WO2012173240A1 - Heat source system and control method of same - Google Patents

Heat source system and control method of same Download PDF

Info

Publication number
WO2012173240A1
WO2012173240A1 PCT/JP2012/065402 JP2012065402W WO2012173240A1 WO 2012173240 A1 WO2012173240 A1 WO 2012173240A1 JP 2012065402 W JP2012065402 W JP 2012065402W WO 2012173240 A1 WO2012173240 A1 WO 2012173240A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
refrigerator
cold water
heat storage
cooling
Prior art date
Application number
PCT/JP2012/065402
Other languages
French (fr)
Japanese (ja)
Inventor
宮島 裕二
菊池 宏成
隆成 水島
慶一 北島
山下 孝
大島 昇
鈴木 浩二
菊地 輝彦
Original Assignee
株式会社日立プラントテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立プラントテクノロジー filed Critical 株式会社日立プラントテクノロジー
Publication of WO2012173240A1 publication Critical patent/WO2012173240A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/87Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units
    • F24F11/871Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units by controlling outdoor fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption

Definitions

  • the present invention relates to a heat source system and a control method thereof.
  • a heat source system that manufactures cold water with a refrigerator and cools a load side (room or device) with the cold water is widely known.
  • the refrigerator provided in such a heat source system is controlled with a capacity corresponding to the increase or decrease of the load on the load side.
  • the heat source system disclosed in Patent Documents 1 and 2 has a large temperature difference (temperature difference between the inlet side and the outlet side of the refrigerator) in the return of the chilled water temperature fed to the load side, for example, in an area where the outside air temperature is high.
  • the chiller pump power can be reduced by increasing the temperature difference by arranging the refrigerator arranged on the high temperature side and the refrigerator arranged on the low temperature side in series.
  • the refrigerators are arranged in series, when the flow rate of the pump for feeding cold water to the refrigerator is constant, the efficiency is reduced when the cooling load is small compared to the load near the maximum capacity (maximum load).
  • an object of the present invention is to provide a heat source system and a control method thereof that can improve the efficiency when the refrigerators arranged in series are not operated at the maximum load.
  • the present invention provides a first chilled water system in which the first chilled water cooled by the cooling tower circulates, a second chilled water system in which the second chilled water for cooling the load side circulates, and the second A plurality of refrigerators arranged in series in a chilled water system and transferring heat of the second chilled water that has cooled the load side to the first chilled water to cool the second chilled water, and at least the cooling tower A cooling fan that blows outside air, a first pump that circulates the first cold water, and a control device that controls a second pump that circulates the second cold water as an object to be controlled.
  • the heat source system is configured such that the second cold water is supplied via a heat storage unit that stores the second cold water cooled by the refrigerator.
  • a control target value to be controlled is set.
  • (A) is a graph showing the relationship between the load factor of the refrigerator and the COP when the control target value of the control target is constant, and (b) is the control target value of the control target set based on the optimization calculation. It is a graph which shows the relationship between the load factor of a refrigerator, and COP in the case. It is a flowchart which shows the procedure of a thermal storage driving
  • (A) is a graph which shows an example of the fluctuation
  • the heat source system 100 includes a first cold water system (cooling water system) in which first cold water (cooling water) cooled by free cooling in the cooling tower 1 circulates,
  • a second cold water system (cold water system) in which the second cold water (cold water) for cooling the load side 3 circulates is configured to be thermally connected by the high temperature side refrigerator 2a and the low temperature side refrigerator 2b.
  • the high temperature side refrigerator 2a and the low temperature side refrigerator 2b are turbo refrigerators, for example, and are arranged in series in the cold water system.
  • the heat of the cold water which cooled the load side 3 and heated up moves to a cooling water with the high temperature side refrigerator 2a and the low temperature side refrigerator 2b, and it is comprised so that cold water may be cooled.
  • the high temperature side refrigerator 2a is arrange
  • the low temperature side refrigerator 2b is arrange
  • a high temperature side cooling water pump 4a and a high temperature side refrigerator 2a are arranged in a cooling water outgoing pipe 61a connected to the outlet side of the cooling tower 1, and the cooling water cooled by the cooling tower 1 is on the high temperature side. It is sent into the high temperature side refrigerator 2a by the cooling water pump 4a.
  • the outlet side of the high temperature side refrigerator 2a is connected to the inlet side of the cooling tower 1 by a cooling water return pipe 62a so that the cooling water flowing out from the high temperature side refrigerator 2a flows into the cooling tower 1.
  • a branch outgoing pipe 61b is connected to the cooling water outgoing pipe 61a between the outlet side of the cooling tower 1 and the high temperature side cooling water pump 4a.
  • the branch outgoing pipe 61b is provided with a low temperature side cooling water pump 4b and a low temperature side refrigerator 2b, and a part of the cooling water cooled by the cooling tower 1 is sent to the low temperature side refrigerator 2b by the low temperature side cooling water pump 4b.
  • a branch return pipe 62b is connected to the outlet side of the low temperature side refrigerator 2b, and the branch return pipe 62b is connected to the cooling water return pipe 62a between the outlet side of the high temperature side refrigerator 2a and the inlet side of the cooling tower 1. Is done. That is, the high temperature side refrigerator 2a and the low temperature side refrigerator 2b are arranged in parallel in the cooling water system. In this embodiment, the high temperature side cooling water pump 4a and the low temperature side cooling water pump 4b are combined to form a first pump.
  • the cooling tower 1 is provided with a cooling fan 6 driven by an inverter 51, and the cooling water flowing into the cooling tower 1 is cooled by outside air blown by the cooling fan 6.
  • the rotation speed of the cooling fan 6 is controlled by controlling the frequency input to the inverter 51. That is, by controlling the frequency input to the inverter 51, the amount of air blown to the cooling tower 1 is controlled.
  • the high temperature side cooling water pump 4a is driven by an inverter 52a, and the low temperature side cooling water pump 4b is driven by an inverter 52b.
  • a cooling tower outlet temperature sensor 31 that measures the outlet temperature of the cooling water in the cooling tower 1 (cooling tower outlet cooling water temperature) is disposed on the outlet side of the cooling tower 1.
  • the high temperature side cooling water pump 4a and the low temperature side cooling water pump 4b are controlled in rotation speed by controlling the frequencies input to the inverters 52a and 52b, respectively. That is, the flow rate of the cooling water in the cooling water system is controlled by controlling the frequency input to the inverters 52a and 52b.
  • the outlet side of the heat storage tank 8 and the inlet side of the high temperature side refrigerator 2a are connected by a cold water return pipe 64 in which the cold water pump 5 is disposed, and further, the outlet side of the high temperature side refrigerator 2a and the low temperature side refrigerator.
  • the inlet side of the machine 2b is connected by a refrigerator connecting pipe 65.
  • the outlet side of the low temperature side refrigerator 2 b is connected to the inlet side of the heat storage tank 8 by a cold water outgoing pipe 63.
  • the cold water pump 5 is driven by an inverter 53.
  • the rotation speed of the cold water pump 5 is controlled by controlling the frequency input to the inverter 53. That is, the flow rate of the chilled water in the chilled water system is controlled by controlling the frequency input to the inverter 53.
  • the cold water pump 5 is a second pump.
  • the cold water system includes a high temperature side refrigerator outlet temperature sensor 34a for measuring a cold water outlet temperature (high temperature refrigerator outlet cold water temperature) in the high temperature side refrigerator 2a, and a cold water outlet temperature (low temperature refrigerator in the low temperature side refrigerator 2b).
  • a heat storage tank temperature sensor 8a for measuring the temperature of the cold water (heat storage tank temperature) in the heat storage tank 8 are disposed.
  • the heat storage tank temperature sensor 8a may not be provided.
  • the heat source system 100 includes a secondary side chilled water system including the heat storage tank 8 and the load side 3.
  • the secondary outlet side of the heat storage tank 8 and the inlet side of the load side 3 are connected by a secondary cooling forward pipe 66 having a secondary chilled water pump 5a, and the outlet side of the load side 3 and the heat storage tank 8 are connected.
  • the secondary inlet side is connected by a secondary cooling return pipe 67. With this configuration, cold water is supplied to the load side 3 via the heat storage tank 8.
  • the secondary chilled water pump 5a is driven by an inverter 53a.
  • thermal storage tank secondary exit temperature sensor 81 which measures the secondary outlet temperature (cold storage tank secondary exit cold water temperature) in the thermal storage tank 8, and the secondary inlet temperature (thermal storage tank secondary entrance) of the cold water in the thermal storage tank 8
  • the heat storage tank 8 is a water tank for storing cold water, for example, and is a heat storage means for storing cold heat by storing cold water cooled by the high temperature side refrigerator 2a and the low temperature side refrigerator 2b.
  • the load side 3 is configured to be cooled by the amount of heat supplied by the heat storage tank 8, and the high temperature side refrigerator 2 a and the low temperature side refrigerator 2 b cool the cold water stored in the heat storage tank 8, thereby storing heat.
  • Heat is stored in the tank 8.
  • the heat storage tank 8 has a configuration in which, for example, a secondary cooling forward pipe 66 is connected in the vicinity of the cold water outgoing pipe 63 and a cold water return pipe 64 is connected in the vicinity of the secondary cooling backward pipe 67.
  • the chilled water flowing through the chilled water outgoing pipe 63 and flowing into the heat storage tank 8 flows into the secondary cooling forward pipe 66, and the secondary cooling return pipe 67. It is preferable that the cold water flowing through the heat storage tank 8 flows into the cold water return pipe 64. Further, when the chilled water pump 5 is driven and the secondary chilled water pump 5a is stopped, it is preferable that the chilled water flowing through the chilled water outgoing pipe 63 and flowing into the heat storage tank 8 is stored from the chilled water outgoing pipe 63 side.
  • chilled water stored in the vicinity of the chilled water outgoing pipe 63 flows into the secondary cooling outgoing pipe 66 and flows through the secondary cooling return pipe 67.
  • a configuration in which the cold water flowing into the heat storage tank 8 is stored in the vicinity of the secondary cooling return pipe 67 is preferable.
  • the heat storage tank 8 functions as a pipe line when the chilled water pump 5 and the secondary chilled water pump 5a are driven, and stores heat when the chilled water pump 5 is driven and the secondary chilled water pump 5a is stopped.
  • the tank 8 functions as a buffer and stores cold water (cold heat is stored).
  • the heat storage tank 8 functions as a buffer for supplying cold water to the load side 3 (supplying the amount of heat stored).
  • the heat storage tank 8 stores heat corresponding to the difference in flow rate, and the flow rate of the chilled water pump 5 is greater than the flow rate of the secondary chilled water pump 5a.
  • the heat storage tank 8 supplies a heat amount corresponding to the difference in flow rate to the load side 3.
  • the heat source system 100 includes an outside air thermometer 37 that measures the outside air temperature and an outside air hygrometer 38 that measures the humidity of the outside air.
  • the heat source system 100 includes the cooling water system, the chilled water system, and the secondary side chilled water system, and the cooling water that circulates the cooling water system and the chilled water that circulates the chilled water system are on the high temperature side
  • the cold water is cooled by heat exchange between the refrigerator 2a and the low-temperature refrigerator 2b.
  • the cooled cold water is supplied to the load side 3 (room or device) via the heat storage tank 8 to cool the load side 3.
  • the operation of the heat source system 100 for cooling the load side 3 is referred to as a cooling operation.
  • the cold water cooled by the high temperature side refrigerator 2 a and the low temperature side refrigerator 2 b is stored in the heat storage tank 8, whereby heat is stored in the heat storage tank 8.
  • the operation for storing heat in the heat storage tank 8 is referred to as heat storage operation.
  • the cooling fan 6, the high-temperature side cooling water pump 4 a, the low-temperature side cooling water pump 4 b, the cold water pump 5, and the secondary cold water pump 5 a disposed in the heat source system 100 having such a configuration are controlled by the control device 71.
  • it is set as a refrigerator including the high temperature side refrigerator 2a and the low temperature side refrigerator 2b.
  • FIG. 1 shows a configuration including two refrigerators (high temperature side refrigerator 2a, low temperature side refrigerator 2b), three or more refrigerators are arranged in series in the cold water system. It may be a configuration. Moreover, although illustration is abbreviate
  • the control device 71 calculates the wet bulb temperature of the outside air from the outside air temperature measured by the outside air thermometer 37 and the outside air humidity measured by the outside air hygrometer 38, and further, cold water in the secondary side chilled water system
  • the load required by the load side 3 is calculated based on the flow rate, the heat storage tank secondary inlet cold water temperature, and the heat storage tank secondary outlet cold water temperature.
  • the rotational speed of the secondary chilled water pump 5a is controlled by the discharge pressure constant control and the terminal pressure constant control according to the load which the load side 3 requires. That is, the flow rate of cold water in the secondary side cold water system is controlled.
  • a known technique can be used for the discharge pressure constant control and the terminal pressure constant control.
  • the load requested by the load side 3 is referred to as a requested load.
  • it may replace with the external temperature thermometer 37 and the external air hygrometer 38, and the structure provided with the wet bulb thermometer which is not shown in figure may be sufficient.
  • the required load on the load side 3 is a load when the load side 3 is cooled by cold water, and is a value determined by the state of the load side 3, for example, the room temperature of the room or the temperature of the apparatus.
  • the required load on the load side 3 is calculated based on the chilled water flow rate in the secondary chilled water system, the heat storage tank secondary inlet cold water temperature, and the heat storage tank secondary outlet cold water temperature.
  • the heat storage tank secondary outlet temperature sensor 81 may not be provided, and the set value of the heat storage tank secondary outlet cold water temperature may be set as the required load on the load side 3. According to this configuration, the heat storage tank secondary outlet temperature sensor 81 is not required, and the heat source system 100 having a simpler configuration can be obtained.
  • the control device 71 sets the high temperature side refrigerator 2a and the low temperature side so that the outlet temperature of the cold water in the high temperature side refrigerator 2a becomes a target value and the outlet temperature of the cold water in the low temperature side refrigerator 2b becomes another target value.
  • Each refrigerator 2b is controlled.
  • the refrigerator (the high temperature side refrigerator 2a, the low temperature side refrigerator 2b) has a control function for maintaining the outlet temperature of the cold water (high temperature refrigerator outlet cold water temperature, low temperature refrigerator outlet cold water temperature) constant, and a control device It is good also as a structure which refrigerator itself itself controls with an apparatus single-piece
  • the control device 71 controls the rotation speed of the cooling fan 6 (the amount of air blown to the cooling tower 1) so that the cooling tower outlet cooling water temperature becomes the target value.
  • control apparatus 71 which concerns on this embodiment is the characteristic value (cooling in a component apparatus and piping) of the state of the external air which changes sequentially (especially wet bulb temperature), the required load of the load side 3, and the apparatus which comprises the heat source system 100.
  • the water temperature and the flow rate are optimized so that the energy consumption predicted based on the resistance of the water and the cold water is minimized.
  • the temperature of the cooling water (cooling tower outlet cooling water temperature), the temperature of the cooling water (high temperature refrigerator outlet cooling water temperature, low temperature refrigerator outlet cooling water temperature), the cooling water flow rate (cooling water) , Or the rotational speed of the cooling water pumps 4a and 4b) and the target value of the cooling water flow (the cooling water flow ratio or the rotational speed of the cold water pump 5).
  • the flow rate ratio of the cooling water is a ratio with respect to the flow rate of the cooling water when the cooling water pumps 4a and 4b are rated and the flow rate ratio of the cold water is a ratio with respect to the flow rate of the cold water when the cooling water pump 5 is rated. It is.
  • control device 71 sets the high-temperature side cooling water pump 4a, the low-temperature side cooling water pump 4b, the cold water pump 5, and the cooling fan 6 as control targets, and performs control operations by optimization calculation.
  • the control target value is set and the heat source system 100 is controlled.
  • the control device 71 sets the required load on the load side 3 to a load processed by the refrigerator (hereinafter referred to as a refrigerator load).
  • the control device 71 uses the refrigerator load, the wet bulb temperature of the outside air, the cooling tower outlet cooling water temperature, the high temperature refrigerator outlet cooling water temperature, the low temperature refrigerator outlet cooling water temperature, the cooling water flow rate, and the cooling water flow rate as parameters.
  • the control device 71 includes cooling water and cold water in pipes (cooling water outgoing pipe 61a, branch outgoing pipe 61b, cooling water return pipe 62a, branch return pipe 62b, cold water outgoing pipe 63, cold water return pipe 64, refrigerator connection pipe 65).
  • the pump head of each pump (high temperature side cooling water pump 4a, low temperature side cooling water pump 4b, cold water pump 5) is calculated based on the result of predicting or actually measuring the relationship between the pressure loss and the flow rate of the water, and the relationship between the flow rate and the pump head
  • Each pump power is calculated from And the control apparatus 71 calculates the energy consumption of each pump from each calculated pump power.
  • control device 71 uses the general enthalpy standard overall volume transfer coefficient and the cooling tower performance approximation formula to determine the outdoor air condition, the cooling water flow rate, the cooling water temperature (cooling tower outlet cooling water) from the performance of the cooling tower 1.
  • the air flow ratio of the cooling fan 6 corresponding to the temperature and the cooling tower inlet cooling water temperature) is obtained, and the power consumption of the cooling tower 1 is predicted.
  • the air volume ratio of the cooling fan 6 is a ratio to the air volume when the cooling fan 6 is rated.
  • the energy consumption of the refrigerator is predicted as the energy consumption when the refrigerator is operated with a refrigerator load.
  • control device 71 optimizes the total energy consumption of the heat source system 100 with the evaluation function W, the number of operating refrigerators, the flow rate of chilled water and cooling water (rotational speed of each pump), and the temperature of the chilled water and cooling water.
  • an optimization variable an optimization variable is searched so that the evaluation function W represented by the following equation (1) is minimized, and a control target value to be controlled is determined based on the searched optimization variable.
  • control device 71 sets the cooling water flow rate, the cooling water flow rate, the high-temperature freezer outlet cold water temperature, the low-temperature freezer outlet cold water temperature, and the cooling tower outlet cooling so that the evaluation function W shown in Expression (1) is minimized. Set the target water temperature.
  • the control device 71 includes an energy consumption amount (Eref1) of the high temperature side refrigerator 2a, an energy consumption amount (Eref2) of the low temperature side refrigerator 2b, an energy consumption amount (Ecp) of the cold water pump 5, and a high temperature side cooling water pump.
  • the energy consumption (Ecwp1) of 4a, the energy consumption (Ecwp2) of the low temperature side cooling water pump 4b, and the energy consumption (Ect) of the cooling tower 1 are set to values that minimize the evaluation function W.
  • the flow rate of the cooling water, the flow rate of the cold water, the cold water temperature at the high temperature refrigerator outlet, the cold water temperature at the low temperature refrigerator outlet, and the cooling water temperature at the cooling tower outlet are set as respective target values.
  • control apparatus 71 is the flow rate of cooling water (the flow rate of cooling water in the high temperature side refrigerator 2a, the flow rate of cooling water in the low temperature side refrigerator 2b), the flow rate of cold water, the high temperature refrigerator outlet cold water temperature, and the low temperature refrigerator exit.
  • Control target values of the control target high temperature side cooling water pump 4a, low temperature side cooling water pump 4b, cold water pump 5, cooling fan 6) so that the cold water temperature and the cooling tower outlet cooling water temperature become the set target values, respectively.
  • the control device 71 determines the control target value of the rotational speed of the high temperature side cooling water pump 4a so that the flow rate of the cooling water in the high temperature side refrigerator 2a becomes the set target value, and in the low temperature side refrigerator 2b.
  • the control target value of the rotation speed of the low temperature side cooling water pump 4b is determined so that the flow rate of the cooling water becomes the set target value, and the rotation speed control of the cold water pump 5 is controlled so that the flow rate of the cooling water becomes the set target value.
  • the target value is determined, and further, the control target value of the rotational speed of the cooling fan 6 is determined so that the cooling tower outlet cooling water temperature becomes the set target value.
  • the cooling tower outlet cooling water temperature is maintained at the set target value by ON / OFF of the cooling fan 6 and feedback control of the rotation speed so that the measured value of the cooling tower outlet temperature sensor 31 is constant. May be. With this configuration, for example, even when the outside air state fluctuates, the cooling tower outlet cooling water temperature can be maintained at a set target value with high accuracy.
  • the control apparatus 71 controls a control object based on a control target value. Further, the control device 71 operates the high temperature side refrigerator 2a and the low temperature side refrigerator 2b using the load demand on the load side 3 as an operation load.
  • the high temperature side refrigerator 2a and the low temperature side refrigerator 2b are partially loaded so that the sum of the operation load of the high temperature side refrigerator 2a and the operation load of the low temperature side refrigerator 2b becomes the required load on the load side 3.
  • a configuration in which the value obtained by dividing the required load by the operating load per refrigerator is the number of refrigerators to be operated.
  • the operation load may be distributed so that the loads on the high temperature side refrigerator 2a and the low temperature side refrigerator 2b are equal.
  • the control device 71 changes the setting of the control target value at a predetermined time interval (for example, every 10 minutes) so as to follow the change in the outside air state (wet bulb temperature) and the required load on the load side 3. It is preferable to be configured to do so. With this configuration, the heat source system 100 can maintain a high COP even when the wet bulb temperature of the outside air and the load on the load side 3 change.
  • the load distribution of the high-temperature side refrigerator 2a and the low-temperature side refrigerator 2b to be operated is set to a fixed value.
  • the administrator of the heat source system 100 arbitrarily selects the outlet temperature of the cold water (high-temperature refrigerator outlet cold water temperature). It is good also as a structure which can set a low-temperature freezer exit cold water temperature). According to this configuration, for example, it is possible to cope with the case where the setting of the outlet temperature of the cold water of the refrigerator (high temperature side refrigerator 2a, low temperature side refrigerator 2b) cannot be changed at the time of failure or maintenance. Further, for example, it is possible to save energy when operating one of the high temperature side refrigerator 2a or the low temperature side refrigerator 2b.
  • FIG. 2 (a) shows the change in COP when the control target values of the controlled objects (the high temperature side cooling water pump 4a, the low temperature side cooling water pump 4b, the cold water pump 5, and the cooling fan 6) are constant.
  • (B) shows the change in COP when the control target value is set based on the optimization calculation.
  • 2 (a) and 2 (b) show a load factor of 200% when both the high temperature side refrigerator 2a (see FIG. 1) and the low temperature side refrigerator 2b (see FIG. 1) are operated at a load factor of 100%. It is said.
  • the load factor here is the ratio of the operating load to the maximum load of the refrigerator.
  • a turbo chiller operated at a constant rotational speed has maximum efficiency when it is near the rated load, so efficiency is improved when there is a predetermined temperature difference.
  • the high temperature refrigerator outlet cold water temperature and the low temperature refrigerator outlet cold water temperature are set as design values of the heat source system 100 (see FIG. 1). Therefore, in the cold water system, the high-temperature side refrigerator 2a and the low-temperature side refrigerator 2b are efficiently operated when the temperature difference between the preset high-temperature refrigerator inlet temperature and the low-temperature refrigerator outlet cold water temperature at the rated load. Thus, the maximum load of each refrigerator is determined.
  • the temperature of the hot chiller inlet chilled water changes depending on the wet bulb temperature of the outside air or the load requirement on the load side 3, and the temperature difference between the hot chiller 2a (high temperature chiller inlet chilled water temperature and high temperature chiller outlet cold water).
  • the temperature difference may be small.
  • the high temperature side refrigerator 2a is not operated at the maximum load and the efficiency is lowered.
  • FIG. 2A is a diagram showing this state.
  • the control target value to be controlled is made constant, the COP of the heat source system 100 (see FIG. 1) decreases as the load factor of the refrigerator decreases. It shows that.
  • the control device 71 has the energy of the heat source system 100 (see FIG. 1) when the wet bulb temperature of the outside air or the load on the load side 3 (see FIG. 1) changes. Optimization calculation is performed so that the evaluation function W indicating the total value of consumption is minimized. Then, the control target value of the control target is set based on the optimization calculation, and the control target is controlled. Further, the high temperature side refrigerator 2a and the low temperature side refrigerator 2b are operated with partial loads.
  • FIG. 2 (b) is a diagram showing this state, in which the wet bulb temperature of the outside air and the load on the load side 3 change, and the high temperature side refrigerator 2a and the low temperature side refrigerator 2b are operated at a partial load. Even if it exists, it shows that COP of the heat source system 100 is maintained high.
  • the control device 71 (see FIG. 1) is optimal when the wet bulb temperature of the outside air or the load on the load side 3 (see FIG. 1) changes.
  • the control target value of the control target is set by executing the conversion calculation, and the COP during operation is kept high.
  • the heat source system 100 distributes the load between the high temperature side refrigerator 2a (see FIG. 1) and the low temperature side refrigerator 2b (see FIG. 1) arranged in series in the cold water system. Can be suitably changed to maintain a high COP during operation. And energy saving can be aimed at.
  • control device 71 (see FIG. 1) is not configured to perform an optimization calculation according to a change in the wet bulb temperature of the outside air or a change in the required load on the load side 3 (see FIG. 1).
  • a configuration may be adopted in which a map-format data table indicating correspondence between the temperature, the required load on the load side 3 and the control target value that minimizes the evaluation function is set in advance.
  • the control device 71 refers to the data table based on the wet bulb temperature of the outside air and the required load on the load side 3, thereby performing the control target of the control target without executing the optimization calculation.
  • the value can be set to minimize the aforementioned evaluation function. Therefore, the calculation load of the control device 71 can be reduced.
  • Such a data table is obtained, for example, by appropriately inputting the wet bulb temperature of the outside air and the load on the load side 3 (see FIG. 1) into a simulator that models the heat source system 100 (see FIG. 1), and performing the above-described optimization calculation. It can be created by executing and setting the control target value of the control object corresponding to the input wet bulb temperature and load. By storing the data table created in this manner in a storage unit (not shown) of the control device 71 (see FIG. 1), the control device 71 responds to the wet bulb temperature of the outside air and the required load on the load side 3. By referring to the data table, the control target value to be controlled can be set.
  • the heat source system 100 may be configured to store heat in the heat storage tank 8 in a heat storage operation performed in a predetermined heat storage time zone based on a predetermined time schedule. it can.
  • the control device 71 can keep the COP of the heat source system 100 high by optimizing the load corresponding to the load factor at which the COP is high as the refrigerator load. Become.
  • the time schedule for the heat storage operation of the heat source system 100 is based on, for example, a predetermined period (monthly or monthly) so that the heat storage operation is performed in a time zone in which the energy consumption can be minimized based on, for example, an annual outdoor air fluctuation pattern. Preferably, it is set every week.
  • the control device 71 has a calendar function, and by performing the heat storage operation according to the time schedule that matches the date of the heat storage operation, the energy consumption in the heat storage operation of the heat source system 100 can be suppressed. With this configuration, it is possible to save energy in the heat storage operation.
  • the load factor during the heat storage operation is stored in a storage unit (not shown) as data predicted in advance from the past load pattern and outside air conditions in the past, and the controller 71 stores the data from the storage unit during the heat storage operation.
  • a configuration that reads and sets the load factor is preferable. According to this configuration, the control device 71 can set the load factor by predicting the case where the heat storage amount of the heat storage tank 8 does not become the maximum in the heat storage time when the heat source system 100 is subjected to the heat storage operation at a load factor that results in a high COP. . And it can avoid that the thermal storage amount of the thermal storage tank 8 does not become the maximum by the thermal storage operation over thermal storage time.
  • the procedure when the control device 71 (see FIG. 1) performs the heat storage operation will be described (see FIGS. 1 and 2 as appropriate).
  • the control device 71 will store the amount of heat stored in the heat storage tank 8 and the humidity of the outside air at 20:00.
  • the sphere temperature is calculated (step S100).
  • the control device 71 sets the amount of heat that the heat storage amount of the heat storage tank 8 is insufficient with respect to a predetermined heat storage amount (rated heat storage amount) as the heat amount for storing heat.
  • the controller 71 sets the amount of heat (cooling amount) to store the amount of heat necessary for the heat storage tank temperature of the heat storage tank 8 to fall to a predetermined temperature set in advance.
  • control device 71 sets a preset load as a refrigerator load. That is, the control device 71 sets the refrigerator load (step S101). For example, when the load corresponding to the maximum load factor of the COP shown in FIG. 2B is set, the COP of the heat source system 100 can be maintained at the maximum during the heat storage operation.
  • the control device 71 uses the refrigerator load, the wet bulb temperature of the outside air, the cooling tower outlet cooling water temperature, the high temperature refrigerator outlet cooling water temperature, the low temperature refrigerator outlet cooling water temperature, the cooling water flow rate, and the cooling water flow rate as parameters, As described above, the optimization operation is executed so that the evaluation function W represented by the expression (1) is minimized (step S102).
  • control device 71 controls the controlled object with a control target value set based on the optimization calculation (step S103).
  • the control device 71 can perform the heat storage operation by operating the refrigerator with the refrigerator load at the maximum COP by repeatedly executing the procedures of steps S100 to S103 at predetermined unit time (for example, 10 minutes) intervals.
  • the heat source system 100 has a refrigerator load in which the cooling amount is 100% from 8:00 pm (20 pm) which is a heat storage time zone to 8:00 am tomorrow morning.
  • the refrigerator is operated and the heat storage operation is performed.
  • the cooling amount when the load factor is 200% is 100%.
  • FIG. 2B for example, when the COP of the heat source system 100 does not become maximum when the load factor is 200%, the operation of the refrigerator with the refrigerator load at which the load factor becomes 200%, Energy consumption can be suppressed by operating the refrigerator at a load factor (for example, 150%) at which the COP of the heat source system 100 is maximized.
  • the amount of cooling per hour is 100% or less, so the time for the heat storage operation (the drive time of the refrigerator) becomes long, but the amount of energy consumption is small.
  • the total area of the bar graph shown in FIG. 4B area of the portion shown by shading
  • the total area of the bar graph shown in FIG. 4A surface of the portion shown by shading).
  • the heat source system 100 has a refrigerator (high temperature side refrigerator 2a (see FIG. 1), low temperature) at a load factor that maximizes the COP of the heat source system 100 during the heat storage operation.
  • the side refrigerator 2b (see FIG. 1) can be operated, and energy saving in the heat storage operation can be achieved.
  • the heat source system 100 (see FIG. 1) according to the present embodiment is refrigerated with a load having a load factor corresponding to the maximum COP with respect to the required load on the load side 3 (see FIG. 1) during the cooling operation. It is also possible to perform a partial load operation of the machine and adjust the difference between the operation load of the refrigerator and the required load on the load side 3 by the amount of heat stored in the heat storage tank 8 (see FIG. 1). For example, when the load factor of the refrigerator corresponding to the required load on the load side 3 is 200%, as shown in FIG.
  • the load factor corresponding to the maximum COP is lower than 200% (for example, 150%)
  • the refrigerator may be operated using a load having a load factor corresponding to the maximum COP as an operating load, and the shortage with respect to the required load may be allocated by the heat storage consumption of the heat storage tank 8.
  • the control device 71 stores heat in the heat storage tank 8 (see FIG. 1)
  • the heat source system 100 operates the refrigerator at a load factor at which the maximum COP is obtained. The procedure is described (refer to FIGS. 1 and 2 as appropriate).
  • the control device 71 calculates a load (required load on the load side 3) by which cold water cools the load side 3 and a wet bulb temperature of the outside air (step S1).
  • the required load on the load side 3 can be calculated based on the cold water flow rate, the heat storage tank secondary inlet cold water temperature, and the heat storage tank secondary outlet cold water temperature in the secondary side cold water system as described above.
  • control device 71 calculates the amount of heat stored in the heat storage tank 8 based on the operating load of the high temperature side refrigerator 2a and the low temperature side refrigerator 2b being driven and the load on the load side 3 (step S2). Specifically, the control device 71 calculates the amount of heat that can be stored in the heat storage tank 8 based on the difference between the operating load of the refrigerator and the load on the load side 3, and integrates the calculated amount of heat during operation of the cooling system 100. The value is the amount of heat stored in the heat storage tank 8.
  • the control device 71 compares the required load on the load side 3 with the current operating load of the refrigerator (step S4).
  • the control device 71 sets the load preset as the load for the heat storage operation to the refrigerator load (step S5), and the required load Is greater than the operating load (step S4 ⁇ No), the required load on the load side 3 is set to the refrigerator load (step S6).
  • the load set in advance as the load when performing the heat storage operation is preferably a load corresponding to the maximum load factor of the COP of the heat source system 100.
  • the lower limit value of the heat storage amount is preferably set in advance as a design value of the heat storage tank 8.
  • the control device 71 when comparing the heat storage amount of the heat storage tank 8 with a lower limit value, for example, when the heat storage tank temperature measured by the heat storage tank temperature sensor 8a is higher than a preset threshold, the control device 71 stores the heat storage of the heat storage tank 8.
  • the structure which determines with the quantity being lower than a lower limit may be sufficient. In this case, it is preferable that the lower limit value of the heat storage amount is set as a threshold temperature.
  • the control device 71 includes the refrigerator load, the wet bulb temperature of the outside air, the cooling tower outlet cooling water temperature or the rotation speed ratio of the cooling fan 6, the high temperature refrigerator outlet cooling water temperature, the low temperature refrigerator outlet cooling water temperature, and the high temperature side cooling water.
  • the evaluation represented by the equation (1) An optimization calculation is executed so that the function W is minimized (step S7), and a control target value to be controlled is set.
  • the control apparatus 71 controls a control object based on a control target value (step S8).
  • the rotational speed ratio of the cooling fan 6, the rotational speed ratio of the high temperature side cooling water pump 4a and the low temperature side cooling water pump 4b, and the rotational speed ratio of the cold water pump 5 are ratios to the rated rotational speed, respectively.
  • step S3 when the calculated heat storage amount is equal to or greater than the preset lower limit value of the heat storage amount (step S3 ⁇ No), the control device 71 compares the heat storage amount with the upper limit value of the heat storage amount (step S9). ). And when the said heat storage amount is smaller than an upper limit (step S9-> Yes), the control apparatus 71 advances a procedure to step S5. That is, the control device 71 sets the load when performing the heat storage operation to the refrigerator load. Moreover, when the said heat storage amount is more than the upper limit of heat storage amount (step S9-> No), the control apparatus 71 determines with the heat storage tank 8 heat storage being able to cool the load side 3, and stops a refrigerator (step S10). ).
  • the upper limit value of the heat storage amount is preferably set in advance as a design value of the heat storage tank 8. Similarly to the comparison with the lower limit value of the heat storage amount, when the heat storage tank temperature measured by the heat storage tank temperature sensor 8a is lower than a preset threshold value, the control device 71 determines that the heat storage amount of the heat storage tank 8 is the upper limit value.
  • the structure which determines with it being higher may be sufficient.
  • the upper limit value of the heat storage amount is preferably set as a threshold temperature.
  • control device 71 repeatedly executes the steps S1 to S10 at a predetermined time interval such as a 10-minute interval while cooling the load side 3 to thereby adjust the wet bulb temperature of the outside air. Even when the required load on the load side 3 changes, the COP of the heat source system 100 can be maintained at the maximum.
  • the refrigerator when the heat storage amount (cooling amount) of the heat storage tank 8 (see FIG. 1) is greater than the lower limit value and smaller than the upper limit value, the refrigerator is partially loaded at a load factor at which the COP of the heat source system 100 is maximized. Heat can be stored in the heat storage tank 8. Further, the COP of the heat source system 100 can be maximized, and energy saving during the cooling operation can be achieved.
  • the refrigerator when the heat storage amount (cooling amount) of the heat storage tank 8 is smaller than the lower limit value, the refrigerator at a load factor that maximizes the COP of the heat source system 100 even when the required load on the load side 3 is smaller than the operating load of the refrigerator. Can be stored in the heat storage tank 8. That is, even when the required load on the load side 3 becomes small, the COP of the heat source system 100 can be maintained at the maximum.
  • the refrigerator when the amount of heat stored in the heat storage tank 8 (see FIG. 1) is smaller than a predetermined lower limit value, if the required load on the load side 3 is equal to or higher than the operating load of the refrigerator, the refrigerator is replaced with the required load on the load side 3
  • the COP of the heat source system 100 can be kept high by performing the partial load operation and further performing the optimization calculation so that the energy consumption is minimized, and energy saving can be achieved. Furthermore, since the refrigerator can be stopped when the amount of heat stored in the heat storage tank 8 is equal to or greater than a predetermined upper limit value, energy can be saved also in this case.
  • the control device 71 can maintain the COP of the heat source system 100 (see FIG.
  • the control device 71 (FIG. 1). (Refer to FIG. 1), an optimization calculation can be executed to set a control target value corresponding to the change, and the COP of the heat source system 100 (see FIG. 1) can be kept high.
  • control apparatus 71 (refer FIG. 1), the wet bulb temperature of external air, the required load of the load side 3 (refer FIG. 1), and a thermal storage tank It is good also as a structure which sets the control target value of a control object with reference to the data table set beforehand based on the heat storage amount of 8 (refer FIG. 1). That is, the control device 71 may set the control target value to be controlled based on a preset data table without performing the optimization calculation in step S7. For example, as shown in FIG.
  • the data table in this case includes a load factor of the refrigerator determined from the wet bulb temperature of the outside air, the required load on the load side 3 and the heat storage amount of the heat storage tank 8, and an evaluation function. It is preferable that the data table is a map format showing the correspondence between the minimum control target value.
  • FIG. 6 shows an example of a data table indicating the relationship between the wet bulb temperature of the outside air, the load factor of the refrigerator, and the rotation speed ratio of the high-temperature side cooling water pump 4a. If such a data table is set for each control target value of another control target, the control device 71 sets the control target value of the control target based on the wet bulb temperature of the outside air and the load factor of the refrigerator. Can be set.
  • the amount of heat stored in the heat storage tank 8 can be calculated from the load on the load side 3 and the load factor of the refrigerator (high temperature side refrigerator 2a, low temperature side refrigerator 2b). Moreover, it is preferable that the optimization calculation of the control target value for creating a data table as shown in FIG. 6 uses the load factor of a chilled water system as a parameter, for example.
  • the heat source system 100 (see FIG. 1) responds to changes in the wet bulb temperature of the outside air and changes in the load on the load side 3 (see FIG. 1) during the cooling operation and the heat storage operation.
  • Control objects high temperature side cooling water pump 4a (see FIG. 1), low temperature side cooling water pump 4b (see FIG. 1), cold water pump 5 (see FIG. 1), cooling fan 6 (see FIG. 1) )
  • Control target value can be set.
  • COP of the heat source system 100 can be maintained high, and energy saving can be aimed at.
  • the present embodiment can also be applied to heat source systems having different cooling water system configurations.
  • the high temperature side refrigerator 2a and the low temperature side refrigerator 2b are arranged in parallel in the cooling water system, but as shown in FIG. 7, the high temperature side refrigerator in the cooling water system.
  • this embodiment can also be applied to the heat source system 101 in which 2a and the low temperature side refrigerator 2b are arranged in series.
  • a high-temperature side cooling water pump 4a, a high-temperature side refrigerator 2a, and a low-temperature side refrigerator 2b are arranged in series on a cooling water outgoing pipe 61a connected to the outlet side of the cooling tower 1.
  • the cooling water cooled by the cooling tower 1 is sequentially sent to the high temperature side refrigerator 2a and the low temperature side refrigerator 2b by the high temperature side cooling water pump 4a.
  • the exit side of the low temperature side refrigerator 2b is connected with the inlet side of the cooling tower 1 by the cooling water return pipe 62a, and the cooling water which flowed out from the low temperature side refrigerator 2b flows into the cooling tower 1.
  • Other configurations are the same as those of the heat source system 100 shown in FIG. In the case of this configuration, the flow rate of the cooling water in the cooling water system is determined by the rotational speed of the high temperature side cooling water pump 4a.
  • FIG. 8 it has two cooling water systems, a high temperature side cooling water system and a low temperature side cooling water system, the high temperature side cooling water system includes a high temperature side cooling tower 1a, and the low temperature side cooling water system includes
  • the present embodiment can also be applied to the heat source system 102 including the low temperature side cooling tower 1b.
  • the high temperature side cooling tower 1a is provided with a cooling fan 6a driven by an inverter 51a, and the cooling water flowing into the high temperature side cooling tower 1a is cooled by outside air blown by the cooling fan 6a.
  • the rotation speed of the cooling fan 6a is controlled by controlling the frequency input to the inverter 51a.
  • the low temperature side cooling tower 1b is provided with a cooling fan 6b driven by the inverter 51b, and the cooling water flowing into the low temperature side cooling tower 1b is cooled by outside air blown by the cooling fan 6b.
  • the rotation speed of the cooling fan 6b is controlled by controlling the frequency input to the inverter 51b. That is, by controlling the frequency input to the inverters 51a and 51b, the amount of air blown to the high temperature side cooling tower 1a and the low temperature side cooling tower 1b is controlled.
  • a high temperature side cooling water pump 4a and a high temperature side refrigerator 2a are disposed in a cooling water outgoing pipe 610a connected to the outlet side of the high temperature side cooling tower 1a, and are cooled by the high temperature side cooling tower 1a.
  • the cooled water is fed into the high temperature side refrigerator 2a by the high temperature side cooling water pump 4a.
  • the outlet side of the high temperature side refrigerator 2a is connected to the inlet side of the high temperature side cooling tower 1a by a cooling water return pipe 620a so that the cooling water flowing out from the high temperature side refrigerator 2a flows into the high temperature side cooling tower 1a.
  • a low temperature side cooling water pump 4b and a low temperature side refrigerator 2b are arranged in a cooling water outgoing pipe 610b connected to the outlet side of the low temperature side cooling tower 1b, and are cooled by the low temperature side cooling tower 1b.
  • the cooled water is sent to the low temperature side refrigerator 2b by the low temperature side cooling water pump 4b.
  • the outlet side of the low temperature side refrigerator 2b is connected to the inlet side of the low temperature side cooling tower 1b by a cooling water return pipe 620b, and the cooling water flowing out from the low temperature side refrigerator 2b flows into the low temperature side cooling tower 1b.
  • the high temperature side cooling water pump 4a is driven by the inverter 52a
  • the low temperature side cooling water pump 4b is driven by the inverter 52b.
  • the rotation speeds of the high temperature side cooling water pump 4a and the low temperature side cooling water pump 4b are controlled by controlling the frequencies input to the inverters 52a and 52b, respectively. That is, the flow rate of the cooling water in the high temperature side cooling water system is controlled by controlling the frequency input to the inverter 52a, and the cooling water in the low temperature side cooling water system is controlled by controlling the frequency input to the inverter 52b. The flow rate is controlled.
  • the high temperature side cooling tower exit temperature sensor 31a which measures the cooling water exit temperature (high temperature side cooling tower outlet cooling water temperature) in the high temperature side cooling tower 1a of the high temperature side cooling water system is the outlet side of the high temperature side cooling tower 1a.
  • the low temperature side cooling tower outlet temperature sensor 31b which is disposed in the low temperature side cooling water system and measures the outlet temperature of the cooling water in the low temperature side cooling tower 1b of the low temperature side cooling water system (low temperature side cooling tower outlet cooling water temperature), It is arrange
  • Other configurations are the same as those of the heat source system 100 shown in FIG.
  • the flow rate of the cooling water in the high temperature side cooling water system is determined by the rotation speed of the high temperature side cooling water pump 4a
  • the flow rate of the cooling water in the low temperature side cooling water system is determined by the rotation speed of the low temperature side cooling water pump 4b. It is determined.
  • control device 71 includes a refrigerator load, an outside air wet bulb temperature, a high temperature side cooling tower outlet cooling water temperature, a low temperature side cooling tower outlet cooling water temperature, a high temperature refrigerator outlet cooling water temperature or an air volume ratio of the cooling fan 6a, a low temperature Refrigerating machine outlet cold water temperature or air flow ratio of cooling fan 6b, high speed side cooling water pump 4a and low temperature side cooling water pump 4b rotational speed ratio or cooling water flow ratio, and cooling water pump 5 rotational speed ratio or cold water flow ratio
  • the optimization operation is executed so that the evaluation function W represented by the expression (1) is minimized.
  • the present embodiment can also be applied to the heat source system 102 including two cooling towers (the high temperature side cooling tower 1a and the low temperature side cooling tower 1b). That is, this embodiment can be applied without limiting the arrangement of the high temperature side refrigerator 2a and the low temperature side refrigerator 2b and the arrangement of the cooling tower in the cooling water system, and the scope of application of this embodiment can be widened. Can do.
  • the present embodiment can also be applied to a heat source system that does not include the heat storage tank 8 (see FIG. 1).
  • the flow rate of the cold water on the load side 3 (see FIG. 1) during the cooling operation is adjusted by the cold water pump 5 (see FIG. 1).
  • the present invention also contemplates design changes as follows.
  • the flow rate and temperature of the cooling water may be fixed values (fixed values).
  • the control of the rotational speed of the high temperature side cooling water pump 4a (see FIG. 1) and the low temperature side cooling water pump 4b (see FIG. 1) can be simplified, for example, the inverter 52a ( The performance required for the inverter 52b (see FIG. 1) provided in the low temperature side cooling water pump 4b may be low, and the cost can be reduced.
  • the refrigerator (high temperature side refrigerator 2a (see FIG. 1), low temperature side refrigerator 2b (see FIG. 1)) may be an air-cooled heat pump refrigerator.
  • the rotational speed of the cold water pump 5 (see FIG. 1) and the target value of the outlet temperature of the cold water in the refrigerator can be optimized, and the COP characteristic of the high temperature side refrigerator 2a can be used to save energy.
  • the refrigerator may be an inverter refrigerator that performs inverter control on the rotation speed of the compressor. By using an inverter refrigerator, the efficiency during partial load operation can be improved.
  • the combination of the refrigerators (the combination of the high temperature side refrigerator 2a and the low temperature side refrigerator 2b) may be a combination of an absorption refrigerator and a compression refrigerator.
  • the cooling tower 1 (see FIG. 1) may be an open cooling tower or a closed cooling tower, and the type of the cooling tower 1 is not limited.
  • the refrigerator load when the refrigerator is partially loaded is set based on the predicted value of the next day load and the predicted value of the wet bulb temperature of the outside air Is also possible.
  • the present invention can be variously changed in design and can be applied to a wider range.

Abstract

Provided is a heat source system (100) including a cooling water system which is configured such that cooling water cooled by a cooling tower (1) circulates, a cool water system which is configured such that cool water cooling a load side (3) circulates, a high temperature side refrigerator (2a) and a low temperature side refrigerator (2b) which are configured to be disposed in series in the cool water system and cool cool water, and a control device (71) which is configured to control a cooling fan (6) of the cooling tower (1), a high temperature side cooling water pump (4a), a low temperature side cooling water pump (4b), and a cool water pump (5) as objects to be controlled, wherein cool water is supplied to the load side (3) through a heat storage tank (8) storing the cool water. The control device (71) sets target control values of the objects to be controlled such that an evaluation function indicating energy consumption is minimized in response to change in at least one of external air condition, a heat storage amount of the heat storage tank (8), and a required load of the load side (3).

Description

熱源システムおよびその制御方法Heat source system and control method thereof
 本発明は、熱源システムおよびその制御方法に関する。 The present invention relates to a heat source system and a control method thereof.
 冷凍機によって冷水を製造し、この冷水によって負荷側(部屋や装置)を冷却する熱源システムは広く知られている。このような熱源システムに備わる冷凍機は、負荷側の負荷の増減に対応した容量で制御される。
 また、冷却に使用する冷水の温度差を大きくして搬送動力が削減できるように、2台以上の冷凍機が直列に配置される熱源システムもある(例えば、特許文献1,2参照)。
A heat source system that manufactures cold water with a refrigerator and cools a load side (room or device) with the cold water is widely known. The refrigerator provided in such a heat source system is controlled with a capacity corresponding to the increase or decrease of the load on the load side.
There is also a heat source system in which two or more refrigerators are arranged in series so that the temperature difference of cold water used for cooling can be increased to reduce the conveyance power (for example, see Patent Documents 1 and 2).
特開昭61-225528号公報Japanese Patent Laid-Open No. 61-225528 特開昭60-23760号公報Japanese Patent Laid-Open No. 60-23760
 特許文献1,2に開示される熱源システムは、例えば、外気温度が高い地域など、負荷側に送水する冷水温度の往還における温度差(冷凍機の入口側と出口側の温度差)が大きくなる場合に、高温側に配置される冷凍機と低温側に配置される冷凍機を直列に配置して温度差を大きくすることによって、冷水のポンプ動力を削減できる。
 しかしながら、冷凍機を直列に配置すると、冷凍機に冷水を送り込むポンプの流量が一定の場合、最大能力付近の負荷(最大負荷)に比べて冷却負荷が小さい部分負荷のときには効率が低下するため、冷却対象(負荷側)の負荷や外気状態の変化に応じて熱源システムの効率が低下するという問題がある。また、冷水を溜める蓄熱槽の蓄熱量を考慮して負荷の変化に対応する必要がある。
The heat source system disclosed in Patent Documents 1 and 2 has a large temperature difference (temperature difference between the inlet side and the outlet side of the refrigerator) in the return of the chilled water temperature fed to the load side, for example, in an area where the outside air temperature is high. In this case, the chiller pump power can be reduced by increasing the temperature difference by arranging the refrigerator arranged on the high temperature side and the refrigerator arranged on the low temperature side in series.
However, when the refrigerators are arranged in series, when the flow rate of the pump for feeding cold water to the refrigerator is constant, the efficiency is reduced when the cooling load is small compared to the load near the maximum capacity (maximum load). There is a problem in that the efficiency of the heat source system is lowered in accordance with changes in the load to be cooled (load side) and the outside air state. Moreover, it is necessary to cope with the load change in consideration of the heat storage amount of the heat storage tank in which the cold water is stored.
 そこで、本発明は、直列に配設される冷凍機が最大負荷で運転されないときの効率を向上できる熱源システムおよびその制御方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a heat source system and a control method thereof that can improve the efficiency when the refrigerators arranged in series are not operated at the maximum load.
 前記課題を解決するため本発明は、冷却塔で冷却される第1の冷水が循環する第1冷水系統と、負荷側を冷却する第2の冷水が循環する第2冷水系統と、前記第2冷水系統に直列に配設され、前記負荷側を冷却した前記第2の冷水の熱を前記第1の冷水に移動して前記第2の冷水を冷却する複数の冷凍機と、少なくとも前記冷却塔に外気を送風する冷却ファン、前記第1の冷水を循環させる第1ポンプ、および前記第2の冷水を循環させる第2ポンプを制御対象として制御する制御装置と、を備え、前記負荷側へは、前記冷凍機で冷却された前記第2の冷水を貯留する蓄熱手段を介して前記第2の冷水が供給される熱源システムとする。そして、前記制御装置は、外気の状態と前記蓄熱手段の蓄熱量と前記負荷側の要求負荷のうちの少なくとも1つの変化に対応して、エネルギ消費量を示す評価関数を最小とするように前記制御対象の制御目標値を設定することを特徴とする。 In order to solve the above problems, the present invention provides a first chilled water system in which the first chilled water cooled by the cooling tower circulates, a second chilled water system in which the second chilled water for cooling the load side circulates, and the second A plurality of refrigerators arranged in series in a chilled water system and transferring heat of the second chilled water that has cooled the load side to the first chilled water to cool the second chilled water, and at least the cooling tower A cooling fan that blows outside air, a first pump that circulates the first cold water, and a control device that controls a second pump that circulates the second cold water as an object to be controlled. The heat source system is configured such that the second cold water is supplied via a heat storage unit that stores the second cold water cooled by the refrigerator. And the said control apparatus respond | corresponds to at least 1 change of the state of external air, the thermal storage amount of the said thermal storage means, and the load side demand load, so that the evaluation function indicating the energy consumption is minimized A control target value to be controlled is set.
 本発明によると、直列に配設される冷凍機が最大負荷で運転されないときの効率を向上できる熱源システムおよびその制御方法を提供できる。 According to the present invention, it is possible to provide a heat source system and its control method that can improve the efficiency when the refrigerators arranged in series are not operated at the maximum load.
本実施形態に係る熱源システムの一構成例を示す図である。It is a figure showing an example of 1 composition of a heat source system concerning this embodiment. (a)は、制御対象の制御目標値を一定にした場合の冷凍機の負荷率とCOPの関係を示すグラフ、(b)は、最適化演算に基づいて制御対象の制御目標値を設定した場合の冷凍機の負荷率とCOPの関係を示すグラフである。(A) is a graph showing the relationship between the load factor of the refrigerator and the COP when the control target value of the control target is constant, and (b) is the control target value of the control target set based on the optimization calculation. It is a graph which shows the relationship between the load factor of a refrigerator, and COP in the case. 蓄熱運転の手順を示すフローチャートである。It is a flowchart which shows the procedure of a thermal storage driving | operation. (a)は蓄熱時間帯に冷却量が100%になるような冷凍機負荷で冷凍機が運転される場合の冷却量の変動の一例を示すグラフ、(b)は1時間ごとの冷却量が100%以下になってエネルギの消費量が少なくなった状態を示すグラフである。(A) is a graph which shows an example of the fluctuation | variation of the cooling amount when a refrigerator is drive | operated by the refrigerator load which becomes 100% of cooling amount in a thermal storage time slot | zone, (b) is a cooling amount for every hour. It is a graph which shows the state which became less than 100% and energy consumption decreased. 負荷側の負荷に応じて蓄熱運転と冷却運転を実行する手順を示すフローチャートである。It is a flowchart which shows the procedure which performs a thermal storage driving | operation and a cooling driving | operation according to the load by the side of a load. 外気の湿球温度と、冷凍機の負荷率と、冷却水ポンプの回転速度比と、の関係を示すデータテーブルの一例を示す図である。It is a figure which shows an example of the data table which shows the relationship between the wet bulb temperature of external air, the load factor of a refrigerator, and the rotational speed ratio of a cooling water pump. 冷却水系統に高温側冷凍機と低温側冷凍機が直列に配設される熱源システムの構成例を示す図である。It is a figure which shows the structural example of the heat source system by which a high temperature side refrigerator and a low temperature side refrigerator are arrange | positioned in series by a cooling water system | strain. 2つの冷却塔を備える熱源システムの構成例を示す図である。It is a figure which shows the structural example of a heat source system provided with two cooling towers.
 以下、本発明の実施形態について、適宜図を参照して詳細に説明する。
 本実施形態に係る熱源システム100は、図1に示すように、冷却塔1でのフリークーリングで冷却される第1の冷水(冷却水)が循環する第1冷水系統(冷却水系統)と、負荷側3を冷却する第2の冷水(冷水)が循環する第2冷水系統(冷水系統)が、高温側冷凍機2aおよび低温側冷凍機2bで熱的に接続されて構成される。高温側冷凍機2aおよび低温側冷凍機2bは、例えばターボ冷凍機であり、冷水系統において直列に配置される。
 そして、負荷側3を冷却して昇温した冷水の熱が高温側冷凍機2aおよび低温側冷凍機2bで冷却水に移動し、冷水が冷却されるように構成される。
 なお、冷水系統における冷水の流れに対する上流に高温側冷凍機2aが配設され下流に低温側冷凍機2bが配設される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
As shown in FIG. 1, the heat source system 100 according to the present embodiment includes a first cold water system (cooling water system) in which first cold water (cooling water) cooled by free cooling in the cooling tower 1 circulates, A second cold water system (cold water system) in which the second cold water (cold water) for cooling the load side 3 circulates is configured to be thermally connected by the high temperature side refrigerator 2a and the low temperature side refrigerator 2b. The high temperature side refrigerator 2a and the low temperature side refrigerator 2b are turbo refrigerators, for example, and are arranged in series in the cold water system.
And the heat of the cold water which cooled the load side 3 and heated up moves to a cooling water with the high temperature side refrigerator 2a and the low temperature side refrigerator 2b, and it is comprised so that cold water may be cooled.
In addition, the high temperature side refrigerator 2a is arrange | positioned upstream with respect to the flow of the cold water in a cold water system | strain, and the low temperature side refrigerator 2b is arrange | positioned downstream.
 冷却水系統は、冷却塔1の出口側に接続される冷却水往管61aに高温側冷却水ポンプ4aと高温側冷凍機2aが配設され、冷却塔1で冷却された冷却水が高温側冷却水ポンプ4aによって高温側冷凍機2aに送り込まれる。高温側冷凍機2aの出口側は冷却水復管62aによって冷却塔1の入口側と接続され、高温側冷凍機2aから流出した冷却水が冷却塔1に流入するように構成される。 In the cooling water system, a high temperature side cooling water pump 4a and a high temperature side refrigerator 2a are arranged in a cooling water outgoing pipe 61a connected to the outlet side of the cooling tower 1, and the cooling water cooled by the cooling tower 1 is on the high temperature side. It is sent into the high temperature side refrigerator 2a by the cooling water pump 4a. The outlet side of the high temperature side refrigerator 2a is connected to the inlet side of the cooling tower 1 by a cooling water return pipe 62a so that the cooling water flowing out from the high temperature side refrigerator 2a flows into the cooling tower 1.
 また、冷却水往管61aには、冷却塔1の出口側と高温側冷却水ポンプ4aの間に分岐往管61bが接続される。分岐往管61bには低温側冷却水ポンプ4bと低温側冷凍機2bが配設され、冷却塔1で冷却された冷却水の一部が低温側冷却水ポンプ4bによって低温側冷凍機2bに送り込まれる。低温側冷凍機2bの出口側には分岐復管62bが接続され、分岐復管62bは、高温側冷凍機2aの出口側と冷却塔1の入口側の間で、冷却水復管62aに接続される。
 つまり、高温側冷凍機2aと低温側冷凍機2bは、冷却水系統において並列に配設される。そして、本実施形態において、高温側冷却水ポンプ4aと低温側冷却水ポンプ4bを合わせて第1ポンプとする。
Further, a branch outgoing pipe 61b is connected to the cooling water outgoing pipe 61a between the outlet side of the cooling tower 1 and the high temperature side cooling water pump 4a. The branch outgoing pipe 61b is provided with a low temperature side cooling water pump 4b and a low temperature side refrigerator 2b, and a part of the cooling water cooled by the cooling tower 1 is sent to the low temperature side refrigerator 2b by the low temperature side cooling water pump 4b. It is. A branch return pipe 62b is connected to the outlet side of the low temperature side refrigerator 2b, and the branch return pipe 62b is connected to the cooling water return pipe 62a between the outlet side of the high temperature side refrigerator 2a and the inlet side of the cooling tower 1. Is done.
That is, the high temperature side refrigerator 2a and the low temperature side refrigerator 2b are arranged in parallel in the cooling water system. In this embodiment, the high temperature side cooling water pump 4a and the low temperature side cooling water pump 4b are combined to form a first pump.
 冷却塔1にはインバータ51で駆動する冷却ファン6が備わり、冷却塔1に流入した冷却水は、冷却ファン6で送風される外気によって冷却される。この冷却ファン6はインバータ51に入力される周波数が制御されることによって回転速度が制御される。
 つまり、インバータ51に入力される周波数が制御されることによって、冷却塔1への送風量が制御される。
The cooling tower 1 is provided with a cooling fan 6 driven by an inverter 51, and the cooling water flowing into the cooling tower 1 is cooled by outside air blown by the cooling fan 6. The rotation speed of the cooling fan 6 is controlled by controlling the frequency input to the inverter 51.
That is, by controlling the frequency input to the inverter 51, the amount of air blown to the cooling tower 1 is controlled.
 また、高温側冷却水ポンプ4aはインバータ52aによって駆動され、低温側冷却水ポンプ4bはインバータ52bによって駆動される。そして、冷却塔1における冷却水の出口温度(冷却塔出口冷却水温度)を計測する冷却塔出口温度センサ31が、冷却塔1の出口側に配設される。
 高温側冷却水ポンプ4aおよび低温側冷却水ポンプ4bは、それぞれインバータ52a、52bに入力される周波数が制御されることによって回転速度が制御される。
 つまり、インバータ52a、52bに入力される周波数が制御されることによって冷却水系統における冷却水の流量が制御される。
The high temperature side cooling water pump 4a is driven by an inverter 52a, and the low temperature side cooling water pump 4b is driven by an inverter 52b. A cooling tower outlet temperature sensor 31 that measures the outlet temperature of the cooling water in the cooling tower 1 (cooling tower outlet cooling water temperature) is disposed on the outlet side of the cooling tower 1.
The high temperature side cooling water pump 4a and the low temperature side cooling water pump 4b are controlled in rotation speed by controlling the frequencies input to the inverters 52a and 52b, respectively.
That is, the flow rate of the cooling water in the cooling water system is controlled by controlling the frequency input to the inverters 52a and 52b.
 冷水系統は、蓄熱槽8の出口側と高温側冷凍機2aの入口側が、冷水ポンプ5が配設される冷水復管64で接続され、さらに、高温側冷凍機2aの出口側と低温側冷凍機2bの入口側が冷凍機接続管65で接続される。また、低温側冷凍機2bの出口側は冷水往管63で蓄熱槽8の入口側と接続される。冷水ポンプ5はインバータ53によって駆動される。
 冷水ポンプ5は、インバータ53に入力される周波数が制御されることによって回転速度が制御される。つまり、インバータ53に入力される周波数が制御されることによって冷水系統における冷水の流量が制御される。本実施形態において、冷水ポンプ5を第2ポンプとする。
In the cold water system, the outlet side of the heat storage tank 8 and the inlet side of the high temperature side refrigerator 2a are connected by a cold water return pipe 64 in which the cold water pump 5 is disposed, and further, the outlet side of the high temperature side refrigerator 2a and the low temperature side refrigerator. The inlet side of the machine 2b is connected by a refrigerator connecting pipe 65. Further, the outlet side of the low temperature side refrigerator 2 b is connected to the inlet side of the heat storage tank 8 by a cold water outgoing pipe 63. The cold water pump 5 is driven by an inverter 53.
The rotation speed of the cold water pump 5 is controlled by controlling the frequency input to the inverter 53. That is, the flow rate of the chilled water in the chilled water system is controlled by controlling the frequency input to the inverter 53. In the present embodiment, the cold water pump 5 is a second pump.
 冷水系統には、高温側冷凍機2aにおける冷水の出口温度(高温冷凍機出口冷水温度)を計測する高温側冷凍機出口温度センサ34aと、低温側冷凍機2bにおける冷水の出口温度(低温冷凍機出口冷水温度)を計測する低温側冷凍機出口温度センサ34bと、蓄熱槽8における冷水の温度(蓄熱槽温度)を計測する蓄熱槽温度センサ8aと、が配設される。なお、蓄熱槽温度センサ8aはなくてもよい。 The cold water system includes a high temperature side refrigerator outlet temperature sensor 34a for measuring a cold water outlet temperature (high temperature refrigerator outlet cold water temperature) in the high temperature side refrigerator 2a, and a cold water outlet temperature (low temperature refrigerator in the low temperature side refrigerator 2b). A low-temperature side refrigerator outlet temperature sensor 34b for measuring the outlet cold water temperature) and a heat storage tank temperature sensor 8a for measuring the temperature of the cold water (heat storage tank temperature) in the heat storage tank 8 are disposed. The heat storage tank temperature sensor 8a may not be provided.
 また、熱源システム100は、蓄熱槽8と負荷側3を含んで構成される二次側冷水系統を備える。
 二次側冷水系統は、蓄熱槽8の二次出口側と負荷側3の入口側が二次冷水ポンプ5aを有する二次冷却往管66で接続され、負荷側3の出口側と蓄熱槽8の二次入口側が二次冷却復管67で接続される。この構成によって、負荷側3には蓄熱槽8を介して冷水が供給される。
 また、二次冷水ポンプ5aはインバータ53aによって駆動される。
 そして、蓄熱槽8における冷水の二次出口温度(蓄熱槽二次出口冷水温度)を計測する蓄熱槽二次出口温度センサ81と、蓄熱槽8における冷水の二次入口温度(蓄熱槽二次入口冷水温度)を計測する蓄熱槽二次入口温度センサ82と、二次側冷水系統における冷水の流量を計測する流量計83と、が備わっている。
The heat source system 100 includes a secondary side chilled water system including the heat storage tank 8 and the load side 3.
In the secondary chilled water system, the secondary outlet side of the heat storage tank 8 and the inlet side of the load side 3 are connected by a secondary cooling forward pipe 66 having a secondary chilled water pump 5a, and the outlet side of the load side 3 and the heat storage tank 8 are connected. The secondary inlet side is connected by a secondary cooling return pipe 67. With this configuration, cold water is supplied to the load side 3 via the heat storage tank 8.
The secondary chilled water pump 5a is driven by an inverter 53a.
And the thermal storage tank secondary exit temperature sensor 81 which measures the secondary outlet temperature (cold storage tank secondary exit cold water temperature) in the thermal storage tank 8, and the secondary inlet temperature (thermal storage tank secondary entrance) of the cold water in the thermal storage tank 8 A heat storage tank secondary inlet temperature sensor 82 for measuring the cold water temperature) and a flow meter 83 for measuring the flow rate of the cold water in the secondary side cold water system.
 蓄熱槽8は、例えば冷水を貯留する水槽であり、高温側冷凍機2aおよび低温側冷凍機2bで冷却された冷水を貯留することによって冷熱を蓄熱する蓄熱手段である。また、負荷側3は、蓄熱槽8が供給する熱量で冷却されるように構成され、高温側冷凍機2aおよび低温側冷凍機2bは、蓄熱槽8に貯留する冷水を冷却することで、蓄熱槽8に蓄熱する。
 蓄熱槽8は、例えば、冷水往管63の近傍に二次冷却往管66が接続されるとともに、二次冷却復管67の近傍に冷水復管64が接続される構成とする。そして、冷水ポンプ5と二次冷水ポンプ5aが駆動しているときは、冷水往管63を流通して蓄熱槽8に流れ込んだ冷水が二次冷却往管66に流れ込み、二次冷却復管67を流通して蓄熱槽8に流れ込んだ冷水が冷水復管64に流れ込む構成が好ましい。
 また、冷水ポンプ5が駆動して二次冷水ポンプ5aが停止しているときには、冷水往管63を流通して蓄熱槽8に流れ込んだ冷水が冷水往管63の側から貯留される構成が好ましく、冷水ポンプ5が停止して二次冷水ポンプ5aが駆動しているときには、冷水往管63の近傍に貯留される冷水が二次冷却往管66に流れ込み、二次冷却復管67を流通して蓄熱槽8に流れ込んだ冷水が二次冷却復管67の近傍に貯留する構成が好ましい。
The heat storage tank 8 is a water tank for storing cold water, for example, and is a heat storage means for storing cold heat by storing cold water cooled by the high temperature side refrigerator 2a and the low temperature side refrigerator 2b. The load side 3 is configured to be cooled by the amount of heat supplied by the heat storage tank 8, and the high temperature side refrigerator 2 a and the low temperature side refrigerator 2 b cool the cold water stored in the heat storage tank 8, thereby storing heat. Heat is stored in the tank 8.
The heat storage tank 8 has a configuration in which, for example, a secondary cooling forward pipe 66 is connected in the vicinity of the cold water outgoing pipe 63 and a cold water return pipe 64 is connected in the vicinity of the secondary cooling backward pipe 67. When the chilled water pump 5 and the secondary chilled water pump 5a are driven, the chilled water flowing through the chilled water outgoing pipe 63 and flowing into the heat storage tank 8 flows into the secondary cooling forward pipe 66, and the secondary cooling return pipe 67. It is preferable that the cold water flowing through the heat storage tank 8 flows into the cold water return pipe 64.
Further, when the chilled water pump 5 is driven and the secondary chilled water pump 5a is stopped, it is preferable that the chilled water flowing through the chilled water outgoing pipe 63 and flowing into the heat storage tank 8 is stored from the chilled water outgoing pipe 63 side. When the chilled water pump 5 is stopped and the secondary chilled water pump 5a is driven, chilled water stored in the vicinity of the chilled water outgoing pipe 63 flows into the secondary cooling outgoing pipe 66 and flows through the secondary cooling return pipe 67. A configuration in which the cold water flowing into the heat storage tank 8 is stored in the vicinity of the secondary cooling return pipe 67 is preferable.
 この構成によると、冷水ポンプ5と二次冷水ポンプ5aが駆動しているとき蓄熱槽8は管路として機能し、冷水ポンプ5が駆動して二次冷水ポンプ5aが停止しているときに蓄熱槽8はバッファとして機能し冷水が貯留される(冷熱が蓄熱される)。また、冷水ポンプ5が停止して二次冷水ポンプ5aが駆動しているとき蓄熱槽8は負荷側3に冷水を供給(蓄熱した熱量を供給)するバッファとして機能する。
 さらに、冷水ポンプ5の流量が二次冷水ポンプ5aの流量より大きいとき、蓄熱槽8には、流量の差分に相当する熱量が蓄熱され、冷水ポンプ5の流量が二次冷水ポンプ5aの流量より小さいとき、蓄熱槽8からは、流量の差分に相当する熱量が負荷側3に供給される。
According to this configuration, the heat storage tank 8 functions as a pipe line when the chilled water pump 5 and the secondary chilled water pump 5a are driven, and stores heat when the chilled water pump 5 is driven and the secondary chilled water pump 5a is stopped. The tank 8 functions as a buffer and stores cold water (cold heat is stored). Further, when the cold water pump 5 is stopped and the secondary cold water pump 5a is driven, the heat storage tank 8 functions as a buffer for supplying cold water to the load side 3 (supplying the amount of heat stored).
Furthermore, when the flow rate of the chilled water pump 5 is larger than the flow rate of the secondary chilled water pump 5a, the heat storage tank 8 stores heat corresponding to the difference in flow rate, and the flow rate of the chilled water pump 5 is greater than the flow rate of the secondary chilled water pump 5a. When it is small, the heat storage tank 8 supplies a heat amount corresponding to the difference in flow rate to the load side 3.
 さらに熱源システム100には、外気温度を計測する外気温度計37と、外気の湿度を計測する外気湿度計38が備わっている。 Furthermore, the heat source system 100 includes an outside air thermometer 37 that measures the outside air temperature and an outside air hygrometer 38 that measures the humidity of the outside air.
 このように、本実施形態に係る熱源システム100は、冷却水系統、冷水系統および二次側冷水系統を含んで構成され、冷却水系統を循環する冷却水と冷水系統を循環する冷水が高温側冷凍機2aおよび低温側冷凍機2bで熱交換して冷水が冷却される。
 そして、冷却された冷水が蓄熱槽8を介して負荷側3(部屋や装置)に供給されて負荷側3を冷却する。このように負荷側3を冷却するための熱源システム100の運転を冷却運転と称する。
As described above, the heat source system 100 according to the present embodiment includes the cooling water system, the chilled water system, and the secondary side chilled water system, and the cooling water that circulates the cooling water system and the chilled water that circulates the chilled water system are on the high temperature side The cold water is cooled by heat exchange between the refrigerator 2a and the low-temperature refrigerator 2b.
Then, the cooled cold water is supplied to the load side 3 (room or device) via the heat storage tank 8 to cool the load side 3. The operation of the heat source system 100 for cooling the load side 3 is referred to as a cooling operation.
 さらに、高温側冷凍機2aおよび低温側冷凍機2bで冷却された冷水が蓄熱槽8に貯留されることによって蓄熱槽8に熱量が蓄熱される。蓄熱槽8に蓄熱する運転を蓄熱運転と称する。
 そして、このような構成の熱源システム100に配設される冷却ファン6、高温側冷却水ポンプ4a、低温側冷却水ポンプ4b、冷水ポンプ5および二次冷水ポンプ5aは制御装置71で制御される。以下、本実施形態においては、高温側冷凍機2aと低温側冷凍機2bを含めて冷凍機とする。
Further, the cold water cooled by the high temperature side refrigerator 2 a and the low temperature side refrigerator 2 b is stored in the heat storage tank 8, whereby heat is stored in the heat storage tank 8. The operation for storing heat in the heat storage tank 8 is referred to as heat storage operation.
The cooling fan 6, the high-temperature side cooling water pump 4 a, the low-temperature side cooling water pump 4 b, the cold water pump 5, and the secondary cold water pump 5 a disposed in the heat source system 100 having such a configuration are controlled by the control device 71. . Hereinafter, in this embodiment, it is set as a refrigerator including the high temperature side refrigerator 2a and the low temperature side refrigerator 2b.
 なお、図1には2台の冷凍機(高温側冷凍機2a、低温側冷凍機2b)が備わる構成が図示されているが、3台以上の冷凍機が冷水系統に直列に配設される構成であってもよい。また、図示は省略しているが、直列に配置した冷凍機の組合せが、複数列並列に配置される構成であってもよい。 Although FIG. 1 shows a configuration including two refrigerators (high temperature side refrigerator 2a, low temperature side refrigerator 2b), three or more refrigerators are arranged in series in the cold water system. It may be a configuration. Moreover, although illustration is abbreviate | omitted, the structure by which the combination of the refrigerator arrange | positioned in series is arrange | positioned in multiple rows | lines parallel may be sufficient.
 本実施形態に係る制御装置71は、外気温度計37が計測する外気温度と外気湿度計38が計測する外気の湿度から外気の湿球温度を算出し、さらに、二次側冷水系統における冷水の流量と、蓄熱槽二次入口冷水温度と、蓄熱槽二次出口冷水温度と、に基づいて負荷側3が要求する負荷を算出する。そして、負荷側3が要求する負荷に応じた吐出圧力一定制御や末端圧力一定制御によって、二次冷水ポンプ5aの回転速度を制御する。つまり、二次側冷水系統における冷水の流量を制御する。この吐出圧力一定制御や末端圧力一定制御は公知の技術を利用できる。以下、負荷側3が要求する負荷を要求負荷と称する。
 なお、外気温度計37と外気湿度計38に替えて、図示しない湿球温度計が備わる構成であってもよい。
The control device 71 according to this embodiment calculates the wet bulb temperature of the outside air from the outside air temperature measured by the outside air thermometer 37 and the outside air humidity measured by the outside air hygrometer 38, and further, cold water in the secondary side chilled water system The load required by the load side 3 is calculated based on the flow rate, the heat storage tank secondary inlet cold water temperature, and the heat storage tank secondary outlet cold water temperature. And the rotational speed of the secondary chilled water pump 5a is controlled by the discharge pressure constant control and the terminal pressure constant control according to the load which the load side 3 requires. That is, the flow rate of cold water in the secondary side cold water system is controlled. A known technique can be used for the discharge pressure constant control and the terminal pressure constant control. Hereinafter, the load requested by the load side 3 is referred to as a requested load.
In addition, it may replace with the external temperature thermometer 37 and the external air hygrometer 38, and the structure provided with the wet bulb thermometer which is not shown in figure may be sufficient.
 負荷側3の要求負荷は、負荷側3が冷水によって冷却されるときの負荷であり、負荷側3の状態、例えば、部屋の室温や装置の温度等によって決定される値である。
 そして、負荷側3の要求負荷は、二次側冷水系統における冷水流量、蓄熱槽二次入口冷水温度、蓄熱槽二次出口冷水温度に基づいて演算される。なお、蓄熱槽二次出口温度センサ81を備えない構成とし、蓄熱槽二次出口冷水温度の設定値を負荷側3の要求負荷としてもよい。この構成によると、蓄熱槽二次出口温度センサ81が不要となり、より簡素な構成の熱源システム100とすることができる。
The required load on the load side 3 is a load when the load side 3 is cooled by cold water, and is a value determined by the state of the load side 3, for example, the room temperature of the room or the temperature of the apparatus.
The required load on the load side 3 is calculated based on the chilled water flow rate in the secondary chilled water system, the heat storage tank secondary inlet cold water temperature, and the heat storage tank secondary outlet cold water temperature. Note that the heat storage tank secondary outlet temperature sensor 81 may not be provided, and the set value of the heat storage tank secondary outlet cold water temperature may be set as the required load on the load side 3. According to this configuration, the heat storage tank secondary outlet temperature sensor 81 is not required, and the heat source system 100 having a simpler configuration can be obtained.
 また、制御装置71は、高温側冷凍機2aにおける冷水の出口温度が目標値となり、低温側冷凍機2bにおける冷水の出口温度が別の目標値となるように、高温側冷凍機2aおよび低温側冷凍機2bをそれぞれ制御する。または、冷凍機(高温側冷凍機2a、低温側冷凍機2b)が冷水の出口温度(高温冷凍機出口冷水温度、低温冷凍機出口冷水温度)を一定に維持する制御機能を有し、制御装置71から通知される冷水の出口温度の目標値を維持するように、冷凍機自体がそれぞれ機器単体で制御する構成としてもよい。
 さらに、制御装置71は、冷却塔出口冷却水温度が目標値になるように、冷却ファン6の回転速度(冷却塔1への送風量)を制御する。
Further, the control device 71 sets the high temperature side refrigerator 2a and the low temperature side so that the outlet temperature of the cold water in the high temperature side refrigerator 2a becomes a target value and the outlet temperature of the cold water in the low temperature side refrigerator 2b becomes another target value. Each refrigerator 2b is controlled. Alternatively, the refrigerator (the high temperature side refrigerator 2a, the low temperature side refrigerator 2b) has a control function for maintaining the outlet temperature of the cold water (high temperature refrigerator outlet cold water temperature, low temperature refrigerator outlet cold water temperature) constant, and a control device It is good also as a structure which refrigerator itself itself controls with an apparatus single-piece | unit so that the target value of the exit temperature of cold water notified from 71 may be maintained.
Furthermore, the control device 71 controls the rotation speed of the cooling fan 6 (the amount of air blown to the cooling tower 1) so that the cooling tower outlet cooling water temperature becomes the target value.
 そして、本実施形態に係る制御装置71は、逐次変動する外気の状態(特に湿球温度)や負荷側3の要求負荷と、熱源システム100を構成する機器の特性値(構成機器や配管における冷却水および冷水の抵抗等)と、に基づいて予測されるエネルギ消費量が最小になるように、冷水および冷却水の水温と流量の最適化演算を実施する。そして最適化演算の演算結果に基づいて、冷却水の温度(冷却塔出口冷却水温度)、冷水の温度(高温冷凍機出口冷水温度、低温冷凍機出口冷水温度)、冷却水の流量(冷却水の流量比または冷却水ポンプ4a、4bの回転速度)、冷水の流量(冷水の流量比または冷水ポンプ5の回転速度)の各目標値を変更する。
 なお、冷却水の流量比は冷却水ポンプ4a、4bが定格運転されるときの冷却水の流量に対する比であり、冷水の流量比は冷水ポンプ5が定格運転されるときの冷水の流量に対する比である。
And the control apparatus 71 which concerns on this embodiment is the characteristic value (cooling in a component apparatus and piping) of the state of the external air which changes sequentially (especially wet bulb temperature), the required load of the load side 3, and the apparatus which comprises the heat source system 100. The water temperature and the flow rate are optimized so that the energy consumption predicted based on the resistance of the water and the cold water is minimized. And based on the calculation result of the optimization calculation, the temperature of the cooling water (cooling tower outlet cooling water temperature), the temperature of the cooling water (high temperature refrigerator outlet cooling water temperature, low temperature refrigerator outlet cooling water temperature), the cooling water flow rate (cooling water) , Or the rotational speed of the cooling water pumps 4a and 4b) and the target value of the cooling water flow (the cooling water flow ratio or the rotational speed of the cold water pump 5).
The flow rate ratio of the cooling water is a ratio with respect to the flow rate of the cooling water when the cooling water pumps 4a and 4b are rated and the flow rate ratio of the cold water is a ratio with respect to the flow rate of the cold water when the cooling water pump 5 is rated. It is.
 このような構成とするため、本実施形態において、制御装置71は、高温側冷却水ポンプ4a、低温側冷却水ポンプ4b、冷水ポンプ5、冷却ファン6を制御対象とし、最適化演算によって制御対象の制御目標値を設定して熱源システム100を制御する。 In order to achieve such a configuration, in the present embodiment, the control device 71 sets the high-temperature side cooling water pump 4a, the low-temperature side cooling water pump 4b, the cold water pump 5, and the cooling fan 6 as control targets, and performs control operations by optimization calculation. The control target value is set and the heat source system 100 is controlled.
 例えば、冷水で負荷側3を冷却する冷却運転の場合、制御装置71は、負荷側3の要求負荷を、冷凍機が処理する負荷(以下、冷凍機負荷と称する)に設定する。
 そして、制御装置71は、冷凍機負荷、外気の湿球温度、冷却塔出口冷却水温度、高温冷凍機出口冷水温度、低温冷凍機出口冷水温度、冷却水の流量、および冷水の流量をパラメータとし、高温側冷凍機2aと、低温側冷凍機2bと、冷水ポンプ5と、の冷水に対する抵抗(流路抵抗)、および、高温側冷凍機2aと、低温側冷凍機2bと、高温側冷却水ポンプ4aと、低温側冷却水ポンプ4bと、冷却塔1と、の冷却水に対する抵抗(流路抵抗)に基づいて、制御対象(高温側冷却水ポンプ4a、低温側冷却水ポンプ4b、冷水ポンプ5、冷却ファン6)におけるエネルギ消費量の合計値をシミュレートする。
For example, in the case of a cooling operation in which the load side 3 is cooled with cold water, the control device 71 sets the required load on the load side 3 to a load processed by the refrigerator (hereinafter referred to as a refrigerator load).
The control device 71 uses the refrigerator load, the wet bulb temperature of the outside air, the cooling tower outlet cooling water temperature, the high temperature refrigerator outlet cooling water temperature, the low temperature refrigerator outlet cooling water temperature, the cooling water flow rate, and the cooling water flow rate as parameters. Resistance to cold water (flow path resistance) of the high temperature side refrigerator 2a, the low temperature side refrigerator 2b, and the cold water pump 5, and the high temperature side refrigerator 2a, the low temperature side refrigerator 2b, and the high temperature side cooling water Based on the resistance (flow path resistance) of the pump 4a, the low temperature side cooling water pump 4b, and the cooling tower 1 to the cooling water, the control target (high temperature side cooling water pump 4a, low temperature side cooling water pump 4b, cold water pump) 5. Simulate the total energy consumption in the cooling fan 6).
 制御装置71は、配管(冷却水往管61a、分岐往管61b、冷却水復管62a、分岐復管62b、冷水往管63、冷水復管64、冷凍機接続管65)における冷却水や冷水の流量に対する圧力損失の関係を予測または実測した結果を元に各ポンプ(高温側冷却水ポンプ4a、低温側冷却水ポンプ4b、冷水ポンプ5)のポンプ揚程を算出し、流量とポンプ揚程の関係から各ポンプ動力を算出する。そして、制御装置71は、算出した各ポンプ動力から各ポンプのエネルギ消費量を算出する。 The control device 71 includes cooling water and cold water in pipes (cooling water outgoing pipe 61a, branch outgoing pipe 61b, cooling water return pipe 62a, branch return pipe 62b, cold water outgoing pipe 63, cold water return pipe 64, refrigerator connection pipe 65). The pump head of each pump (high temperature side cooling water pump 4a, low temperature side cooling water pump 4b, cold water pump 5) is calculated based on the result of predicting or actually measuring the relationship between the pressure loss and the flow rate of the water, and the relationship between the flow rate and the pump head Each pump power is calculated from And the control apparatus 71 calculates the energy consumption of each pump from each calculated pump power.
 また、制御装置71は、一般的なエンタルピ基準総括容積伝達係数と冷却塔性能近似式を用いて冷却塔1の性能から、外気条件、冷却水の流量、冷却水の温度(冷却塔出口冷却水温度、冷却塔入口冷却水温度)に対応する冷却ファン6の風量比を求めて、冷却塔1の消費電力を予測する。
 なお、冷却ファン6の風量比は冷却ファン6が定格運転されるときの風量に対する比である。
 また、冷凍機のエネルギ消費量は、冷凍機が冷凍機負荷で運転される場合のエネルギ消費量として予測される。
 さらに制御装置71は、熱源システム100のエネルギ消費量の合計値を評価関数W、冷凍機の運転台数、冷水と冷却水の流量(各ポンプの回転速度)、および冷水と冷却水の温度を最適化変数として、次式(1)で示される評価関数Wが最小となるように最適化変数を探索し、探索された最適化変数に基づいて制御対象の制御目標値を決定する。
 W=Eref1+Eref2+Ecp+Ecwp1+Ecwp2+Ect・・・(1)
 但し、
  Eref1:高温側冷凍機のエネルギ消費量[kW]
  Eref2:低温側冷凍機のエネルギ消費量[kW]
  Ecp:冷水ポンプのエネルギ消費量[kW]
  Ecwp1:高温側冷却水ポンプのエネルギ消費量[kW]
  Ecwp2:低温側冷却水ポンプのエネルギ消費量[kW]
  Ect:冷却塔のエネルギ消費量[kW]
Further, the control device 71 uses the general enthalpy standard overall volume transfer coefficient and the cooling tower performance approximation formula to determine the outdoor air condition, the cooling water flow rate, the cooling water temperature (cooling tower outlet cooling water) from the performance of the cooling tower 1. The air flow ratio of the cooling fan 6 corresponding to the temperature and the cooling tower inlet cooling water temperature) is obtained, and the power consumption of the cooling tower 1 is predicted.
The air volume ratio of the cooling fan 6 is a ratio to the air volume when the cooling fan 6 is rated.
The energy consumption of the refrigerator is predicted as the energy consumption when the refrigerator is operated with a refrigerator load.
Further, the control device 71 optimizes the total energy consumption of the heat source system 100 with the evaluation function W, the number of operating refrigerators, the flow rate of chilled water and cooling water (rotational speed of each pump), and the temperature of the chilled water and cooling water. As an optimization variable, an optimization variable is searched so that the evaluation function W represented by the following equation (1) is minimized, and a control target value to be controlled is determined based on the searched optimization variable.
W = Eref1 + Eref2 + Ecp + Ecwp1 + Ecwp2 + Ect (1)
However,
Eref1: Energy consumption of the high temperature side refrigerator [kW]
Eref2: Energy consumption [kW] of the low-temperature side refrigerator
Ecp: Energy consumption of chilled water pump [kW]
Ecwp1: Energy consumption of the high-temperature side cooling water pump [kW]
Ecwp2: Energy consumption of the low-temperature side cooling water pump [kW]
Ect: Energy consumption of the cooling tower [kW]
 つまり制御装置71は、式(1)に示される評価関数Wが最小となるように、冷却水の流量、冷水の流量、高温冷凍機出口冷水温度、低温冷凍機出口冷水温度、冷却塔出口冷却水温度の目標値を設定する。 That is, the control device 71 sets the cooling water flow rate, the cooling water flow rate, the high-temperature freezer outlet cold water temperature, the low-temperature freezer outlet cold water temperature, and the cooling tower outlet cooling so that the evaluation function W shown in Expression (1) is minimized. Set the target water temperature.
 具体的に制御装置71は、高温側冷凍機2aのエネルギ消費量(Eref1)、低温側冷凍機2bのエネルギ消費量(Eref2)、冷水ポンプ5のエネルギ消費量(Ecp)、高温側冷却水ポンプ4aのエネルギ消費量(Ecwp1)、低温側冷却水ポンプ4bのエネルギ消費量(Ecwp2)、冷却塔1のエネルギ消費量(Ect)、の各値を、評価関数Wが最小となる値に設定し、そのときの冷却水の流量、冷水の流量、高温冷凍機出口冷水温度、低温冷凍機出口冷水温度、冷却塔出口冷却水温度をそれぞれの目標値とする。 Specifically, the control device 71 includes an energy consumption amount (Eref1) of the high temperature side refrigerator 2a, an energy consumption amount (Eref2) of the low temperature side refrigerator 2b, an energy consumption amount (Ecp) of the cold water pump 5, and a high temperature side cooling water pump. The energy consumption (Ecwp1) of 4a, the energy consumption (Ecwp2) of the low temperature side cooling water pump 4b, and the energy consumption (Ect) of the cooling tower 1 are set to values that minimize the evaluation function W. The flow rate of the cooling water, the flow rate of the cold water, the cold water temperature at the high temperature refrigerator outlet, the cold water temperature at the low temperature refrigerator outlet, and the cooling water temperature at the cooling tower outlet are set as respective target values.
 そして、制御装置71は、冷却水の流量(高温側冷凍機2aにおける冷却水の流量、低温側冷凍機2bにおける冷却水の流量)、冷水の流量、高温冷凍機出口冷水温度、低温冷凍機出口冷水温度、冷却塔出口冷却水温度が、それぞれ設定した目標値となるように、制御対象(高温側冷却水ポンプ4a、低温側冷却水ポンプ4b、冷水ポンプ5、冷却ファン6)の制御目標値を設定する。 And the control apparatus 71 is the flow rate of cooling water (the flow rate of cooling water in the high temperature side refrigerator 2a, the flow rate of cooling water in the low temperature side refrigerator 2b), the flow rate of cold water, the high temperature refrigerator outlet cold water temperature, and the low temperature refrigerator exit. Control target values of the control target (high temperature side cooling water pump 4a, low temperature side cooling water pump 4b, cold water pump 5, cooling fan 6) so that the cold water temperature and the cooling tower outlet cooling water temperature become the set target values, respectively. Set.
 具体的に制御装置71は、高温側冷凍機2aにおける冷却水の流量が設定した目標値になるように高温側冷却水ポンプ4aの回転速度の制御目標値を決定し、低温側冷凍機2bにおける冷却水の流量が設定した目標値になるように低温側冷却水ポンプ4bの回転速度の制御目標値を決定し、冷水の流量が設定した目標値になるように冷水ポンプ5の回転速度の制御目標値を決定し、さらに、冷却塔出口冷却水温度が設定した目標値となるように冷却ファン6の回転速度の制御目標値を決定する。
 冷却塔出口冷却水温度は、冷却塔出口温度センサ31の計測値が一定となるような、冷却ファン6のON/OFFや回転速度のフィードバック制御によって、設定した目標値に維持される構成であってもよい。この構成によって、例えば外気状態が変動した場合であっても、冷却塔出口冷却水温度を設定した目標値に高い精度で維持できる。
 そして制御装置71は、制御目標値に基づいて制御対象を制御する。
 また、制御装置71は、負荷側3の要求負荷を運転負荷として、高温側冷凍機2aおよび低温側冷凍機2bを運転する。具体的に、高温側冷凍機2aの運転負荷と低温側冷凍機2bの運転負荷の合計が負荷側3の要求負荷となるように、高温側冷凍機2aおよび低温側冷凍機2bを部分負荷運転する。
 このとき、要求負荷を冷凍機1台あたりの運転負荷で除した値が、運転される冷凍機の台数となるような構成であってもよい。
 また、例えば、高温側冷凍機2aと低温側冷凍機2bの負荷が均等になるように運転負荷が配分される構成であってもよい。
Specifically, the control device 71 determines the control target value of the rotational speed of the high temperature side cooling water pump 4a so that the flow rate of the cooling water in the high temperature side refrigerator 2a becomes the set target value, and in the low temperature side refrigerator 2b. The control target value of the rotation speed of the low temperature side cooling water pump 4b is determined so that the flow rate of the cooling water becomes the set target value, and the rotation speed control of the cold water pump 5 is controlled so that the flow rate of the cooling water becomes the set target value. The target value is determined, and further, the control target value of the rotational speed of the cooling fan 6 is determined so that the cooling tower outlet cooling water temperature becomes the set target value.
The cooling tower outlet cooling water temperature is maintained at the set target value by ON / OFF of the cooling fan 6 and feedback control of the rotation speed so that the measured value of the cooling tower outlet temperature sensor 31 is constant. May be. With this configuration, for example, even when the outside air state fluctuates, the cooling tower outlet cooling water temperature can be maintained at a set target value with high accuracy.
And the control apparatus 71 controls a control object based on a control target value.
Further, the control device 71 operates the high temperature side refrigerator 2a and the low temperature side refrigerator 2b using the load demand on the load side 3 as an operation load. Specifically, the high temperature side refrigerator 2a and the low temperature side refrigerator 2b are partially loaded so that the sum of the operation load of the high temperature side refrigerator 2a and the operation load of the low temperature side refrigerator 2b becomes the required load on the load side 3. To do.
At this time, a configuration in which the value obtained by dividing the required load by the operating load per refrigerator is the number of refrigerators to be operated.
In addition, for example, the operation load may be distributed so that the loads on the high temperature side refrigerator 2a and the low temperature side refrigerator 2b are equal.
 この構成によって、冷凍機(高温側冷凍機2a、低温側冷凍機2b)を最大負荷で運転できない場合であっても、熱源システム100のCOP(Coefficient Of Performance)を高く維持して冷凍機を部分負荷運転することができ、省エネルギを図ることができる。 With this configuration, even when the refrigerator (high temperature side refrigerator 2a, low temperature side refrigerator 2b) cannot be operated at the maximum load, the COP (Coefficient Of Performance) of the heat source system 100 is maintained high and the refrigerator is partially Load operation can be performed and energy saving can be achieved.
 そして、制御装置71は、制御目標値の設定変更を、外気の状態(湿球温度)および負荷側3の要求負荷の変化に追従するように、所定の時間間隔(例えば10分間隔)で実行するように構成されることが好ましい。この構成によって熱源システム100は、外気の湿球温度および負荷側3の負荷が変化した場合であってもCOPを高く維持できる。 Then, the control device 71 changes the setting of the control target value at a predetermined time interval (for example, every 10 minutes) so as to follow the change in the outside air state (wet bulb temperature) and the required load on the load side 3. It is preferable to be configured to do so. With this configuration, the heat source system 100 can maintain a high COP even when the wet bulb temperature of the outside air and the load on the load side 3 change.
 なお、最適化演算において、運転する高温側冷凍機2aと低温側冷凍機2bの負荷配分を固定値とし、例えば熱源システム100の管理者等が任意に冷水の出口温度(高温冷凍機出口冷水温度、低温冷凍機出口冷水温度)を設定可能な構成としてもよい。この構成によると、例えば故障時やメンテナンス時に、冷凍機(高温側冷凍機2a、低温側冷凍機2b)の冷水の出口温度の設定変更ができない場合も対応可能となる。
 また、例えば、高温側冷凍機2aまたは低温側冷凍機2bのうちの1台を運転する場合の省エネルギを図ることができる。
In the optimization calculation, the load distribution of the high-temperature side refrigerator 2a and the low-temperature side refrigerator 2b to be operated is set to a fixed value. For example, the administrator of the heat source system 100 arbitrarily selects the outlet temperature of the cold water (high-temperature refrigerator outlet cold water temperature). It is good also as a structure which can set a low-temperature freezer exit cold water temperature). According to this configuration, for example, it is possible to cope with the case where the setting of the outlet temperature of the cold water of the refrigerator (high temperature side refrigerator 2a, low temperature side refrigerator 2b) cannot be changed at the time of failure or maintenance.
Further, for example, it is possible to save energy when operating one of the high temperature side refrigerator 2a or the low temperature side refrigerator 2b.
 図2(a)に、制御対象(高温側冷却水ポンプ4a、低温側冷却水ポンプ4b、冷水ポンプ5、冷却ファン6)の制御目標値を一定とした場合のCOPの変化を示し、図2(b)に、最適化演算に基づいて制御目標値を設定した場合のCOPの変化を示す。
 図2(a)、(b)は、高温側冷凍機2a(図1参照)と低温側冷凍機2b(図1参照)がともに100%の負荷率で運転される場合の負荷率を200%としている。
 ここでいう負荷率は、冷凍機の最大負荷に対する運転負荷の比とする。
FIG. 2 (a) shows the change in COP when the control target values of the controlled objects (the high temperature side cooling water pump 4a, the low temperature side cooling water pump 4b, the cold water pump 5, and the cooling fan 6) are constant. (B) shows the change in COP when the control target value is set based on the optimization calculation.
2 (a) and 2 (b) show a load factor of 200% when both the high temperature side refrigerator 2a (see FIG. 1) and the low temperature side refrigerator 2b (see FIG. 1) are operated at a load factor of 100%. It is said.
The load factor here is the ratio of the operating load to the maximum load of the refrigerator.
 一定の回転速度で運転されるターボ冷凍機は定格負荷近傍のときに最大効率となるため、所定の温度差のときに効率がよくなる。また、高温冷凍機出口冷水温度と低温冷凍機出口冷水温度は、熱源システム100(図1参照)の設計値として設定される。したがって、冷水系統では、定格負荷において、予め設定されている高温冷凍機入口温度と低温冷凍機出口冷水温度の温度差のときに高温側冷凍機2a、低温側冷凍機2bがそれぞれ効率よく運転されるように各冷凍機の最大負荷が決定される。 ∙ A turbo chiller operated at a constant rotational speed has maximum efficiency when it is near the rated load, so efficiency is improved when there is a predetermined temperature difference. The high temperature refrigerator outlet cold water temperature and the low temperature refrigerator outlet cold water temperature are set as design values of the heat source system 100 (see FIG. 1). Therefore, in the cold water system, the high-temperature side refrigerator 2a and the low-temperature side refrigerator 2b are efficiently operated when the temperature difference between the preset high-temperature refrigerator inlet temperature and the low-temperature refrigerator outlet cold water temperature at the rated load. Thus, the maximum load of each refrigerator is determined.
 しかしながら、外気の湿球温度や負荷側3の要求負荷の変化に応じて高温冷凍機入口冷水温度が変化し、高温側冷凍機2aの温度差(高温冷凍機入口冷水温度と高温冷凍機出口冷水温度の差)が小さくなる場合がある。このとき、高温側冷凍機2aは最大負荷で運転されず効率が低下する。 However, the temperature of the hot chiller inlet chilled water changes depending on the wet bulb temperature of the outside air or the load requirement on the load side 3, and the temperature difference between the hot chiller 2a (high temperature chiller inlet chilled water temperature and high temperature chiller outlet cold water). The temperature difference may be small. At this time, the high temperature side refrigerator 2a is not operated at the maximum load and the efficiency is lowered.
 図2(a)はこの状態を示した図であり、制御対象の制御目標値を一定にした場合、冷凍機の負荷率の低下にともなって熱源システム100(図1参照)のCOPが低下することを示す。 FIG. 2A is a diagram showing this state. When the control target value to be controlled is made constant, the COP of the heat source system 100 (see FIG. 1) decreases as the load factor of the refrigerator decreases. It shows that.
 これに対し、本実施形態に係る制御装置71(図1参照)は、外気の湿球温度や負荷側3(図1参照)の負荷が変化したとき、熱源システム100(図1参照)のエネルギ消費量の合計値を示す評価関数Wが最小になるように最適化演算する。そして、最適化演算に基づいて制御対象の制御目標値を設定し制御対象を制御する。さらに、高温側冷凍機2aおよび低温側冷凍機2bを部分負荷で運転する。
 図2(b)はこの状態を示した図であり、外気の湿球温度や負荷側3の負荷が変化して高温側冷凍機2aおよび低温側冷凍機2bが部分負荷で運転される状態であっても、熱源システム100のCOPが高く維持されることを示す。
On the other hand, the control device 71 (see FIG. 1) according to the present embodiment has the energy of the heat source system 100 (see FIG. 1) when the wet bulb temperature of the outside air or the load on the load side 3 (see FIG. 1) changes. Optimization calculation is performed so that the evaluation function W indicating the total value of consumption is minimized. Then, the control target value of the control target is set based on the optimization calculation, and the control target is controlled. Further, the high temperature side refrigerator 2a and the low temperature side refrigerator 2b are operated with partial loads.
FIG. 2 (b) is a diagram showing this state, in which the wet bulb temperature of the outside air and the load on the load side 3 change, and the high temperature side refrigerator 2a and the low temperature side refrigerator 2b are operated at a partial load. Even if it exists, it shows that COP of the heat source system 100 is maintained high.
 このように本実施形態に係る熱源システム100(図1参照)は、外気の湿球温度や負荷側3(図1参照)の負荷が変化した場合に、制御装置71(図1参照)が最適化演算を実行して制御対象の制御目標値を設定し、運転時のCOPを高く維持するように構成される。 Thus, in the heat source system 100 (see FIG. 1) according to the present embodiment, the control device 71 (see FIG. 1) is optimal when the wet bulb temperature of the outside air or the load on the load side 3 (see FIG. 1) changes. The control target value of the control target is set by executing the conversion calculation, and the COP during operation is kept high.
 つまり、本実施形態に係る熱源システム100(図1参照)は、冷水系統に直列に配設される高温側冷凍機2a(図1参照)と低温側冷凍機2b(図1参照)の負荷配分を好適に変更して、運転時のCOPを高く維持することができる。そして、省エネルギを図ることができる。 That is, the heat source system 100 (see FIG. 1) according to the present embodiment distributes the load between the high temperature side refrigerator 2a (see FIG. 1) and the low temperature side refrigerator 2b (see FIG. 1) arranged in series in the cold water system. Can be suitably changed to maintain a high COP during operation. And energy saving can be aimed at.
 なお、制御装置71(図1参照)が、外気の湿球温度の変化や負荷側3(図1参照)の要求負荷の変化に応じて最適化演算を実行する構成ではなく、外気の湿球温度と、負荷側3の要求負荷と、評価関数を最小とする制御目標値と、の対応を示すマップ形式のデータテーブルを予め設定しておく構成であってもよい。
 このような構成の場合、制御装置71は、外気の湿球温度と負荷側3の要求負荷に基づいて当該データテーブルを参照することによって、最適化演算を実行することなく、制御対象の制御目標値を、前記した評価関数を最小にするように設定できる。したがって、制御装置71の演算負荷を軽減できる。
Note that the control device 71 (see FIG. 1) is not configured to perform an optimization calculation according to a change in the wet bulb temperature of the outside air or a change in the required load on the load side 3 (see FIG. 1). A configuration may be adopted in which a map-format data table indicating correspondence between the temperature, the required load on the load side 3 and the control target value that minimizes the evaluation function is set in advance.
In the case of such a configuration, the control device 71 refers to the data table based on the wet bulb temperature of the outside air and the required load on the load side 3, thereby performing the control target of the control target without executing the optimization calculation. The value can be set to minimize the aforementioned evaluation function. Therefore, the calculation load of the control device 71 can be reduced.
 このようなデータテーブルは、例えば、熱源システム100(図1参照)をモデル化したシミュレータに外気の湿球温度と負荷側3(図1参照)の負荷を適宜入力して前記した最適化演算を実行し、入力された湿球温度と負荷に対応する制御対象の制御目標値を設定することによって作成できる。
 このように作成されるデータテーブルを、制御装置71(図1参照)の図示しない記憶部に記憶しておくことによって、制御装置71は、外気の湿球温度と負荷側3の要求負荷に応じて当該データテーブルを参照し、制御対象の制御目標値を設定できる。
Such a data table is obtained, for example, by appropriately inputting the wet bulb temperature of the outside air and the load on the load side 3 (see FIG. 1) into a simulator that models the heat source system 100 (see FIG. 1), and performing the above-described optimization calculation. It can be created by executing and setting the control target value of the control object corresponding to the input wet bulb temperature and load.
By storing the data table created in this manner in a storage unit (not shown) of the control device 71 (see FIG. 1), the control device 71 responds to the wet bulb temperature of the outside air and the required load on the load side 3. By referring to the data table, the control target value to be controlled can be set.
 また、本実施形態に係る熱源システム100(図1参照)を、予め決定されるタイムスケジュールに基づいて、所定の蓄熱時間帯に実行される蓄熱運転で蓄熱槽8に蓄熱する構成とすることもできる。そして蓄熱運転時、制御装置71(図1参照)は、高いCOPとなる負荷率に対応する負荷を冷凍機負荷として最適化演算することによって、熱源システム100のCOPを高く維持することが可能となる。 In addition, the heat source system 100 according to the present embodiment (see FIG. 1) may be configured to store heat in the heat storage tank 8 in a heat storage operation performed in a predetermined heat storage time zone based on a predetermined time schedule. it can. At the time of the heat storage operation, the control device 71 (see FIG. 1) can keep the COP of the heat source system 100 high by optimizing the load corresponding to the load factor at which the COP is high as the refrigerator load. Become.
 熱源システム100(図1参照)が蓄熱運転するタイムスケジュールは、例えば年間の外気変動のパターン等に基づいて、エネルギ消費量を最小にできる時間帯に蓄熱運転するように、所定の期間(月間や週間など)ごとに設定されることが好ましい。
 さらに、例えば制御装置71(図1参照)がカレンダ機能を有し、蓄熱運転する日付に合わせたタイムスケジュールで蓄熱運転することによって、熱源システム100の蓄熱運転におけるエネルギ消費量を抑制できる。この構成によって、蓄熱運転における省エネルギを図ることができる。
 また、蓄熱運転中の負荷率が、例えば過去における年間の負荷パターンと外気条件から予め予測されたデータとして図示しない記憶部等に記憶され、蓄熱運転時には制御装置71が当該記憶部から当該データを読み出して負荷率を設定する構成が好ましい。この構成によると、制御装置71は、熱源システム100が高いCOPとなる負荷率で蓄熱運転されたときに蓄熱時間で蓄熱槽8の蓄熱量が最大にならない場合を予測して負荷率を設定できる。そして、蓄熱時間に亘る蓄熱運転で蓄熱槽8の蓄熱量が最大にならないことを回避できる。
The time schedule for the heat storage operation of the heat source system 100 (see FIG. 1) is based on, for example, a predetermined period (monthly or monthly) so that the heat storage operation is performed in a time zone in which the energy consumption can be minimized based on, for example, an annual outdoor air fluctuation pattern. Preferably, it is set every week.
Furthermore, for example, the control device 71 (see FIG. 1) has a calendar function, and by performing the heat storage operation according to the time schedule that matches the date of the heat storage operation, the energy consumption in the heat storage operation of the heat source system 100 can be suppressed. With this configuration, it is possible to save energy in the heat storage operation.
Further, the load factor during the heat storage operation is stored in a storage unit (not shown) as data predicted in advance from the past load pattern and outside air conditions in the past, and the controller 71 stores the data from the storage unit during the heat storage operation. A configuration that reads and sets the load factor is preferable. According to this configuration, the control device 71 can set the load factor by predicting the case where the heat storage amount of the heat storage tank 8 does not become the maximum in the heat storage time when the heat source system 100 is subjected to the heat storage operation at a load factor that results in a high COP. . And it can avoid that the thermal storage amount of the thermal storage tank 8 does not become the maximum by the thermal storage operation over thermal storage time.
 図3を参照して、制御装置71(図1参照)が蓄熱運転するときの手順を説明する(適宜図1,2参照)。
 例えば、午後8時(20時)から明朝の午前8時までが蓄熱運転時間として設定されるタイムスケジュールの場合、制御装置71は、20時になると、蓄熱槽8に蓄熱する熱量と外気の湿球温度を算出する(ステップS100)。
 具体的に制御装置71は、蓄熱槽8の蓄熱量が所定の蓄熱量(定格蓄熱量)に対して不足している熱量を蓄熱する熱量とする。
 例えば制御装置71は、蓄熱槽8の蓄熱槽温度が、予め設定される所定の温度まで低下するのに必要な熱量を蓄熱する熱量(冷却量)とする。
With reference to FIG. 3, the procedure when the control device 71 (see FIG. 1) performs the heat storage operation will be described (see FIGS. 1 and 2 as appropriate).
For example, in the case of a time schedule in which the heat storage operation time is set from 8:00 pm (20 pm) to 8:00 am tomorrow morning, the control device 71 will store the amount of heat stored in the heat storage tank 8 and the humidity of the outside air at 20:00. The sphere temperature is calculated (step S100).
Specifically, the control device 71 sets the amount of heat that the heat storage amount of the heat storage tank 8 is insufficient with respect to a predetermined heat storage amount (rated heat storage amount) as the heat amount for storing heat.
For example, the controller 71 sets the amount of heat (cooling amount) to store the amount of heat necessary for the heat storage tank temperature of the heat storage tank 8 to fall to a predetermined temperature set in advance.
 また制御装置71は、予め設定されている負荷を冷凍機負荷とする。つまり制御装置71は、冷凍機負荷を設定する(ステップS101)。
 例えば、図2(b)で示されるCOPが最大の負荷率に対応した負荷が設定されている場合、蓄熱運転時に、熱源システム100のCOPを最大に維持することができる。
Further, the control device 71 sets a preset load as a refrigerator load. That is, the control device 71 sets the refrigerator load (step S101).
For example, when the load corresponding to the maximum load factor of the COP shown in FIG. 2B is set, the COP of the heat source system 100 can be maintained at the maximum during the heat storage operation.
 そして制御装置71は、冷凍機負荷、外気の湿球温度、冷却塔出口冷却水温度、高温冷凍機出口冷水温度、低温冷凍機出口冷水温度、冷却水の流量、および冷水の流量をパラメータとし、前記したように、式(1)で示される評価関数Wが最小となるように最適化演算を実行する(ステップS102)。 The control device 71 uses the refrigerator load, the wet bulb temperature of the outside air, the cooling tower outlet cooling water temperature, the high temperature refrigerator outlet cooling water temperature, the low temperature refrigerator outlet cooling water temperature, the cooling water flow rate, and the cooling water flow rate as parameters, As described above, the optimization operation is executed so that the evaluation function W represented by the expression (1) is minimized (step S102).
 さらに、制御装置71は、最適化演算に基づいて設定される制御目標値で制御対象を制御する(ステップS103)。 Furthermore, the control device 71 controls the controlled object with a control target value set based on the optimization calculation (step S103).
 制御装置71は、所定の単位時間(例えば、10分)間隔でステップS100~S103の手順を繰り返し実行することにより、最大のCOPとなる冷凍機負荷で冷凍機を運転して蓄熱運転できる。 The control device 71 can perform the heat storage operation by operating the refrigerator with the refrigerator load at the maximum COP by repeatedly executing the procedures of steps S100 to S103 at predetermined unit time (for example, 10 minutes) intervals.
 従来、図4(a)に示すように、熱源システム100は、蓄熱時間帯である午後8時(20時)から明朝の午前8時まで、冷却量が100%になるような冷凍機負荷で冷凍機が運転されて蓄熱運転される。なお、図4(a)、(b)は、負荷率が200%のときの冷却量を100%としている。
 しかしながら、例えば図2(b)に示すように、負荷率が200%のときに熱源システム100のCOPが最大にならない場合、負荷率が200%となる冷凍機負荷での冷凍機の運転より、熱源システム100のCOPが最大となる負荷率(例えば、150%)で冷凍機を運転したほうがエネルギ消費量を抑えることができる。
Conventionally, as shown in FIG. 4 (a), the heat source system 100 has a refrigerator load in which the cooling amount is 100% from 8:00 pm (20 pm) which is a heat storage time zone to 8:00 am tomorrow morning. The refrigerator is operated and the heat storage operation is performed. 4A and 4B, the cooling amount when the load factor is 200% is 100%.
However, as shown in FIG. 2B, for example, when the COP of the heat source system 100 does not become maximum when the load factor is 200%, the operation of the refrigerator with the refrigerator load at which the load factor becomes 200%, Energy consumption can be suppressed by operating the refrigerator at a load factor (for example, 150%) at which the COP of the heat source system 100 is maximized.
 この場合、図4(b)に示すように、例えば1時間ごとの冷却量は100%以下になるため、蓄熱運転する時間(冷凍機の駆動時間)は長くなるが、エネルギの消費量は少なくなる。
 つまり、図4(b)に示される棒グラフの総面積(網掛けで示される部分の面積)は、図4(a)に示される棒グラフの総面積(網掛けで示される部分の面)より小さくなる。
In this case, as shown in FIG. 4 (b), for example, the amount of cooling per hour is 100% or less, so the time for the heat storage operation (the drive time of the refrigerator) becomes long, but the amount of energy consumption is small. Become.
That is, the total area of the bar graph shown in FIG. 4B (area of the portion shown by shading) is smaller than the total area of the bar graph shown in FIG. 4A (surface of the portion shown by shading). Become.
 このように、本実施形態に係る熱源システム100(図1参照)は、蓄熱運転時に、熱源システム100のCOPが最大となる負荷率で冷凍機(高温側冷凍機2a(図1参照)、低温側冷凍機2b(図1参照))を運転することができ、蓄熱運転における省エネルギを図ることができる。 Thus, the heat source system 100 (see FIG. 1) according to the present embodiment has a refrigerator (high temperature side refrigerator 2a (see FIG. 1), low temperature) at a load factor that maximizes the COP of the heat source system 100 during the heat storage operation. The side refrigerator 2b (see FIG. 1) can be operated, and energy saving in the heat storage operation can be achieved.
 また、本実施形態に係る熱源システム100(図1参照)は、冷却運転時に負荷側3(図1参照)の要求負荷に対し、最大のCOPに対応する負荷率となる負荷を運転負荷として冷凍機を部分負荷運転し、冷凍機の運転負荷と負荷側3の要求負荷の差分を蓄熱槽8(図1参照)の蓄熱量で調節する構成とすることも可能である。
 例えば、負荷側3の要求負荷に対応する冷凍機の負荷率が200%のとき、図2(b)に示すように、最大のCOPに対応する負荷率が200%より低い負荷率(例えば、150%)にある場合には、最大のCOPに対応した負荷率となる負荷を運転負荷として冷凍機を運転し、要求負荷に対する不足を蓄熱槽8の蓄熱の消費で充当する構成としてもよい。
Further, the heat source system 100 (see FIG. 1) according to the present embodiment is refrigerated with a load having a load factor corresponding to the maximum COP with respect to the required load on the load side 3 (see FIG. 1) during the cooling operation. It is also possible to perform a partial load operation of the machine and adjust the difference between the operation load of the refrigerator and the required load on the load side 3 by the amount of heat stored in the heat storage tank 8 (see FIG. 1).
For example, when the load factor of the refrigerator corresponding to the required load on the load side 3 is 200%, as shown in FIG. 2B, the load factor corresponding to the maximum COP is lower than 200% (for example, 150%), the refrigerator may be operated using a load having a load factor corresponding to the maximum COP as an operating load, and the shortage with respect to the required load may be allocated by the heat storage consumption of the heat storage tank 8.
 この場合、蓄熱槽8(図1参照)の熱容量が大きいときは、負荷側3(図1参照)の要求負荷の変動を蓄熱槽8の蓄熱量で吸収することができ、冷凍機が蓄熱槽8に蓄熱するための負荷を一定にできる。したがって、最大のCOPに対応する負荷率で冷凍機を運転できる。
 これに対して蓄熱槽8の熱容量が小さいとき、蓄熱槽8の蓄熱量が消費されると負荷側3の要求負荷が蓄熱槽8の蓄熱量を超える場合がある。この場合、負荷側3の要求負荷を蓄熱槽8の蓄熱で充当できなくなり、負荷側3の要求負荷に対応する負荷率となるように冷凍機を運転する構成が好ましい。
In this case, when the heat capacity of the heat storage tank 8 (see FIG. 1) is large, fluctuations in the required load on the load side 3 (see FIG. 1) can be absorbed by the amount of heat stored in the heat storage tank 8, and the refrigerator is stored in the heat storage tank. The load for storing heat in 8 can be made constant. Therefore, the refrigerator can be operated at a load factor corresponding to the maximum COP.
On the other hand, when the heat capacity of the heat storage tank 8 is small, the required load on the load side 3 may exceed the heat storage amount of the heat storage tank 8 when the heat storage amount of the heat storage tank 8 is consumed. In this case, a configuration in which the refrigerator is operated so that the required load on the load side 3 cannot be applied by the heat storage in the heat storage tank 8 and the load factor corresponding to the required load on the load side 3 is obtained.
 図5を参照して、制御装置71(図1参照)が蓄熱槽8(図1参照)へ蓄熱しながら、熱源システム100(図1参照)が最大のCOPとなる負荷率で冷凍機を運転する手順を説明する(適宜、図1,2参照)。 Referring to FIG. 5, while the control device 71 (see FIG. 1) stores heat in the heat storage tank 8 (see FIG. 1), the heat source system 100 (see FIG. 1) operates the refrigerator at a load factor at which the maximum COP is obtained. The procedure is described (refer to FIGS. 1 and 2 as appropriate).
 最初に制御装置71は、冷水が負荷側3を冷却する負荷(負荷側3の要求負荷)および外気の湿球温度を算出する(ステップS1)。
 負荷側3の要求負荷は、前記したように二次側冷水系統における冷水流量、蓄熱槽二次入口冷水温度、蓄熱槽二次出口冷水温度に基づいて演算できる。
First, the control device 71 calculates a load (required load on the load side 3) by which cold water cools the load side 3 and a wet bulb temperature of the outside air (step S1).
The required load on the load side 3 can be calculated based on the cold water flow rate, the heat storage tank secondary inlet cold water temperature, and the heat storage tank secondary outlet cold water temperature in the secondary side cold water system as described above.
 さらに制御装置71は、駆動している高温側冷凍機2aおよび低温側冷凍機2bの運転負荷と負荷側3の負荷とに基づいて、蓄熱槽8の蓄熱量を算出する(ステップS2)。具体的に、制御装置71は、冷凍機の運転負荷と負荷側3の負荷の差に基づいて蓄熱槽8に蓄熱可能な熱量を算出し、算出した熱量の、冷却システム100の運転中の積分値を蓄熱槽8の蓄熱量とする。 Further, the control device 71 calculates the amount of heat stored in the heat storage tank 8 based on the operating load of the high temperature side refrigerator 2a and the low temperature side refrigerator 2b being driven and the load on the load side 3 (step S2). Specifically, the control device 71 calculates the amount of heat that can be stored in the heat storage tank 8 based on the difference between the operating load of the refrigerator and the load on the load side 3, and integrates the calculated amount of heat during operation of the cooling system 100. The value is the amount of heat stored in the heat storage tank 8.
 制御装置71は、算出した蓄熱量が下限値より低い場合(ステップS3→Yes)、負荷側3の要求負荷と、冷凍機の現在の運転負荷を比較する(ステップS4)。そして、要求負荷が運転負荷よりも小さいとき(ステップS4→Yes)、制御装置71は、蓄熱運転するときの負荷として予め設定されている負荷を冷凍機負荷に設定(ステップS5)し、要求負荷が運転負荷以上のときは(ステップS4→No)、負荷側3の要求負荷を冷凍機負荷に設定する(ステップS6)。
 蓄熱運転するときの負荷として予め設定されている負荷は、例えば前記したように、熱源システム100のCOPが最大の負荷率に対応する負荷であることが好ましい。
 また蓄熱量の下限値は、蓄熱槽8の設計値として予め設定されていることが好ましい。
When the calculated heat storage amount is lower than the lower limit value (step S3 → Yes), the control device 71 compares the required load on the load side 3 with the current operating load of the refrigerator (step S4). When the required load is smaller than the operating load (step S4 → Yes), the control device 71 sets the load preset as the load for the heat storage operation to the refrigerator load (step S5), and the required load Is greater than the operating load (step S4 → No), the required load on the load side 3 is set to the refrigerator load (step S6).
For example, as described above, the load set in advance as the load when performing the heat storage operation is preferably a load corresponding to the maximum load factor of the COP of the heat source system 100.
The lower limit value of the heat storage amount is preferably set in advance as a design value of the heat storage tank 8.
 なお、蓄熱槽8の蓄熱量を下限値と比較する場合、例えば、蓄熱槽温度センサ8aが計測する蓄熱槽温度が予め設定される閾値より高いときに、制御装置71が、蓄熱槽8の蓄熱量が下限値より低いと判定する構成であってもよい。この場合、蓄熱量の下限値は閾値となる温度として設定されていることが好ましい。 In addition, when comparing the heat storage amount of the heat storage tank 8 with a lower limit value, for example, when the heat storage tank temperature measured by the heat storage tank temperature sensor 8a is higher than a preset threshold, the control device 71 stores the heat storage of the heat storage tank 8. The structure which determines with the quantity being lower than a lower limit may be sufficient. In this case, it is preferable that the lower limit value of the heat storage amount is set as a threshold temperature.
 そして、制御装置71は、冷凍機負荷、外気の湿球温度、冷却塔出口冷却水温度または冷却ファン6の回転速度比、高温冷凍機出口冷水温度、低温冷凍機出口冷水温度、高温側冷却水ポンプ4aと低温側冷却水ポンプ4bの回転速度比または冷却水の流量比、および冷水ポンプ5の回転速度比または冷水の流量比をパラメータとし、前記したように、式(1)で示される評価関数Wが最小となるように最適化演算を実行し(ステップS7)、制御対象の制御目標値を設定する。
 そして制御装置71は、制御目標値に基づいて制御対象を制御する(ステップS8)。
 なお、冷却ファン6の回転速度比、高温側冷却水ポンプ4a、低温側冷却水ポンプ4bの回転速度比、冷水ポンプ5の回転速度比は、それぞれ定格回転速度に対する比である。
Then, the control device 71 includes the refrigerator load, the wet bulb temperature of the outside air, the cooling tower outlet cooling water temperature or the rotation speed ratio of the cooling fan 6, the high temperature refrigerator outlet cooling water temperature, the low temperature refrigerator outlet cooling water temperature, and the high temperature side cooling water. Using the rotation speed ratio or cooling water flow rate ratio of the pump 4a and the low temperature side cooling water pump 4b and the rotation speed ratio or cooling water flow rate ratio of the cold water pump 5 as parameters, as described above, the evaluation represented by the equation (1) An optimization calculation is executed so that the function W is minimized (step S7), and a control target value to be controlled is set.
And the control apparatus 71 controls a control object based on a control target value (step S8).
The rotational speed ratio of the cooling fan 6, the rotational speed ratio of the high temperature side cooling water pump 4a and the low temperature side cooling water pump 4b, and the rotational speed ratio of the cold water pump 5 are ratios to the rated rotational speed, respectively.
 一方、ステップS3において、算出した蓄熱量が予め設定される蓄熱量の下限値以上の場合(ステップS3→No)、制御装置71は、当該蓄熱量と蓄熱量の上限値を比較する(ステップS9)。そして、当該蓄熱量が上限値より小さいとき(ステップS9→Yes)、制御装置71は手順をステップS5に進める。
 つまり、制御装置71は、蓄熱運転するときの負荷を冷凍機負荷に設定する。
 また、当該蓄熱量が蓄熱量の上限値以上のとき(ステップS9→No)、制御装置71は、蓄熱槽8の蓄熱で負荷側3を冷却できると判定して冷凍機を停止する(ステップS10)。
 なお蓄熱量の上限値は、蓄熱槽8の設計値として予め設定されていることが好ましい。
 また、蓄熱量の下限値との比較と同様に、蓄熱槽温度センサ8aが計測する蓄熱槽温度が予め設定される閾値より低いときに、制御装置71が、蓄熱槽8の蓄熱量が上限値より高いと判定する構成であってもよい。この場合、蓄熱量の上限値は閾値となる温度として設定されていることが好ましい。
On the other hand, when the calculated heat storage amount is equal to or greater than the preset lower limit value of the heat storage amount (step S3 → No), the control device 71 compares the heat storage amount with the upper limit value of the heat storage amount (step S9). ). And when the said heat storage amount is smaller than an upper limit (step S9-> Yes), the control apparatus 71 advances a procedure to step S5.
That is, the control device 71 sets the load when performing the heat storage operation to the refrigerator load.
Moreover, when the said heat storage amount is more than the upper limit of heat storage amount (step S9-> No), the control apparatus 71 determines with the heat storage tank 8 heat storage being able to cool the load side 3, and stops a refrigerator (step S10). ).
The upper limit value of the heat storage amount is preferably set in advance as a design value of the heat storage tank 8.
Similarly to the comparison with the lower limit value of the heat storage amount, when the heat storage tank temperature measured by the heat storage tank temperature sensor 8a is lower than a preset threshold value, the control device 71 determines that the heat storage amount of the heat storage tank 8 is the upper limit value. The structure which determines with it being higher may be sufficient. In this case, the upper limit value of the heat storage amount is preferably set as a threshold temperature.
 そして、制御装置71は、負荷側3を冷却する間、前記したように、例えば10分間隔などの所定の時間間隔でステップS1~S10の手順を繰り返し実行することにより、外気の湿球温度や負荷側3の要求負荷が変化した場合であっても熱源システム100のCOPを最大に維持することができる。 Then, as described above, the control device 71 repeatedly executes the steps S1 to S10 at a predetermined time interval such as a 10-minute interval while cooling the load side 3 to thereby adjust the wet bulb temperature of the outside air. Even when the required load on the load side 3 changes, the COP of the heat source system 100 can be maintained at the maximum.
 この構成によると、蓄熱槽8(図1参照)の蓄熱量(冷却量)が下限値以上で上限値より小さい場合、熱源システム100のCOPが最大になる負荷率で冷凍機が部分負荷運転されて蓄熱槽8に蓄熱できる。そして、熱源システム100のCOPを最大にすることができ、冷却運転時の省エネルギを図ることができる。
 また、蓄熱槽8の蓄熱量(冷却量)が下限値より小さい場合に、負荷側3の要求負荷が冷凍機の運転負荷より小さいときも熱源システム100のCOPが最大になる負荷率で冷凍機が運転されて蓄熱槽8に蓄熱できる。つまり、負荷側3の要求負荷が小さくなった場合であっても熱源システム100のCOPを最大に維持できる。
According to this configuration, when the heat storage amount (cooling amount) of the heat storage tank 8 (see FIG. 1) is greater than the lower limit value and smaller than the upper limit value, the refrigerator is partially loaded at a load factor at which the COP of the heat source system 100 is maximized. Heat can be stored in the heat storage tank 8. Further, the COP of the heat source system 100 can be maximized, and energy saving during the cooling operation can be achieved.
In addition, when the heat storage amount (cooling amount) of the heat storage tank 8 is smaller than the lower limit value, the refrigerator at a load factor that maximizes the COP of the heat source system 100 even when the required load on the load side 3 is smaller than the operating load of the refrigerator. Can be stored in the heat storage tank 8. That is, even when the required load on the load side 3 becomes small, the COP of the heat source system 100 can be maintained at the maximum.
 また、蓄熱槽8(図1参照)の蓄熱量が所定の下限値より小さい場合に、負荷側3の要求負荷が冷凍機の運転負荷以上のときは、冷凍機を負荷側3の要求負荷で部分負荷運転し、さらに、エネルギ消費量が最小になるように最適化演算することによって熱源システム100のCOPを高く維持することができ、省エネルギを図ることができる。
 さらに蓄熱槽8の蓄熱量が所定の上限値以上の場合は、冷凍機を停止することができるため、この場合も省エネルギを図ることができる。
 以上のように制御装置71(図1参照)は、冷却運転時に熱源システム100(図1参照)のCOPを高く維持して冷凍機を部分負荷運転することができ、省エネルギを図ることができる。
 例えば、蓄熱槽8の熱容量が小さい場合でも、蓄熱槽8を熱バッファとして利用して運転時のCOPを高く維持することができる。そして、省エネルギを図ることができる。
Further, when the amount of heat stored in the heat storage tank 8 (see FIG. 1) is smaller than a predetermined lower limit value, if the required load on the load side 3 is equal to or higher than the operating load of the refrigerator, the refrigerator is replaced with the required load on the load side 3 The COP of the heat source system 100 can be kept high by performing the partial load operation and further performing the optimization calculation so that the energy consumption is minimized, and energy saving can be achieved.
Furthermore, since the refrigerator can be stopped when the amount of heat stored in the heat storage tank 8 is equal to or greater than a predetermined upper limit value, energy can be saved also in this case.
As described above, the control device 71 (see FIG. 1) can maintain the COP of the heat source system 100 (see FIG. 1) high during the cooling operation, and can perform partial load operation of the refrigerator, thereby saving energy. .
For example, even when the heat capacity of the heat storage tank 8 is small, the COP during operation can be kept high by using the heat storage tank 8 as a heat buffer. And energy saving can be aimed at.
 さらに、外気の湿球温度、負荷側3(図1参照)の要求負荷、蓄熱槽8(図1参照)の蓄熱量、の少なくとも1つが変化した場合であっても、制御装置71(図1参照)は、最適化演算を実行して、その変化に対応した制御目標値を設定することができ、熱源システム100(図1参照)のCOPを高く維持することができる。 Furthermore, even when at least one of the wet bulb temperature of the outside air, the required load on the load side 3 (see FIG. 1), and the heat storage amount of the heat storage tank 8 (see FIG. 1) change, the control device 71 (FIG. 1). (Refer to FIG. 1), an optimization calculation can be executed to set a control target value corresponding to the change, and the COP of the heat source system 100 (see FIG. 1) can be kept high.
 なお、ステップS7で最適化演算する構成に替えて、前記したように制御装置71(図1参照)が、外気の湿球温度と、負荷側3(図1参照)の要求負荷と、蓄熱槽8(図1参照)の蓄熱量と、に基づいて、予め設定されるデータテーブルを参照して制御対象の制御目標値を設定する構成としてもよい。
 つまり、ステップS7で最適化演算することなく、予め設定されるデータテーブルに基づいて、制御装置71が制御対象の制御目標値を設定する構成としてもよい。
 この場合のデータテーブルは、例えば図6に示すように、外気の湿球温度と、負荷側3の要求負荷と蓄熱槽8の蓄熱量とから判定される冷凍機の負荷率と、評価関数を最小とする制御目標値と、の対応を示すマップ形式のデータテーブルであることが好ましい。
 なお、図6には、外気の湿球温度と、冷凍機の負荷率と、高温側冷却水ポンプ4aの回転速度比と、の関係を示すデータテーブルが一例として示されている。このようなデータテーブルを、他の制御対象の制御目標値ごとに設定すれば、制御装置71は、外気の湿球温度と、冷凍機の負荷率と、に基づいて制御対象の制御目標値を設定できる。
 また、蓄熱槽8の蓄熱量は、負荷側3の負荷と冷凍機(高温側冷凍機2a、低温側冷凍機2b)の負荷率から演算可能である。
 また、図6に示すようなデータテーブルを作成するための制御目標値の最適化演算は、例えば、冷水系統の負荷率をパラメータとすることが好ましい。
In addition, it changes to the structure which optimizes calculation by step S7, and as above-mentioned, the control apparatus 71 (refer FIG. 1), the wet bulb temperature of external air, the required load of the load side 3 (refer FIG. 1), and a thermal storage tank It is good also as a structure which sets the control target value of a control object with reference to the data table set beforehand based on the heat storage amount of 8 (refer FIG. 1).
That is, the control device 71 may set the control target value to be controlled based on a preset data table without performing the optimization calculation in step S7.
For example, as shown in FIG. 6, the data table in this case includes a load factor of the refrigerator determined from the wet bulb temperature of the outside air, the required load on the load side 3 and the heat storage amount of the heat storage tank 8, and an evaluation function. It is preferable that the data table is a map format showing the correspondence between the minimum control target value.
FIG. 6 shows an example of a data table indicating the relationship between the wet bulb temperature of the outside air, the load factor of the refrigerator, and the rotation speed ratio of the high-temperature side cooling water pump 4a. If such a data table is set for each control target value of another control target, the control device 71 sets the control target value of the control target based on the wet bulb temperature of the outside air and the load factor of the refrigerator. Can be set.
The amount of heat stored in the heat storage tank 8 can be calculated from the load on the load side 3 and the load factor of the refrigerator (high temperature side refrigerator 2a, low temperature side refrigerator 2b).
Moreover, it is preferable that the optimization calculation of the control target value for creating a data table as shown in FIG. 6 uses the load factor of a chilled water system as a parameter, for example.
 以上のように、本実施形態に係る熱源システム100(図1参照)は、冷却運転時や蓄熱運転時に、外気の湿球温度の変化および負荷側3(図1参照)の負荷の変化に応じた最適化演算に基づいて制御対象(高温側冷却水ポンプ4a(図1参照)、低温側冷却水ポンプ4b(図1参照)、冷水ポンプ5(図1参照)、冷却ファン6(図1参照))の制御目標値を設定することができる。そして、熱源システム100のCOPを高く維持することができ、省エネルギを図ることができる。 As described above, the heat source system 100 (see FIG. 1) according to the present embodiment responds to changes in the wet bulb temperature of the outside air and changes in the load on the load side 3 (see FIG. 1) during the cooling operation and the heat storage operation. Control objects (high temperature side cooling water pump 4a (see FIG. 1), low temperature side cooling water pump 4b (see FIG. 1), cold water pump 5 (see FIG. 1), cooling fan 6 (see FIG. 1) )) Control target value can be set. And COP of the heat source system 100 can be maintained high, and energy saving can be aimed at.
 なお、本実施形態は、冷却水系統の構成が異なる熱源システムに適用することも可能である。例えば、図1に示す熱源システム100は、冷却水系統において高温側冷凍機2aと低温側冷凍機2bが並列に配置されているが、図7に示すように、冷却水系統において高温側冷凍機2aと低温側冷凍機2bが直列に配置されている熱源システム101に、本実施形態を適用することも可能である。 Note that the present embodiment can also be applied to heat source systems having different cooling water system configurations. For example, in the heat source system 100 shown in FIG. 1, the high temperature side refrigerator 2a and the low temperature side refrigerator 2b are arranged in parallel in the cooling water system, but as shown in FIG. 7, the high temperature side refrigerator in the cooling water system. It is also possible to apply this embodiment to the heat source system 101 in which 2a and the low temperature side refrigerator 2b are arranged in series.
 図7に示す熱源システム101は、冷却塔1の出口側に接続される冷却水往管61aに高温側冷却水ポンプ4aと高温側冷凍機2aと低温側冷凍機2bが直列に配設され、冷却塔1で冷却された冷却水が高温側冷却水ポンプ4aによって高温側冷凍機2aと低温側冷凍機2bに順に送り込まれる。そして、低温側冷凍機2bの出口側は冷却水復管62aによって冷却塔1の入口側と接続され、低温側冷凍機2bから流出した冷却水が冷却塔1に流入するように構成される。その他の構成は、図1に示す熱源システム100と同等である。
 この構成の場合、冷却水系統における冷却水の流量は、高温側冷却水ポンプ4aの回転速度によって決定される。
In the heat source system 101 shown in FIG. 7, a high-temperature side cooling water pump 4a, a high-temperature side refrigerator 2a, and a low-temperature side refrigerator 2b are arranged in series on a cooling water outgoing pipe 61a connected to the outlet side of the cooling tower 1. The cooling water cooled by the cooling tower 1 is sequentially sent to the high temperature side refrigerator 2a and the low temperature side refrigerator 2b by the high temperature side cooling water pump 4a. And the exit side of the low temperature side refrigerator 2b is connected with the inlet side of the cooling tower 1 by the cooling water return pipe 62a, and the cooling water which flowed out from the low temperature side refrigerator 2b flows into the cooling tower 1. Other configurations are the same as those of the heat source system 100 shown in FIG.
In the case of this configuration, the flow rate of the cooling water in the cooling water system is determined by the rotational speed of the high temperature side cooling water pump 4a.
 図7に示す熱源システム101は、冷却水系統に1つの高温側冷却水ポンプ4aが配設される構成であり、図1に示す熱源システム100に比べて、ポンプの数を削減できる。したがって、図1に示す熱源システム100に比べて低コストで構成できる。 7 has a configuration in which one high-temperature side cooling water pump 4a is disposed in the cooling water system, and the number of pumps can be reduced as compared with the heat source system 100 shown in FIG. Therefore, it can be configured at a lower cost than the heat source system 100 shown in FIG.
 また、図8に示すように、高温側冷却水系統と低温側冷却水系統の2つの冷却水系統を有し、高温側冷却水系統に高温側冷却塔1aを備え、低温側冷却水系統に低温側冷却塔1bを備える熱源システム102に本実施形態を適用することもできる。
 高温側冷却塔1aには、インバータ51aで駆動する冷却ファン6aが備わり、高温側冷却塔1aに流入した冷却水は、冷却ファン6aによって送風される外気によって冷却される。冷却ファン6aはインバータ51aに入力される周波数が制御されることによって回転速度が制御される。
 また、低温側冷却塔1bには、インバータ51bで駆動する冷却ファン6bが備わり、低温側冷却塔1bに流入した冷却水は、冷却ファン6bによって送風される外気によって冷却される。冷却ファン6bはインバータ51bに入力される周波数が制御されることによって回転速度が制御される。
 つまり、インバータ51a、51bに入力される周波数が制御されることによって、高温側冷却塔1a、低温側冷却塔1bへの送風量が制御される。
Moreover, as shown in FIG. 8, it has two cooling water systems, a high temperature side cooling water system and a low temperature side cooling water system, the high temperature side cooling water system includes a high temperature side cooling tower 1a, and the low temperature side cooling water system includes The present embodiment can also be applied to the heat source system 102 including the low temperature side cooling tower 1b.
The high temperature side cooling tower 1a is provided with a cooling fan 6a driven by an inverter 51a, and the cooling water flowing into the high temperature side cooling tower 1a is cooled by outside air blown by the cooling fan 6a. The rotation speed of the cooling fan 6a is controlled by controlling the frequency input to the inverter 51a.
The low temperature side cooling tower 1b is provided with a cooling fan 6b driven by the inverter 51b, and the cooling water flowing into the low temperature side cooling tower 1b is cooled by outside air blown by the cooling fan 6b. The rotation speed of the cooling fan 6b is controlled by controlling the frequency input to the inverter 51b.
That is, by controlling the frequency input to the inverters 51a and 51b, the amount of air blown to the high temperature side cooling tower 1a and the low temperature side cooling tower 1b is controlled.
 高温側冷却水系統は、高温側冷却塔1aの出口側に接続される冷却水往管610aに高温側冷却水ポンプ4aと高温側冷凍機2aが配設され、高温側冷却塔1aで冷却された冷却水が高温側冷却水ポンプ4aによって高温側冷凍機2aに送り込まれる。高温側冷凍機2aの出口側は冷却水復管620aによって高温側冷却塔1aの入口側と接続され、高温側冷凍機2aから流出した冷却水が高温側冷却塔1aに流入するように構成される。
 低温側冷却水系統は、低温側冷却塔1bの出口側に接続される冷却水往管610bに低温側冷却水ポンプ4bと低温側冷凍機2bが配設され、低温側冷却塔1bで冷却された冷却水が低温側冷却水ポンプ4bによって低温側冷凍機2bに送り込まれる。低温側冷凍機2bの出口側は冷却水復管620bによって低温側冷却塔1bの入口側と接続され、低温側冷凍機2bから流出した冷却水が低温側冷却塔1bに流入するように構成される。
In the high temperature side cooling water system, a high temperature side cooling water pump 4a and a high temperature side refrigerator 2a are disposed in a cooling water outgoing pipe 610a connected to the outlet side of the high temperature side cooling tower 1a, and are cooled by the high temperature side cooling tower 1a. The cooled water is fed into the high temperature side refrigerator 2a by the high temperature side cooling water pump 4a. The outlet side of the high temperature side refrigerator 2a is connected to the inlet side of the high temperature side cooling tower 1a by a cooling water return pipe 620a so that the cooling water flowing out from the high temperature side refrigerator 2a flows into the high temperature side cooling tower 1a. The
In the low temperature side cooling water system, a low temperature side cooling water pump 4b and a low temperature side refrigerator 2b are arranged in a cooling water outgoing pipe 610b connected to the outlet side of the low temperature side cooling tower 1b, and are cooled by the low temperature side cooling tower 1b. The cooled water is sent to the low temperature side refrigerator 2b by the low temperature side cooling water pump 4b. The outlet side of the low temperature side refrigerator 2b is connected to the inlet side of the low temperature side cooling tower 1b by a cooling water return pipe 620b, and the cooling water flowing out from the low temperature side refrigerator 2b flows into the low temperature side cooling tower 1b. The
 図1に示す熱源システム100と同様、高温側冷却水ポンプ4aはインバータ52aによって駆動され、低温側冷却水ポンプ4bはインバータ52bによって駆動される。
 そして、高温側冷却水ポンプ4aおよび低温側冷却水ポンプ4bは、それぞれインバータ52a、52bに入力される周波数が制御されることによって回転速度が制御される。
 つまり、インバータ52aに入力される周波数が制御されることによって高温側冷却水系統における冷却水の流量が制御され、インバータ52bに入力される周波数が制御されることによって低温側冷却水系統における冷却水の流量が制御される。
Similar to the heat source system 100 shown in FIG. 1, the high temperature side cooling water pump 4a is driven by the inverter 52a, and the low temperature side cooling water pump 4b is driven by the inverter 52b.
The rotation speeds of the high temperature side cooling water pump 4a and the low temperature side cooling water pump 4b are controlled by controlling the frequencies input to the inverters 52a and 52b, respectively.
That is, the flow rate of the cooling water in the high temperature side cooling water system is controlled by controlling the frequency input to the inverter 52a, and the cooling water in the low temperature side cooling water system is controlled by controlling the frequency input to the inverter 52b. The flow rate is controlled.
 また、高温側冷却水系統の高温側冷却塔1aにおける冷却水の出口温度(高温側冷却塔出口冷却水温度)を計測する高温側冷却塔出口温度センサ31aが、高温側冷却塔1aの出口側に配設され、低温側冷却水系統の低温側冷却塔1bにおける冷却水の出口温度(低温側冷却塔出口冷却水温度)を計測する低温側冷却塔出口温度センサ31bが、低温側冷却塔1bの出口側に配設される。
 その他の構成は、図1に示す熱源システム100と同等である。
Moreover, the high temperature side cooling tower exit temperature sensor 31a which measures the cooling water exit temperature (high temperature side cooling tower outlet cooling water temperature) in the high temperature side cooling tower 1a of the high temperature side cooling water system is the outlet side of the high temperature side cooling tower 1a. The low temperature side cooling tower outlet temperature sensor 31b, which is disposed in the low temperature side cooling water system and measures the outlet temperature of the cooling water in the low temperature side cooling tower 1b of the low temperature side cooling water system (low temperature side cooling tower outlet cooling water temperature), It is arrange | positioned at the exit side.
Other configurations are the same as those of the heat source system 100 shown in FIG.
 この構成の場合、高温側冷却水系統における冷却水の流量は高温側冷却水ポンプ4aの回転速度によって決定され、低温側冷却水系統における冷却水の流量は低温側冷却水ポンプ4bの回転速度によって決定される。
 また、制御装置71は、冷凍機負荷、外気の湿球温度、高温側冷却塔出口冷却水温度、低温側冷却塔出口冷却水温度、高温冷凍機出口冷水温度または冷却ファン6aの風量比、低温冷凍機出口冷水温度または冷却ファン6bの風量比、高温側冷却水ポンプ4aと低温側冷却水ポンプ4bの回転速度比または冷却水の流量比、および冷水ポンプ5の回転速度比または冷水の流量比をパラメータとし、前記したように、式(1)で示される評価関数Wが最小となるように最適化演算を実行する。
In this configuration, the flow rate of the cooling water in the high temperature side cooling water system is determined by the rotation speed of the high temperature side cooling water pump 4a, and the flow rate of the cooling water in the low temperature side cooling water system is determined by the rotation speed of the low temperature side cooling water pump 4b. It is determined.
In addition, the control device 71 includes a refrigerator load, an outside air wet bulb temperature, a high temperature side cooling tower outlet cooling water temperature, a low temperature side cooling tower outlet cooling water temperature, a high temperature refrigerator outlet cooling water temperature or an air volume ratio of the cooling fan 6a, a low temperature Refrigerating machine outlet cold water temperature or air flow ratio of cooling fan 6b, high speed side cooling water pump 4a and low temperature side cooling water pump 4b rotational speed ratio or cooling water flow ratio, and cooling water pump 5 rotational speed ratio or cold water flow ratio As described above, the optimization operation is executed so that the evaluation function W represented by the expression (1) is minimized.
 このように、2つの冷却塔(高温側冷却塔1a、低温側冷却塔1b)を備える熱源システム102に本実施形態を適用することもできる。つまり、冷却水系統における高温側冷凍機2aおよび低温側冷凍機2bの配置、および冷却塔の配置、を限定することなく本実施形態を適用可能であり、本実施形態の適用範囲を広くすることができる。 Thus, the present embodiment can also be applied to the heat source system 102 including two cooling towers (the high temperature side cooling tower 1a and the low temperature side cooling tower 1b). That is, this embodiment can be applied without limiting the arrangement of the high temperature side refrigerator 2a and the low temperature side refrigerator 2b and the arrangement of the cooling tower in the cooling water system, and the scope of application of this embodiment can be widened. Can do.
 また、図示はしないが、蓄熱槽8(図1参照)を備えない熱源システムに本実施形態を適用することも可能である。この場合、冷却運転時に負荷側3(図1参照)における冷水の流量は、冷水ポンプ5(図1参照)によって調節される。 Although not shown, the present embodiment can also be applied to a heat source system that does not include the heat storage tank 8 (see FIG. 1). In this case, the flow rate of the cold water on the load side 3 (see FIG. 1) during the cooling operation is adjusted by the cold water pump 5 (see FIG. 1).
 また本発明は、以下のような設計変更例も考えられる。
 例えば、最適化演算において、冷却水の流量および温度を一定値(固定値)としてもよい。この場合、高温側冷却水ポンプ4a(図1参照)、低温側冷却水ポンプ4b(図1参照)の回転速度の制御が簡略化できるため、例えば、高温側冷却水ポンプ4aに備わるインバータ52a(図1参照)や低温側冷却水ポンプ4bに備わるインバータ52b(図1参照)に要求される性能が低くてもよく、コスト削減することができる。
The present invention also contemplates design changes as follows.
For example, in the optimization calculation, the flow rate and temperature of the cooling water may be fixed values (fixed values). In this case, since the control of the rotational speed of the high temperature side cooling water pump 4a (see FIG. 1) and the low temperature side cooling water pump 4b (see FIG. 1) can be simplified, for example, the inverter 52a ( The performance required for the inverter 52b (see FIG. 1) provided in the low temperature side cooling water pump 4b may be low, and the cost can be reduced.
 また、冷凍機(高温側冷凍機2a(図1参照)、低温側冷凍機2b(図1参照))は、空冷式のヒートポンプ冷凍機であってもよい。この場合、冷水ポンプ5(図1参照)の回転速度と冷凍機における冷水の出口温度の目標値を最適化して高温側冷凍機2aのCOP特性を利用し、省エネルギを図ることができる。その他、冷凍機は、圧縮機の回転速度をインバータ制御するインバータ冷凍機であってもよい。インバータ冷凍機を使用することによって、部分負荷運転時の効率を向上できる。なお、冷凍機の組合せ(高温側冷凍機2aと低温側冷凍機2bの組合せ)は、吸収冷凍機や圧縮式冷凍機を組み合わせたものであってもよい。
 また、冷水を温水とし、冷凍機を暖房用熱源(例えば、冷温水発生機、ヒートポンプ)として、暖房運転時の負荷で最適化演算を実行し、この最適化演算の結果を制御目標値として制御する構成であってもよい。この構成によると、暖房運転時における省エネルギを図ることができる。
 また、冷却塔1(図1参照)は、開放式冷却塔であっても密閉式冷却塔であってもよく、冷却塔1は種類が限定されない。
The refrigerator (high temperature side refrigerator 2a (see FIG. 1), low temperature side refrigerator 2b (see FIG. 1)) may be an air-cooled heat pump refrigerator. In this case, the rotational speed of the cold water pump 5 (see FIG. 1) and the target value of the outlet temperature of the cold water in the refrigerator can be optimized, and the COP characteristic of the high temperature side refrigerator 2a can be used to save energy. In addition, the refrigerator may be an inverter refrigerator that performs inverter control on the rotation speed of the compressor. By using an inverter refrigerator, the efficiency during partial load operation can be improved. The combination of the refrigerators (the combination of the high temperature side refrigerator 2a and the low temperature side refrigerator 2b) may be a combination of an absorption refrigerator and a compression refrigerator.
Also, using cold water as hot water and a refrigerator as a heat source for heating (for example, cold / hot water generator, heat pump), the optimization calculation is executed with the load during heating operation, and the result of this optimization calculation is controlled as the control target value It may be configured to. According to this configuration, energy saving during heating operation can be achieved.
The cooling tower 1 (see FIG. 1) may be an open cooling tower or a closed cooling tower, and the type of the cooling tower 1 is not limited.
 また、タイムスケジュールに基づいて蓄熱運転する場合、冷凍機を部分負荷運転するときの冷凍機負荷を、翌日の負荷の予測値と外気の湿球温度の予測値に基づいて設定する構成とすることも可能である。 In addition, when performing a heat storage operation based on a time schedule, the refrigerator load when the refrigerator is partially loaded is set based on the predicted value of the next day load and the predicted value of the wet bulb temperature of the outside air Is also possible.
 以上のように本発明は、多様に設計変更可能であり、適用範囲を広げることができる。 As described above, the present invention can be variously changed in design and can be applied to a wider range.
 1   冷却塔
 2a  高温側冷凍機(冷凍機)
 2b  低温側冷凍機(冷凍機)
 3   負荷側
 4a  高温側冷却水ポンプ(第1ポンプ、制御対象)
 4b  低温側冷却水ポンプ(第1ポンプ、制御対象)
 5   冷水ポンプ(第2ポンプ、制御対象)
 6   冷却ファン(制御対象)
 8   蓄熱槽(蓄熱手段)
 71  制御装置
 100 熱源システム
1 Cooling tower 2a High temperature side refrigerator (refrigerator)
2b Low temperature side refrigerator (refrigerator)
3 Load side 4a High temperature side cooling water pump (first pump, control target)
4b Low-temperature side cooling water pump (first pump, control target)
5 Chilled water pump (second pump, control target)
6 Cooling fan (control target)
8 heat storage tank (heat storage means)
71 control device 100 heat source system

Claims (9)

  1.  冷却塔で冷却される第1の冷水が循環する第1冷水系統と、
     負荷側を冷却する第2の冷水が循環する第2冷水系統と、
     前記第2冷水系統に直列に配設され、前記負荷側を冷却した前記第2の冷水の熱を前記第1の冷水に移動して前記第2の冷水を冷却する複数の冷凍機と、
     少なくとも前記冷却塔に外気を送風する冷却ファン、前記第1の冷水を循環させる第1ポンプ、および前記第2の冷水を循環させる第2ポンプを制御対象として制御する制御装置と、を備え、
     前記負荷側へは、前記冷凍機で冷却された前記第2の冷水を貯留する蓄熱手段を介して前記第2の冷水が供給される熱源システムであって、
     前記制御装置は、
     外気の状態と前記蓄熱手段の蓄熱量と前記負荷側の要求負荷のうちの少なくとも1つの変化に対応して、エネルギ消費量を示す評価関数を最小とするように前記制御対象の制御目標値を設定することを特徴とする熱源システム。
    A first cold water system in which the first cold water cooled in the cooling tower circulates;
    A second cold water system in which a second cold water for cooling the load side circulates;
    A plurality of refrigerators arranged in series in the second cold water system and moving the heat of the second cold water that has cooled the load side to the first cold water to cool the second cold water;
    A control device that controls at least a cooling fan that blows outside air to the cooling tower, a first pump that circulates the first cold water, and a second pump that circulates the second cold water, as control targets,
    To the load side is a heat source system in which the second cold water is supplied via a heat storage means for storing the second cold water cooled by the refrigerator,
    The controller is
    The control target value of the control target is set so as to minimize the evaluation function indicating the energy consumption in response to at least one change among the state of the outside air, the heat storage amount of the heat storage means, and the required load on the load side. A heat source system characterized by setting.
  2.  前記制御装置は、
     前記負荷側を冷却する冷却運転時に、前記負荷側の要求負荷を前記冷凍機が処理する負荷として前記制御目標値を設定することを特徴とする請求の範囲第1項に記載の熱源システム。
    The controller is
    2. The heat source system according to claim 1, wherein the control target value is set as a load to be processed by the refrigerator in the cooling operation for cooling the load side.
  3.  前記制御装置は、
     前記第2の冷水を冷却して前記蓄熱手段に貯留する蓄熱運転時に、予め設定されている負荷を前記冷凍機が処理する負荷として前記制御目標値を設定することを特徴とする請求の範囲第1項に記載の熱源システム。
    The controller is
    The control target value is set as a load to be processed by the refrigerator during a heat storage operation in which the second cold water is cooled and stored in the heat storage means. The heat source system according to item 1.
  4.  前記制御装置は、
     前記第2の冷水を冷却して前記蓄熱手段に貯留する蓄熱運転時に、予め設定されている負荷を前記冷凍機が処理する負荷として前記制御目標値を設定することを特徴とする請求の範囲第2項に記載の熱源システム。
    The controller is
    The control target value is set as a load to be processed by the refrigerator during a heat storage operation in which the second cold water is cooled and stored in the heat storage means. The heat source system according to Item 2.
  5.  前記制御装置は、
     前記負荷側を冷却する冷却運転時に、
     前記蓄熱量が所定の下限値より小さい場合に前記要求負荷が前記冷凍機の運転負荷以上のときには前記要求負荷を前記冷凍機が処理する負荷として前記制御目標値を設定し、
     前記蓄熱量が前記下限値より小さい場合に前記要求負荷が前記冷凍機の運転負荷より小さいとき、または、前記蓄熱量が前記下限値以上で所定の上限値より小さい場合には、予め設定されている負荷を前記冷凍機が処理する負荷として前記制御目標値を設定することを特徴とする請求の範囲第1項に記載の熱源システム。
    The controller is
    During the cooling operation for cooling the load side,
    If the required load is equal to or higher than the operating load of the refrigerator when the heat storage amount is smaller than a predetermined lower limit value, the control target value is set as a load that the refrigerator processes.
    If the required load is smaller than the operating load of the refrigerator when the heat storage amount is smaller than the lower limit value, or if the heat storage amount is greater than or equal to the lower limit value and smaller than a predetermined upper limit value, it is set in advance. The heat source system according to claim 1, wherein the control target value is set as a load that is processed by the refrigerator.
  6.  前記評価関数を最小とする前記制御目標値と、前記外気の状態と、前記冷凍機の運転負荷と、の対応を示すデータを有すること、を特徴とする請求の範囲第1項乃至請求の範囲第5項のいずれか1項に記載の熱源システム。 The data according to claim 1, further comprising data indicating correspondence between the control target value that minimizes the evaluation function, the outside air state, and the operating load of the refrigerator. 6. The heat source system according to any one of items 5.
  7.  前記制御装置は、
     外気の状態と前記蓄熱量と前記要求負荷のうちの少なくとも1つの変化に対応して、前記データに基づいて前記制御目標値を設定することを特徴とする請求の範囲第6項に記載の熱源システム。
    The controller is
    The heat source according to claim 6, wherein the control target value is set based on the data corresponding to a change in at least one of an outside air state, the heat storage amount, and the required load. system.
  8.  冷却塔で冷却される第1の冷水が循環する第1冷水系統と、
     負荷側を冷却する第2の冷水が循環する第2冷水系統と、
     前記第2冷水系統に直列に配設され、前記負荷側を冷却した前記第2の冷水の熱を前記第1の冷水に移動して前記第2の冷水を冷却する複数の冷凍機と、
     少なくとも前記冷却塔に外気を送風する冷却ファン、前記第1の冷水を循環させる第1ポンプ、および前記第2の冷水を循環させる第2ポンプを制御対象として制御する制御装置と、を備え、
     前記負荷側へは、前記冷凍機で冷却された前記第2の冷水を貯留する蓄熱手段を介して前記第2の冷水が供給される熱源システムの制御方法であって、
     外気の状態と前記蓄熱手段の蓄熱量と前記負荷側の要求負荷のうちの少なくとも1つの変化に対応して、エネルギ消費量を示す評価関数を最小とするように前記制御対象の制御目標値を設定するステップと、
     前記制御目標値に基づいて前記制御対象を制御するステップと、を備えることを特徴とする熱源システムの制御方法。
    A first cold water system in which the first cold water cooled in the cooling tower circulates;
    A second cold water system in which a second cold water for cooling the load side circulates;
    A plurality of refrigerators arranged in series in the second cold water system and moving the heat of the second cold water that has cooled the load side to the first cold water to cool the second cold water;
    A control device that controls at least a cooling fan that blows outside air to the cooling tower, a first pump that circulates the first cold water, and a second pump that circulates the second cold water, as control targets,
    To the load side is a control method of a heat source system in which the second cold water is supplied via a heat storage means for storing the second cold water cooled by the refrigerator,
    The control target value of the control target is set so as to minimize the evaluation function indicating the energy consumption in response to at least one change among the state of the outside air, the heat storage amount of the heat storage means, and the required load on the load side. Steps to set,
    And a step of controlling the controlled object based on the control target value.
  9.  前記評価関数を最小とする前記制御目標値と、前記外気の状態と、前記冷凍機の運転負荷と、の対応を示すデータに基づいて前記制御目標値を設定するステップを有することを特徴とする請求の範囲第8項に記載の熱源システムの制御方法。 The step of setting the control target value based on data indicating correspondence between the control target value that minimizes the evaluation function, the outside air state, and the operating load of the refrigerator. The method for controlling a heat source system according to claim 8.
PCT/JP2012/065402 2011-06-17 2012-06-15 Heat source system and control method of same WO2012173240A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-135446 2011-06-17
JP2011135446A JP2013002757A (en) 2011-06-17 2011-06-17 Heat source system and control method of the same

Publications (1)

Publication Number Publication Date
WO2012173240A1 true WO2012173240A1 (en) 2012-12-20

Family

ID=47357217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065402 WO2012173240A1 (en) 2011-06-17 2012-06-15 Heat source system and control method of same

Country Status (2)

Country Link
JP (1) JP2013002757A (en)
WO (1) WO2012173240A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014107968A1 (en) * 2013-01-09 2014-07-17 艾默生网络能源有限公司 Air conditioning system
CN104633857A (en) * 2014-10-16 2015-05-20 联和环保科技有限公司 Air conditioner energy-saving optimization control method and device
WO2016167106A1 (en) * 2015-04-14 2016-10-20 三菱重工業株式会社 Control device, control method, and program
CN106642928A (en) * 2016-09-30 2017-05-10 王友准 Process water direct cooling system and method used for technology or equipment cooling
CN113606750A (en) * 2021-10-09 2021-11-05 山东佐耀科技有限公司 Peak regulation control instruction optimal distribution method and system for air source heat pump load
CN115773548A (en) * 2022-11-23 2023-03-10 河南中烟工业有限责任公司 Cooling system of cigarette factory

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6116097B2 (en) * 2013-12-20 2017-04-19 株式会社日立製作所 Thermal storage system and control method thereof
JP6345088B2 (en) * 2014-04-07 2018-06-20 積水化学工業株式会社 Air conditioning system and building
JP6849345B2 (en) * 2016-08-25 2021-03-24 高砂熱学工業株式会社 Air conditioning system controls, control methods and control programs
CN107702392A (en) * 2017-09-26 2018-02-16 上海迪普自动化技术有限公司 Data center's cold source system and its operational process
JP2020016992A (en) * 2018-07-24 2020-01-30 株式会社日立製作所 Characteristic model automatic generation system and characteristic model automatic generation method
CN113154924B (en) * 2021-05-26 2023-06-27 兰州正德电子科技有限责任公司 System for utilize hot air heating granule to carry out energy storage
JP7060754B1 (en) * 2021-10-18 2022-04-26 東京瓦斯株式会社 Air conditioning system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132508A (en) * 1997-10-31 1999-05-21 Mayekawa Mfg Co Ltd Ice storage tank operating program planning method and ice storage tank operating program plane operating system
JP2007240130A (en) * 2006-03-13 2007-09-20 Jfe Engineering Kk Heat storage device, and method for measuring heat storage quantity
JP2009063290A (en) * 2008-12-23 2009-03-26 Hitachi Cable Ltd Cold water circulating system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5363212B2 (en) * 2008-09-30 2013-12-11 株式会社日立製作所 Air conditioning system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132508A (en) * 1997-10-31 1999-05-21 Mayekawa Mfg Co Ltd Ice storage tank operating program planning method and ice storage tank operating program plane operating system
JP2007240130A (en) * 2006-03-13 2007-09-20 Jfe Engineering Kk Heat storage device, and method for measuring heat storage quantity
JP2009063290A (en) * 2008-12-23 2009-03-26 Hitachi Cable Ltd Cold water circulating system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014107968A1 (en) * 2013-01-09 2014-07-17 艾默生网络能源有限公司 Air conditioning system
CN104633857A (en) * 2014-10-16 2015-05-20 联和环保科技有限公司 Air conditioner energy-saving optimization control method and device
US10234834B2 (en) 2014-10-16 2019-03-19 Alliance Environmental Technology Limited Air conditioner energy-saving optimization control method and device
WO2016167106A1 (en) * 2015-04-14 2016-10-20 三菱重工業株式会社 Control device, control method, and program
JP2016200370A (en) * 2015-04-14 2016-12-01 三菱重工業株式会社 Control device, control method and program
CN106642928A (en) * 2016-09-30 2017-05-10 王友准 Process water direct cooling system and method used for technology or equipment cooling
CN113606750A (en) * 2021-10-09 2021-11-05 山东佐耀科技有限公司 Peak regulation control instruction optimal distribution method and system for air source heat pump load
CN115773548A (en) * 2022-11-23 2023-03-10 河南中烟工业有限责任公司 Cooling system of cigarette factory

Also Published As

Publication number Publication date
JP2013002757A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
WO2012173240A1 (en) Heat source system and control method of same
Liu et al. Optimal chiller sequencing control in an office building considering the variation of chiller maximum cooling capacity
JP6334230B2 (en) Refrigerator system
JP4435533B2 (en) Heat source system and control device
JP5261170B2 (en) Thermal load processing system and heat source system
JP5501179B2 (en) Medium temperature source system with free cooling
JP2008215679A (en) Air conditioning equipment
US10181725B2 (en) Method for operating at least one distributed energy resource comprising a refrigeration system
JP2017101862A (en) Heat source control system and control method
SG194589A1 (en) Operation control system for cold generation apparatus
JP2012127573A (en) Heat source system
US20140374497A1 (en) Heat source system, control device thereof, and control method thereof
JP4166051B2 (en) Air conditioning system
JP2007127321A (en) Cold water load factor controller for refrigerator
JP6644559B2 (en) Heat source control system, control method and control device
JP5489046B2 (en) Heat source equipment control system
KR102403049B1 (en) Method for adjusting a cryogenic refrigeration apparatus and corresponding apparatus
JP4965414B2 (en) Temperature control of cathode inlet air flow for fuel cell systems
JP6029363B2 (en) Heat source system
JP5492712B2 (en) Water supply temperature control apparatus and method
JP2018162943A (en) Heat source control system, control method of heat source control system, and arithmetic unit
JP5346218B2 (en) Heat source equipment control system
JP5286479B2 (en) Cold water circulation system
JP6523798B2 (en) Heat source equipment and heat source equipment control method
JP5195696B2 (en) Cold water circulation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12801096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12801096

Country of ref document: EP

Kind code of ref document: A1