有水の予冷が行われる。
【0013】
そして、空調機コントローラ11は、現時刻が空調機最適起動時刻TAoss に達すると、空調機バルブ6を開くとともに(図9(d)に示すt1点)、空調機5の運転を開始する(図9(a)に示すt1点)。これにより、熱源機1により冷却された熱源水が空調機5のコイル(冷水コイル)5Aに供給され、熱源水と空気との熱交換によって得られた空調機5からの冷気によって空調制御対象室内の予冷が開始される。そして、現時刻が空調機スケジュール時刻TSSH に達した時点より(図9に示すt2点)、通常の空調制御に入る。
【0014】
【発明が解決しようとする課題】
〔最適起動制御▲1▼の課題〕
上述した最適起動制御▲1▼では、空調機最適起動時刻TAoss に達した時点で空調機バルブ6を開くと同時に熱源機1および空調機5の運転を開始するようにしているため、空調機5への熱源水が充分冷えるまでの間、空調機5は空気を循環するだけの運転となってしまい、ファン5Bの搬送動力が無駄となる。
【0015】
図8(f)はサプライヘッダ3内の水温(往ヘッダ温度)、図8(g)は空調機5のコイル5Aに入る直前の往水管路7内の水温(空調機コイル温度)の変化を示している。空調機最適起動時刻TAoss に達するまでは空調機バルブ6が閉じており、往水管路7および還水管路8内には水が溜まっている。この配管内保有水は、夏場であれば夜間に暖められ、温度が上昇している。この配管内保有水温度をまず目標熱源水温度まで下げる必要がある。
【0016】
すなわち、空調機最適起動時刻TAoss に達した時点で空調機バルブ6を開くと同時に熱源機1および空調機5の運転を開始した場合、配管内保有水温度TRpvを目標熱源水温度TRspまで下げる予冷時間(熱源水の予冷時間)が必要であり、これに室内温度tpvを目標室内温度tspに下げる予冷時間(室内の予冷時間)が加わることになる。このため、空調機最適起動時間toss が結果的に長くなって、熱源水の予冷が完了するまでの間、ファン5Bの搬送動力が無駄となる。
【0017】
図7では、熱源機を1台とした例で説明したが、熱源機を複数台とし、この複数台の熱源機を台数制御するような方式とした場合、熱源機の制御が安定しないという問題が生じる。すなわち、熱源には、空調機最適起動時刻TAoss に達した時点において、室内予冷負荷と配管内保有水予冷負荷がかかり、この負荷を元に熱源機の運転台数が制御されることになる。この場合、空調機最適起動時刻TAoss に達した時点では過大な負荷がかっていると判断され、熱源機が増段して用いられることがある。配管内保有水予冷負荷が少なくなってくると、熱源機は減段されることになり、負荷の変動によって熱源機が増段と減段とが繰り返され、熱源機の制御が安定しないという事態が生じる。
【0018】
なお、一度停止した熱源機を一定時間再起動できないようにすることによって熱源機の増段と減段との繰り返し(ハンチング)を防ぐことが可能ではあるが、室内の予冷が終了したときに、すなわち空調機スケジュール時刻TSSH に達し通常の制御時間帯に移行したときに、本来起動すべき熱源機を起動することができないということが起こり得る。
【0019】
〔最適起動制御▲2▼の課題〕
最適起動制御▲2▼では、空調機5よりも熱源機1をさらに前倒して運転することにより熱源機側の配管内保有水の予冷を行っているが、この予冷ではバイパス管路13を通して熱源水が循環するので、往ヘッダ温度が下がって行くのみで(図9(f)に示すt0〜t1点)、空調機コイル温度は下がらず(図9(g)に示すt0〜t1点)、空調機側の配管内保有水負荷は依然として残る。このため、最適起動制御▲1▼の場合と同様に、空調機最適起動時間toss が結果的に長くなって、熱源水の予冷が完了するまでの間、すなわち配管内保有水温度TRpvが目標熱源水温度TRspまで下がるまでの間、ファン5Bの搬送動力が無駄となる。
【0020】
また、最適起動制御▲2▼では、熱源機前倒運転時間tGが固定時間であるので、予冷開始時の往ヘッダ温度に対して熱源機前倒運転時間tGが長かったり、短かったりすると、往ヘッダ温度が低くなり過ぎたり、高すぎたりする。往ヘッダ温度が低くなり過ぎると、エネルギーが無駄に費やされる。また、熱源機1が異常停止することもある。往ヘッダ温度が高すぎた場合、熱源機側の配管内保有水の予冷が不十分となり、その分前倒し運転時(空調制御対象室内の予冷時)における冷房負荷が増え、空調機スケジュール時刻TSSH での室内温度tpvと目標室内温度tspとのずれが大きくなり、居住者の快適性が損なわれる。
【0021】
なお、上述においては、冷房を行う場合を例にとって説明したが、暖房を行う場合、すなわち予熱を行う場合にも、同様の問題が生じる。
【0022】
本発明はこのような課題を解決するためになされたもので、その目的とするところは、予冷・予熱を行う際の省エネルギーを促進するととも、空調機スケジュール時刻での居住者の快適性を確実に確保することのできる空調システムの最適起動制御装置を提供することにある。
また、省エネルギーを促進するとともに、空調機スケジュール時刻での居住者の快適性を確実に確保することができ、かつ、予冷・予熱中の熱源機の台数制御の安定化を図ることができ、通常の制御時間帯に移行したときにすぐに熱源機の台数制御が可能となる空調システムの最適起動制御装置を提供することにある。
【0026】
【課題を解決するための手段】
このような目的を達成するために、第1発明(請求項1に係る発明)は、予め定められたスケジュール時刻に室内温度が目標室内温度となるように空調機およびこの空調機への熱源水を供給する熱源機を前倒し運転する空調システムの最適起動制御装置において、第1〜第N(N≧2)の空調機と、1つ以上の熱源機と、第1〜第Nの空調機からの給気がそれぞれ供給される第1〜第Nの空調制御対象室の室内温度とこの第1〜第Nの空調制御対象室に対して設定される第1〜第Nの目標室内温度との差に基づいて、この1〜第Nの空調制御対象室の室内温度を第1〜第Nの目標室内温度にするために必要な第1〜第Nの空調機の運転時間を空調機最適起動時間として求め、この第1〜第Nの空調機の空調機最適起動時間をぞれぞれ第1〜第Nの空調機のスケジュール時刻から差し引いて第1〜第Nの空調機の空調機最適起動時刻を求める空調機最適起動時刻演算手段と、この空調機最適起動時刻演算手段により求められた第1〜第Nの空調機の空調機最適起動時刻のうち最早の空調機最適起動時刻を選択する空調機最適起動時刻選択手段と、前記熱源機のうち予め定められた熱源機を前倒運転熱源機とし、第1〜第Nの空調機への熱源水の配管内保有水温度と目標熱源水温度との差に基づいてこの熱源水の配管内保有水温度を目標熱源水温度とするために必要な前倒運転熱源機の運転時間を熱源機最適起動時間として求め、この熱源機最適起動時間を空調機最適起動時刻選択手段によって選択された最早の空調機最適起動時刻から差し引いて熱源機最適起動時刻を求める熱源機最適起動時刻演算手段と、現時刻が熱源機最適起動時刻に達した場合、前倒運転熱源機を起動するとともに第1〜第Nの空調機のうち配管路の末端の空調機への熱源水の供給通路に設けられている空調機バルブだけを開き、現時刻が第1〜第Nの空調機のスケジュール時刻のうち少なくとも最早のスケジュール時刻に達するまで熱源機最適起動時刻に起動された前倒運転熱源機のみを運転する熱供給制御手段と、現時刻がその空調機最適起動時刻に達する毎に第1〜第Nの空調機の運転を開始する空調機制御手段とを設けたものである。
【0027】
この発明によれば、第1〜第Nの空調制御対象室の室内温度と第1〜第Nの目標室内温度との差に基づいて第1〜第Nの空調機の空調機最適起動時間toss1 〜tossN が求められ、この空調機最適起動時間toss1 〜tossN を第1〜第Nの空調機のスケジュール時刻TSSH1 〜TSSHN から差し引いて第1〜第Nの空調機の空調機最適起動時刻TAoss1 〜TAossN が求められ、この空調機最適起動時刻TAoss1 〜TAossN の中から最早の空調機最適起動時刻TAossS が選択される。
【0028】
そして、予め定められた熱源機(複数台でも1台でもよい)が前倒運転熱源機とされ、第1〜第Nの空調機への熱源水の配管内保有水温度と目標熱源水温度との差に基づいて前倒運転熱源機の熱源機最適起動時間tGoss が求められ、この熱源機最適起動時間tGoss を最早の空調機最適起動時刻TAossS から差し引いて熱源機最適起動時刻TGoss が求められる。そして、現時刻が熱源機最適起動時刻TGoss に達すると、前倒運転熱源機が起動されるとともに第1〜第Nの空調機のうち配管路の末端の空調機に付設されている空調機バルブだけが開かれる。これにより、配管路(熱源機側配管路と空調機側配管路とを合わせた管路)内を熱源水が循環し、熱源機側,空調機側ともにその配管内保有水の予冷・予熱が行われる
【0029】
そして、熱源機最適起動時間tGoss が経過し、現時刻が空調機最適起動時刻tAoss1 〜tAossN に達する毎に、第1〜第Nの空調機の運転が開始される。すなわち、熱源機による予冷・予熱によって配管内保有水温度(空調機コイル温度)が目標熱源水温度に達するであろうと予測される時刻から早い順に第1〜第Nの空調機の運転が次々に開始され、従来の最適空調機制御▲1▼や▲2▼で必要としていた配管内保有水温度を目標熱源水温度にするために必要な時間が第1〜第Nの空調機最適起動時間toss1 〜tossN から除去される。また、配管内保有水温度を目標熱源水温度とする熱源機最適起動時間tGoss を求めることにより、空調機の運転よりも前倒して起動する前倒運転熱源機の運転時間が適切に定められ、第1〜第Nの空調機のスケジュール時刻TSSH1 〜TSSHN において、第1〜第Nの空調制御対象室の室内温度を目標室内温度に正確に一致させることが可能となる。
【0030】
この第1発明において、前倒運転熱源機の運転台数は、第1〜第Nの空調機のスケジュール時刻TSSH1 〜TSSHN のうち少なくとも最早のスケジュール時刻TSSHS に達するまでは変更されることがなく、この間の負荷変動によって熱源機が増段されたり、減段されたりすることがない。また、少なくとも最早のスケジュール時刻TSSHS が経過し、通常の制御時間帯に移行した場合には、すぐに熱源機の台数制御が可能となる。
【0031】
なお、第2発明(請求項2に係る発明)では、第1発明において、現時刻が熱源機最適起動時刻に達した場合、前倒運転熱源機を起動するとともに第1〜第Nの空調機のうち配管路の末端の空調機への熱源水の供給通路に設けられている空調機バルブだけを一定開度開き、その状態を少なくとも最早の空調機最適起動時刻まで保持する。このように、空調機バルブを一定開度開くことにより、制御が簡単となるとともに、熱源機最適起動時間も求め易くなる。
【0032】
【発明の実施の形態】
以下、本発明を図面に基づいて詳細に説明する。
参考例
図1は本発明に係る最適起動制御装置の実施の形態の説明に入る前の参考例を示す空調システムの計装図である。同図において、図7と同一符号は同一或いは同等構成要素を示し、その説明は省略する。なお、この例では、説明を簡単とするために、熱源機1台、空調機1台としている。
【0033】
この空調システムでは、空調機最適起動時刻演算装置14と熱源コントローラ12との間に熱源最適起動時刻演算装置15を設けている。空調機コントローラ11や熱源コントローラ12,空調機最適起動時刻演算装置14,熱源最適起動時刻演算装置15は、プロセッサや記憶装置からなるハードウェアと、これらのハードウェアと協働して各種の機能を実現させるプログラムとによって実現される。
【0034】
〔最適起動制御〕
図2に冷房を行う際の最適起動制御時のタイムチャートを示す。空調機最適起動時刻演算装置14は、空調機スケジュール時刻TSSH に達する以前の所定時刻から定期的に、室内温度tpvと目標室内温度tspとの差に基づき、室内温度tpvを目標室内温度tspとするために必要な空調機5の空調機最適起動時間toss を求める。
【0035】
例えば、空調機最適起動時刻演算装置14は、毎日の実績を元に、室内温度tpvが目標室内温度tspに達するまでの時間や温度差から指数平滑によりゲインβ(℃/H)を学習し、この学習したゲインβで現在の室内温度tpvと目標室内温度tspとの差を除して空調機最適起動時間toss を求める。
【0036】
この際、空調機最適起動時刻演算装置14は、すでに配管内保有水温度TRpvが目標熱源水温度TRspまで達しているものとして、空調機最適起動時間toss を求める。この空調機最適起動時間toss には配管内保有水温度TRpvを目標熱源水温度TRspまで下げる熱源水の予冷時間は含まれない。
【0037】
そして、空調機最適起動時刻演算装置14は、この求めた空調機最適起動時間toss を空調機スケジュール時刻TSSH から差し引いて空調機最適起動時刻TAoss を求め、熱源最適起動時刻演算装置15へ送る
【0038】
熱源最適起動時刻演算装置15は、毎日の実績を元に、配管内保有水温度TRpvが目標熱源水温度TRspに達するまでの時間や温度差から指数平滑によりゲインα(℃/H)を学習し、この学習したゲインαで現在の配管内保有水温度TRpvと予め設定されている目標熱源水温度TRspとの差を除して熱源機最適起動時間tGoss を求める。そして、この熱源機最適起動時間tGoss を空調機最適起動時刻演算装置14から供与される空調機最適起動時刻TAoss から差し引いて熱源機最適起動時刻TGoss を求める
【0039】
なお、目標熱源水温度TRspは、一定であるとは限らず、季節や負荷状況に応じて変化する。すなわち、冷房と暖房、すなわち季節によって目標熱源水温度TRspは変更される。また、負荷の少ない時期に、目標熱源水温度TRspを省エネ方向へ変えることもある。すなわち、基本的には熱源水の温度は一定であるが、負荷の少ない時期に負荷のピークの時期と同じ送水温度を保つのはもったいない。このため、負荷の少ない時期には、省エネ方向へ目標熱源水温度TRspを変えるような制御が行われることがある。具体的には、空調機のバルブ状態(全開に近いのか、閉方向なのか)により熱源に余裕があると判断される場合、目標熱源水温度TRspを省エネ側に変化させる。この目標熱源水温度TRspの変更は、日中の空調負荷がある時間帯に行われるが、翌日にその温度を引き続き使うようにする。
【0040】
熱源最適起動時刻演算装置15は、現時刻が熱源機最適起動時刻TGoss に達すると、熱源コントローラ12を介して熱源機(冷凍機)1を起動する(図2(e)に示すt0点)。また、これと同時に、空調機コントローラ11へ熱源機1を最適起動していることを示す熱源最適起動中信号を送る。これにより、空調機コントローラ11から空調機バルブ6へバルブ開度を一定とする開度指令が送られ、空調機バルブ6が一定開度θC(例えば、θC=30%開度)で開く(図2(d)に示すt0点)
【0041】
これにより、熱源機側管路2,往水管路7,空調機コイル5A,空調機バルブ6,還水管路8の経路でサプライヘッダ3とレターンヘッダ4との間を熱源水が循環し、熱源機側,空調機側ともにその配管内保有水の予冷が行われる。この予冷によって、往ヘッダ温度と空調機コイル温度が同時に低下して行く(図2(f),(g)参照)
【0042】
熱源機最適起動時間tGoss が経過し、現時刻が空調機最適起動時刻TAoss に達すると、熱源最適起動時刻演算装置15は空調機コントローラ11への熱源最適起動中信号を解除する。これにより、空調機バルブ6の開度保持動作が終了する。なお、熱源最適起動中信号は、この信号が空調機コントローラ11へ送られている間は、配管内保有水温度TRpvが目標熱源水温度TRspに向けて変化していることを意味する。
【0043】
熱源機最適起動時間tGoss の間の空調機バルブ6を開いての熱源機1の起動により、現時刻が空調機最適起動時刻TAoss に達した時点では、配管内保有水温度TRpvは目標熱源水温度TRspに達している(図2(g)に示すt1点)。また、空調機コントローラ11は、現時刻が空調機最適起動時刻TAoss に達すると、空調機5の運転を開始する(図2(a)に示すt1点)。この空調機コントローラ11の機能が本発明の空調機制御手段に相当する。これにより、熱源機最適起動時間tGoss が経過し空調機最適起動時刻TAoss に達し、配管内保有水温度TRpvが目標熱源水温度TRspに一致した時点から、空調機5の運転が開始される。
【0044】
したがって、従来の最適空調機制御▲1▼や▲2▼で必要としていた配管内保有水温度TRpvを目標熱源水温度TRspにするまでに必要な時間が空調機最適起動時間toss から除去されるものとなり、空調機最適起動時間toss の短縮化が図られ、空調機ファンの搬送動力の無駄が生じなくなる。また、配管内保有水温度TRpvを目標熱源水温度TRspとするために必要な熱源機最適起動時間tGoss を求めることにより、空調機5の運転よりも前倒して起動する熱源機1の運転時間が適切に定められ、空調機5のスケジュール時刻TSSH において、空調制御対象室の室内温度tpvを目標室内温度tspに正確に一致させることが可能となり、居住者の快適性を確実に確保することができる。
【0045】
なお、この参考例では、熱源機最適起動時刻TGoss に達した時点で空調機バルブ6を開き、そのバルブ開度を一定としたが、必ずしも一定としなくてもよく、変化させるようにしてもよい。空調機バルブ6のバルブ開度を一定とすることにより、制御が簡単となり、最適熱源機起動時間TGoss も求め易くなる。また、空調機最適起動時刻TAoss に達した時点で空調機バルブ6の開度保持動作を終了するようにしたが、例えば空調機5のスケジュール時刻TSSH に達するまでに空調機バルブ6の開度保持動作を継続するようにしてもよい。
【0046】
実施の形態:第1発明、第2発明〕
図3は本発明に係る空調システムの最適起動制御装置の実施の形態を使用した空調システムの計装図である。同図において、図1と同一符号は同一或いは同等構成要素を示し、その説明は省略する。
【0047】
この実施の形態では、空調機5として複数(N個)の空調機5−1〜5−Nを、熱源機1として複数(M個)の熱源機1−1〜1−Mを設けている。また、空調機5−1〜5−Nへの熱源水の供給通路に空調機バルブ6−1〜6−Nを設けている。なお、この実施の形態において、空調機5−1〜5−Nからの給気は、図示されていない第1〜第Nの空調制御対象室に各個に供給されるものとする。また、通常の空調制御において、空調機コントローラ11は、第1〜第Nの空調制御対象室の室内温度tpv1〜tpvNと目標室内温度tsp1〜tspNとがそれぞれ一致するように、空調機バルブ6−1〜6−Nの開度および空調機5−1〜5−Nの運転を制御する。熱源コントローラ12は熱源機1−1〜1−Mの運転を制御する。
【0048】
〔最適起動制御〕
図4に冷房を行う際の最適起動制御時のタイムチャートを示す。空調機最適起動時刻演算装置14は、室内温度tpv1と目標室内温度tsp1との差に基づき、室内温度tpv1を目標室内温度tsp1とするために必要な空調機5−1の空調機最適起動時間toss1 を求める。同様にして、空調機最適起動時刻演算装置14は、空調機5−2〜5−Nの空調機最適起動時間toss 2〜tossN を求める。この空調機最適起動時刻演算装置14の機能が本発明の空調機最適起動時刻演算手段に相当する。
【0049】
この際、空調機最適起動時刻演算装置14は、すでに配管内保有水温度TRpvが目標熱源水温度TRspまで達しているものとして、空調機最適起動時間toss1 〜tossN を求める。この空調機最適起動時間toss1 〜tossN には配管内保有水温度TRpvを目標熱源水温度TRspまで下げる熱源水の予冷時間は含まれない。
【0050】
そして、空調機最適起動時刻演算装置14は、この求めた空調機最適起動時間toss1 〜tossN を空調機スケジュール時刻TSSH1 〜TSSHN から差し引いて空調機最適起動時刻TAoss1 〜TAossN を求め、この求めた空調機最適起動時刻TAoss1 〜TAossN のうち最早の空調機最適起動時刻TAossS を選択し、この選択した最早の空調機最適起動時刻TAossS を熱源最適起動時刻演算装置15へ送る。図4の例では、空調機最適起動時刻TAoss1 が最早の空調機最適起動時刻TAossS として熱源最適起動時刻演算装置15へ送られる。この空調機最適起動時刻演算装置14の機能が本発明の空調機最適起動時刻選択手段に相当する。
【0051】
熱源最適起動時刻演算装置15は、毎日の実績を元に、配管内保有水温度TRpvが目標熱源水温度TRspに達するまでに必要な時間や温度差から指数平滑によりゲインα(℃/H)を学習し、この学習したゲインαで現在の配管内保有水温度TRpvと目標熱源水温度TRspとの差を除して熱源機最適起動時間tGoss を求める。そして、この熱源機最適起動時間tGoss を空調機最適起動時刻演算装置14から供与される最早の空調機最適起動時刻TAossS から差し引いて熱源機最適起動時刻TGoss を求める。この熱源最適起動時刻演算装置15の機能が本発明の熱源機最適起動時刻演算手段に相当する。
【0052】
熱源最適起動時刻演算装置15は、現時刻が熱源機最適起動時刻TGoss に達すると、熱源コントローラ12を介して熱源機1−1〜1−Mのうち前倒運転熱源機として予め定められた熱源機(冷凍機)を起動する(図4(h)に示すt0点)。この前倒熱源機の運転台数は最早の空調機スケジュール時刻TSSHS (図4の例では、TSSH1 )に達するまで変更しない。この実施の形態では、前倒運転熱源機として、熱源機1−1〜1−Mのうち熱源機1−1と1−2が定められているものとする。また、これと同時に、熱源最適起動時刻演算装置15は、空調機最適起動時刻演算装置14を介して空調機コントローラ11へ熱源最適起動中信号を送る。これにより、空調機コントローラ11から空調機バルブ6−1〜6−Nへバルブ開度を一定とする開度指令が送られ、空調機バルブ6−1〜6−Nが一定開度θC(例えば、θC=30%開度)で開く(図4(g)に示すt0点)。この熱源最適起動時刻演算手段14の機能が本発明の熱源供給制御手段に相当する。
【0053】
これにより、熱源機側管路2,往水管路7,空調機5−1〜5−Nの空調機コイル5A,空調機バルブ6−1〜6−N,還水管路8の経路でサプライヘッダ3とレターンヘッダ4との間を熱源水が循環し、熱源機側,空調機側ともにその配管内保有水の予冷が行われる。これにより、往ヘッダ温度と空調機コイル温度が同時に低下して行く(図4(i),(j)参照)
【0054】
熱源機最適起動時間tGoss が経過し、現時刻が最早の空調機最適起動時刻TAossS すなわちTAoss1 に達すると、熱源最適起動時刻演算装置15は空調機コントローラ11への熱源最適起動中信号を解除する。これにより、空調機バルブ6−1〜6−Nの開度保持動作が終了する。
【0055】
熱源機最適起動時間tGoss の間の空調機バルブ6−1〜6−Nを開いての前倒運転熱源機1−1,1−2の起動により、現時刻が空調機最適起動時刻TAoss に達した時点では、配管内保有水温度TRpvは目標熱源水温度TRspに達している(図4(j)に示すt1点)。また、空調機コントローラ11は、現時刻が最早の空調機最適起動時刻TAoss1 に達すると、空調機5−1の運転を開始する(図4(a)に示すt1点)。この空調機コントローラ11の機能が本発明の空調機制御手段に相当する。これにより、熱源機最適起動時間tGoss が経過し最早の空調機最適起動時刻TAoss1 に達し、配管内保有水温度TRpvが目標熱源水温度TRspに一致した時点から、空調機5の運転が開始される。
【0056】
以下、同様にして、現時刻が空調機最適起動時刻tAoss 2〜tAossN に達する毎に、空調機5−2〜5−Nの運転が開始される。すなわち、前倒運転熱源機1−1,1−2による予冷によって配管内保有水温度TRpvが目標熱源水温度TRspに一致した時刻から早いもの順に空調機5−1〜5−Nの運転が次々に開始される。
【0057】
したがって、従来の最適空調機制御▲1▼や▲2▼で必要としていた配管内保有水温度を目標熱源水温度にするために必要な時間が空調機5−1〜5−1の空調機最適起動時間toss1 〜tossN から除去されるものとなり、空調機最適起動時間toss1 〜tossN の短縮化が図られ、空調機ファンの搬送動力の無駄が生じなくなる。また、配管内保有水温度TRpvを目標熱源水温度TRspとするために必要な熱源機最適起動時間tGoss を求めることにより、空調機5−1〜5−Nの運転よりも前倒して起動する熱源機1−1,1−2の運転時間が適切に定められ、空調機5−1〜5−Nのスケジュール時刻TSSH1 〜TSSHN において、第1〜第Nの空調制御対象室の室内温度tpv1〜tpvNを目標室内温度tsp1〜tspNに正確に一致させることが可能となり、居住者の快適性を確実に確保することができる。
【0058】
この実施の形態では、熱源機1−1,1−2を前倒運転熱源機として熱源機最適起動時刻TGoss から運転する。この場合、前倒熱源機の運転台数は空調機5−1〜5−Nのスケジュール時刻TSSH1 〜TSSHN のうち少なくとも最早のスケジュール時刻TSSHS 、図4の例では空調機5−1のスケジュール時刻TSSH 1 に達するまでは変更しない。したがって、この間の負荷変動によって熱源機が増段されたり、減段されたりすることがなく、熱源機の制御の安定化が図られる。また、最早のスケジュール時刻TSSH1 が経過し、通常の制御時間帯に移行した場合には、すぐに熱源機の台数制御が可能となる。
【0059】
なお、この実施の形態では、熱源機最適起動時刻TGoss に達した時点で空調機バルブ6−1〜6−Nを開き、そのバルブ開度を一定としたが、必ずしも一定としなくてもよく、変化させるようにしてもよい。空調機バルブ6−1〜6−Nのバルブ開度を一定とすることにより、制御が簡単となり、最適熱源機起動時間TGoss も求め易くなる。
【0060】
また、この実施の形態では、熱源機最適起動時刻TGoss に達した時点で開かれる空調機バルブ6−1〜6−Nのバルブ開度θCを30%開度としたが、必ずしも30%開度としてなくてもよい。θCは全開の方が前倒し時間は短くなる。しかし、熱源機を全台運転することになり、その後通常の台数制御に移った時に熱源機が減段することが予想される。それでは安定した熱源制御とは言えない。配管内の負荷はある程度予想がつくため、この実施の形態では、その負荷を処理する時間が30分から60分で通常制御に移った時に減段しない台数を求め、そのために必要な開度を逆算して求めている。
【0061】
また、必ずしも全ての空調機バルブ6−1〜6−Nを開かなくてもよく、配管路の末端の空調機5−1に付設されている空調機バルブ6−1を開くだけでもよい。空調機バルブ6−1を開くだけでも、全ての空調機のバルブ6−1〜6−Nを開く場合と同様、配管内保有水を予冷するという目的は達せられる。上述した説明では、空調機バルブ6−1〜6−Nを開くようにしたが、これはあくまでも参考例として示したものであって、本実施の形態では、配管路の末端の空調機5−1に付設されている空調機バルブ6−1を開くだけとする。この場合、配管内保有水温度TRpvの計測点は、必ずしも温度計10が計測するレターンヘッダ4の手前温度としなくてもよく、空調機バルブ6−1の出口温度としてもよい。
【0062】
また、この実施の形態では、最早の空調機最適起動時刻TAoss1 に達した時点で空調機バルブ6−1〜6−Nの開度保持動作を終了するようにしたが、例えば空調機5−1〜5−Nのスケジュール時刻TSSH1 〜TSSHN に達するまで空調機バルブ6−1〜6−Nの開度保持動作を継続するようにしてもよい。また、その後、さらに一定時間経過するまで、空調機バルブ6の開度保持動作を継続するようにしてもよい。このようにすると、空調機バルブ6−1〜6−Nが順次閉じられて行き、一度に全てが閉じられるということがなくなり、システム全体の制御への影響が小さくなる。
【0063】
また、この実施の形態では、熱源機を複数としたが、熱源機は1台であってもよい。
また、この実施の形態では、前倒運転熱源機を2台としたが、2台に限られるものではなく、空調システムの規模に応じて熱源機1−1〜1−Mまでの任意の熱源機を選ぶことができる。
【0064】
また、この実施の形態では、冷房を行う場合を例にとって説明したが、暖房を行う場合、すなわち予熱を行う場合にも、同様の最適起動制御が行われる。
参考として、図5に図2に対応する暖房を行う際の最適起動制御時のタイムチャートを、図6に図3に対応する暖房を行う際の最適起動制御時のタイムチャートを示す。
【0066】
【発明の効果】
以上説明したことから明らかなように本発明によれば、予め定められた熱源機を前倒運転熱源機とし、配管内保有水温度と目標熱源水温度との差に基づいて前倒運転熱源機の熱源機最適起動時間を求め、この熱源機最適起動時間を最早の空調機最適起動時刻から差し引いて熱源機最適起動時刻を求め、現時刻が熱源機最適起動時刻に達した場合に前倒運転熱源機を起動するとともに第1〜第Nの空調機のうち配管路の末端の空調機に付設されている空調機バルブだけを開くようにしたことにより、第1〜第Nの空調機への配管路(熱源機側配管路と空調機側配管路とを合わせた管路)内を熱源水が循環し、熱源機側,空調機側ともにその配管内保有水の予冷・予熱が行われ、配管内保有水温度を目標熱源水温度にするために必要な時間が第1〜第Nの空調機最適起動時間から除去されるものとなり、第1〜第Nの空調機最適起動時間の短縮化が図られ、空調機ファンの搬送動力の無駄が生じず、省エネルギーを促進することができる。
また、配管内保有水温度を目標熱源水温度とする熱源機最適起動時間を求めることにより、空調機の運転よりも前倒して起動する前倒運転熱源機の運転時間が適切に定められ、第1〜第Nの空調機のスケジュール時刻において、第1〜第Nの空調制御対象室の室内温度を目標室内温度に正確に一致させることが可能となり、居住者の快適性を確実に確保することができるようになる。
また、前倒運転熱源機の運転台数は、第1〜第Nの空調機のスケジュール時刻のうち少なくとも最早のスケジュール時刻に達するまでは変更されることがないので、この間の負荷変動によって熱源機が増段されたり、減段されたりすることがなく、熱源機の制御の安定化を図ることができる。また、少なくとも最早のスケジュール時刻が経過し、通常の制御時間帯に移行した場合には、すぐに熱源機の台数制御が可能となる。
【図面の簡単な説明】
【図1】 本発明に係る空調システムの最適起動制御装置の実施の形態の説明に入る前の参考例を示す空調システムの計装図である。
【図2】 この空調システムにおいて冷房を行う際の最適起動制御時のタイムチャートである。
【図3】 本発明に係る空調システムの最適起動制御装置の実施の形態を使用した空調システムの計装図である。
【図4】 この空調システムにおいて冷房を行う際の最適起動制御時のタイムチャートである。
【図5】 図2に対応する暖房を行う際の最適起動制御時のタイムチャートである。
【図6】 図6に対応する暖房を行う際の最適起動制御時のタイムチャートである。
【図7】 従来の空調システムの最適起動制御装置を使用した空調システムの計装図である。
【図8】 この空調システムにおいて冷房を行う際の最適起動制御の一例を説明するタイムチャートである。
【図9】 この空調システムにおいて冷房を行う際の最適起動制御の他の例を説明するタイムチャートである。
【符号の説明】
1、1−1〜1−M…熱源機、2…熱源機側管路、3…サプライヘッダ、4…レターンヘッダ、5、5−1〜5−N…空調機、5A…コイル(空調機コイル)、5B…ファン、6、6−1〜6−N…空調機バルブ、7…往水管路、8…還水管路、9,10…温度計、11…空調機コントローラ、12…熱源コントローラ、13…バイパス管路、14…空調機最適起動時刻演算装置、15…熱源最適起動時刻演算装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optimum activation control device for an air conditioning system suitable for use in various buildings such as multipurpose intelligent buildings, office buildings, and residential buildings, and relates to an air conditioner so that the room temperature becomes a target room temperature at a predetermined schedule time. In addition, the present invention relates to an optimal start-up control device for an air conditioning system that operates a heat source device that supplies heat source water to the air conditioner forward.
[0002]
[Prior art]
FIG. 7 shows an instrumentation diagram of an air-conditioning system using a conventional air-conditioning system optimum activation control device. In this figure, 1 is a heat source machine, 2 is a heat source machine side pipe (heat source machine side pipe line), 3 is a supply header, 4 is a return header, 5 is an air conditioner, and 6 is heat source water to the air conditioner 5. An air conditioner valve provided in the supply passage, 7 is a forward water pipe, 8 is a return water pipe, 9 is a thermometer for detecting the temperature TS of the water from the supply header 3 to the air conditioner 5, and 10 is an air conditioner 5 Is a thermometer for detecting the temperature TR of the return water to the return header 4, 11 is an air conditioner controller, 12 is a heat source controller, 13 is a bypass line provided between the supply header 3 and the return header 4, 14 Is an air conditioner optimum start time calculation device. The air conditioner 5 includes a cold / hot water coil (air conditioner coil) 5A and a fan 5B.
[0003]
[Normal air conditioning control]
In this air conditioning system, the water supply from the heat source unit 1 is supplied from the heat source unit side pipe 2 through the supply header 3 to the coil 5A of the air conditioner 5 through the supply header 7 as the outgoing water, and passes through the air conditioner valve 6. The return water pipe 8 reaches the return header 4 as return water, and is pumped again from the heat source unit 1 to circulate through the above-described path. It is assumed that the heat source device 1 includes a pump.
[0004]
At this time, the operation of the heat source device 1 is controlled by the heat source controller 12, and the opening degree of the air conditioner valve 6 and the operation of the air conditioner 5 (starting and stopping of the fan 5 </ b> B) are controlled by the air conditioner controller 11. The air conditioner controller 11 controls the air conditioner valve 6 so that the indoor temperature (measured value) tpv of the air conditioning control target room (not shown) to which the supply air from the air conditioner 5 is supplied matches the target indoor temperature tsp. The opening degree and the operation of the air conditioner 5 are controlled.
[0005]
In this air conditioning system, before entering the above-described normal air conditioning control, the air conditioner 5 and the heat source unit 1 are operated from a predetermined time so that the indoor temperature tpv becomes the target indoor temperature tsp at a predetermined time. Start before. The operation before the predetermined time is called “forward operation”. In the forward operation, optimum start control is performed in which the start times of the air conditioner 5 and the heat source unit 1 are determined and started as follows.
[0006]
The air conditioner controller 11 has an air conditioner schedule time T in advance.SSHIs set. The air conditioner controller 11 uses the air conditioner schedule time TSSHIs sent to the air conditioner optimum start time calculation device 14, and a predetermined air conditioner schedule time T is sent.SSHThe air source 5 and the heat source device 1 that supplies the heat source water to the air conditioner 5 are operated forward so that the indoor temperature tpv becomes the target indoor temperature tsp.
[0007]
[Optimum start control (1)]
An example of the optimum activation control will be described with reference to the time chart shown in FIG. In addition, this time chart is a time chart at the time of cooling.
[0008]
The air conditioner optimum start time calculation device 14 is operated by the air conditioner schedule time T.SSHThe current room temperature tpv is periodically calculated based on the indoor temperature tpv, the target indoor temperature tsp, and the return water temperature (water temperature held in the piping of the heat source water) TRpv (measured value) from a predetermined time before reaching the target room temperature. The operation time of the air conditioner 5 necessary for setting the temperature tsp is obtained as the air conditioner optimum starting time toss. The obtained air conditioner optimum starting time toss is used as the air conditioner schedule time T.SSHIs subtracted from the air conditioner optimum start time TAoss.
[0009]
When the current time reaches the optimum start time TAoss of the air conditioner, the air conditioner controller 11 opens the air conditioner valve 6 (point t1 shown in FIG. 8 (d)) and starts the heat source machine (refrigerator) 1 (see FIG. The operation of the air conditioner 5 is started (point t1 shown in FIG. 8 (a)). Thereby, the heat source water cooled by the heat source unit 1 is supplied to the coil (cold water coil) 5A of the air conditioner 5, and the air conditioning control room is cooled by the cold air from the air conditioner 5 obtained by heat exchange between the heat source water and the air. Pre-cooling starts. And the current time is the air conditioner schedule time TSSHFrom the time of reaching (point t2 shown in FIG. 8), normal air conditioning control is started.
[0010]
[Optimum start control (2)]
Another example of the optimal activation control will be described with reference to the time chart shown in FIG. This time chart is also a time chart for cooling as in the above-described optimum start control (1).
[0011]
The air conditioner optimum starting time calculation device 14 is an air conditioner necessary for setting the current indoor temperature tpv to the target indoor temperature tsp based on the indoor temperature tpv, the target indoor temperature tsp, and the retained water temperature TRpv in the heat source water. Find the optimal startup time toss. The obtained air conditioner optimum starting time toss is used as the air conditioner schedule time T.SSHIs subtracted from the air conditioner optimum start time TAoss. Further, the heat source machine advance activation time TG is obtained by subtracting the heat source machine advance operation time tG, which is determined in advance as a fixed time, from the air conditioner optimum activation time TAoss.
[0012]
When the current time reaches the heat source machine forward start time TG, the heat source controller 12 starts the heat source machine (refrigerator) 1 (point t0 shown in FIG. 9 (e)). Thereby, the heat source water circulates between the supply header 3 and the return header 4 through the heat source unit side pipe line 2 and the bypass pipe line 13, and precooling of the water retained in the pipe line on the heat source unit side is performed.
[0013]
When the current time reaches the optimum start time TAoss of the air conditioner, the air conditioner controller 11 opens the air conditioner valve 6 (point t1 shown in FIG. 9 (d)) and starts the operation of the air conditioner 5 (FIG. 9). 9 (a) t1 point). Thereby, the heat source water cooled by the heat source unit 1 is supplied to the coil (cold water coil) 5A of the air conditioner 5, and the air conditioning control room is cooled by the cold air from the air conditioner 5 obtained by heat exchange between the heat source water and the air. Pre-cooling starts. And the current time is the air conditioner schedule time TSSHFrom the point of time when the value reaches (point t2 shown in FIG. 9), normal air conditioning control is started.
[0014]
[Problems to be solved by the invention]
[Problems of optimal start-up control (1)]
In the optimum start control (1) described above, since the air conditioner valve 6 is opened at the same time as the air conditioner optimum start time TAoss is reached, the operation of the heat source unit 1 and the air conditioner 5 is started. Until the heat source water is sufficiently cooled, the air conditioner 5 is operated only to circulate the air, and the conveyance power of the fan 5B is wasted.
[0015]
FIG. 8F shows the change in the water temperature in the supply header 3 (outward header temperature), and FIG. 8G shows the change in the water temperature in the outgoing water line 7 just before entering the coil 5A of the air conditioner 5 (air conditioner coil temperature). Show. The air conditioner valve 6 is closed until the optimum start time TAoss of the air conditioner is reached, and water is accumulated in the outgoing water line 7 and the return water line 8. This retained water in the pipe is warmed at night in the summer and the temperature rises. It is necessary to first reduce the water temperature in the pipe to the target heat source water temperature.
[0016]
That is, when the air conditioner valve 6 is opened when the air conditioner optimum start time TAoss is reached and the heat source unit 1 and the air conditioner 5 are started at the same time, precooling is performed to lower the retained water temperature TRpv in the pipe to the target heat source water temperature TRsp. Time (pre-cooling time of the heat source water) is required, and a pre-cooling time (room pre-cooling time) for lowering the room temperature tpv to the target room temperature tsp is added to this. For this reason, the conveyance power of the fan 5B is wasted until the air conditioner optimum starting time toss becomes long as a result and the pre-cooling of the heat source water is completed.
[0017]
FIG. 7 illustrates an example in which one heat source unit is used. However, when a plurality of heat source units are used and the number of heat source units is controlled, the control of the heat source units is not stable. Occurs. In other words, when the air conditioner optimum start time TAoss is reached, the heat source is subjected to the indoor precooling load and the water precooling load in the pipe, and the number of operating heat source devices is controlled based on this load. In this case, when the air conditioner optimum start time TAoss is reached, it is determined that an excessive load is applied, and the heat source device may be used in stages. When the pre-cooling load of water retained in the pipe decreases, the heat source unit is stepped down, and the heat source unit is repeatedly increased and decreased due to load fluctuations, resulting in unstable control of the heat source unit Occurs.
[0018]
Although it is possible to prevent the heat source machine that has been stopped from being restarted for a certain period of time, it is possible to prevent the heat source machine from being repeatedly increased and decreased (hunting). That is, air conditioner schedule time TSSHWhen reaching the normal control time zone, it may happen that the heat source apparatus that should be originally started cannot be started.
[0019]
[Problems of optimal start-up control (2)]
In the optimal start-up control (2), the water stored in the pipe on the heat source machine side is precooled by operating the heat source machine 1 further forward than the air conditioner 5. In this precooling, the heat source water is passed through the bypass line 13. Therefore, the forward header temperature only decreases (points t0 to t1 shown in FIG. 9 (f)), and the air conditioner coil temperature does not decrease (points t0 to t1 shown in FIG. 9 (g)). The water load in the piping on the machine side still remains. For this reason, as in the case of the optimum start control (1), the air conditioner optimum start time toss becomes longer as a result until the pre-cooling of the heat source water is completed, that is, the retained water temperature TRpv in the pipe is the target heat source. Until the temperature falls to the water temperature TRsp, the conveyance power of the fan 5B is wasted.
[0020]
In the optimal start-up control (2), since the heat source machine forward operation time tG is a fixed time, if the heat source machine forward operation time tG is longer or shorter than the forward header temperature at the start of precooling, The header temperature is too low or too high. If the forward header temperature becomes too low, energy is wasted. Moreover, the heat source machine 1 may stop abnormally. If the forward header temperature is too high, the pre-cooling of the water in the pipe on the heat source machine side will be insufficient, and the cooling load during the forward operation (pre-cooling in the air-conditioning control target room) will increase accordingly, and the air conditioner schedule time TSSHThe difference between the indoor temperature tpv and the target indoor temperature tsp becomes large, and the occupant's comfort is impaired.
[0021]
In the above description, the case of cooling is described as an example, but the same problem occurs when heating is performed, that is, when preheating is performed.
[0022]
The present invention has been made in order to solve such problems. The purpose of the present invention is to promote energy saving during pre-cooling and pre-heating and to ensure the comfort of the occupants at the time of the air conditioner schedule. It is an object of the present invention to provide an optimal start-up control device for an air conditioning system that can be secured.
In addition to promoting energy conservation, it is possible to ensure the comfort of residents at the scheduled time of the air conditioner, and to stabilize the control of the number of heat source units during precooling and preheating. It is an object of the present invention to provide an optimal start-up control device for an air-conditioning system that can immediately control the number of heat source units when the control time is shifted.
[0026]
[Means for Solving the Problems]
  In order to achieve such an object, the first invention (the invention according to claim 1)In an optimal start-up control device for an air conditioning system in which an air conditioner and a heat source device that supplies heat source water to the air conditioner are driven forward so that the room temperature becomes a target room temperature at a predetermined schedule time, (N ≧ 2) air conditioners, one or more heat source machines, and the indoor temperatures of the first to Nth air conditioning control target rooms to which the air supply from the first to Nth air conditioners is supplied, respectively Based on the difference from the first to Nth target room temperatures set for the first to Nth air conditioning control target rooms, the room temperature of the first to Nth air conditioning control target rooms is set to the first to first target air temperature control rooms. The operation times of the first to Nth air conditioners necessary to achieve the N target room temperature are obtained as the optimum start time of the air conditioner, and the optimum start times of the air conditioners of the first to Nth air conditioners are respectively determined. The air conditioners of the first to Nth air conditioners are subtracted from the schedule times of the first to Nth air conditioners. The air conditioner optimum start time calculating means for obtaining the optimum start time and the earliest air conditioner optimum start time among the air conditioner optimum start times of the first to Nth air conditioners obtained by the air conditioner optimum start time calculating means. Air conditioner optimum start time selection means to be selected, and a predetermined heat source machine among the heat source machines is a forward operation heat source machine, and the retained water temperature and target in the heat source water to the first to Nth air conditioners Based on the difference from the temperature of the heat source water, the operation time of the forward operation heat source machine necessary for setting the water temperature in the pipe of the heat source water as the target heat source water temperature is obtained as the optimum start time of the heat source machine. Heat source unit optimum start time calculation means for subtracting the start time from the earliest air conditioner optimum start time selected by the air conditioner optimum start time selection means to obtain the heat source unit optimum start time, and the current time reaches the heat source unit optimum start time If you do Air conditioner of the first to N with start rolling heat source machineDistributionAir conditioner valve provided in the heat source water supply passage to the air conditioner at the end of the pipelineOnlyA heat supply control means for operating only the forward operation heat source machine activated at the heat source machine optimum start time until the current time reaches at least the earliest schedule time among the schedule times of the first to Nth air conditioners; The air conditioner control means for starting the operation of the first to Nth air conditioners every time the current time reaches the air conditioner optimum start time is provided.
[0027]
According to this invention, the air conditioner optimum start-up time toss1 of the first to Nth air conditioners based on the difference between the room temperature of the first to Nth air conditioning control target rooms and the first to Nth target room temperatures. ~ TossN is obtained, and the optimum start time toss1 to tossN of this air conditioner is set as the schedule time T of the first to Nth air conditioners.SSH1 to TSSHN 1 is subtracted from N to obtain air conditioner optimum start times TAoss1 to TAossN of the first to Nth air conditioners, and the earliest air conditioner optimum start time TAossS is selected from these air conditioner optimum start times TAoss1 to TAossN.
[0028]
  Then, a predetermined heat source unit (may be a plurality of units or one unit) may be a forward operation heat source unit, and the water temperature in the piping of the heat source water to the first to Nth air conditioners and the target heat source water temperature Based on the difference, the heat source unit optimum start time tGoss of the forward operation heat source unit is obtained, and the heat source unit optimum start time TGoss is obtained by subtracting the heat source unit optimum start time tGoss from the earliest air conditioner optimum start time TAossS. When the current time reaches the heat source unit optimum start time TGoss, the forward operation heat source unit is started and the first to Nth air conditioners are used.DistributionAir conditioner valve attached to the air conditioner at the end of the pipelineOnlyIs opened. As a result, the heat source water circulates in the pipe line (the pipe line combining the heat source machine side pipe line and the air conditioner side pipe line), and the pre-cooling / pre-heating of the water in the pipe is reduced on both the heat source machine side and the air conditioner side. Done.
[0029]
The operation of the first to Nth air conditioners is started each time the optimum heat source time tGoss elapses and the current time reaches the air conditioner optimum start times tAoss1 to tAossN. That is, the first to Nth air conditioners are operated in order from the time when it is predicted that the retained water temperature in the pipe (air conditioner coil temperature) will reach the target heat source water temperature by precooling / preheating by the heat source machine. The first to Nth air conditioner optimum start-up times toss1 that are necessary to bring the retained water temperature in the pipe to the target heat source water temperature required in the conventional optimum air conditioner control (1) and (2) are started. ~ TossN is removed. In addition, by obtaining the heat source unit optimal start-up time tGoss with the retained water temperature in the pipe as the target heat source water temperature, the operation time of the forward operation heat source unit that is started ahead of the air conditioner operation is appropriately determined, Schedule time T of 1st to Nth air conditionersSSH1 to TSSHIn N 1, the room temperature of the first to Nth air conditioning control target rooms can be accurately matched with the target room temperature.
[0030]
  this1st invention, The number of operating heat source units operating forward is the schedule time T of the first to Nth air conditioners.SSH1 to TSSHN at least the earliest scheduled time TSSHIt is not changed until S 1 is reached, and the heat source unit is not increased or decreased by the load fluctuation during this period. At least the earliest schedule time TSSHWhen S 1 elapses and the normal control time period is reached, the number of heat source units can be controlled immediately.
[0031]
  In the second invention (the invention according to claim 2), in the first invention, when the current time reaches the heat source unit optimum start time, the forward operation heat source unit is started and the first to Nth air conditioners are started. Among them, only the air conditioner valve provided in the heat source water supply passage to the air conditioner at the end of the pipeline is opened by a certain degree of opening, and this state is held at least until the earliest air conditioner optimum start time. in this way,By opening the air conditioner valve by a certain degree of opening, the control becomes simple and the optimum start time of the heat source device can be easily obtained.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, the present invention will be described in detail with reference to the drawings.
[Reference example]
  FIG. 1 shows an optimum start control device according to the present invention.A reference example before entering the description of the embodiment is shown.It is an instrumentation diagram of an air-conditioning system. In the figure, the same reference numerals as those in FIG. 7 denote the same or equivalent components, and the description thereof is omitted. In this example, in order to simplify the description, one heat source machine and one air conditioner are used.
[0033]
In this air conditioning system, a heat source optimum start time calculating device 15 is provided between the air conditioner optimum start time calculating device 14 and the heat source controller 12. The air conditioner controller 11, the heat source controller 12, the air conditioner optimum start time calculation device 14, and the heat source optimum start time calculation device 15 have various functions in cooperation with hardware including a processor and a storage device. This is realized by a program to be realized.
[0034]
(Optimum start control)
FIG. 2 shows a time chart at the time of optimal start-up control when performing cooling. The air conditioner optimum start time calculation device 14 is operated by the air conditioner schedule time T.SSHThe air conditioner optimum start-up time toss of the air conditioner 5 necessary for setting the room temperature tpv to the target room temperature tsp is periodically determined based on the difference between the room temperature tpv and the target room temperature tsp periodically from a predetermined time before reaching Ask.
[0035]
For example, the air conditioner optimum start time calculation device 14 learns the gain β (° C./H) by exponential smoothing from the time or temperature difference until the room temperature tpv reaches the target room temperature tsp based on the daily performance. An air conditioner optimum starting time toss is obtained by dividing the difference between the current room temperature tpv and the target room temperature tsp by the learned gain β.
[0036]
At this time, the air conditioner optimum start time calculation device 14 obtains the air conditioner optimum start time toss assuming that the retained water temperature TRpv in the pipe has already reached the target heat source water temperature TRsp. The air conditioner optimum start-up time toss does not include the pre-cooling time of the heat source water that lowers the retained water temperature TRpv in the pipe to the target heat source water temperature TRsp.
[0037]
  Then, the air conditioner optimum start time calculation device 14 uses the obtained air conditioner optimum start time toss as the air conditioner schedule time T.SSHIs subtracted from the air conditioner optimum start time TAoss and sent to the heat source optimum start time computing device 15.
[0038]
  The heat source optimum start time calculation device 15 learns the gain α (° C./H) by exponential smoothing from the time and temperature difference until the retained water temperature TRpv in the pipe reaches the target heat source water temperature TRsp based on the daily performance. Then, the heat source unit optimum starting time tGoss is obtained by dividing the difference between the current retained water temperature TRpv in the pipe and the preset target heat source water temperature TRsp with the learned gain α. Then, the heat source unit optimum start time TGoss is obtained by subtracting the heat source unit optimum start time tGoss from the air conditioner optimum start time TAoss provided from the air conditioner optimum start time calculating device 14..
[0039]
It should be noted that the target heat source water temperature TRsp is not always constant, and changes according to the season and load conditions. That is, the target heat source water temperature TRsp is changed according to cooling and heating, that is, the season. In addition, the target heat source water temperature TRsp may be changed in the energy saving direction when the load is low. In other words, the temperature of the heat source water is basically constant, but it is a waste to keep the water supply temperature the same as the peak load period when the load is low. For this reason, when the load is low, control may be performed to change the target heat source water temperature TRsp in the energy saving direction. Specifically, when it is determined that the heat source has a margin based on the valve state of the air conditioner (whether close to full open or closed), the target heat source water temperature TRsp is changed to the energy saving side. The change of the target heat source water temperature TRsp is performed during a certain time zone during the daytime, but the temperature is continuously used on the next day.
[0040]
  When the current time reaches the heat source unit optimum start time TGoss, the heat source optimum start time calculation device 15 starts the heat source unit (refrigerator) 1 via the heat source controller 12 (t0 point shown in FIG. 2 (e)). At the same time, a heat source optimum starting signal indicating that the heat source unit 1 is optimally started is sent to the air conditioner controller 11. Thereby, the opening degree command which makes a valve opening degree constant is sent from the air conditioner controller 11 to the air conditioner valve 6, and the air conditioner valve 6 is opened at a constant opening degree θC (for example, θC = 30% opening degree) (FIG. (T0 point shown in 2 (d)).
[0041]
As a result, the heat source water circulates between the supply header 3 and the return header 4 in the path of the heat source machine side pipe line 2, the outgoing water pipe line 7, the air conditioner coil 5A, the air conditioner valve 6, and the return water pipe line 8, Pre-cooling of the water in the piping is performed on both the machine side and the air conditioner side. Due to this pre-cooling, the forward header temperature and the air conditioner coil temperature simultaneously decrease (see FIGS. 2 (f) and 2 (g)).
[0042]
When the heat source unit optimum starting time tGoss elapses and the current time reaches the air conditioner optimum starting time TAoss, the heat source optimum starting time calculation device 15 cancels the heat source optimum starting signal to the air conditioner controller 11. Thereby, the opening degree holding operation of the air conditioner valve 6 is completed. The heat source optimum starting signal means that the retained water temperature TRpv in the pipe is changing toward the target heat source water temperature TRsp while this signal is sent to the air conditioner controller 11.
[0043]
When the current time reaches the optimal start time TAoss of the air conditioner by starting the heat source unit 1 by opening the air conditioner valve 6 during the optimal start time tGoss of the heat source unit, the retained water temperature TRpv in the pipe is the target heat source water temperature. TRsp is reached (point t1 shown in FIG. 2 (g)). Further, when the current time reaches the air conditioner optimum start time TAoss, the air conditioner controller 11 starts the operation of the air conditioner 5 (point t1 shown in FIG. 2A). The function of this air conditioner controller 11 corresponds to the air conditioner control means of the present invention. Thus, the operation of the air conditioner 5 is started from the point in time when the heat source unit optimum start time tGoss has elapsed and the air conditioner optimum start time TAoss has been reached and the retained water temperature TRpv in the pipe matches the target heat source water temperature TRsp.
[0044]
Therefore, the time required until the retained water temperature TRpv in the pipe required for the conventional optimum air conditioner control (1) or (2) is set to the target heat source water temperature TRsp is removed from the optimum start time toss for the air conditioner. Thus, the air conditioner optimum start-up time toss is shortened, and the conveyance power of the air conditioner fan is not wasted. Moreover, the operation time of the heat source unit 1 that is activated ahead of the operation of the air conditioner 5 is determined appropriately by obtaining the heat source unit optimum activation time tGoss necessary for setting the retained water temperature TRpv in the pipe to the target heat source water temperature TRsp. The schedule time T of the air conditioner 5SSHTherefore, the indoor temperature tpv of the air-conditioning control target room can be accurately matched with the target indoor temperature tsp, and the occupant's comfort can be reliably ensured.
[0045]
  In addition, thisReference exampleThen, when the heat source device optimum start time TGoss is reached, the air conditioner valve 6 is opened and the valve opening degree is made constant, but it is not necessarily constant and may be changed. By making the valve opening degree of the air conditioner valve 6 constant, the control becomes simple and the optimum heat source machine starting time TGoss can be easily obtained. In addition, when the air conditioner optimum starting time TAoss is reached, the opening degree holding operation of the air conditioner valve 6 is terminated.SSHThe opening degree holding operation of the air conditioner valve 6 may be continued until the value reaches.
[0046]
[Embodiment: First Invention, Second Invention]
  FIG. 3 shows an optimum start control device for an air conditioning system according to the present invention.EmbodimentIt is the instrumentation figure of the air-conditioning system which uses In the figure, the same reference numerals as those in FIG. 1 denote the same or equivalent components, and the description thereof is omitted.
[0047]
In this embodiment, a plurality (N) of air conditioners 5-1 to 5 -N are provided as the air conditioner 5, and a plurality of (M) heat source devices 1-1 to 1 -M are provided as the heat source device 1. . Air conditioner valves 6-1 to 6-N are provided in the heat source water supply passages to the air conditioners 5-1 to 5-N. In this embodiment, the air supply from the air conditioners 5-1 to 5-N is supplied to each of the first to Nth air conditioning control target chambers not shown. Further, in normal air conditioning control, the air conditioner controller 11 includes the air conditioner valve 6- 6 so that the indoor temperatures tpv1 to tpvN of the first to Nth air conditioning control target chambers coincide with the target indoor temperatures tsp1 to tspN, respectively. The opening degree of 1-6-N and the operation of air conditioners 5-1-5-N are controlled. The heat source controller 12 controls the operation of the heat source devices 1-1 to 1-M.
[0048]
(Optimum start control)
FIG. 4 shows a time chart at the time of optimal start-up control when performing cooling. The air conditioner optimum start time calculating device 14 is based on the difference between the room temperature tpv1 and the target room temperature tsp1, and the air conditioner optimum start time toss1 of the air conditioner 5-1 necessary for setting the room temperature tpv1 to the target room temperature tsp1. Ask for. Similarly, the air conditioner optimum activation time calculation device 14 obtains the air conditioner optimum activation times toss 2 to tossN of the air conditioners 5-2 to 5-N. The function of this air conditioner optimum start time calculating device 14 corresponds to the air conditioner optimum start time calculating means of the present invention.
[0049]
At this time, the air conditioner optimum start time calculating device 14 obtains the air conditioner optimum start times toss1 to tossN on the assumption that the retained water temperature TRpv in the pipe has already reached the target heat source water temperature TRsp. The air conditioner optimum starting times toss1 to tossN do not include the pre-cooling time of the heat source water that lowers the retained water temperature TRpv in the pipe to the target heat source water temperature TRsp.
[0050]
Then, the air conditioner optimum activation time calculation device 14 uses the obtained air conditioner optimum activation times toss1 to tossN as the air conditioner schedule time T.SSH1 to TSSHN is subtracted from N to obtain the optimum air conditioner start time TAoss1 to TAossN, and the earliest air conditioner optimum start time TAossS is selected from the obtained air conditioner optimum start times TAoss1 to TAossN, and this earliest air conditioner optimum start time is selected. TAossS is sent to the heat source optimum starting time calculation device 15. In the example of FIG. 4, the air conditioner optimum start time TAoss1 is sent to the heat source optimum start time calculation device 15 as the earliest air conditioner optimum start time TAossS. The function of the air conditioner optimum start time calculating device 14 corresponds to the air conditioner optimum start time selecting means of the present invention.
[0051]
The heat source optimum start time calculation device 15 calculates the gain α (° C./H) by exponential smoothing based on the time and temperature difference required until the retained water temperature TRpv in the pipe reaches the target heat source water temperature TRsp based on the daily performance. Learning is performed, and the difference between the current in-pipe retained water temperature TRpv and the target heat source water temperature TRsp is divided by the learned gain α to obtain the heat source machine optimum starting time tGoss. Then, the heat source device optimum start time TGoss is obtained by subtracting the heat source device optimum start time tGoss from the earliest air conditioner optimum start time TAossS provided from the air conditioner optimum start time calculation device 14. The function of this heat source optimum starting time calculating device 15 corresponds to the heat source unit optimum starting time calculating means of the present invention.
[0052]
When the current time reaches the heat source device optimum start time TGoss, the heat source optimum start time calculation device 15 is a heat source predetermined as a forward operation heat source device among the heat source devices 1-1 to 1-M via the heat source controller 12. The machine (refrigerator) is started (t0 point shown in FIG. 4 (h)). The number of units operating this forward heat source machine is the earliest air conditioner schedule time TSSHS (T in the example of FIG.SSHDo not change until 1) is reached. In this embodiment, it is assumed that the heat source devices 1-1 and 1-2 are determined among the heat source devices 1-1 to 1-M as the forward operation heat source devices. At the same time, the heat source optimum start time calculation device 15 sends a heat source optimum start signal to the air conditioner controller 11 via the air conditioner optimum start time calculation device 14. Thereby, the opening degree command which makes a valve opening degree constant is sent to the air conditioner valves 6-1 to 6-N from the air conditioner controller 11, and the air conditioner valves 6-1 to 6-N have a constant opening degree θC (for example, , ΘC = 30% opening) (t0 point shown in FIG. 4 (g)). The function of the heat source optimum activation time calculation means 14 corresponds to the heat source supply control means of the present invention.
[0053]
As a result, the supply header is routed through the path of the heat source unit side line 2, the outgoing water line 7, the air conditioner coil 5A of the air conditioners 5-1 to 5-N, the air conditioner valves 6-1 to 6-N, and the return water line 8. Heat source water circulates between 3 and the return header 4, and pre-cooling of the water retained in the pipe is performed on both the heat source machine side and the air conditioner side. As a result, the forward header temperature and the air conditioner coil temperature simultaneously decrease (see FIGS. 4 (i) and (j)).
[0054]
When the heat source optimal start time tGoss elapses and the current time reaches the earliest air conditioner optimal start time TAossS, that is, TAoss1, the heat source optimal start time computing device 15 cancels the heat source optimal start signal to the air conditioner controller 11. Thereby, the opening degree holding operation of the air conditioner valves 6-1 to 6-N is completed.
[0055]
The current time reaches the optimum start time TAoss of the air conditioner by starting the heat source devices 1-1 and 1-2 by opening the air conditioner valves 6-1 to 6-N during the optimum start time tGoss of the heat source device. At that time, the retained water temperature TRpv in the pipe has reached the target heat source water temperature TRsp (point t1 shown in FIG. 4 (j)). The air conditioner controller 11 starts the operation of the air conditioner 5-1 when the current time reaches the earliest air conditioner optimum start time TAoss1 (point t1 shown in FIG. 4A). The function of this air conditioner controller 11 corresponds to the air conditioner control means of the present invention. Thus, the operation of the air conditioner 5 is started from the time when the optimum start time tGoss of the heat source unit elapses and the earliest optimum start time TAoss1 of the air conditioner is reached and the retained water temperature TRpv in the pipe matches the target heat source water temperature TRsp. .
[0056]
Hereinafter, similarly, every time the current time reaches the air conditioner optimum start time tAoss 2 to tAossN, the operation of the air conditioners 5-2 to 5-N is started. That is, the air conditioners 5-1 to 5-N are operated one after another from the time when the retained water temperature TRpv in the pipe matches the target heat source water temperature TRsp by the pre-cooling by the forward operation heat source apparatuses 1-1 and 1-2. To begin.
[0057]
Therefore, the time required to make the retained water temperature in the pipe required for the conventional optimum air conditioner control (1) and (2) to be the target heat source water temperature is optimum for the air conditioners 5-1 to 5-1 The start-up times toss1 to tossN are eliminated, the air conditioner optimum start-up times toss1 to tossN are shortened, and the conveyance power of the air-conditioner fan is not wasted. Further, by obtaining the heat source unit optimum start time tGoss necessary for setting the retained water temperature TRpv in the pipe to the target heat source water temperature TRsp, the heat source unit that is started ahead of the operation of the air conditioners 5-1 to 5-N. The operation times of 1-1 and 1-2 are appropriately determined, and the schedule time T of the air conditioners 5-1 to 5-NSSH1 to TSSHIn N 1, the indoor temperatures tpv1 to tpvN of the first to Nth air conditioning control target rooms can be accurately matched with the target indoor temperatures tsp1 to tspN, and the comfort of the occupants can be ensured reliably.
[0058]
In this embodiment, the heat source devices 1-1 and 1-2 are operated from the heat source device optimum start time TGoss as a forward operation heat source device. In this case, the number of operating front heat source units is the schedule time T of the air conditioners 5-1 to 5-N.SSH1 to TSSHN at least the earliest scheduled time TSSHS, schedule time T of the air conditioner 5-1 in the example of FIG.SSH Do not change until 1 is reached. Therefore, the heat source unit is not increased or decreased by the load fluctuation during this period, and the control of the heat source unit is stabilized. The earliest schedule time TSSHWhen 1 has elapsed and the time has shifted to the normal control time zone, the number of heat source units can be controlled immediately.
[0059]
  In addition, thisEmbodimentThen, when the heat source unit optimum start time TGoss is reached, the air conditioner valves 6-1 to 6-N are opened and the valve opening degree is made constant, but it is not necessarily constant, and may be changed. Good. By making the valve openings of the air conditioner valves 6-1 to 6-N constant, the control becomes simple, and the optimum heat source machine start time TGoss can be easily obtained.
[0060]
  Also thisEmbodimentThen, although the valve opening degree θC of the air conditioner valves 6-1 to 6-N that is opened when the heat source apparatus optimum starting time TGoss is reached is set to 30%, the opening degree is not necessarily 30%. When θC is fully opened, the forward time is shortened. However, it is expected that all the heat source units will be operated and then the heat source units will be stepped down when the normal unit control is performed. That is not a stable heat source control. Because the load in the pipe can be predicted to some extent, thisEmbodimentThen, the number of units that do not decrease when the load processing time is changed from 30 minutes to 60 minutes and the normal control is started is obtained, and the opening degree necessary for that is calculated backward.
[0061]
  Moreover, it is not always necessary to open all the air conditioner valves 6-1 to 6-N, and it is only necessary to open the air conditioner valve 6-1 attached to the air conditioner 5-1 at the end of the piping. Just opening the air conditioner valve 6-1 can achieve the purpose of pre-cooling the water retained in the piping, as in the case of opening the valves 6-1 to 6-N of all the air conditioners.In the above description, the air conditioner valves 6-1 to 6-N are opened. However, this is only shown as a reference example, and in this embodiment, the air conditioner 5- It is assumed that only the air conditioner valve 6-1 attached to 1 is opened.In this case, the measurement point of the retained water temperature TRpv in the pipe does not necessarily have to be the temperature before the return header 4 measured by the thermometer 10, and may be the outlet temperature of the air conditioner valve 6-1.
[0062]
  Also thisEmbodimentThen, when the earliest air conditioner optimum starting time TAoss1 is reached, the opening degree holding operation of the air conditioner valves 6-1 to 6-N is finished. Time TSSH1 to TSSHThe opening degree holding operation of the air conditioner valves 6-1 to 6-N may be continued until N 1 is reached. Further, thereafter, the opening degree maintaining operation of the air conditioner valve 6 may be continued until a certain time elapses. In this way, the air conditioner valves 6-1 to 6-N are sequentially closed and are not closed all at once, and the influence on the control of the entire system is reduced.
[0063]
  Also thisEmbodimentThen, although the heat source machine was made into multiple, one heat source machine may be sufficient.
  Also thisEmbodimentThen, although it was set as the two heat-source equipment for forward operation, it is not restricted to two, Arbitrary heat-source equipment from heat-source equipment 1-1 to 1-M can be selected according to the scale of an air-conditioning system. .
[0064]
  Also,This embodimentIn the above description, the case where cooling is performed has been described as an example. However, the same optimum start-up control is performed also when heating is performed, that is, when preheating is performed.
  For reference, FIG. 5 shows a time chart at the time of optimal start-up control when performing heating corresponding to FIG. 2, and FIG. 6 shows a time chart at the time of optimal start-up control when performing heating corresponding to FIG.
[0066]
【The invention's effect】
  As is clear from the above description, according to the present invention,The heat source machine determined in advance is used as the heat source machine for forward operation, and the optimum start time of the heat source machine for the forward operation heat source machine is obtained based on the difference between the water temperature in the pipe and the target heat source water temperature. Is subtracted from the earliest air conditioner optimum start time to obtain the heat source machine optimum start time, and when the current time reaches the heat source machine optimum start time, the forward heat operation heat source machine is started and the first to Nth air conditioners UDistributionAir conditioner valve attached to the air conditioner at the end of the pipelineOnlySince the heat source water circulates in the pipe line to the first to Nth air conditioners (the pipe line that combines the heat source machine side pipe line and the air conditioner side pipe line), the heat source machine side , Precooling and preheating of the water retained in the pipe is performed on both sides of the air conditioner, and the time required to set the temperature of the retained water in the pipe to the target heat source water temperature is removed from the first to Nth air conditioner optimum start-up times. Therefore, the optimal start-up time of the first to Nth air conditioners can be shortened, and the conveyance power of the air conditioner fan is not wasted and energy saving can be promoted.
  In addition, by obtaining the heat source unit optimal start-up time in which the retained water temperature in the pipe is the target heat source water temperature, the operation time of the forward operation heat source unit that is started ahead of the air conditioner operation is appropriately determined, and the first It is possible to accurately match the room temperature of the first to Nth air conditioning control target rooms with the target room temperature at the scheduled time of the Nth air conditioner, and to ensure the comfort of residents. become able to.
  In addition, since the number of operating heat source units operating in advance is not changed until at least the earliest scheduled time among the schedule times of the first to Nth air conditioners, the heat source units are The control of the heat source machine can be stabilized without increasing or decreasing the number of stages. In addition, when at least the earliest schedule time has elapsed and the normal control time period has been reached, the number of heat source units can be controlled immediately.
[Brief description of the drawings]
FIG. 1 shows an optimum start control device for an air conditioning system according to the present invention.A reference example before entering the description of the embodiment is shown.It is an instrumentation diagram of an air-conditioning system.
FIG. 2 is a time chart at the time of optimal start-up control when cooling is performed in this air conditioning system.
FIG. 3 shows an optimum activation control device for an air conditioning system according to the present invention.EmbodimentIt is the instrumentation figure of the air-conditioning system which uses
FIG. 4 is a time chart at the time of optimum start-up control when cooling is performed in this air conditioning system.
FIG. 5 is a time chart at the time of optimum start-up control when heating corresponding to FIG. 2 is performed.
6 is a time chart at the time of optimal start-up control when heating corresponding to FIG. 6 is performed.
FIG. 7 is an instrumentation diagram of an air-conditioning system using a conventional air-conditioning system optimum activation control device.
FIG. 8 is a time chart for explaining an example of optimum activation control when cooling is performed in the air conditioning system.
FIG. 9 is a time chart for explaining another example of optimum start control when cooling is performed in the air conditioning system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 1-1 to 1-M ... Heat source machine, 2 ... Heat source machine side pipe line, 3 ... Supply header, 4 ... Return header, 5, 5-1 to 5-N ... Air conditioner, 5A ... Coil (air conditioner Coil), 5B ... fan, 6, 6-1 to 6-N ... air conditioner valve, 7 ... outward pipeline, 8 ... return water pipeline, 9,10 ... thermometer, 11 ... air conditioner controller, 12 ... heat source controller , 13 ... bypass pipes, 14 ... air conditioner optimum start time calculation device, 15 ... heat source optimum start time calculation device.

Claims (2)

予め定められたスケジュール時刻に室内温度が目標室内温度となるように空調機およびこの空調機への熱源水を供給する熱源機を前倒し運転する空調システムの最適起動制御装置において、
第1〜第N(N≧2)の空調機と、
1つ以上の熱源機と、
前記第1〜第Nの空調機からの給気がそれぞれ供給される第1〜第Nの空調制御対象室の室内温度とこの第1〜第Nの空調制御対象室に対して設定される第1〜第Nの目標室内温度との差に基づいて、この1〜第Nの空調制御対象室の室内温度を前記第1〜第Nの目標室内温度にするために必要な前記第1〜第Nの空調機の運転時間を空調機最適起動時間として求め、この第1〜第Nの空調機の空調機最適起動時間をぞれぞれ前記第1〜第Nの空調機のスケジュール時刻から差し引いて前記第1〜第Nの空調機の空調機最適起動時刻を求める空調機最適起動時刻演算手段と、
この空調機最適起動時刻演算手段により求められた前記第1〜第Nの空調機の空調機最適起動時刻のうち最早の空調機最適起動時刻を選択する空調機最適起動時刻選択手段と、
前記熱源機のうち予め定められた熱源機を前倒運転熱源機とし、前記第1〜第Nの空調機への熱源水の配管内保有水温度と目標熱源水温度との差に基づいてこの熱源水の配管内保有水温度を目標熱源水温度とするために必要な前記前倒運転熱源機の運転時間を熱源機最適起動時間として求め、この熱源機最適起動時間を前記空調機最適起動時刻選択手段によって選択された前記最早の空調機最適起動時刻から差し引いて熱源機最適起動時刻を求める熱源機最適起動時刻演算手段と、
現時刻が前記熱源機最適起動時刻に達した場合、前記前倒運転熱源機を起動するとともに前記第1〜第Nの空調機のうち配管路の末端の空調機への熱源水の供給通路に設けられている空調機バルブだけを開き、現時刻が前記第1〜第Nの空調機のスケジュール時刻のうち少なくとも最早のスケジュール時刻に達するまで前記熱源機最適起動時刻に起動された前記前倒運転熱源機のみを運転する熱供給制御手段と、
現時刻がその空調機最適起動時刻に達する毎に前記第1〜第Nの空調機の運転を開始する空調機制御手段と
を備えたことを特徴とする空調システムの最適起動制御装置。
In an optimal start-up control device for an air conditioning system that operates an air conditioner and a heat source device that supplies heat source water to the air conditioner so that the indoor temperature becomes a target indoor temperature at a predetermined schedule time,
First to Nth (N ≧ 2) air conditioners;
One or more heat source machines;
The room temperature of the first to Nth air conditioning control target rooms to which the supply air from the first to Nth air conditioners is supplied and the first to Nth air conditioning control target rooms are set. Based on the difference from the 1st to Nth target room temperatures, the 1st to 1st to 1st to Nth target room temperatures required to change the room temperature of the 1st to Nth air conditioning control target rooms to the 1st to Nth target room temperatures. The operation time of the N air conditioner is obtained as the optimum start time of the air conditioner, and the optimum start time of the air conditioners of the first to Nth air conditioners is subtracted from the schedule time of each of the first to Nth air conditioners. An air conditioner optimum start time calculating means for obtaining an air conditioner optimum start time of the first to Nth air conditioners,
An air conditioner optimum start time selecting means for selecting the earliest air conditioner optimum start time among the air conditioner optimum start times of the first to Nth air conditioners determined by the air conditioner optimum start time calculating means;
A predetermined heat source machine among the heat source machines is used as a forward operation heat source machine, and based on the difference between the water temperature in the piping of the heat source water to the first to Nth air conditioners and the target heat source water temperature. The operation time of the forward operation heat source unit necessary for setting the retained water temperature in the piping of the heat source water as the target heat source water temperature is obtained as the heat source unit optimum start time, and this heat source unit optimum start time is determined as the air conditioner optimum start time. Heat source unit optimum start time calculating means for subtracting from the earliest air conditioner optimum start time selected by the selection unit to obtain the heat source unit optimum start time;
When the current time reaches the optimum start time of the heat source unit, the heat source unit is started forward and the heat source water supply path to the air conditioner at the end of the pipe line among the first to Nth air conditioners Only the provided air conditioner valve is opened and the forward operation is started at the optimum start time of the heat source unit until the current time reaches at least the earliest schedule time among the schedule times of the first to Nth air conditioners Heat supply control means for operating only the heat source machine;
An air conditioning system optimum start control device comprising air conditioner control means for starting operation of the first to Nth air conditioners every time the current time reaches the air conditioner optimum start time .
請求項1に記載された空調システムの最適起動制御装置において、
前記熱供給制御手段は、現時刻が前記熱源機最適起動時刻に達した場合、前記前倒運転熱源機を起動するとともに前記第1〜第Nの空調機のうち配管路の末端の空調機への熱源水の供給通路に設けられている空調機バルブだけを一定開度開き、その状態を少なくとも前記最早の空調機最適起動時刻まで保持する
ことを特徴とする空調システムの最適起動制御装置。
In the optimal activation control device for an air conditioning system according to claim 1,
When the current time reaches the heat source unit optimum start time, the heat supply control unit starts the forward operation heat source unit and, among the first to Nth air conditioners, to the air conditioner at the end of the pipeline. Only an air conditioner valve provided in the heat source water supply passage is opened at a certain opening, and the state is maintained at least until the earliest air conditioner optimum start time .
JP2002249690A 2002-08-28 2002-08-28 Optimal start-up controller for air conditioning system Expired - Fee Related JP4181362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002249690A JP4181362B2 (en) 2002-08-28 2002-08-28 Optimal start-up controller for air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002249690A JP4181362B2 (en) 2002-08-28 2002-08-28 Optimal start-up controller for air conditioning system

Publications (2)

Publication Number Publication Date
JP2004085141A JP2004085141A (en) 2004-03-18
JP4181362B2 true JP4181362B2 (en) 2008-11-12

Family

ID=32056733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002249690A Expired - Fee Related JP4181362B2 (en) 2002-08-28 2002-08-28 Optimal start-up controller for air conditioning system

Country Status (1)

Country Link
JP (1) JP4181362B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243718A (en) * 2008-03-28 2009-10-22 Osaka Gas Co Ltd Heat medium transporting system
JP2009243728A (en) * 2008-03-31 2009-10-22 Osaka Gas Co Ltd Heating medium conveyance system
JP5271726B2 (en) * 2009-01-21 2013-08-21 アズビル株式会社 Stop time estimation apparatus and estimation method
JP5419535B2 (en) * 2009-05-12 2014-02-19 トヨタホーム株式会社 Ventilation control device for storage room
CN102141289B (en) * 2011-02-15 2013-02-27 深圳达实智能股份有限公司 Method and device for diagnosing and analyzing optimal boot time of central air-conditioning system
WO2019167249A1 (en) 2018-03-02 2019-09-06 三菱電機株式会社 Air conditioner
EP3779302B1 (en) 2018-04-03 2023-09-27 Mitsubishi Electric Corporation Air conditioning system
WO2020003373A1 (en) * 2018-06-26 2020-01-02 三菱電機株式会社 Air conditioning management device and air conditioning system

Also Published As

Publication number Publication date
JP2004085141A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
US20200284461A1 (en) Method and System of Controlling Operation State of Multi-Split Air Conditioner, and Heat Pump Multi-Split Air Conditioner
US9562701B2 (en) Temperature control system and air conditioning system
JP2005195313A (en) Composite air-conditioning system
JP6716238B2 (en) Refrigerating and air-conditioning device, control device, and computer program
EP4036486A1 (en) Integrated hvac system for a building
CN113383197B (en) Control device for air conditioner, outdoor unit, relay unit, heat source unit, and air conditioner
JP4181362B2 (en) Optimal start-up controller for air conditioning system
WO2020213130A1 (en) Air conditioner control device, outdoor unit, relay device, heat source unit, and air conditioner
WO2019193649A1 (en) Control device, outdoor unit, and air conditioning system
JP2010236816A (en) Heat pump type air conditioner and method of controlling heat pump type air conditioner
JP7502693B2 (en) Refrigeration Cycle Equipment
CN111023414B (en) Air conditioning system and dehumidification control method
JP2013130344A (en) Hot water supply/air conditioning system, and control method thereof
JP5062555B2 (en) Energy saving air conditioning control system
JP3731095B2 (en) Control device for refrigeration equipment
JPWO2020017030A1 (en) Air conditioner control device, outdoor unit, repeater, heat source unit and air conditioner
JP7199529B2 (en) Control device, air environment adjustment system, air environment adjustment method, program, and recording medium
CN210624718U (en) Air conditioning system
JP5768151B2 (en) Heat pump type air conditioner and control method of heat pump type air conditioner
JP3243729B2 (en) Central heat source type air conditioner
JP2005140367A (en) Method and device for controlling heat source supply water temperature
JP3091414B2 (en) District heating and cooling system receiving equipment
JP2017219293A (en) Ventilation system
JP2013245861A (en) Water-cooled air conditioning system
JP2001227780A (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees