JP5261170B2 - Thermal load processing system and heat source system - Google Patents
Thermal load processing system and heat source system Download PDFInfo
- Publication number
- JP5261170B2 JP5261170B2 JP2008333570A JP2008333570A JP5261170B2 JP 5261170 B2 JP5261170 B2 JP 5261170B2 JP 2008333570 A JP2008333570 A JP 2008333570A JP 2008333570 A JP2008333570 A JP 2008333570A JP 5261170 B2 JP5261170 B2 JP 5261170B2
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- load
- heat medium
- heat
- pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012545 processing Methods 0.000 title claims abstract description 44
- 230000008859 change Effects 0.000 claims abstract description 98
- 238000004364 calculation method Methods 0.000 claims abstract description 88
- 230000007423 decrease Effects 0.000 claims abstract description 49
- 238000010438 heat treatment Methods 0.000 claims abstract description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 101
- 238000000034 method Methods 0.000 claims description 95
- 230000008569 process Effects 0.000 claims description 78
- 238000001816 cooling Methods 0.000 claims description 48
- 238000001514 detection method Methods 0.000 claims description 38
- 238000005259 measurement Methods 0.000 claims description 33
- 230000003247 decreasing effect Effects 0.000 claims description 19
- 239000000498 cooling water Substances 0.000 claims description 8
- 230000033228 biological regulation Effects 0.000 claims description 3
- 230000000670 limiting effect Effects 0.000 claims description 3
- 230000002829 reductive effect Effects 0.000 abstract description 35
- 238000013461 design Methods 0.000 description 17
- 238000004378 air conditioning Methods 0.000 description 6
- 238000005265 energy consumption Methods 0.000 description 6
- 238000010992 reflux Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000012267 brine Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Air Conditioning Control Device (AREA)
- Other Air-Conditioning Systems (AREA)
Abstract
Description
本発明は、空調設備などで用いる熱負荷処理システム及び熱源システムに関し、詳しくは、負荷媒体を熱媒と熱交換させて冷却又は加熱する負荷熱交換器と、この負荷熱交換器に供給する熱媒の流量を負荷熱交換器での負荷媒体の冷却又は加熱に要する熱量である負荷熱量の変化に応じて調整する流量制御手段とを備える熱負荷処理システム、及び、この熱負荷処理システムとともに用いるのに適した熱源システムに関する。 The present invention relates to a heat load processing system and a heat source system used in an air conditioner or the like, and more specifically, a load heat exchanger that cools or heats a load medium by exchanging heat with the heat medium, and heat supplied to the load heat exchanger. A heat load processing system including a flow rate control means for adjusting a flow rate of the medium according to a change in the load heat amount, which is a heat amount required for cooling or heating the load medium in the load heat exchanger, and the heat load processing system. It is related with the heat source system suitable for.
従来、上記の如き熱負荷処理システムでは、例えば図7に示す如くファンコイルユニットやエアハンドリングユニットなどの負荷熱交換器Uにより室内空気A(負荷媒体)を冷却して室内を設定温度trsに冷房する冷房システムの場合、負荷熱交換器Uに供給する冷水等の熱媒Cの流量qを負荷熱交換器Uにおける必要冷却熱量g(負荷熱量)に応じて流量制御手段6xにより調整するのに、その流量制御手段6xについては、温度センサ7xにより計測される室内温度trと冷房目標温度である上記設定温度trsとの偏差Δtrに応じて流量調整弁Vbの開度を調整することで熱媒流量qを調整する制御方式を一般に採用していた(特許文献1における段落0050参照)。
Conventionally, in the heat load processing system as described above, for example, as shown in FIG. 7, the indoor air A (load medium) is cooled by a load heat exchanger U such as a fan coil unit or an air handling unit to cool the room to a set temperature trs. In the case of a cooling system, the flow rate q of the heat medium C such as cold water supplied to the load heat exchanger U is adjusted by the flow rate control means 6x according to the required cooling heat amount g (load heat amount) in the load heat exchanger U. As for the flow rate control means 6x, the heating medium is adjusted by adjusting the opening degree of the flow rate adjustment valve Vb according to the deviation Δtr between the indoor temperature tr measured by the
即ち、この冷房システムでは、室内温度trを設定温度trsに調整するのに要する熱量である必要冷却熱量gが小さくなるほど流量調整弁Vbの開度を小さくして負荷熱交換器Uの熱媒流量qを減少させる。 That is, in this cooling system, the opening degree of the flow rate adjustment valve Vb is reduced as the required cooling heat amount g, which is the amount of heat required to adjust the room temperature tr to the set temperature trs, and the heating medium flow rate of the load heat exchanger U is reduced. Reduce q.
また従来、この種の熱負荷処理システムとともに用いる熱源システムについては、上記の如き流量制御手段6xにより調整される熱媒流量qである負荷流量の変化に応じて熱媒ポンプの運転台数を変更するのに、次の(イ)〜(ハ)の如き制御方式を採っていた(特許文献2参照)。 Conventionally, for a heat source system used with this type of heat load processing system, the number of operating heat medium pumps is changed in accordance with a change in the load flow rate, which is the heat medium flow rate q adjusted by the flow rate control means 6x as described above. However, the following control methods (A) to (C) were adopted (see Patent Document 2).
(イ)図8に示すように各運転台数Nでの熱媒ポンプ運転において運転熱媒ポンプの夫々を最大出力(一般的には定格最大出力)で運転した場合における熱媒送給流量Qと熱媒送給圧力Pとの相関を示す運転台数N毎のポンプ性能曲線L1〜L3(即ち、運転状態にある熱媒ポンプの全体を1台のポンプと見なしたときの流量と圧力に関するポンプ性能曲線)を設定する。 (A) As shown in FIG. 8, in the heat medium pump operation with each operation number N, the heat medium feed flow rate Q when each of the operation heat medium pumps is operated at the maximum output (generally the maximum rated output) Pump performance curves L1 to L3 for each operating number N showing a correlation with the heat medium supply pressure P (that is, pumps related to flow rate and pressure when the entire heat medium pump in the operating state is regarded as one pump) Performance curve).
(ロ)負荷熱交換器に供給する熱媒の送給圧力制御として、各運転台数Nでの熱媒ポンプ運転において負荷熱交換器への熱媒送給圧力Pを一定の目標圧力Pmsに調整するいわゆる吐出圧一定制御を実施することに対し、上記運転台数N毎のポンプ性能曲線L1〜L3上で吐出圧一定制御の目標圧力Pms(一定)に対応する流量値Qs′(Qs1′〜Qs3′)を閾値流量とする。 (B) As the supply pressure control of the heat medium supplied to the load heat exchanger, the heat medium supply pressure P to the load heat exchanger is adjusted to a constant target pressure Pms in the operation of the heat medium pump with each operation number N. On the other hand, the flow rate value Qs ′ (Qs1 ′ to Qs3) corresponding to the target pressure Pms (constant) of the constant discharge pressure control on the pump performance curves L1 to L3 for each of the operating units N is performed. ′) Is the threshold flow rate.
(ハ)負荷流量Q(=複数の負荷熱交換器についての合計負荷流量Σq)を検出する流量検出手段の検出情報に基づき、上記閾値流量Qs′の各々について、負荷流量Qが閾値流量Qs′よりも減少すると熱媒ポンプの運転台数Nを一台減少させ、かつ、負荷流量Qが閾値流量Qs′よりも増加すると熱媒ポンプの運転台数Nを一台増加させる。
換言すれば、負荷流量Qが各閾値流量Qs′よりも減少するごとに熱媒ポンプの運転台数Nを一台ずつ減少させ、かつ、負荷流量Qが各閾値流量Qs′よりも増加するごとに熱媒ポンプの運転台数Nを一台ずつ増加させる。
(C) Based on the detection information of the flow rate detection means for detecting the load flow rate Q (= total load flow rate Σq for a plurality of load heat exchangers), the load flow rate Q is the threshold flow rate Qs ′ for each of the threshold flow rates Qs ′. When the load flow rate Q increases below the threshold flow rate Qs ′, the number N of operating heat medium pumps is increased by one.
In other words, every time the load flow rate Q decreases below each threshold flow rate Qs ′, the number N of operating heat medium pumps is decreased by one, and every time the load flow rate Q increases above each threshold flow rate Qs ′. Increase the operating number N of heat medium pumps one by one.
つまり、この熱源システムでは、熱媒送給圧力Pを一定値Pmsとする圧力条件下で熱媒ポンプの夫々を最大出力で運転したときに得られる熱媒ポンプ夫々の熱媒送給流量ΔQごとの配分(一般的には等間隔配分)で閾値流量Qs′(Qs1′〜Qs3′)を設定し、これら閾値流量Qs′を台数変更指標として負荷流量Qの変化に応じ熱媒ポンプの運転台数Nを変更していた。 That is, in this heat source system, for each heat medium feed flow rate ΔQ of each heat medium pump obtained when each of the heat medium pumps is operated at the maximum output under the pressure condition where the heat medium feed pressure P is a constant value Pms. The threshold flow rate Qs ′ (Qs1 ′ to Qs3 ′) is set by the distribution (generally at regular intervals), and the number of operating heat medium pumps according to the change of the load flow rate Q using these threshold flow rates Qs ′ as the number change index N was changed.
また、上記の吐出圧一定制御に代え、送給圧力制御として、同図8に示すように負荷流量Qと、その負荷流量Qの熱媒を負荷熱交換器に供給するのに必要な送給圧力Pとの相関を示すポンプ制御線Mを配管抵抗等も考慮した状態で設定し、このポンプ制御線M上で各時点の負荷流量Q(現状流量)に対応する圧力値を目標圧力Pmとして、熱媒送給圧力Pの検出情報に基づき負荷熱交換器への熱媒送給圧力Pを各時点の目標圧力Pm(即ち、負荷流量Qの変化に伴い変化する目標圧力)に調整する改良システムも提案されている(特許文献1参照)。 Further, instead of the above-described constant discharge pressure control, as the supply pressure control, as shown in FIG. 8, the supply necessary for supplying the load flow rate Q and the heating medium of the load flow rate Q to the load heat exchanger. A pump control line M showing a correlation with the pressure P is set in consideration of piping resistance and the like, and a pressure value corresponding to the load flow rate Q (current flow rate) at each time point is set as a target pressure Pm on the pump control line M. Improvement of adjusting the heat medium supply pressure P to the load heat exchanger to the target pressure Pm at each time point (that is, the target pressure that changes as the load flow rate Q changes) based on the detection information of the heat medium supply pressure P A system has also been proposed (see Patent Document 1).
しかし、この改良システムにしても熱媒ポンプの運転台数制御ついては前述と同様、熱媒送給圧力Pを一定値Pmsとする圧力条件下で熱媒ポンプの夫々を最大出力で運転したときに得られる熱媒ポンプ夫々の熱媒送給流量ΔQごとの配分で閾値流量Qs′(Qs1′〜Qs3′)を設定し、これら閾値流量Qs′を台数変更指標として、負荷流量Qの変化に応じ熱媒ポンプの運転台数Nを変更していた。 However, even in this improved system, control of the number of operating heat medium pumps is obtained when each of the heat medium pumps is operated at the maximum output under the pressure condition in which the heat medium supply pressure P is a constant value Pms, as described above. The threshold flow rate Qs ′ (Qs1 ′ to Qs3 ′) is set by the distribution for each heat medium feed flow rate ΔQ of each of the heat medium pumps to be used, and heat is generated according to changes in the load flow rate Q using these threshold flow rates Qs ′ as the number change index. The number N of operating medium pumps was changed.
先述の如き従来の熱負荷処理システムでは(図7参照)、例えば負荷熱交換器Uの入口熱媒温度tiを5℃にするともに出口熱媒温度toを12℃として、入出口の熱媒温度差Δtを7℃degとする設計条件で負荷熱交換器Uを選定したとしても、その選定は負荷熱交換器Uにおける負荷熱量g(必要冷却熱量)が最大の場合を想定したものであるため、負荷熱交換器Uの負荷熱量gが最大未満のときには、設計条件との相違による現象として、負荷熱交換器Uの入出口の熱媒温度差Δtが設計温度差である7℃degよりも小さくなって、未だ低温(例えばto=9℃)の熱媒Cが負荷熱交換器Uから送出される運転状態になっていた。 In the conventional heat load processing system as described above (see FIG. 7), for example, the inlet heat medium temperature ti of the load heat exchanger U is set to 5 ° C., and the outlet heat medium temperature to is set to 12 ° C. Even if the load heat exchanger U is selected under a design condition in which the difference Δt is 7 ° C. deg, the selection assumes that the load heat amount g (necessary cooling heat amount) in the load heat exchanger U is the maximum. When the load heat quantity g of the load heat exchanger U is less than the maximum, as a phenomenon due to a difference from the design condition, the heat medium temperature difference Δt at the inlet / outlet of the load heat exchanger U is higher than 7 ° C. deg which is the design temperature difference. It became small and it was still in the operating state in which the low-temperature (for example, to = 9 degreeC) heating medium C was sent from the load heat exchanger U.
即ち、負荷熱量gが小さいとき流量調整弁Vbは開度減少側に調整されて負荷熱交換器Uの熱媒流量qが減少側に調整されるものの、流量調整弁Vbの制御遅れなどに原因して熱媒流量qが十分に減少していない状態で負荷熱交換器Uにおける負荷媒体と熱媒Cとの熱交換が平衡状態になってしまい、このことで負荷熱交換器Uの入出口の熱媒温度差Δtが設計温度差よりも小さくなる状況が生じていた。 That is, when the load heat quantity g is small, the flow rate adjusting valve Vb is adjusted to the opening decreasing side and the heat medium flow rate q of the load heat exchanger U is adjusted to the decreasing side. Then, the heat exchange between the load medium and the heat medium C in the load heat exchanger U is in an equilibrium state in a state where the heat medium flow rate q is not sufficiently reduced, and thus the entrance and exit of the load heat exchanger U The heating medium temperature difference Δt was smaller than the design temperature difference.
また、負荷熱量gの最大値に対して必要な負荷熱交換器Uのコイル列数が計算上で端数であったとき、設計ではその端数を切り上げたコイル列数が採用されるなどのこともあって、一般に負荷熱交換器Uは負荷熱量gの最大値に対しても能力的に十分に余裕のあるものが選定されており、このことも負荷熱交換器Uの入出口の熱媒温度差Δtが設計温度差より小さくなることの助長要因となっている。 In addition, when the number of coil rows of the load heat exchanger U required for the maximum value of the load heat amount g is a fraction in the calculation, the number of coil rows rounded up in the design is adopted. In general, the load heat exchanger U is selected with sufficient capacity for the maximum value of the load heat quantity g. This is also the heat medium temperature at the inlet / outlet of the load heat exchanger U. This is a factor for promoting the difference Δt to be smaller than the design temperature difference.
しかし、このように負荷熱交換器Uの入出口の熱媒温度差Δtが小さくなった運転状態では、未だ保有冷熱の大きい低温の熱媒C(加熱の場合では未だ保有温熱の大きい高温の熱媒)が負荷熱交換器Uから無駄に送出される分、必要以上に大きい熱媒流量qで負荷熱交換器Uを運転していることになり、このことで負荷熱交換器Uに熱媒Cを送給する熱媒ポンプの運転動力が嵩む問題があった。 However, in such an operation state where the heat medium temperature difference Δt at the inlet / outlet of the load heat exchanger U becomes small as described above, the low-temperature heat medium C that still has a large retained cold (the high-temperature heat that still has a large retained temperature in the case of heating). Since the medium is unnecessarily delivered from the load heat exchanger U, the load heat exchanger U is being operated at a heat medium flow rate q larger than necessary. There was a problem that the driving power of the heat medium pump for feeding C increased.
また、負荷熱交換器Uから送出される熱媒Cを冷凍機などの熱源機で再び冷却又は加熱して負荷熱交換器Uに循環供給するシステムでは、冷却の場合には設計温度よりも低温の熱媒Cが熱媒熱源機に戻ることで、逆に加熱の場合には設計温度よりも高温の熱媒が熱源機に戻ることで熱源機の成績係数が低下する問題もあった。 In the system in which the heat medium C delivered from the load heat exchanger U is cooled or heated again by a heat source device such as a refrigerator and circulated and supplied to the load heat exchanger U, the temperature is lower than the design temperature in the case of cooling. When the heating medium C returns to the heat medium heat source machine, there is also a problem that the coefficient of performance of the heat source machine decreases due to the heating medium higher than the design temperature returning to the heat source machine in the case of heating.
そして、これらのことが原因で消費エネルギの増大を招くが、負荷流熱量gが最大となるのは一般的に極限られた期間であることが多く、運転期間の大部分については負荷熱量gが最大未満の部分負荷状態であって上記の如く負荷熱交換器Uの入出口の熱媒温度差Δtが小さくなった状態でシステムが運転されることから、負荷熱交換器Uの入出口の熱媒温度差Δtが小さくなることに原因するエネルギ浪費は相当に大きなものとなっていた。 And although it causes the increase in energy consumption for these reasons, it is often the case that the load flow heat amount g is maximized during a very limited period, and the load heat amount g is large for most of the operation period. Since the system is operated in a partial load state less than the maximum and the heat medium temperature difference Δt at the inlet / outlet of the load heat exchanger U becomes small as described above, the heat at the inlet / outlet of the load heat exchanger U is reduced. The energy waste caused by the small medium temperature difference Δt is considerably large.
一方、このような熱負荷処理システムとともに用いられる先述の如き従来の熱源システムでは(図8参照)、閾値流量Qs′(Q1′〜Q3′)と負荷流量Qとの比較により決定される熱媒ポンプの運転台数Nより仮に少ない運転台数N−1で熱媒ポンプを運転しても、流量面及び圧力面の夫々について何ら問題なく負荷熱交換器に熱媒を供給できる状況(即ち、閾値流量Qs′と負荷流量Qとの比較により決定される運転台数Nが実際に必要なポンプ運転台数よりも過大となる状況)が頻繁に生じていた。 On the other hand, in the conventional heat source system as described above used with such a heat load processing system (see FIG. 8), the heat medium determined by comparing the threshold flow rate Qs ′ (Q1 ′ to Q3 ′) with the load flow rate Q. Even when the heat medium pump is operated with an operation number N-1 that is smaller than the number N of pumps operated, the heat medium can be supplied to the load heat exchanger without any problem on both the flow surface and the pressure surface (that is, the threshold flow rate). The situation in which the number N of operations determined by comparing Qs ′ and the load flow rate Q is excessively greater than the number of pumps actually required) frequently occurred.
そして、このように必要以上の運転台数Nで熱媒ポンプが運転されると、個々の出力を絞った状態で複数の熱媒ポンプを運転することになってポンプ効率の低下を招いたり、また、余剰のポンプ出力が大きくなって熱媒ポンプの出力ロスが増大する、あるいはまた、個々の熱媒ポンプの運転で生じる不可避的なエネルギロスの合計が増大するといったことを招き、この点でやはり省エネルギ化を図る上で改善の余地があった。 And when the heat medium pump is operated with the number N of operation more than necessary as described above, a plurality of heat medium pumps are operated in a state where the individual outputs are reduced, resulting in a decrease in pump efficiency. In this respect, too, the excess pump output increases and the output loss of the heat medium pump increases, or the total inevitable energy loss caused by the operation of the individual heat medium pumps increases. There was room for improvement in energy conservation.
なお、これらの問題については、負荷熱交換器において空気等の負荷媒体を熱媒との熱交換により加熱する場合についても同様に存在する。 These problems also exist when a load medium such as air is heated by heat exchange with the heat medium in the load heat exchanger.
以上の如き実情に鑑み、本発明の主たる課題は、上記の如き問題を効果的に解消して省エネルギ化を効果的に促進し得る熱負荷処理システム及び熱源システムを提供する点にある。 In view of the circumstances as described above, a main object of the present invention is to provide a heat load processing system and a heat source system that can effectively solve the above problems and effectively promote energy saving.
熱負荷処理システムを構成するのに、第1参考構成として、
負荷媒体を熱媒と熱交換させて冷却又は加熱する負荷熱交換器と、この負荷熱交換器に供給する熱媒の流量を前記負荷熱交換器での負荷媒体の冷却又は加熱に要する熱量である負荷熱量の変化に応じて調整する流量制御手段とを備える熱負荷処理システムにおいて、
前記負荷熱交換器の運転状態を検出する計測手段を設け、
前記流量制御手段は、この計測手段の計測情報に基づいて前記負荷熱量を演算する負荷演算処理と、
前記負荷熱量を賄うことが可能な熱媒流量でかつ前記負荷熱量が小さくなるほど前記負荷熱交換器の入口と出口との熱媒温度差を大きくする割合で減量する熱媒流量を前記負荷熱交換器の特性データ及び前記計測手段の計測情報に基づき適正熱媒流量として演算する所定の演算モデルにより、前記負荷演算処理での演算負荷熱量に対する適正熱媒流量を演算する流量演算処理と、
前記負荷熱交換器の熱媒流量を前記流量演算処理で演算した適正熱媒流量若しくはその近傍流量以下に制限した状態で前記負荷熱量の変化に応じて調整する、又は、前記負荷熱交換器の熱媒流量を前記流量演算処理で演算した適正熱媒流量若しくはその近傍流量に調整する流量調整処理とを実行する構成にしてもよい。
As a first reference configuration for configuring the thermal load treatment system,
A load heat exchanger that cools or heats the load medium by exchanging heat with the heat medium, and the flow rate of the heat medium supplied to the load heat exchanger is the amount of heat required for cooling or heating the load medium in the load heat exchanger. In a thermal load processing system comprising a flow rate control means for adjusting according to a change in a certain amount of load heat,
Providing a measuring means for detecting the operating state of the load heat exchanger;
The flow rate control means, a load calculation process for calculating the load heat amount based on the measurement information of the measurement means,
The load heat exchange is performed to reduce the heat medium flow rate at a rate that increases the heat medium temperature difference between the inlet and the outlet of the load heat exchanger as the load heat amount decreases and the heat medium flow rate can cover the load heat amount. A flow rate calculation process for calculating an appropriate heat medium flow rate with respect to a calculated load heat amount in the load calculation process, according to a predetermined calculation model for calculating as an appropriate heat medium flow rate based on the characteristic data of the vessel and the measurement information of the measuring means;
Adjust the heat medium flow rate of the load heat exchanger in accordance with the change of the load heat amount in a state where the heat medium flow rate is limited to the proper heat medium flow rate calculated in the flow rate calculation process or the vicinity thereof, or the load heat exchanger You may make it the structure which performs the flow volume adjustment process which adjusts the heat medium flow volume to the appropriate heat medium flow volume calculated by the said flow volume calculation process, or its vicinity flow volume .
つまり、この構成では、負荷熱量を賄うことが可能な熱媒流量でかつ負荷熱量が小さくなるほど負荷熱交換器の入出口の熱媒温度差を大きくする割合で減量する熱媒流量を負荷熱交換器の特性データ及び計測手段の計測情報に基づき適正熱媒流量として演算する所定演算モデルを用いて、負荷演算処理での演算負荷熱量(略言すれば、その時の負荷熱量)に対する適正熱媒流量を演算する。 In other words, with this configuration, the heat medium flow rate that can cover the load heat quantity and the heat medium flow rate that decreases at a rate that increases the heat medium temperature difference at the inlet and outlet of the load heat exchanger as the load heat quantity decreases becomes the load heat exchange. Using a predetermined calculation model that is calculated as the appropriate heat medium flow rate based on the characteristic data of the vessel and the measurement information of the measuring means, the appropriate heat medium flow rate for the calculated load heat amount in load calculation processing (in short, the load heat amount at that time) Is calculated.
そして、この適正熱媒流量を制御指標として、負荷熱交換器の熱媒流量を演算負荷熱量(その時の負荷熱量)に対する適正熱媒流量若しくはその近傍流量以下に制限した状態で負荷熱量の変化に応じて調整する、又は、負荷熱交換器の熱媒流量を演算負荷熱量(その時の負荷熱量)に対する適正熱媒流量若しくはその近傍流量に調整するから、負荷熱量が設計値(即ち、想定最大値)より小さい状況では負荷熱交換器の入出口の熱媒温度差を設計温度差よりも大きくした状態で負荷熱交換器を運転することができ、また、部分負荷状態において負荷熱量がさらに低下したときには負荷熱交換器の入出口の熱媒温度差を負荷熱量が低下する前の温度差よりもさらに大きくした状態で負荷熱交換器を運転することができる。 Then, using this appropriate heat medium flow rate as a control index, the load heat amount changes in a state where the heat medium flow rate of the load heat exchanger is limited to the appropriate heat medium flow rate for the calculated load heat amount (the load heat amount at that time) or less than the flow rate in the vicinity thereof. The load heat amount is adjusted to the appropriate heat medium flow rate for the calculated load heat amount (the load heat amount at that time) or the flow rate in the vicinity thereof, so the load heat amount is the design value (that is, the assumed maximum value). ) In a smaller situation, the load heat exchanger can be operated with the temperature difference of the heat medium at the inlet and outlet of the load heat exchanger larger than the design temperature difference, and the load heat quantity further decreased in the partial load state Sometimes, the load heat exchanger can be operated in a state in which the temperature difference of the heat medium at the inlet and outlet of the load heat exchanger is further larger than the temperature difference before the load heat quantity is reduced.
即ち、このことにより各時点の負荷熱量を適切に処理しながらも熱媒流量を効果的に低減した状態で負荷熱交換器を運転することができて、負荷熱交換器に熱媒を送給する熱媒ポンプの運転動力を効果的に低減することができ、また、負荷熱交換器からの送出熱媒を熱源機で再度冷却又は加熱して負荷熱交換器に循環供給する場合では、保有冷熱や保有温熱が十分に消費された熱媒を熱源機に戻すことができて、熱源機の成績係数を効果的に高めることができ、これらのことで従来の熱負荷処理システムに比べ省エネルギ化を効果的に促進することができる。 In other words, this makes it possible to operate the load heat exchanger in a state where the heat medium flow rate is effectively reduced while appropriately processing the load heat amount at each time point, and to supply the heat medium to the load heat exchanger. It is possible to effectively reduce the operating power of the heat medium pump to be used, and in the case where the heat medium sent from the load heat exchanger is cooled again or heated by the heat source unit and circulated and supplied to the load heat exchanger, The heat medium that has sufficiently consumed the cold and stored heat can be returned to the heat source unit, and the coefficient of performance of the heat source unit can be effectively increased, which saves energy compared to conventional heat load processing systems. Can be effectively promoted.
因みに、負荷熱交換器の入出口の熱媒温度差が小さくなるのを防止するのに、別方式として、負荷熱交換器の入出口の熱媒温度差を計測し、この計測温度差に基づき負荷熱交換器の熱媒流量を調整することで負荷熱量の変化にかかわらず負荷熱交換器の入出口の熱媒温度差を設計温度差に維持する方式も考えられる(特開平4−165242号公報参照)。 Incidentally, to prevent the heat medium temperature difference at the inlet and outlet of the load heat exchanger from becoming smaller, as another method, the temperature difference of the heat medium at the inlet and outlet of the load heat exchanger is measured, and based on this measured temperature difference A method is also conceivable in which the heat medium temperature difference at the inlet and outlet of the load heat exchanger is maintained at the design temperature difference by adjusting the heat medium flow rate of the load heat exchanger (Japanese Patent Laid-Open No. 4-165242). See the official gazette).
しかし、負荷熱量が小さいとき負荷熱交換器には能力的な余裕が生じ、また、先述の如く負荷熱交換器は一般的に負荷熱量の最大値に対しても能力的に余裕のあるものが設定されていることから、これらの能力的な余裕分だけ、入出口の熱媒温度差を設計温度差より大きくするような小さな熱媒流量で負荷熱交換器を運転しても、負荷熱量は十分に処理することができるが、この点、負荷熱交換器の入出口の熱媒温度差を負荷熱量の変化にかかわらず設計温度差に維持する上記別方式では、負荷熱交換器の上記の如き能力的な余裕を十分に活用しているとは言えず、その分、熱媒流量の低減が制限されたものとなる。 However, when the load heat quantity is small, the load heat exchanger has a capacity margin, and as described above, the load heat exchanger generally has a capacity capacity with respect to the maximum value of the load heat quantity. Therefore, even if the load heat exchanger is operated with a small heat medium flow rate that makes the heat medium temperature difference at the inlet and outlet larger than the design temperature difference by these capacity margins, the load heat quantity is In this point, the above-mentioned alternative method of maintaining the temperature difference of the heat medium at the inlet / outlet of the load heat exchanger at the design temperature difference regardless of the change in the amount of load heat is sufficient. It cannot be said that such capacity margin is fully utilized, and the reduction of the heat medium flow rate is limited accordingly.
これに対し、上記構成によれば、上記の如く演算する適正熱媒流量を制御指標として熱媒流量を調整するから、上記の如き能力的な余裕も活用した状態で熱媒流量を低減することができ、その分、上記別方式に比べ一層効果的に省エネルギ化を促進することができる。 On the other hand, according to the above configuration, the heating medium flow rate is adjusted using the appropriate heating medium flow rate calculated as described above as a control index, so that the heating medium flow rate can be reduced in a state where the above-described capacity is utilized. As a result, energy saving can be promoted more effectively than the other method.
また、上記別方式では、熱媒流量の調整が入出口熱媒温度差の維持に拘束されることから、負荷熱交換器により室内空気を冷却又は加熱して室内を冷暖房するような場合において負荷熱交換器の冷却能力や加熱能力を調整するには、温度センサにより計測される室内温度と冷暖房目標温度である設定温度との偏差に応じて負荷熱交換器に対する室内空気の通風量を調整するなどの調整方式を別途採用することが必要になる。 Further, in the above-mentioned another method, since the adjustment of the heat medium flow rate is restricted by maintaining the temperature difference between the inlet and outlet heat medium, the load is reduced when the room air is cooled or heated by the load heat exchanger to cool or heat the room. To adjust the cooling capacity and heating capacity of the heat exchanger, adjust the air flow rate of the room air to the load heat exchanger according to the deviation between the room temperature measured by the temperature sensor and the set temperature that is the target air conditioning temperature. It is necessary to adopt a separate adjustment method.
これに対し、上記構成において負荷熱交換器の熱媒流量を演算負荷熱量(その時の負荷熱量)に対する適正熱媒流量若しくはその近傍流量以下に制限した状態で負荷熱量の変化に応じて調整する形態を採れば、熱媒流量の調整により負荷熱交換器の冷却能力や加熱能力を調整する形態にすることができ、この点で、上記別方式に比べ負荷変化に対する対応性も高くし得るとともに、クリーンルームの空調など負荷熱交換器に通風する空気量を一定に維持する必要がある場合にもシステムを適用することができて、汎用性の面でも一層優れたシステムにすることができる。 On the other hand, in the above configuration, the heat medium flow rate of the load heat exchanger is adjusted in accordance with the change of the load heat amount in a state where it is limited to the appropriate heat medium flow rate for the calculated load heat amount (the load heat amount at that time) or the flow rate in the vicinity thereof. Can be used to adjust the cooling capacity and heating capacity of the load heat exchanger by adjusting the flow rate of the heat medium. The system can be applied even when it is necessary to maintain a constant amount of air to be passed to the load heat exchanger such as air conditioning in a clean room, and the system can be further improved in terms of versatility.
熱負荷処理システムを構成するのに第2参考構成として、
負荷媒体を熱媒と熱交換させて冷却又は加熱する負荷熱交換器と、この負荷熱交換器に供給する熱媒の流量を前記負荷熱交換器での負荷媒体の冷却又は加熱に要する熱量である負荷熱量の変化に応じて調整する流量制御手段とを備える熱負荷処理システムにおいて、
前記負荷熱交換器の運転状態を検出する計測手段を設け、
前記流量制御手段は、この計測手段の計測情報に基づいて前記負荷熱量を演算する負荷演算処理と、
前記負荷演算処理での演算負荷熱量を賄うことが可能な熱媒流量範囲の下限流量又はその流量範囲内における下限近傍流量を前記負荷熱交換器の特性データ及び前記計測手段の計測情報に基づき適正熱媒流量として演算する流量演算処理と、
前記負荷熱交換器の熱媒流量を前記流量演算処理で演算した適正熱媒流量若しくはその近傍流量以下に制限した状態で前記負荷熱量の変化に応じて調整する、又は、前記負荷熱交換器の熱媒流量を前記流量演算処理で演算した適正熱媒流量若しくはその近傍流量に調整する流量調整処理とを実行する構成にしてもよい。
As a second reference configuration for configuring the thermal load treatment system,
A load heat exchanger that cools or heats the load medium by exchanging heat with the heat medium, and the flow rate of the heat medium supplied to the load heat exchanger is the amount of heat required for cooling or heating the load medium in the load heat exchanger. In a thermal load processing system comprising a flow rate control means for adjusting according to a change in a certain amount of load heat,
Providing a measuring means for detecting the operating state of the load heat exchanger;
The flow rate control means, a load calculation process for calculating the load heat amount based on the measurement information of the measurement means,
The lower limit flow rate of the heat medium flow rate range that can cover the calculated load heat amount in the load calculation process or the lower limit flow rate within the flow rate range is appropriate based on the characteristic data of the load heat exchanger and the measurement information of the measurement means Flow rate calculation processing to calculate as the heat medium flow rate,
Adjust the heat medium flow rate of the load heat exchanger in accordance with the change of the load heat amount in a state where the heat medium flow rate is limited to the proper heat medium flow rate calculated in the flow rate calculation process or the vicinity thereof, or the load heat exchanger You may make it the structure which performs the flow volume adjustment process which adjusts the heat medium flow volume to the appropriate heat medium flow volume calculated by the said flow volume calculation process, or its vicinity flow volume .
つまり、前述の如く負荷熱量が小さいとき負荷熱交換器には能力的な余裕が生じ、また、負荷熱交換器は一般的に負荷熱量の最大値に対しても能力的に余裕のあるものが設定されていることから、これらの能力的な余裕分だけ、入出口の熱媒温度差を設計温度差より大きくするような小さな熱媒流量で負荷熱交換器を運転しても負荷熱量は十分に処理することができる。 That is, as described above, when the load heat amount is small, the load heat exchanger has a capacity margin, and the load heat exchanger generally has a capacity margin with respect to the maximum load heat amount. Therefore, even if the load heat exchanger is operated with a small heat medium flow rate so that the heat medium temperature difference at the inlet and outlet is larger than the design temperature difference by these capacity margins, the load heat quantity is sufficient. Can be processed.
したがって、上記の如く負荷演算処理での演算負荷熱量(その時の負荷熱量)を賄うことが可能な熱媒流量範囲の下限流量又はその流量範囲内における下限近傍流量を負荷熱交換器の特性データ及び計測手段の計測情報に基づき適正熱媒流量として演算し、この適正熱媒流量を制御指標として、負荷熱交換器の熱媒流量をその適正熱媒流量若しくはその近傍流量以下に制限した状態で負荷熱量の変化に応じて調整する(即ち、先に演算した適正熱媒流量若しくはその近傍流量以下の範囲で、その後の負荷熱量の変化に応じて熱媒流量を調整する)、又は、負荷熱交換器の熱媒流量をその適正熱媒流量若しくはその近傍流量に調整するようにすれば、前述の第1特徴構成と同様、負荷熱量が設計値(即ち、想定最大値)より小さい状況では負荷熱交換器の入出口の熱媒温度差を設計温度差よりも大きく状態で負荷熱交換器を運転することができ、また、部分負荷状態において負荷熱量がさらに低下したときには負荷熱交換器の入出口の熱媒温度差を負荷熱量が低下する前の温度差よりもさらに大きくした状態で負荷熱交換器を運転することができる。 Therefore, as described above, the lower limit flow rate of the heat medium flow range that can cover the calculated load heat amount (the load heat amount at that time) in the load calculation process as described above, the characteristic data of the load heat exchanger, Calculated as the appropriate heat medium flow rate based on the measurement information of the measuring means, and using this appropriate heat medium flow rate as a control index, the load in a state where the heat medium flow rate of the load heat exchanger is limited to the appropriate heat medium flow rate or a flow rate close to it. Adjust according to the amount of heat change (that is, adjust the heat medium flow rate according to the subsequent change in the load heat amount within the range of the appropriate heat medium flow rate or the flow rate near it) or load heat exchange If the heat medium flow rate of the vessel is adjusted to the appropriate heat medium flow rate or the flow rate in the vicinity thereof, the load heat amount is less than the design value (that is, the assumed maximum value) as in the case of the first characteristic configuration described above. The load heat exchanger can be operated with the heat medium temperature difference at the inlet / outlet of the exchanger larger than the design temperature difference, and when the load heat quantity further decreases in the partial load state, the inlet / outlet of the load heat exchanger The load heat exchanger can be operated in a state where the temperature difference of the heat medium is further larger than the temperature difference before the load heat quantity is reduced.
即ち、このことにより各時点の負荷熱量を適切に処理しながらも熱媒流量を効果的に低減した状態で負荷熱交換器を運転することができて、負荷熱交換器に熱媒を送給する熱媒ポンプの運転動力を効果的に低減することができ、また、負荷熱交換器からの送出熱媒を熱源機で再度冷却又は加熱して負荷熱交換器に循環供給する場合では、保有冷熱や保有温熱が十分に消費された熱媒を熱源機に戻すことができて、熱源機の成績係数を効果的に高めることができ、これらのことで従来の熱負荷処理システムに比べ省エネルギ化を効果的に促進することができる。 In other words, this makes it possible to operate the load heat exchanger in a state where the heat medium flow rate is effectively reduced while appropriately processing the load heat amount at each time point, and to supply the heat medium to the load heat exchanger. It is possible to effectively reduce the operating power of the heat medium pump to be used, and in the case where the heat medium sent from the load heat exchanger is cooled again or heated by the heat source unit and circulated and supplied to the load heat exchanger, The heat medium that has sufficiently consumed the cold and stored heat can be returned to the heat source unit, and the coefficient of performance of the heat source unit can be effectively increased, which saves energy compared to conventional heat load processing systems. Can be effectively promoted.
そしてまた、上記の如き能力的な余裕も活用した状態で熱媒流量を低減することになるから、負荷熱交換器の入出口の熱媒温度差を設計温度差に維持するように熱媒流量を調整する前述の別方式(特開平4−165242号公報参照)に比べても、第1特徴構成と同様、一層効果的に省エネルギ化を促進することができる。 In addition, since the heat medium flow rate is reduced in a state where the above-mentioned capability margin is utilized, the heat medium flow rate is maintained so that the heat medium temperature difference at the inlet and outlet of the load heat exchanger is maintained at the design temperature difference. Compared to the above-described another method for adjusting the above (see Japanese Patent Laid-Open No. 4-165242), as in the first feature configuration, energy saving can be promoted more effectively.
また、上記構成において負荷熱交換器の熱媒流量を適正熱媒流量若しくはその近傍流量以下に制限した状態で負荷熱量の変化に応じて調整する形態を採れば、熱媒流量の調整により負荷熱交換器の冷却能力や加熱能力を調整する形態にすることができるから、前述と同様、上記別方式に比べ負荷変化に対する対応性も高くし得るとともに、クリーンルームの空調など負荷熱交換器に通風する空気量を一定に維持する必要がある場合にもシステムを適用することができて、汎用性の面でも一層優れたシステムにすることができる。 Further, in the above configuration, if the heat medium flow rate of the load heat exchanger is limited to the appropriate heat medium flow rate or a flow rate close to the proper heat medium flow rate, the load heat is adjusted by adjusting the heat medium flow rate. Since the cooling capacity and heating capacity of the exchanger can be adjusted, it is possible to improve the response to the load change as compared with the above-mentioned method, and to ventilate the load heat exchanger such as clean room air conditioning. The system can be applied even when the amount of air needs to be maintained constant, and the system can be further improved in terms of versatility.
ここで、本発明の第1特徴構成は、
負荷媒体を熱媒と熱交換させて冷却又は加熱する負荷熱交換器と、この負荷熱交換器に供給する熱媒の流量を前記負荷熱交換器での負荷媒体の冷却又は加熱に要する熱量である負荷熱量の変化に応じて調整する流量制御手段とを備える熱負荷処理システムであって、
前記負荷熱交換器の運転状態を検出する計測手段を設け、
前記流量制御手段は、この計測手段の計測情報に基づいて前記負荷熱量を演算する負荷演算処理と、
前記負荷熱量を賄うことが可能な熱媒流量でかつ前記負荷熱量が小さくなるほど前記負荷熱交換器の入口と出口との熱媒温度差を大きくする割合で減量する熱媒流量を前記負荷熱交換器の特性データ及び前記計測手段の計測情報に基づき適正熱媒流量として演算する所定の演算モデルにより、前記負荷演算処理での演算負荷熱量に対する適正熱媒流量を演算する流量演算処理と、
前記負荷熱交換器の熱媒流量を前記流量演算処理で演算した適正熱媒流量若しくはその近傍流量以下に制限した状態で前記負荷熱量の変化に応じて調整する流量調整処理とを実行する構成にしてある点にある。
この構成によれば基本的に、前述した第1参考構成と同様の作用効果を得ることができる。
そして、この構成では、負荷熱交換器の熱媒流量を演算負荷熱量(その時の負荷熱量)に対する適正熱媒流量若しくはその近傍流量以下に制限した状態で負荷熱量の変化に応じて調整するから、熱媒流量の調整により負荷熱交換器の冷却能力や加熱能力を調整する形態にすることができ、この点で、前述した別方式に比べ負荷変化に対する対応性も高くし得るとともに、クリーンルームの空調など負荷熱交換器に通風する空気量を一定に維持する必要がある場合にもシステムを適用することができて、汎用性の面でも一層優れたシステムにすることができる。
本発明の第2特徴構成は、第1特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
室内還気と外気との混合空気を負荷媒体として前記負荷熱交換器で熱媒としての冷水と熱交換させることで冷房用の給気を生成する構成にし、
前記負荷熱交換器の冷水流量を調整する流量調整弁を設けるとともに、前記計測手段として室内還気の温度を計測するセンサを設け、
前記流量制御手段は、前記流量調整処理として、前記流量調整弁の上限開度を規定することで前記負荷熱交換器の冷水流量を前記流量演算処理で前記適正熱媒流量として演算した適正冷水流量以下に制限するとともに、
この上限開度規定の下で、前記負荷熱量の変化に応じた熱媒流量の調整として、前記センサにより計測される還気空気の温度と冷房目標温度である設定温度との偏差に応じて前記流量調整弁の開度を調整することで前記負荷熱交換器の冷水流量を調整する構成にしてある点にある。
この構成によれば、前述の如く、負荷熱交換器の冷水流量(熱媒流量)を演算負荷熱量(その時の負荷熱量)に対する適正冷水流量(適正熱媒流量)以下に制限した状態で還気空気の温度と冷房目標温度である設定温度との偏差に応じて(即ち、負荷熱量の変化に応じて)調整するから、冷水流量(熱媒流量)の調整により負荷熱交換器の冷却能力を調整する形態にすることができ、この点で、負荷変化に対する対応性も高くし得るとともに、クリーンルームの空調など負荷熱交換器に通風する空気量を一定に維持する必要がある場合にもシステムを適用することができて、汎用性の面でも優れた冷房用のシステムにすることができる。
本発明の第3特徴構成は、第1又は第2特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記流量制御手段は、前記負荷熱交換器の熱媒流量を前記流量演算処理で演算した適正熱媒流量にしたときの前記負荷熱交換器の入出口の熱媒温度差を前記負荷熱交換器の特性データ及び前記計測手段の計測情報に基づき指標温度差として演算するとともに、
前記流量調整処理において前記計測手段により計測される前記負荷熱交換器の入出口の熱媒温度差が前記指標温度差よりも設定減少幅以上に減少したとき及び設定増大幅以上に増大したとき、前記負荷演算処理及び前記流量演算処理を再度実行して前記流量調整処理で用いる前記適正熱媒流量を更新する構成にしてある点にある。
Here, the first characteristic configuration of the present invention is:
A load heat exchanger that cools or heats the load medium by exchanging heat with the heat medium, and the flow rate of the heat medium supplied to the load heat exchanger is the amount of heat required for cooling or heating the load medium in the load heat exchanger. A heat load processing system comprising a flow rate control means for adjusting according to a change in a certain amount of heat,
Providing a measuring means for detecting the operating state of the load heat exchanger;
The flow rate control means, a load calculation process for calculating the load heat amount based on the measurement information of the measurement means,
The load heat exchange is performed to reduce the heat medium flow rate at a rate that increases the heat medium temperature difference between the inlet and the outlet of the load heat exchanger as the load heat amount decreases and the heat medium flow rate can cover the load heat amount. A flow rate calculation process for calculating an appropriate heat medium flow rate with respect to a calculated load heat amount in the load calculation process, according to a predetermined calculation model for calculating as an appropriate heat medium flow rate based on the characteristic data of the vessel and the measurement information of the measuring means;
A flow rate adjustment process is performed in which the heat medium flow rate of the load heat exchanger is adjusted according to a change in the load heat amount in a state where the heat medium flow rate of the load heat exchanger is limited to an appropriate heat medium flow rate calculated in the flow rate calculation process or a flow rate close thereto. It is in a certain point.
According to this configuration, basically, the same operational effects as those of the first reference configuration described above can be obtained.
And in this configuration, the heat medium flow rate of the load heat exchanger is adjusted according to changes in the load heat amount in a state where it is limited to an appropriate heat medium flow rate for the calculated load heat amount (load heat amount at that time) or a flow rate in the vicinity thereof, The cooling capacity and heating capacity of the load heat exchanger can be adjusted by adjusting the heat medium flow rate, and in this respect, it can be more responsive to load changes than the other methods described above, and clean room air conditioning For example, the system can be applied even when the amount of air flowing through the load heat exchanger needs to be maintained constant, and the system can be further improved in terms of versatility.
The second feature configuration of the present invention specifies an embodiment suitable for the implementation of the first feature configuration.
It is configured to generate air supply for cooling by causing heat exchange with cold water as a heat medium in the load heat exchanger using a mixed air of indoor return air and outside air as a load medium,
Provided with a flow rate adjustment valve for adjusting the cold water flow rate of the load heat exchanger, and provided with a sensor for measuring the temperature of indoor return air as the measuring means,
The flow rate control means, as the flow rate adjustment process, by defining the upper limit opening of the flow rate adjustment valve, the cold water flow rate of the load heat exchanger is calculated as the appropriate heat medium flow rate in the flow rate calculation process While limiting to
Under this upper limit opening degree regulation, as the adjustment of the heating medium flow rate according to the change of the load heat quantity, the difference between the temperature of the return air measured by the sensor and the set temperature which is the cooling target temperature, The configuration is such that the cold water flow rate of the load heat exchanger is adjusted by adjusting the opening of the flow rate adjustment valve.
According to this configuration, as described above, the return air in a state where the cold water flow rate (heat medium flow rate) of the load heat exchanger is limited to an appropriate cold water flow rate (appropriate heat medium flow rate) or less with respect to the calculated load heat amount (load heat amount at that time). Since the temperature is adjusted according to the deviation between the air temperature and the set temperature that is the cooling target temperature (that is, according to the change in the load heat amount), the cooling capacity of the load heat exchanger can be adjusted by adjusting the chilled water flow rate (heat medium flow rate). In this respect, the system can be made more responsive to load changes, and the system can be used even when it is necessary to maintain a constant amount of air passing through the load heat exchanger such as air conditioning in a clean room. It can be applied, and a cooling system that is excellent in versatility can be obtained.
The third feature configuration of the present invention specifies an embodiment suitable for the implementation of the first or second feature configuration.
The flow rate control means calculates the temperature difference of the heat medium at the inlet and outlet of the load heat exchanger when the heat medium flow rate of the load heat exchanger is set to an appropriate heat medium flow rate calculated by the flow rate calculation process. And calculating as an index temperature difference based on the measurement data of the characteristic data and the measurement information of the measuring means,
When the heat medium temperature difference at the inlet / outlet of the load heat exchanger measured by the measuring means in the flow rate adjustment process is decreased more than a set decrease width and more than a set increase width than the index temperature difference, The load calculation process and the flow rate calculation process are executed again to update the appropriate heat medium flow rate used in the flow rate adjustment process.
つまり、この構成によれば、流量調整処理で用いる適正熱媒流量を上記の如く更新することで、負荷熱量の変化に対し適切に追従して、各時点の負荷熱量を適切に処理しながら各時点の負荷熱量に応じ負荷熱交換器の熱媒流量を前述の如く効果的に低減することができる。 In other words, according to this configuration, by updating the appropriate heat medium flow rate used in the flow rate adjustment process as described above, each load heat amount at each time point is appropriately processed while appropriately following the change in the load heat amount. The heat medium flow rate of the load heat exchanger can be effectively reduced as described above according to the amount of load heat at the time.
そしてまた、計測される熱媒温度差が上記指標温度差よりも設定減少幅以上に減少したとき及び設定増大幅以上に増大したときに適正熱媒流量を更新するから、適正熱媒流量の不要な更新を回避することができ、これにより、制御指標とする適正熱媒流量の必要以上の頻繁な更新によるシステム運転の不安定化を防止することができて、システム運転の安定性を高めることができる。 In addition, when the measured heat medium temperature difference is more than the set decrease width and more than the set increase width than the index temperature difference, the appropriate heat medium flow rate is updated. Therefore, the system operation can be prevented from becoming unstable due to frequent updates more than necessary for the appropriate heat medium flow rate as the control index, and the stability of the system operation can be improved. Can do.
本発明の第4特徴構成は、第1又は第2特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記流量制御手段は、前記負荷演算処理及び前記流量演算処理を所定の周期で繰り返して前記流量調整処理で用いる前記適正熱媒流量を逐次更新する構成にしてある点にある。
The fourth feature configuration of the present invention specifies an embodiment suitable for the implementation of the first or second feature configuration.
The flow rate control unit is configured to sequentially update the appropriate heat medium flow rate used in the flow rate adjustment process by repeating the load calculation process and the flow rate calculation process at a predetermined cycle.
つまり、この構成によれば、流量調整処理で用いる適正熱媒流量を上記の如く更新することで、前述の第3特徴構成と同様、負荷熱量の変化に対し適切に追従して、各時点の負荷熱量を適切に処理しながら各時点の負荷熱量に応じ負荷熱交換器の熱媒流量を前述の如く効果的に低減することができる。 That is, according to this configuration, by updating the appropriate heat medium flow rate used in the flow rate adjustment process as described above, similarly to the above-described third feature configuration, appropriately follows the change in load heat amount, and at each time point The heat medium flow rate of the load heat exchanger can be effectively reduced as described above according to the load heat quantity at each time point while appropriately processing the load heat quantity.
そしてまた、この構成によれば、負荷演算処理及び流量演算処理を単に繰り返すことで適正熱媒流量を更新するから、その更新のための制御系を簡略なもので済ませることができる。 Further, according to this configuration, since the appropriate heat medium flow rate is updated by simply repeating the load calculation process and the flow rate calculation process, the control system for the update can be simplified.
本発明の第5特徴構成は、第1特徴構成の熱負荷処理システムとともに用いる熱源システムに係り、その特徴は、
熱源機で冷却又は加熱した熱媒を前記負荷熱交換器に供給する熱媒送給路に複数の熱媒ポンプを並列配置で介装するとともに、
前記流量制御手段により調整する熱媒流量である負荷流量の変化に応じて前記熱媒ポンプの運転台数を変更するポンプ制御手段を装備した熱源システムにおいて、
各運転台数での熱媒ポンプ運転において運転熱媒ポンプの夫々を最大出力で運転した場合における熱媒送給流量と熱媒送給圧力との相関を示す運転台数毎のポンプ性能曲線を設定するとともに、
前記負荷流量とその負荷流量の熱媒を前記負荷熱交換器に供給するのに必要な送給圧力との相関を示すポンプ制御線を設定して、
これら運転台数毎のポンプ性能曲線とポンプ制御線との各交点における流量値又はその近傍流量値の夫々を閾値流量として設定し、
これらの設定に対して前記ポンプ制御手段は、ポンプ運転台数制御として、負荷流量を検出する流量検出手段の検出情報に基づき、
前記閾値流量の各々について、負荷流量が閾値流量よりも減少すると前記熱媒ポンプの運転台数を一台減少させ、かつ、負荷流量が閾値流量よりも増加すると前記熱媒ポンプの運転台数を一台増加させる構成にしてある点にある。
The fifth characteristic configuration of the present invention relates to a heat source system used together with the heat load processing system of the first characteristic configuration ,
While interposing a plurality of heat medium pumps in parallel arrangement in the heat medium supply path for supplying the heat medium cooled or heated by the heat source machine to the load heat exchanger,
In a heat source system equipped with pump control means for changing the number of operating heat medium pumps according to a change in load flow rate that is a heat medium flow rate adjusted by the flow rate control means,
Set the pump performance curve for each number of operating units that shows the correlation between the heat medium supply flow rate and the heat medium supply pressure when each of the operating heat medium pumps is operated at the maximum output in the operation of the heat medium pump with each operating number. With
Setting a pump control line indicating the correlation between the load flow rate and the supply pressure required to supply the load medium with the heat medium of the load flow rate,
Each of the flow rate value at each intersection of the pump performance curve and the pump control line for each number of operating units or its neighboring flow rate value is set as the threshold flow rate,
With respect to these settings, the pump control means, based on the detection information of the flow rate detection means for detecting the load flow rate, as the pump operation number control,
For each of the threshold flow rates, when the load flow rate decreases below the threshold flow rate, the number of operating heat medium pumps decreases by one, and when the load flow rate increases above the threshold flow rate, the number of operating heat medium pumps decreases by one. It is in the point which is made the structure to increase.
つまり、この構成において(図4参照)、上記した運転台数毎のポンプ性能曲線L1〜L3とポンプ制御線Mとの交点X1〜X3の夫々は、各運転台数N(N=1,2,3)での熱媒ポンプ運転において運転熱媒ポンプの夫々を最大出力運転する状況下でポンプ制御線Mが示す流量・圧力相関(即ち、負荷流量Qとその負荷流量Qの熱媒を負荷熱交換器に供給するのに必要な送給圧力との相関)を満足することができる運転台数毎の上限的なポンプ運転状態を示す点となる。 That is, in this configuration (see FIG. 4), each of the intersections X1 to X3 between the pump performance curves L1 to L3 and the pump control line M for each of the operating units described above is represented by each operating unit N (N = 1, 2, 3). The flow rate and pressure correlation indicated by the pump control line M under the condition that each of the operating heat medium pumps is operated at the maximum output in the heat medium pump operation in (1). This is a point indicating the upper limit pump operation state for each number of operating units that can satisfy the correlation with the supply pressure required to supply to the unit.
したがって、これら各交点X1〜X3における流量値Qs(Qs1〜Qs3)の夫々を閾値流量として、上記の如く、これら閾値流量Qsの各々について、負荷流量Qが閾値流量Qsよりも減少すると熱媒ポンプの運転台数Nを一台減少させ、かつ、負荷流量Qが閾値流量Qsよりも増加すると熱媒ポンプの運転台数Nを一台増加させるようにすれば、負荷流量Qの変化に応じた熱媒ポンプの運転台数変更において必要以上の運転台数Nで熱媒ポンプが運転されるといった状況が生じるのを回避しながら、負荷流量Qの熱媒を負荷熱交換器に対して適切に供給することができる。 Therefore, when each of the flow rate values Qs (Qs1 to Qs3) at the intersections X1 to X3 is set as a threshold flow rate and the load flow rate Q decreases below the threshold flow rate Qs for each of the threshold flow rates Qs as described above, the heat medium pump. If the operating number N of the heat medium pump is decreased by one and the operating number N of the heat medium pump is increased by one when the load flow rate Q increases above the threshold flow rate Qs, the heat medium corresponding to the change in the load flow rate Q is obtained. It is possible to appropriately supply the heat medium with the load flow rate Q to the load heat exchanger while avoiding the situation that the heat medium pump is operated with the operation number N more than necessary when the number of pumps is changed. it can.
即ち、熱媒送給圧力Pを一定値Pmsとする圧力条件下で熱媒ポンプの夫々を最大出力で運転したときに得られる熱媒ポンプ夫々の熱媒送給流量ΔQごとの配分で台数変更指標としての閾値流量Qs′(Qs1′〜Qs3′)を設定していた先述の従来方式では(図8参照)、閾値流量Qs′と負荷流量Qとの比較により決定される熱媒ポンプの運転台数Nより一台少ない運転台数で熱媒ポンプを運転しても、流量面及び圧力面の夫々について何ら問題なく負荷熱交換器に熱媒を供給できる運転台数過大状況が図4におけるQs1〜Qs1′の流量域、及び、Qs2〜Qs2′の流量域の夫々で生じており、これに対し上記構成によれば、このような状況が生じるのを回避することができて、熱媒ポンプの運転台数Nを各時点での可能な範囲で確実に最小化することができ、これにより、この熱媒システムとともに用いる前述第1〜第4特徴構成のいずれかに係る熱負荷処理システムにおいて前述の如く負荷熱交換器の熱媒流量(負荷流量)を効果的に低減し得ることと相まって、省エネルギ化を更に効果的に促進することができる。 That is, the number of heat medium pumps obtained by operating each heat medium pump at the maximum output under a pressure condition where the heat medium supply pressure P is a constant value Pms is changed according to the distribution for each heat medium supply flow rate ΔQ. In the above-described conventional method in which the threshold flow rate Qs ′ (Qs1 ′ to Qs3 ′) is set as an index (see FIG. 8), the operation of the heat medium pump is determined by comparing the threshold flow rate Qs ′ with the load flow rate Q. Even if the heat medium pump is operated with the number of operating units one unit less than the number N, the excessive number of operating units that can supply the heat medium to the load heat exchanger without any problems with respect to both the flow rate surface and the pressure surface is Qs1 to Qs1 in FIG. ′ And Qs2 to Qs2 ′. In contrast, according to the above configuration, such a situation can be avoided and the operation of the heat medium pump can be avoided. Number of units N possible range at each time The heat medium flow rate (load flow rate) of the load heat exchanger as described above in the heat load processing system according to any one of the first to fourth characteristic configurations used together with the heat medium system can be surely minimized. ) Can be effectively reduced, and energy saving can be further effectively promoted.
なお、上記例では3台の熱媒ポンプを装備する場合を示したが、熱媒送給路に並列配置で介装する熱媒ポンプの台数は3台に限らず2台以上の複数であれば何台であってもよく、また、それら複数の熱媒ポンプは最大出力等の仕様が互いに異なるものであってもよい。 In the above example, three heat medium pumps are provided. However, the number of heat medium pumps arranged in parallel in the heat medium supply path is not limited to three and may be two or more. Any number of units may be used, and the plurality of heat medium pumps may have different specifications such as maximum output.
装備した複数の熱媒ポンプの全てを運転台数変更の対象ポンプとするに限らず、装備した熱媒ポンプのうちの一部の複数ポンプについてはシステム運転時において常時運転し、その他の複数ポンプのみを運転台数変更の対象とするようにしてもよい。 Not all of the equipped multiple heat medium pumps are subject to change in the number of operating units, but some of the equipped heat medium pumps are always operated during system operation, and only other multiple pumps May be the target of changing the number of operating units.
運転台数N毎のポンプ性能曲線L1〜L3は、運転熱媒ポンプの夫々を定格の最大出力で運転した場合における流量・圧力相関を示すもの、あるいは、運転熱媒ポンプの夫々を実質的な最大出力で運転した場合における流量・圧力相関を示すもののいずれであってもよい。 The pump performance curves L1 to L3 for each operation number N indicate the flow rate / pressure correlation when each of the operation heat medium pumps is operated at the rated maximum output, or each of the operation heat medium pumps is substantially maximum. Any of those showing a flow rate / pressure correlation in the case of operation with output may be used.
ポンプ制御線Mは実測により求めることが望ましいが、システムの実施を容易にするため、ポンプ制御線Mとしてシミュレートや演算により求めた近似的な曲線、折れ線、直線などを用いてもよい。また、ポンプ制御線Mとしてシミュレートや演算により求めた近似的なものを採用する場合、求めたポンプ制御線Mを実測データ等に基づき補正した上で使用するのが望ましい。 Although it is desirable to obtain the pump control line M by actual measurement, an approximate curve, a broken line, a straight line, or the like obtained by simulation or calculation may be used as the pump control line M in order to facilitate the implementation of the system. Further, when an approximate one obtained by simulation or calculation is adopted as the pump control line M, it is desirable to use the pump control line M after correcting the obtained pump control line M based on actual measurement data or the like.
運転台数N毎のポンプ性能曲線L1〜L3、ポンプ制御線M、並びに、それらの交点X1〜X3は図上に描いたものである必要はなく、ポンプ制御手段が式や座標としてのみ認識するものであってもよく、また、これらポンプ性能曲線L1〜L3やポンプ制御線M、あるいは、それらの交点X1〜X3や閾値流量Qs(Qs1〜Qs3)の夫々は、予め決定したものを初期設定的な入力によりポンプ制御手段に記憶させる方式、あるいは、所要データの入力によりポンプ制御手段に演算させる方式のいずれを採用してもよい。 The pump performance curves L1 to L3, the pump control lines M, and their intersections X1 to X3 for each number of operating units N do not have to be drawn on the figure, and are recognized only by the pump control means as equations and coordinates. In addition, the pump performance curves L1 to L3, the pump control line M, or their intersections X1 to X3 and the threshold flow rate Qs (Qs1 to Qs3) are set to default values. Either a method of storing in the pump control means by simple input or a method of causing the pump control means to calculate by inputting required data may be adopted.
台数変更指標としての閾値流量Qs(Qs1〜Qs3)は、運転台数N毎のポンプ性能曲線L1〜L3とポンプ制御線Mとの各交点X1〜X3における流量値と必ずしも厳密に合致させる必要はなく、例えば、安全率を見込んで各交点X1〜X3における流量値よりも若干小さい流量値を閾値流量Qsにしたり、また逆に、各熱媒ポンプの実質の最大出力が定格の最大出力よりも大きいことを安全分として各交点X1〜X3における流量値よりも若干大きい流量値を閾値流量Qsにするなど、各交点X1〜X3における流量値の近傍流量値を閾値流量Qsにしてもよい。 The threshold flow rate Qs (Qs1 to Qs3) as the number change index does not necessarily exactly match the flow rate values at the intersections X1 to X3 between the pump performance curves L1 to L3 and the pump control lines M for each number N of operating units. For example, the flow rate value slightly smaller than the flow rate value at each of the intersections X1 to X3 is set to the threshold flow rate Qs in anticipation of the safety factor, or conversely, the actual maximum output of each heat medium pump is larger than the rated maximum output. For example, a flow rate value slightly larger than the flow rate value at each of the intersection points X1 to X3 may be set as the threshold flow rate Qs, and the flow rate value near the flow rate value at each of the intersection points X1 to X3 may be set as the threshold flow rate Qs.
負荷流量Qを検出する流量検出手段は、負荷熱交換器における熱媒流量Qを直接的に検出するもの、あるいは、間接的に検出するもののいずれであってもよく、また、その検出方式も種々のものを採用することができる。 The flow rate detection means for detecting the load flow rate Q may be either one that directly detects the heat medium flow rate Q in the load heat exchanger or one that is indirectly detected, and there are various detection methods. Can be adopted.
本発明の第6特徴構成は、第5特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記ポンプ制御手段は、前記ポンプ運転台数制御とともに、負荷流量を検出する流量検出手段の検出情報に基づき運転熱媒ポンプのうちの少なくとも1台の熱媒ポンプの出力を負荷流量の変化に応じて調整するポンプ出力制御を実行する構成にしてある点にある。
The sixth feature configuration of the present invention specifies an embodiment suitable for the implementation of the fifth feature configuration.
The pump control means outputs the output of at least one heat medium pump of the operation heat medium pumps according to the change of the load flow rate based on the detection information of the flow rate detection means for detecting the load flow rate together with the pump operation number control. The pump output control to be adjusted is executed.
つまり、この構成によれば、前記ポンプ運転台数制御に加え、運転熱媒ポンプのうちの少なくとも1台の熱媒ポンプの出力を負荷流量Qの変化に応じて調整するので、ある運転台数Nでの熱媒ポンプ運転において運転熱媒ポンプの夫々を最大出力で運転する上限側の閾値流量Qs(即ち、現状の運転台数よりも熱媒ポンプの運転台数を一台増加させる側の台数変更指標となる閾値流量Qs)よりも負荷流量Qが減少した状態では、少なくとも1台の運転熱媒ポンプの出力が最大出力よりも低下側に調整され、その分、運転熱媒ポンプ全体としての出力が低下する。 That is, according to this configuration, in addition to the pump operation number control, the output of at least one heat medium pump of the operation heat medium pumps is adjusted according to the change in the load flow rate Q. In the heat medium pump operation, the upper threshold flow rate Qs for operating each of the operation heat medium pumps at the maximum output (that is, the number change index on the side that increases the number of operation of the heat medium pump by one from the current operation number) In the state where the load flow rate Q is reduced from the threshold flow rate Qs), the output of at least one operating heat medium pump is adjusted to the lower side than the maximum output, and the output of the entire operating heat medium pump is reduced accordingly. To do.
即ち、各運転台数Nでの熱媒ポンプ運転において運転熱媒ポンプを常に最大出力で運転するのに比べ、上記の出力低下分だけ運転熱媒ポンプ全体としての消費エネルギを低減することができ、これにより、熱媒ポンプの運転台数Nを各時点での可能な範囲で確実に最小化し得る前記ポンプ運転台数制御と相まって、省エネルギ化を一層効果的に促進することができる。 That is, compared with always operating the operating heat medium pump at the maximum output in the operation of the heat medium pump with each operating number N, the energy consumption of the entire operating heat medium pump can be reduced by the amount of the above output reduction, Thereby, energy saving can be promoted more effectively, coupled with the above-mentioned pump operation number control that can reliably minimize the number N of operating heat medium pumps within a possible range at each time point.
なお、運転熱媒ポンプの出力を調整するには、負荷流量Qの変化に応じて運転熱媒ポンプの出力を連続的に変更する調整形態あるいは段階的に変更する調整形態のいずれを採用してもよいが、いずれにしても前記ポンプ制御線Mを出力調整の基準線とする形態で負荷流量Qの変化に応じて運転熱媒ポンプの出力を調整するのが望ましい。 In order to adjust the output of the operation heat medium pump, either an adjustment mode in which the output of the operation heat medium pump is continuously changed in accordance with a change in the load flow rate Q or an adjustment mode in which the output is changed step by step is adopted. However, in any case, it is desirable to adjust the output of the operating heat medium pump according to the change of the load flow rate Q in the form in which the pump control line M is the reference line for output adjustment.
負荷流量Qの変化に応じた運転熱媒ポンプの出力調整は、ポンプ運転台数制御による各運転台数Nでの熱媒ポンプ運転の全てについて実施するに限らず、各運転台数Nでの熱媒ポンプ運転のうちの一部の熱媒ポンプ運転についてのみ実施するようにしてもよい。 The output adjustment of the operation heat medium pump according to the change of the load flow rate Q is not limited to the operation of all the heat medium pump operations at each operation number N by the pump operation number control, but the heat medium pump at each operation number N You may make it implement only about the one part heat medium pump driving | operation of driving | operation.
また、運転熱媒ポンプの出力を調整するには、インバータ制御(周波数制御)によるポンプ回転数の調整を初め、種々の出力調整方式を採用することができる。 In order to adjust the output of the operating heat medium pump, various output adjustment methods can be employed, including adjustment of the pump rotation speed by inverter control (frequency control).
この構成において用いる流量検出手段は、負荷熱交換器における熱媒流量Qを直接的に検出するもの、あるいは、間接的に検出するもののいずれにしても種々の検出方式のものを採用することができ、また、第5特徴構成の実施において用いる流量検出手段を兼用するもの、あるいは、それとは別個のもののいずれであってもよい。 As the flow rate detection means used in this configuration, any of various detection methods can be employed, either directly detecting the heat medium flow rate Q in the load heat exchanger or indirectly detecting it. In addition, it may be one that also serves as a flow rate detection means used in the implementation of the fifth characteristic configuration, or a separate one.
本発明の第7特徴構成は、第6特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記ポンプ制御手段は、前記ポンプ出力制御として、
前記負荷熱交換器への熱媒送給圧力を検出する圧力検出手段の検出情報に基づき運転熱媒ポンプのうちの少なくとも1台の熱媒ポンプの出力を調整して、前記負荷熱交換器への熱媒送給圧力を目標圧力に調整する送給圧力制御と、
前記流量検出手段の検出情報に基づき前記送給圧力制御の目標圧力を負荷流量の変化に応じて変更する目標変更制御とを実行する構成にしてある点にある。
The seventh feature configuration of the present invention specifies an embodiment suitable for the implementation of the sixth feature configuration.
The pump control means, as the pump output control,
Based on the detection information of the pressure detection means for detecting the heat medium supply pressure to the load heat exchanger, the output of at least one heat medium pump of the operation heat medium pumps is adjusted to the load heat exchanger. Supply pressure control to adjust the heat medium supply pressure of the target to the target pressure,
The target change control for changing the target pressure of the supply pressure control according to the change of the load flow rate based on the detection information of the flow rate detecting means is configured.
つまり、この構成では、運転熱媒ポンプのうちの少なくとも1台の熱媒ポンプの出力を負荷流量Qの変化に応じて調整する前記ポンプ出力制御として、1つは運転熱媒ポンプのうちの少なくとも1台の熱媒ポンプの出力を調整することで、負荷熱交換器への熱媒送給圧力Pを目標圧力Pmに調整する送給圧力制御を実行させる。 That is, in this configuration, as the pump output control for adjusting the output of at least one of the operating heat medium pumps according to the change in the load flow rate Q, one of the operating heat medium pumps is at least one of the operating heat medium pumps. By adjusting the output of one heat medium pump, the supply pressure control for adjusting the heat medium supply pressure P to the load heat exchanger to the target pressure Pm is executed.
そして、他の1つとして送給圧力制御における目標圧力Pmを負荷流量Qの変化に応じて変更する目標変更制御を実行させ、このように負荷流量Qの変化に応じて目標圧力Pmを変更する形態で上記送給圧力制御を実行させることにより、全体としては、運転熱媒ポンプのうちの少なくとも1台の熱媒ポンプの出力を負荷流量Qの変化に応じて調整する。 And as another one, the target change control which changes the target pressure Pm in feed pressure control according to the change of the load flow rate Q is performed, and the target pressure Pm is changed according to the change of the load flow rate Q in this way. By executing the above-mentioned supply pressure control in the form, as a whole, the output of at least one heat medium pump among the operation heat medium pumps is adjusted according to the change in the load flow rate Q.
即ち、上記構成によれば、全体としては負荷流量Qの変化に応じたポンプ運転台数制御と同様、負荷流量Qの変化に応じて運転熱媒ポンプの出力を調整するものの、制御端末では実質的に、負荷流量Qの変化に応じたポンプ運転台数制御とは異なり、前記ポンプ出力制御での運転熱媒ポンプの出力調整を熱媒送給圧力Pに応じて行なわせる形態となり、これにより、前記ポンプ運転台数制御及び前記ポンプ出力制御夫々の独立性を高めてシステム運転の安定性を高めることができる。 That is, according to the above configuration, although the output of the operation heat medium pump is adjusted according to the change of the load flow rate Q as a whole, the output of the operation heat medium pump is adjusted substantially according to the change of the load flow rate Q, as in the control of the number of operating pumps. Unlike the pump operation number control according to the change in the load flow rate Q, the output adjustment of the operation heat medium pump in the pump output control is performed according to the heat medium supply pressure P. The independence of the pump operation number control and the pump output control can be increased to improve the stability of system operation.
なお、この構成の実施において、送給圧力制御で調整する熱媒送給圧力P、目標変更制御で変更する送給圧力制御の目標圧力Pm、圧力検出手段が検出する熱媒送給圧力Pは、運転熱媒ポンプ全体としての吐出圧力に限られるものではなく、負荷熱交換器の入口熱媒圧力や運転熱媒ポンプ全体としての入出口熱媒差圧などであってもよい。 In the implementation of this configuration, the heat medium supply pressure P adjusted by the supply pressure control, the target pressure Pm of the supply pressure control changed by the target change control, and the heat medium supply pressure P detected by the pressure detection means are: The pressure is not limited to the discharge pressure of the entire operating heat medium pump, and may be the inlet heat medium pressure of the load heat exchanger, the inlet / outlet heat medium differential pressure of the entire operating heat medium pump, or the like.
また、本発明の上記第7特徴構成の実施にあたっては次の構成を採用してもよい。 Further, the following configuration may be adopted in implementing the seventh characteristic configuration of the present invention.
前記ポンプ制御手段は、前記目標変更制御として、
前記ポンプ運転台数制御で熱媒ポンプの運転台数を一台減少させたときには、前記送給圧力制御の目標圧力を、そのときの運転台数減少の指標となった前記閾値流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値に変更し、
かつ、前記ポンプ運転台数制御で熱媒ポンプの運転台数を一台増加させたときには、前記送給圧力制御の目標圧力を、そのときの運転台数増加の指標となった前記閾値流量よりも一段階だけ大流量側の前記閾値流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値に変更する形態で、
前記送給圧力制御の目標圧力を熱媒ポンプ運転台数の変更毎に段階的に変更する構成にする。
The pump control means, as the target change control,
When the number of operating heat medium pumps is decreased by one in the pump operation number control, the pump control is performed with respect to the target flow rate of the supply pressure control with respect to the threshold flow rate that is an index of the decrease in the number of operation at that time. Change to the corresponding pressure value on or near the line,
In addition, when the number of operating heat medium pumps is increased by one in the control of the number of operating pumps, the target pressure of the supply pressure control is one step higher than the threshold flow rate that is an index of the increase in the operating number at that time. In the form of changing to the pressure value corresponding to the pump control line or the pressure value in the vicinity thereof with respect to the threshold flow rate on the large flow rate side only,
The target pressure of the supply pressure control is changed step by step whenever the number of operating heat pumps is changed.
つまり(図4参照)、熱媒ポンプの運転台数Nを一台減少させたときの運転台数減少の指標となった閾値流量Qs、及び、熱媒ポンプの運転台数Nを一台増加させたときの運転台数増加の指標となった閾値流量Qsよりも一段階だけ大流量側の閾値流量Qsはいずれも、略言すれば、各運転台数Nでの熱媒ポンプ運転における上限側の閾値流量Qs(即ち、現状の運転台数Nよりも熱媒ポンプの運転台数を一台増加させる側の台数変更指標となる閾値流量Qs)に相当する。 That is, (see FIG. 4), when the threshold flow rate Qs, which is an index of the decrease in the number of operating medium when the operating number N of the heat medium pump is decreased, and the operating number N of the heat medium pump are increased by one. In short, the threshold flow rate Qs on the large flow rate side by one step from the threshold flow rate Qs that is an index of the increase in the number of operating units is simply the threshold flow rate Qs on the upper limit side in the heat medium pump operation with each operating number N. (In other words, it corresponds to the threshold flow rate Qs that serves as the number change index on the side that increases the number of operating heat pumps by one from the current number N of operating heat pumps).
したがって、上記構成では、各運転台数Nでの熱媒ポンプ運転における上限側の閾値流量Qsに対して前記ポンプ制御線M上で対応する圧力値Ps(Ps1〜Ps3)又は近傍圧力値を前記送給圧力制御の目標圧力Pmとする形態で、前記送給圧力制御の目標圧力Pmを熱媒ポンプ運転台数の変更毎に段階的に変更する。 Therefore, in the above-described configuration, the pressure value Ps (Ps1 to Ps3) corresponding to the upper limit side threshold flow rate Qs in the heat medium pump operation with each operation number N or the pressure value near the pressure control line M is sent. The target pressure Pm for the supply pressure control is changed step by step every time the number of operating heat medium pumps is changed in the form of the target pressure Pm for the supply pressure control.
即ち、このように送給圧力制御の目標圧力Pmを段階的に変更すれば、前記ポンプ出力制御として、各運転台数Nでの熱媒ポンプ運転において負荷流量Qが上限側の閾値流量Qsよりも減少した状態では、その流量減少分だけ運転熱媒ポンプ全体としての出力が低下するように少なくとも1台の運転熱媒ポンプの出力が最大出力よりも低下側に調整され、その分、運転熱媒ポンプ全体としての消費エネルギを低減することができて、省エネルギ化を一層促進することができる。 That is, if the target pressure Pm of the supply pressure control is changed stepwise in this way, as the pump output control, the load flow rate Q is higher than the upper limit side threshold flow rate Qs in the heat medium pump operation with each operation number N. In the reduced state, the output of at least one operation heat medium pump is adjusted to be lower than the maximum output so that the output of the entire operation heat medium pump is reduced by the amount of the decrease in the flow rate. Energy consumption of the pump as a whole can be reduced, and energy saving can be further promoted.
また、上記構成では、熱媒ポンプの運転台数変更があったときのみ送給圧力制御の目標圧力Pmが変更され、それ以外の定常運転状態では送給圧力制御の目標圧力Pmが一定に維持される(言わば、熱媒ポンプ運転台数Nごとの個別の吐出圧一定制御となる)から、熱媒ポンプの運転台数変更には至らない小幅な負荷流量Q変化が多い場合においてシステムの運転を安定化するのに有効である。 Further, in the above configuration, the target pressure Pm for the feed pressure control is changed only when the number of operating heat pumps is changed, and the target pressure Pm for the feed pressure control is maintained constant in other steady operation states. (In other words, it becomes the individual discharge pressure constant control for each number N of heat medium pumps operated), so the system operation is stabilized when there are many small changes in load flow rate Q that do not lead to changes in the number of heat medium pumps operated. It is effective to do.
本発明の第7特徴構成の実施にあたっては上記構成のほか次の構成を採用してもよい。 In implementing the seventh characteristic configuration of the present invention, the following configuration may be adopted in addition to the above configuration.
前記ポンプ制御手段は、前記目標変更制御として、
前記流量検出手段の検出情報に基づき、各時点の負荷流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値を前記送給圧力制御の目標圧力とする形態で、
前記送給圧力制御の目標圧力を負荷流量の変化に伴い連続的に変更する構成にする。
The pump control means, as the target change control,
Based on the detection information of the flow rate detecting means, the pressure value corresponding to the load flow rate at each time point on the pump control line or a pressure value in the vicinity thereof is set as the target pressure of the supply pressure control,
The target pressure of the supply pressure control is continuously changed as the load flow rate changes.
つまり、この構成によれば、各時点の負荷流量Q(現状流量)に対して前記ポンプ制御線M上で対応する圧力値P又はその近傍圧力値を前記送給圧力制御の目標圧力Pmとする形態で、前記送給圧力制御の目標圧力Pmを負荷流量Qの変化に伴い連続的に変更するから、各運転台数Nでの熱媒ポンプ運転において負荷流量Qが上限側の閾値流量Qs(現状の運転台数Nよりも熱媒ポンプの運転台数を一台増加させる側の台数変更指標となる閾値流量Qs)よりも減少した状態では、その流量減少分とその流量減少に対応する圧力減少分とについて、運転熱媒ポンプ全体としての出力が低下するように少なくとも1台の運転熱媒ポンプの出力が最大出力よりも低下側に調整され、その分、運転熱媒ポンプ全体としての消費エネルギを低減することができて、省エネルギ化を一層効果的に促進することができる。 That is, according to this configuration, the pressure value P corresponding to the load flow rate Q (current flow rate) at each time point on the pump control line M or a pressure value in the vicinity thereof is set as the target pressure Pm for the feed pressure control. In the embodiment, the target pressure Pm of the supply pressure control is continuously changed with the change of the load flow rate Q. Therefore, in the heat medium pump operation with each operation number N, the load flow rate Q is the upper limit side threshold flow rate Qs (current state) In the state where the operating number of the heat medium pump is decreased from the threshold flow rate Qs), which is the number change index on the side where the operating number of the heat medium pump is increased by one, the decrease in the flow rate and the pressure decrease corresponding to the decrease in flow rate The output of at least one operating heat medium pump is adjusted to be lower than the maximum output so that the output of the entire operating heat medium pump is reduced, and the energy consumption of the entire operating heat medium pump is reduced accordingly. To do And be can promote energy saving more effectively.
本発明の第7特徴構成の実施にあたっては次の構成を採用してもよい。 In implementing the seventh characteristic configuration of the present invention, the following configuration may be adopted.
前記ポンプ制御手段は、前記ポンプ運転台数制御として、
前記圧力検出手段により検出される熱媒送給圧力が前記送給圧力制御における目標圧力の設定許容範囲内にある状態において、負荷流量が閾値流量よりも減少すると前記熱媒ポンプの運転台数を一台減少させ、かつ、負荷流量が閾値流量よりも増加すると前記熱媒ポンプの運転台数を一台増加させる構成にする。
The pump control means, as the pump operation number control,
In the state where the heat medium supply pressure detected by the pressure detection means is within the target pressure setting allowable range in the supply pressure control, when the load flow rate decreases below the threshold flow rate, the number of operating heat medium pumps is reduced. When the load is reduced and the load flow rate is higher than the threshold flow rate, the number of operating heat medium pumps is increased by one.
つまり、この構成では、前記送給圧力制御において負荷熱交換器への熱媒送給圧力Pが目標圧力Pmの設定許容範囲から外れている状況、即ち、適正な熱媒送給圧力Pが確保されていない状況では、負荷流量Qが閾値流量Qs(下限側の閾値流量)より減少したとしても、また、負荷流量Qが閾値流量Qs(上限側の閾値流量)より増加したとしても熱媒ポンプの運転台数変更は実施せず、現状の熱媒ポンプ運転台数が保持される。 That is, in this configuration, in the supply pressure control, the situation where the heat medium supply pressure P to the load heat exchanger is out of the set allowable range of the target pressure Pm, that is, the proper heat medium supply pressure P is ensured. If the load flow rate Q decreases below the threshold flow rate Qs (lower limit side threshold flow rate) or the load flow rate Q increases above the threshold flow rate Qs (upper limit side threshold flow rate), the heat medium pump The current number of operating heat medium pumps is maintained without changing the number of operating units.
したがって、この構成によれば、適正な熱媒送給圧力Pが確保されていない状況で熱媒ポンプの運転台数Nを変更するために負荷熱交換器に対する熱媒送給圧力Pがさらに不適切なものになるといったことを防止することができ、この点でシステム運転の安定性を高めることができる。 Therefore, according to this configuration, the heat medium supply pressure P for the load heat exchanger is further inappropriate in order to change the number N of operating heat medium pumps in a situation where an appropriate heat medium supply pressure P is not secured. It is possible to prevent such a situation from occurring, and the stability of system operation can be improved in this respect.
一方、本発明の前記第5特徴構成の実施にあたっては、上記第6,第7特徴構成のほか次の構成を採用してもよい。 On the other hand, in implementing the fifth characteristic configuration of the present invention, the following configuration may be adopted in addition to the sixth and seventh characteristic configurations.
前記熱媒送給路における熱媒ポンプ並列配置群の下流側部分と上流側部分とを短絡する短絡還流路を設けて、この短絡還流路に短絡流量調整弁を介装し、
前記ポンプ制御手段は、前記ポンプ運転台数制御とともに、短絡還流量制御として、
前記負荷熱交換器への熱媒送給圧力を検出する圧力検出手段の検出情報に基づき前記短絡流量調整弁の開度を調整して前記負荷熱交換器への熱媒送給圧力を目標圧力に調整する短絡式の送給圧力制御と、
前記ポンプ運転台数制御で熱媒ポンプの運転台数を一台減少させたときには、前記送給圧力制御の目標圧力を、そのときの運転台数減少の指標となった前記閾値流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値に変更し、
かつ、前記ポンプ運転台数制御で熱媒ポンプの運転台数を一台増加させたときには、前記送給圧力制御の目標圧力を、そのときの運転台数増加の指標となった前記閾値流量よりも一段階だけ大流量側の前記閾値流量に対して前記ポンプ制御線上で対応する圧力値又はその近傍圧力値に変更する形態で、
前記送給圧力制御の目標圧力を熱媒ポンプ運転台数の変更毎に段階的に変更する目標変更制御とを実行する構成にする。
Provide a short circuit reflux path that short-circuits the downstream part and the upstream part of the heat medium pump parallel arrangement group in the heat medium supply path, and a short circuit flow rate adjustment valve is interposed in the short circuit reflux path,
The pump control means, together with the pump operation number control, as a short circuit reflux amount control,
The opening of the short-circuit flow rate adjustment valve is adjusted based on the detection information of the pressure detection means for detecting the heat medium supply pressure to the load heat exchanger, and the heat medium supply pressure to the load heat exchanger is set to the target pressure. Short-circuit feed pressure control to adjust to
When the number of operating heat medium pumps is decreased by one in the pump operation number control, the pump control is performed with respect to the target flow rate of the supply pressure control with respect to the threshold flow rate that is an index of the decrease in the number of operation at that time. Change to the corresponding pressure value on or near the line,
In addition, when the number of operating heat medium pumps is increased by one in the control of the number of operating pumps, the target pressure of the supply pressure control is one step higher than the threshold flow rate that is an index of the increase in the operating number at that time. In the form of changing to the pressure value corresponding to the pump control line or the pressure value in the vicinity thereof with respect to the threshold flow rate on the large flow rate side only,
A target change control for changing the target pressure of the supply pressure control step by step whenever the number of operating heat pumps is changed is adopted.
つまり、前述の如く(図4参照)、熱媒ポンプの運転台数Nを一台減少させたときの運転台数減少の指標となった閾値流量Qs、及び、熱媒ポンプの運転台数Nを一台増加させたときの運転台数増加の指標となった閾値流量Qsよりも一段階だけ大流量側の閾値流量Qsはいずれも、略言すれば、各運転台数Nでの熱媒ポンプ運転における上限側の閾値流量Qs(即ち、現状の運転台数Nよりも熱媒ポンプの運転台数を一台増加させる側の台数変更指標となる閾値流量Qs)に相当する。 That is, as described above (see FIG. 4), the threshold flow rate Qs, which is an index for reducing the number of operating medium pumps when the operating number N of the heat medium pumps is decreased, and the operating number N of the heat medium pumps are one. In short, the threshold flow rate Qs on the large flow rate side by one step from the threshold flow rate Qs, which is an index of the increase in the number of operating units when increased, is simply the upper limit side in the heat medium pump operation with each operating number N. Is equivalent to a threshold flow rate Qs (that is, a threshold flow rate Qs that serves as a number change index for increasing the number of operating heat medium pumps by one from the current operating number N).
したがって、上記構成では、各運転台数Nでの熱媒ポンプ運転における上限側の閾値流量Qsに対して前記ポンプ制御線M上で対応する圧力値Ps(Ps1〜Ps3)又は近傍圧力値を上記短絡式の送給圧力制御における目標圧力Pmとする形態で、その送給圧力制御の目標圧力Pmを熱媒ポンプ運転台数Nの変更毎に段階的に変更する。 Therefore, in the above configuration, the pressure value Ps (Ps1 to Ps3) corresponding to the upper limit side threshold flow rate Qs in the heat medium pump operation with each operation number N on the pump control line M or the nearby pressure value is short-circuited. The target pressure Pm for the supply pressure control is changed step by step every time the number N of operating heat medium pumps is changed.
即ち、このように短絡式の送給圧力制御における目標圧力Pmを段階的に変更すれば、複数の熱媒ポンプの夫々に出力固定型のポンプを用いる場合でも、各運転台数Nでの熱媒ポンプ運転において負荷流量Qが上限側の閾値流量Qsより減少した状態では、その負荷流量Qの減少で生じる運転熱媒ポンプ全体としての熱媒送給流量のうちの余剰分を短絡式の送給圧力制御による短絡流量調整弁の開度調整により短絡還流路を通じ逃がすことができて、各運転台数Nでの熱媒ポンプ運転の夫々につき負荷熱交換器への熱媒送給圧力Pを熱媒ポンプ運転台数N毎の目標圧力Pmに安定的に維持することができ、これによりシステムの運転を安定化することができる。 That is, if the target pressure Pm in the short-circuit type supply pressure control is changed stepwise in this way, even when a fixed output type pump is used for each of the plurality of heat medium pumps, When the load flow rate Q is lower than the upper limit side threshold flow rate Qs in the pump operation, the surplus of the heat medium supply flow rate as a whole of the operation heat medium pump generated by the decrease of the load flow rate Q is short-circuited. By adjusting the opening degree of the short-circuit flow rate adjustment valve by pressure control, it can be released through the short-circuit reflux path, and the heat medium supply pressure P to the load heat exchanger for each of the heat medium pump operations at each operation number N is used as the heat medium. It is possible to stably maintain the target pressure Pm for each pump operation number N, thereby stabilizing the operation of the system.
〔第1実施形態〕
図1は空調用の熱源システムを示し、このシステムは熱源機としてインバータ装置INVによる出力調整(即ち容量制御)が可能な複数の冷凍機Rを備え、各冷凍機Rには冷却水循環路1を介して冷却塔CTを個別に接続してある。
[First Embodiment]
FIG. 1 shows a heat source system for air conditioning. This system is provided with a plurality of refrigerators R capable of output adjustment (ie capacity control) by an inverter device INV as heat source units, and each of the refrigerators R has a cooling
2aは各冷凍機Rから1次側冷水往路3aを通じて並列的に供給される冷水Cを受け入れる1次側ヘッダ、2bは1次側ヘッダ2aから複数の冷水中継路3bを通じて供給される冷水Cを受け入れる2次側ヘッダであり、この2次側ヘッダ2bからエアハンドリングユニットやファンコイルユニット等の複数の負荷熱交換器Uに対し熱媒としての冷水Cを2次側冷水往路3cを通じて並列的に送給することで、各負荷熱交換器Uでは供給冷水Cの保有冷熱を冷房等の所要目的に消費する。
2a is a primary header that receives chilled water C supplied in parallel from each refrigerator R through a primary chilled water
2cは冷熱消費で昇温した冷水Cを各負荷熱交換器Uから2次側冷水還路3dを通じて受け入れ、その受け入れ冷水Cを1次側冷水還路3eを通じて各冷凍機Rに戻す2次側還ヘッダであり、冷凍機Rと各負荷熱交換器Uとを結ぶ冷水循環系は1次側ヘッダ2aと還側ヘッダ2cとを境として冷凍機Rの側である1次側(換言すれば熱源側)と負荷熱交換器Uの側である2次側(換言すれば負荷側)とに区分される。
2c accepts the chilled water C heated by the cold heat consumption from each load heat exchanger U through the secondary chilled
この熱源システムの構成機器としては冷凍機R、冷却塔CT、負荷熱交換器Uの他、各冷凍機Rへの1次側冷水還路3eに介装した1次ポンプJA、2次側冷水往路3cとともに負荷熱交換器Uへの熱媒送給路を構成する並列の冷水中継路3bの夫々に介装した2次ポンプJB、各冷却水循環路1に介装した冷却水ポンプJCなどを備え、これらポンプJA,JB,JCは各々に装備のインバータ装置INVを用いた周波数制御によるポンプモータの回転数調整でポンプ出力を連続的に調整し得る可変ポンプにしてある。
The components of this heat source system include the refrigerator R, the cooling tower CT, the load heat exchanger U, and the primary pump JA and secondary chilled water interposed in the primary chilled
なお、冷却塔CT、冷却水ポンプJC、1次ポンプJAの夫々は対応する冷凍機Rの発停に応じて発停され、2次ポンプJBは負荷熱交換器Uの側の必要冷水流量である負荷流量Qに応じて運転台数制御されるとともに出力制御される。 Note that each of the cooling tower CT, the cooling water pump JC, and the primary pump JA is started and stopped according to the start and stop of the corresponding refrigerator R, and the secondary pump JB has a required cooling water flow rate on the load heat exchanger U side. The number of operating units is controlled and output is controlled according to a certain load flow rate Q.
Vaは1次側冷水往路3aの夫々に装備した開閉弁であり、これら開閉弁Vaは対応する冷凍機R及び1次ポンプJAの運転時に開弁される。
Va is an opening / closing valve provided in each of the primary side cold water
Vbは各負荷熱交換器Uに装備した流量調整弁であり、1次ポンプJA及び2次ポンプJBによる冷水循環の下で、これら流量調整弁Vbにより各負荷熱交換器Uの冷水流量q(即ち、負荷熱交換器U個々の熱媒流量)が各負荷熱交換器Uにおける必要冷却熱量g(即ち、負荷熱交換器U個々の負荷熱量)に応じて調整される。 Vb is a flow rate adjustment valve provided in each load heat exchanger U. Under the chilled water circulation by the primary pump JA and the secondary pump JB, these flow rate adjustment valves Vb allow the chilled water flow rate q ( In other words, the heat medium flow rate of each load heat exchanger U is adjusted according to the required cooling heat amount g in each load heat exchanger U (that is, the load heat amount of each load heat exchanger U).
Vsは1次側ヘッダ2aと2次側ヘッダ2bとにわたらせた短絡還流路3fに装備した流量バランス調整用の短絡流量調整弁であり、この短絡流量調整弁Vsは後述の圧力センサPSにより検出される負荷熱交換器Uへの冷水送給圧力P(本例では2次側ヘッダ2b内の冷水圧力)に応じて、その冷水送給圧力Pを適正値に保つように開度調整される。
Vs is a short-circuit flow rate adjusting valve for adjusting a flow rate balance provided in a short-
4は1次側ヘッダ2aと還側ヘッダ2cとを短絡するバイパス路であり、このバイパス路4を通じた冷水流動により1次側と2次側との冷水流量差が吸収される。即ち、2次側よりも1次側の冷水流量が大きい状態ではその差分の冷水Cが1次側ヘッダ2aからバイパス路4を通じて還側ヘッダ2cの方に流れ、逆に、1次側よりも2次側の冷水流量が大きい状態ではその差分の冷水Cが還側ヘッダ2cからバイパス路4を通じて1次側ヘッダ2aの方に流れる。
図2は上記負荷熱交換器Uを用いた熱負荷処理システムの一例である冷房システムを示し、システム構成機器としては室内還気RAと外気OAとの混合空気MAを負荷媒体として、その混合空気MAを熱媒である上記冷水Cと熱交換させることで冷却するフィンチューブ型の負荷熱交換器Uの他、流量調整弁Vbとともに流量制御手段を構成する流量制御器6、並びに、負荷熱交換器Uの運転状態を計測する計測手段7を装備してある。
FIG. 2 shows a cooling system as an example of a heat load processing system using the load heat exchanger U. As a system component device, a mixed air MA of indoor return air RA and outside air OA is used as a load medium, and the mixed air In addition to the fin tube type load heat exchanger U that cools the MA by exchanging heat with the cold water C that is the heat medium, the
計測手段7としては、負荷熱交換器Uの冷水流量q、入口冷水温度ti、出口冷水温度toを計測するセンサ7aを装備するとともに、負荷媒体側について室内還気RA、外気OA、混合空気MA、給気SA(即ち、冷却後の混合空気)夫々の風量、及び、温度、湿度、エンタルピ等の状態値を検出するセンサ7bを装備してある。
The measuring means 7 includes a
また、流量制御器6には、所定の演算モデルMDを用いて適正冷水流量qs(適正熱媒流量)を演算する流量演算プログラム、及び、コイル面積、列数、有効長、チューブ数、伝熱係数、濡れ面係数などの負荷熱交換器Uの特性データDTを格納してある。
Further, the
流量制御器6は、計測手段7である上記各センサ7a,7bの計測情報に基づき流量調整弁Vbの開度を調整して負荷熱交換器Uの冷水流量q(熱媒流量)を必要冷却熱量g(負荷熱量)の変化に応じて調整し、具体的には次の(a)〜(d)の各処理を実行する(図3参照)。
The
(a)負荷演算処理S1として、計測手段7の計測情報に基づき負荷熱交換器Uにおける必要冷却熱量gを演算する。 (A) As load calculation processing S1, the required cooling heat quantity g in the load heat exchanger U is calculated based on the measurement information of the measuring means 7.
即ち、負荷媒体である混合空気MAの現状状態値と冷却後の給気SAの目標状態値との差分(例えば温度差やエンタルピ差)に対し混合空気MAの風量を乗じて積を求める形態で必要冷却熱量gを演算する。 That is, the product is obtained by multiplying the difference (for example, temperature difference or enthalpy difference) between the current state value of the mixed air MA that is the load medium and the target state value of the cooled supply air SA by the air volume of the mixed air MA. The required amount of cooling heat g is calculated.
(b)流量演算処理S2として、上記負荷演算処理S1で演算した必要冷却熱量g(略言すれば、その時の負荷熱量)に対する適正冷水流量qsを演算モデルMDを用いて演算する。 (B) As the flow rate calculation process S2, an appropriate chilled water flow rate qs for the required cooling heat amount g (in short, the load heat amount at that time) calculated in the load calculation process S1 is calculated using the calculation model MD.
この演算モデルMDは、必要冷却熱量gを賄うことが可能な冷水流量でかつ必要冷却熱量gが小さくなるほど負荷熱交換器Uの入口と出口との熱媒温度差Δt(=to−ti)を大きくする割合で減量する冷水流量を流量制御器6に格納してある負荷熱交換器Uの特性データDT及び計測手段7としての各センサ7a,7bの計測情報に基づき適正冷水流量qsとして演算するものであり、具体的には、この演算モデルMDでは例えば次の〔式1〕及び〔式2〕が成立するように収束演算を行うことで適正冷水流量qsを求める。
This calculation model MD has a cooling water flow rate that can cover the required cooling heat quantity g and the heat medium temperature difference Δt (= to-ti) between the inlet and outlet of the load heat exchanger U as the required cooling heat quantity g decreases. The chilled water flow rate that is reduced at a rate of increase is calculated as the appropriate chilled water flow rate qs based on the characteristic data DT of the load heat exchanger U stored in the
〔式1〕
負荷演算処理S1で演算した必要冷却熱量g
=濡れ面係数*伝熱係数*コイル正面面積*列数*対数平均温度
〔式2〕
負荷演算処理S1で演算した必要冷却熱量g
=係数*(適正)冷水水量q*(出口冷水温度to−入口冷水温度ti)
[Formula 1]
Necessary cooling heat amount g calculated in the load calculation process S1
= Wet surface coefficient * Heat transfer coefficient * Coil front area * Number of rows * Logarithmic average temperature [Formula 2]
Necessary cooling heat amount g calculated in the load calculation process S1
= Coefficient * (Appropriate) Chilled water quantity q * (Outlet cold water temperature to inlet cold water temperature ti)
(c)流量調整処理S3として、負荷熱交換器Uの冷水流量qを流量演算処理S2で演算した適正冷水流量qs以下に制限するように、冷水流量qと開度との相関に基づき流量調整弁Vbの上限開度を規定する。 (C) As the flow rate adjustment process S3, the flow rate adjustment is performed based on the correlation between the cold water flow rate q and the opening degree so as to limit the cold water flow rate q of the load heat exchanger U to the appropriate cold water flow rate qs calculated in the flow rate calculation process S2. The upper limit opening of the valve Vb is defined.
そして、この上限開度規定の下で、計測手段7としてのセンサ7bにより計測される還気RAの温度trと冷房目標温度である設定温度trsとの偏差Δtrに応じて流量調整弁Vbの開度調整により負荷熱交換器Uの冷水流量qを調整する。
即ち、必要冷却熱量qの変化に応じて負荷熱交換器Uの冷水流量qを微調整的に調整する。
Then, under this upper limit opening degree regulation, the flow rate adjustment valve Vb is opened according to the deviation Δtr between the temperature tr of the return air RA measured by the
That is, the chilled water flow rate q of the load heat exchanger U is finely adjusted according to the change in the required cooling heat quantity q.
(d)更新処理S4として、負荷熱交換器Uの冷水流量qを上記流量演算処理S2において演算した適正冷水流量qsにしたときの負荷熱交換器Uの入出口の熱媒温度差Δt(=to−ti)を流量制御器6に格納してある負荷熱交換器Uの特性データDT及び計測手段7としての各センサ7a,7bの計測情報に基づき演算し、その演算した熱媒温度差Δtを指標温度差Δtssとして設定する。
(D) As the update process S4, the heat medium temperature difference Δt (= at the inlet / outlet of the load heat exchanger U when the chilled water flow rate q of the load heat exchanger U is set to the appropriate chilled water flow rate qs calculated in the flow rate calculation process S2. to-ti) is calculated based on the characteristic data DT of the load heat exchanger U stored in the
具体的には、上記〔式1〕,〔式2〕の収束演算を行なう演算モデルMDを用いて適正冷水流量qsを演算する場合には、〔式1〕,〔式2〕の収束演算を完了した際の〔式2〕における出口冷水温度toと入口冷水温度tiの差を指標温度差Δtssとする。 Specifically, when calculating the appropriate chilled water flow rate qs using the calculation model MD that performs the convergence calculation of [Expression 1] and [Expression 2], the convergence calculation of [Expression 1] and [Expression 2] is performed. The difference between the outlet chilled water temperature to and the inlet chilled water temperature ti in [Expression 2] when completed is defined as an index temperature difference Δtss.
そして、計測手段7としてのセンサ7aにより計測される出口冷水温度tiと入口冷水温度tiとの差である計測入出口冷水温度差Δtが指標温度差Δtssよりも設定減少幅α以上に減少したとき、並びに、計測入出口冷水温度差Δtが指標温度差Δtssよりも設定増大幅β以上に増大したとき、上記の負荷演算処理S1及び流量演算処理S2を再度実行して、流量調整処理S3で使用する適正冷水流量qsを更新する。
When the measured inlet / outlet chilled water temperature difference Δt, which is the difference between the outlet chilled water temperature ti and the inlet chilled water temperature ti measured by the
なお、本例では、計測手段7としてのセンサ7bにより計測される還気RAの温度trと冷房目標温度である設定温度trsとの偏差Δtrが設定許容範囲±γを逸脱(Δtr<−γ,Δt>+γ)したときにも、負荷演算処理S1及び流量演算処理S2を再度実行して流量調整処理S3で使用する適正冷水流量qsを更新するようにしてある。
In this example, the deviation Δtr between the temperature tr of the return air RA measured by the
つまり、本例の冷房システムにおいて流量制御器6と流量調整弁Vbとで構成する流量制御手段は、計測手段7の計測情報に基づいて負荷熱交換器Uの負荷熱量gを演算する負荷演算処理S1と、
負荷熱量gを賄うことが可能な熱媒流量でかつ負荷熱量gが小さくなるほど負荷熱交換器Uの入出口の熱媒温度差Δtを大きくする割合で減量する熱媒流量を負荷熱交換器Uの特性データDT及び計測手段7の計測情報に基づき適正熱媒流量qsとして演算する所定の演算モデルMDにより、負荷演算処理S1での演算負荷熱量gに対する適正熱媒流量qsを演算する流量演算処理S2と、
負荷熱交換器Uの熱媒流量qを流量演算処理S2で演算した適正熱媒流量qs以下に制限した状態で負荷熱量gの変化に応じて調整する流量調整処理S3とを実行する構成にしてある
In other words, in the cooling system of this example, the flow rate control means configured by the
The load of the heat exchanger U is a flow rate of the heat medium that can decrease the heat medium temperature difference Δt at the inlet / outlet of the load heat exchanger U as the load heat quantity g is small enough to cover the load heat quantity g. Flow calculation processing for calculating the appropriate heat medium flow rate qs for the calculated load heat quantity g in the load calculation processing S1 by a predetermined calculation model MD for calculating as the appropriate heat medium flow rate qs based on the characteristic data DT of this and the measurement information of the measuring means 7 S2,
A flow rate adjustment process S3 is performed in which the heat medium flow rate q of the load heat exchanger U is limited to be equal to or less than the appropriate heat medium flow rate qs calculated in the flow rate calculation process S2. is there
また、この流量制御手段6,Vbは、負荷熱交換器Uの熱媒流量qを流量演算処理S2で演算した適正熱媒流量qsにしたときの負荷熱交換器Uの入出口の熱媒温度差Δtを負荷熱交換器Uの特性データDT及び計測手段7の計測情報に基づき指標温度差Δtssとして演算するとともに、
流量調整処理S3において計測手段7により計測される負荷熱交換器Uの入出口の熱媒温度差Δtが指標温度差Δtssよりも設定減少幅α以上に減少したとき及び設定増大幅β以上に増大したとき、負荷演算処理S1及び流量演算処理S2を再度実行して流量調整処理S3で用いる適正熱媒流量qsを更新する構成にしてある。
The flow rate control means 6 and Vb are the heat medium temperatures at the inlet and outlet of the load heat exchanger U when the heat medium flow rate q of the load heat exchanger U is set to the appropriate heat medium flow rate qs calculated in the flow rate calculation processing S2. The difference Δt is calculated as the index temperature difference Δtss based on the characteristic data DT of the load heat exchanger U and the measurement information of the measuring means 7, and
When the heat medium temperature difference Δt at the inlet / outlet of the load heat exchanger U measured by the measuring means 7 in the flow rate adjustment process S3 is decreased by the set decrease width α or more than the index temperature difference Δtss and increased by the set increase width β or more. In this case, the load calculation process S1 and the flow rate calculation process S2 are executed again to update the appropriate heat medium flow rate qs used in the flow rate adjustment process S3.
一方、熱源システムについてはシステム制御器5を設けてあり、このシステム制御器5は、負荷熱交換器Uへの冷水送給圧力Pを検出する上記圧力センサPS、負荷熱交換器U側の負荷流量Q(即ち、各負荷熱交換器Uからの戻り冷水Cの合計流量Q=Σq)を検出する流量センサFS、負荷熱交換器Uへの供給冷水温度Ti(≒ti)及び冷凍機Rへの戻り冷水温度Toを検出する温度センサTSなどの計測情報に基づき1次側及び2次側の夫々について次の如き制御を実行する構成にしてある。
On the other hand, a
なお、図1においてSは温度や圧力を計測するその他のセンサ類を示す。 In FIG. 1, S indicates other sensors for measuring temperature and pressure.
各負荷熱交換器の必要冷却熱量g(負荷熱量)に応じて各負荷熱交換器Uの冷水流量qが上記の如く流量調整弁Vbにより調整されることに対し、1次側については、温度センサTSにより検出される負荷熱交換器Uへの供給冷水温度Tiと冷凍機Rへの戻り冷水温度Toとの差温、並びに、流量センサFSにより検出される負荷熱交換器U側の負荷流量Q(=Σq)に基づき、負荷熱交換器U側の必要冷却熱量総計G(=Σg)を逐次演算する。 The chilled water flow rate q of each load heat exchanger U is adjusted by the flow rate adjustment valve Vb as described above according to the required cooling heat amount g (load heat amount) of each load heat exchanger, whereas the primary side has a temperature The temperature difference between the cold water temperature Ti supplied to the load heat exchanger U detected by the sensor TS and the cold water temperature To returned to the refrigerator R, and the load flow rate on the load heat exchanger U side detected by the flow sensor FS Based on Q (= Σq), the required total cooling heat amount G (= Σg) on the load heat exchanger U side is sequentially calculated.
そして、各負荷熱交換器Uにおける必要冷却熱量gの変化に伴い必要冷却熱量総計G(即ち、負荷熱量総計)が変化することに対し、その必要冷却熱量総計Gの変化に応じて冷凍機Rの運転台数を変更する熱源側の運転台数制御を行なうとともに、運転冷凍機R並びにそれに対する1次ポンプJA及び冷却水ポンプJC夫々の出力を必要冷却熱量総計Gの変化に伴いインバータ装置INVにより連続的に調整する熱源側の出力制御を行い、これにより、必要冷却熱量総計Gに対して1次側の発生冷熱量を平衡させる。 The total cooling heat amount G (that is, the total load heat amount) changes with the change in the required cooling heat amount g in each load heat exchanger U, whereas the refrigerator R corresponds to the change in the required cooling heat amount G. The number of operating units on the heat source side is controlled, and the outputs of the operating refrigerator R and the primary pump JA and the cooling water pump JC are continuously supplied by the inverter INV as the required total cooling heat amount G changes. The output control on the heat source side to be adjusted is performed, and thereby the generated cold heat amount on the primary side is balanced with respect to the required total cooling heat amount G.
一方、2次側については、上記流量調整弁Vbによる冷水流量qの調整で負荷流量Q(=Σq)が変化することに対し、流量センサFSによる検出負荷流量Qに基づき、2次ポンプJBの運転台数Nを負荷流量Qの変化に応じて変更するポンプ運転台数制御を行なうとともに、運転2次ポンプJBの出力を負荷流量Qの変化に伴いインバータ装置INVにより連続的に調整するポンプ出力制御を行なう。 On the other hand, on the secondary side, the load flow rate Q (= Σq) changes due to the adjustment of the chilled water flow rate q by the flow rate adjustment valve Vb, whereas the secondary pump JB of the secondary pump JB is based on the detected load flow rate Q by the flow rate sensor FS. Pump output control is performed to control the number of operating pumps N to change the operating number N according to the change in the load flow rate Q, and to continuously adjust the output of the operating secondary pump JB by the inverter device INV as the load flow rate Q changes. Do.
更に詳述すると、負荷熱交換器Uへの熱媒送給路に並列配置で介装される熱媒ポンプの一例である2次ポンプJBについて上記ポンプ運転台数制御及びポンプ出力制御を実行するのに、具体的には次の(A)〜(F)の制御形態を採用している(図4,図5参照)。 More specifically, the above-described pump operation number control and pump output control are executed for the secondary pump JB which is an example of the heat medium pump interposed in parallel with the heat medium supply path to the load heat exchanger U. Specifically, the following control modes (A) to (F) are employed (see FIGS. 4 and 5).
(A)各運転台数Nでの2次ポンプ運転において運転2次ポンプJBの夫々を最大出力で運転した場合における冷水送給流量Qと冷水送給圧力Pとの相関を示す運転台数N毎のポンプ性能曲線L1〜L3を設定する。 (A) In the secondary pump operation with each operation number N, each of the operation secondary pumps JB is operated at the maximum output, and the correlation between the chilled water supply flow rate Q and the chilled water supply pressure P is shown for each operation number N. Set pump performance curves L1 to L3.
また、配管抵抗なども考慮して、負荷流量Qと、その負荷流量Qの冷水Cを各負荷熱交換器Uに供給するのに必要な送給圧力Pとの相関を示すポンプ制御線Mを設定する。
これら運転台数N毎のポンプ性能曲線L1〜L3とポンプ制御線Mとの各交点X1〜X3における流量値Qs(Qs1〜Qs3)の夫々を閾値流量として設定する。
In consideration of piping resistance and the like, a pump control line M indicating a correlation between the load flow rate Q and the supply pressure P necessary to supply the chilled water C of the load flow rate Q to each load heat exchanger U is provided. Set.
Each of the flow rate values Qs (Qs1 to Qs3) at the intersections X1 to X3 of the pump performance curves L1 to L3 and the pump control line M for each of the operating units N is set as a threshold flow rate.
なお、本例では、このように設定した閾値流量Qs(Qs1〜Qs3)をポンプ制御手段としてのシステム制御器5に対し初期設定により記憶させ、同様にポンプ制御線Mを関数式として初期設定によりシステム制御器5に記憶させる。
In this example, the threshold flow rate Qs (Qs1 to Qs3) set in this way is stored in the
また本例では、ポンプ制御線Mとしてシミュレートや演算により求めた近似的な2次曲線をシステム試運転時の実測データ等に基づき補正した上で使用している。 In this example, an approximate quadratic curve obtained by simulation or calculation is used as the pump control line M after being corrected based on actual measurement data at the time of system test operation.
(B)そして、ポンプ運転台数制御として、負荷流量Qを検出する流量センサFSの検出情報に基づき、上記閾値流量Qs(Qs1〜Qs3)の各々について、負荷流量Qが閾値流量Qsよりも減少すると2次ポンプJBの運転台数Nを一台減少させ、かつ、負荷流量Qが閾値流量Qsよりも増加すると2次ポンプJBの運転台数Nを一台増加させる。 (B) And, as the pump operation number control, based on the detection information of the flow rate sensor FS that detects the load flow rate Q, when the load flow rate Q decreases below the threshold flow rate Qs for each of the threshold flow rates Qs (Qs1 to Qs3). When the operating number N of the secondary pumps JB is decreased by one and when the load flow rate Q increases beyond the threshold flow rate Qs, the operating number N of the secondary pumps JB is increased by one.
つまり、図4において負荷流量QがQs3〜Qs2の流量域にある状態では3台の2次ポンプJBの全てを運転し、負荷流量QがQs2〜Qs1の流量域にある状態では2台の2次ポンプJBを運転し、負荷流量QがQs1以下の流量域にある状態では1台の2次ポンプJBを運転する。 That is, in FIG. 4, when the load flow rate Q is in the flow rate range of Qs3 to Qs2, all three secondary pumps JB are operated, and in the state where the load flow rate Q is in the flow rate range of Qs2 to Qs1, two 2 The secondary pump JB is operated, and one secondary pump JB is operated in a state where the load flow rate Q is in a flow rate range of Qs1 or less.
即ち、このポンプ運転台数制御により、2次ポンプJBの運転台数Nが過大となる状況が生じるのを回避して、2次ポンプJBの運転台数Nを各時点での可能な範囲で確実に最小化する。 That is, by controlling the number of operating pumps, the situation where the operating number N of the secondary pumps JB becomes excessive is avoided, and the operating number N of the secondary pumps JB is surely minimized to the extent possible at each time point. Turn into.
(C)一方、運転2次ポンプJBの出力を負荷流量Qの変化に伴い調整するポンプ出力制御としては、負荷熱交換器Uへの冷水送給圧力Pを検出する圧力センサPSの検出情報に基づき、ポンプ運転台数制御による各運転台数N(N=1,2,3)での2次ポンプ運転において運転2次ポンプJB夫々の出力をインバータ装置INVにより調整して、負荷熱交換器Uへの熱媒送給圧力Pを目標圧力Pmに調整する送給圧力制御を実行するとともに、流量センサFSの検出情報に基づき、この送給圧力制御の目標圧力Pmを負荷流量Qの変化に応じて変更する目標変更制御を実行する。 (C) On the other hand, as pump output control for adjusting the output of the operating secondary pump JB with the change of the load flow rate Q, the detection information of the pressure sensor PS that detects the chilled water supply pressure P to the load heat exchanger U is used. Based on the control of the number of operating pumps, the output of each of the operating secondary pumps JB is adjusted by the inverter device INV in the secondary pump operation at each operation number N (N = 1, 2, 3) to the load heat exchanger U. The supply pressure control for adjusting the heat medium supply pressure P to the target pressure Pm is executed, and the target pressure Pm for the supply pressure control is changed according to the change in the load flow rate Q based on the detection information of the flow rate sensor FS. The target change control to be changed is executed.
(D)そして、この目標変更制御については、上記ポンプ運転台数制御で2次ポンプJBの運転台数Nを一台減少させたときには、送給圧力制御の目標圧力Pmを、そのときの運転台数減少の指標となった閾値流量Qsに対してポンプ制御線M上で対応する圧力値Ps(Ps1〜Ps3)に変更する。 (D) With regard to this target change control, when the number N of operating secondary pumps JB is decreased by one in the pump operation number control, the target pressure Pm of the feed pressure control is decreased, and the number of operating pumps at that time decreases. Is changed to a pressure value Ps (Ps1 to Ps3) corresponding to the threshold flow rate Qs, which is an index of, on the pump control line M.
また、上記運転台数制御で2次ポンプJBの運転台数Nを一台増加させたときには、送給圧力制御の目標圧力Pmを、そのときの運転台数増加の指標となった閾値流量Qsよりも一段階だけ大流量側の閾値流量Qsに対してポンプ制御線M上で対応する圧力値Ps(Ps1〜Ps3)に変更する。 Further, when the number N of secondary pumps JB is increased by one in the operation number control, the target pressure Pm of the feed pressure control is set to be smaller than the threshold flow rate Qs that is an index of the increase in the number of operations at that time. The pressure value Ps (Ps1 to Ps3) corresponding to the threshold flow rate Qs on the large flow rate side on the pump control line M is changed by the level.
換言すれば、各運転台数Nでの2次ポンプ運転における上限側の閾値流量Qs(現状の運転台数Nよりも2次ポンプJBの運転台数を一台増加させる側の台数変更指標となる閾値流量Qs)に対してポンプ制御線M上で対応する圧力値Ps(Ps1〜Ps3)を送給圧力制御の目標圧力Pmとする形態で、送給圧力制御の目標圧力Pmを2次ポンプ運転台数Nの変更毎に段階的に変更する。 In other words, the threshold flow rate Qs on the upper limit side in the secondary pump operation with each operation number N (the threshold flow rate serving as the number change index on the side where the number of operation of the secondary pump JB is increased by one from the current operation number N) Qs) is set so that the pressure value Ps (Ps1 to Ps3) corresponding to the pump control line M on the pump control line M is set as the target pressure Pm for the feed pressure control, and the target pressure Pm for the feed pressure control is set to the number N of secondary pumps operated. Change in stages for each change.
即ち、この目標変更制御の下で送給圧力制御を行なうポンプ出力制御では、負荷流量Qの変化に対し負荷熱交換器Uへの冷水送給圧力Pは図4における圧力変化線PLmに沿って変化する。 That is, in the pump output control in which the supply pressure control is performed under the target change control, the chilled water supply pressure P to the load heat exchanger U is changed along the pressure change line PLm in FIG. Change.
そして、各運転台数Nでの2次ポンプ運転において負荷流量Qが上限側の閾値流量Qsよりも減少した状態では、その流量減少分だけ運転2次ポンプ全体としての出力が低下するように運転2次ポンプJB夫々の出力が最大出力よりも低下側に調整されることで、上記ポンプ運転台数制御による2次ポンプ運転台数Nの最小化と相まって2次ポンプ運転の消費エネルギがさらに低減される。
In the state where the load flow rate Q is reduced below the upper limit threshold flow rate Qs in the secondary pump operation with each operation number N, the
(E)なお本例では、上記ポンプ運転台数制御により2次ポンプJBの運転台数Nを変更するのに、各運転台数Nでの2次ポンプ運転において圧力センサPSにより検出される冷水送給圧力Pが上記送給圧力制御における目標圧力Pm(Ps1〜のPs3)の設定許容範囲内にある状態でのみ、負荷流量Qが閾値流量Qsよりも減少すると2次ポンプJBの運転台数Nを一台減少させる。 (E) In this example, the chilled water supply pressure detected by the pressure sensor PS in the secondary pump operation at each operation number N is used to change the operation number N of the secondary pumps JB by the pump operation number control. Only when P is within the set allowable range of the target pressure Pm (Ps1 to Ps3) in the feed pressure control, if the load flow rate Q decreases below the threshold flow rate Qs, the number N of operating secondary pumps JB is reduced to one. Decrease.
また同様に、各運転台数Nでの2次ポンプ運転において圧力センサPSにより検出される冷水送給圧力Pが上記送給圧力制御における目標圧力Pm(Ps1〜のPs3)の設定許容範囲内にある状態でのみ、負荷流量Qが閾値流量Qsよりも増加すると2次ポンプJBの運転台数Nを一台増加させる。 Similarly, the chilled water supply pressure P detected by the pressure sensor PS in the secondary pump operation with each operation number N is within the set allowable range of the target pressure Pm (Ps1 to Ps3) in the supply pressure control. Only in the state, when the load flow rate Q increases above the threshold flow rate Qs, the number N of operating secondary pumps JB is increased by one.
即ち、このように適正な冷水送給圧力Pが確保される状況での2次ポンプ運転台数変更のみを許容することにより、適正な熱媒送給圧力Pが確保されていない状況で2次ポンプJBの運転台数Nを変更するために負荷熱交換器Uに対する冷水送給圧力Pがさらに不適切なものになるといったことを防止する。 That is, by allowing only the change in the number of secondary pumps operating in a situation where an appropriate cold water supply pressure P is ensured in this way, the secondary pump can be used in a situation where the appropriate heat medium supply pressure P is not ensured. In order to change the number N of operating JBs, it is possible to prevent the chilled water supply pressure P for the load heat exchanger U from becoming inappropriate.
(F)また本例では、短絡還流路3fに装備した短絡流量調整弁Vsの開度制御として、圧力センサPSの検出情報に基づき短絡流量調整弁Vsの開度を調整することによっても、負荷熱交換器Uへの冷水送給圧力Pを各運転台数Nでの2次ポンプ運転における送給圧力制御の目標圧力Pm(即ち、目標変更制御により2次ポンプ運転台数Nの変更毎に変更される目標圧力Ps1〜Ps3)に調整するようにしてある。
(F) Further, in this example, as the opening degree control of the short circuit flow rate adjustment valve Vs equipped in the short
換言すれば、圧力センサPSの検出情報に基づき短絡流量調整弁Vsの開度を調整して負荷熱交換器Uへの冷水送給圧力Pを目標圧力Pmに調整する短絡流量調整弁Vsの開度制御において、その目標圧力Pmを前記目標変更制御により2次ポンプ運転台数Nの変更毎に段階的に変更する。 In other words, based on the detection information of the pressure sensor PS, the opening degree of the short-circuit flow rate adjustment valve Vs is adjusted to adjust the chilled water supply pressure P to the load heat exchanger U to the target pressure Pm. In the degree control, the target pressure Pm is changed stepwise for each change of the number N of secondary pumps operated by the target change control.
つまり、各運転台数Nでの2次ポンプ運転で運転2次ポンプJBの出力を負荷流量Qの変化に伴い調整する前記出力制御において、運転2次ポンプJBの出力が調整範囲の下限に至って、それ以上は運転2次ポンプJBの出力を低下側に調整できない状態に至ったとしても、この短絡流量調整弁Vsの開度制御により負荷熱交換器Uへの冷水送給圧力Pを各運転台数Nでの2次ポンプ運転における目標圧力Pm(Ps1〜Ps3)に調整できるようにしてある。 That is, in the output control in which the output of the operation secondary pump JB is adjusted in accordance with the change in the load flow rate Q in the secondary pump operation with each operation number N, the output of the operation secondary pump JB reaches the lower limit of the adjustment range, Even if the output of the operating secondary pump JB cannot be adjusted to a lower side beyond that, the chilled water supply pressure P to the load heat exchanger U is controlled by the opening degree control of the short-circuit flow rate adjusting valve Vs. The target pressure Pm (Ps1 to Ps3) in the secondary pump operation at N can be adjusted.
〔第2実施形態〕
前述の第1実施形態では、2次ポンプJBの出力制御における送給圧力制御の目標圧力Pmについて、目標変更制御により送給圧力制御の目標圧力Pmを2次ポンプ運転台数Nの変更毎に段階的に変更する例を示したが、これに代え、この第2実施形態では、送給圧力制御の目標圧力Pmを負荷流量Qの変化に伴い連続的に変更する。
[Second Embodiment]
In the first embodiment described above, for the target pressure Pm of the feed pressure control in the output control of the secondary pump JB, the target pressure Pm of the feed pressure control is changed by the target change control every time the number of secondary pumps N is changed. However, instead of this, in the second embodiment, the target pressure Pm of the feed pressure control is continuously changed as the load flow rate Q changes.
つまり、この第2実施形態では、目標圧力制御を次の(D′)の如き制御形態でシステム制御器5に実行させる(図6参照)。
That is, in the second embodiment, the target pressure control is executed by the
(D′)流量センサFSの検出情報に基づき、各時点の負荷流量Q(現状流量)に対してポンプ制御線M上で対応する圧力値Pを送給圧力制御の目標圧力Pmとする形態で、送給圧力制御の目標圧力Pmを負荷流量Qの変化に伴い連続的に変更する。 (D ') Based on the detection information of the flow sensor FS, the pressure value P corresponding to the load flow Q (current flow) at each time point on the pump control line M is used as the target pressure Pm of the feed pressure control. The target pressure Pm for the feed pressure control is continuously changed as the load flow rate Q changes.
即ち、この目標変更制御の下で前記送給圧力制御を行なう2次ポンプJBの出力制御では、負荷流量Qの変化に対し負荷熱交換器Uへの冷水送給圧力Pは図6における圧力変化線PLmに沿って変化する。 That is, in the output control of the secondary pump JB that performs the supply pressure control under the target change control, the chilled water supply pressure P to the load heat exchanger U is the pressure change in FIG. It changes along the line PLm.
そして、各運転台数Nでの2次ポンプ運転において負荷流量Qが上限側の閾値流量Qsよりも減少した状態では、その流量減少分とその流量減少に対応する圧力減少分とについて運転2次ポンプ全体としての出力が低下するように運転2次ポンプJB夫々の出力が最大出力よりも低下側に調整されることで、上記運転台数制御による2次ポンプ運転台数Nの最小化と相まって2次ポンプ運転の消費エネルギがさらに効果的に低減される。 In the state where the load flow rate Q is reduced below the upper limit threshold flow rate Qs in the secondary pump operation with each operation number N, the operation secondary pump is operated with respect to the flow rate decrease and the pressure decrease corresponding to the flow rate decrease. The output of each of the operating secondary pumps JB is adjusted to be lower than the maximum output so that the output as a whole is reduced, and the secondary pumps are coupled with the minimization of the number N of secondary pumps operated by the above operation number control. The energy consumption of driving is further effectively reduced.
なお、この第2実施形態においても、前述第1実施形態の場合と同様、前記運転台数制御により2次ポンプJBの運転台数Nを変更するのに、各運転台数Nでの2次ポンプ運転で圧力センサPSにより検出される冷水送給圧力Pが上記送給圧力制御の各時点における目標圧力Pmの設定許容範囲内にある状態でのみ、負荷流量Qが閾値流量Qsよりも減少(又は増加)すると2次ポンプJBの運転台数Nを一台減少(又は増加)させるのが望ましい。 In the second embodiment, as in the case of the first embodiment, the number N of secondary pumps JB is changed by the operation number control. The load flow rate Q decreases (or increases) from the threshold flow rate Qs only when the cold water supply pressure P detected by the pressure sensor PS is within the set allowable range of the target pressure Pm at each time point of the supply pressure control. Then, it is desirable to decrease (or increase) the number N of operating secondary pumps JB.
そしてまた、前述の第1実施形態と同様、圧力センサPSの検出情報に基づき短絡流量調整弁Vsの開度を調整することによっても、負荷熱交換器Uへの冷水送給圧力Pを送給圧力制御における各時点の目標圧力Pm(即ち、上記の目標変更制御により負荷流量Qの変化に伴い連続的に変更する目標圧力)に調整するのが望ましい。 Further, similarly to the first embodiment described above, the cold water supply pressure P to the load heat exchanger U is also supplied by adjusting the opening degree of the short-circuit flow rate adjustment valve Vs based on the detection information of the pressure sensor PS. It is desirable to adjust the target pressure Pm at each time point in the pressure control (that is, the target pressure continuously changed with the change of the load flow rate Q by the target change control).
負荷熱交換器Uにおける冷水流量調整など、その他については第1実施形態と同じである。 Others, such as the cold water flow rate adjustment in the load heat exchanger U, are the same as those in the first embodiment.
〔第3実施形態〕
前述の第1及び第2実施形態ではいずれも負荷流量Qの変化に応じて運転2次ポンプJBの出力をインバータ装置INVにより調整する例を示したが、この第3実施形態では、この2次ポンプJBの出力制御を行なわない例を示す。
[Third Embodiment]
In both the first and second embodiments described above, an example in which the output of the operating secondary pump JB is adjusted by the inverter device INV in accordance with the change in the load flow rate Q has been shown. An example in which the output control of the pump JB is not performed will be shown.
つまり、この第3実施形態では、各2次ポンプJBに出力固定型のポンプを使用している。そして、2次ポンプJBの出力制御に代え、システム制御器5は、前述の第1実施形態で示した短絡流量調整弁Vsの開度制御と実質的に同じ制御である短絡還流量制御を実行する構成にしてある。
That is, in the third embodiment, a fixed output type pump is used for each secondary pump JB. Then, instead of the output control of the secondary pump JB, the
具体的には、短絡還流量制御として短絡式の送給圧力制御とその送給圧力制御の目標圧力Pmを負荷流量Qの変化に応じて変更する目標変更制御とを実行し、短絡式の送給圧力制御では、負荷熱交換器Uへの冷水送給圧力Pを検出する圧力センサPSの検出情報に基づき短絡流量調整弁Vsの開度を調整して負荷熱交換器Uへの冷水送給圧力Pを目標圧力Pmに調整する。 Specifically, as short-circuit recirculation amount control, short-circuit type supply pressure control and target change control for changing the target pressure Pm of the supply pressure control according to the change of the load flow rate Q are executed. In the supply pressure control, the opening degree of the short-circuit flow rate adjustment valve Vs is adjusted based on the detection information of the pressure sensor PS that detects the chilled water supply pressure P to the load heat exchanger U, and the chilled water supply to the load heat exchanger U is performed. The pressure P is adjusted to the target pressure Pm.
一方、目標変更制御では、前記運転台数制御で2次ポンプJBの運転台数Nを一台減少させたときには、短絡式の送給圧力制御における目標圧力Pmを、そのときの運転台数減少の指標となった閾値流量Qsに対してポンプ制御線M上で対応する圧力値Ps(Ps1〜Ps3)に変更する。 On the other hand, in the target change control, when the operation number N of the secondary pumps JB is decreased by one in the operation number control, the target pressure Pm in the short-circuit type supply pressure control is set as an index for the decrease in the operation number at that time. The pressure value Ps (Ps1 to Ps3) corresponding to the threshold flow rate Qs on the pump control line M is changed.
また、前記運転台数制御で2次ポンプJBの運転台数Nを一台増加させたときには、短絡式の送給圧力制御における目標圧力Pmを、そのときの運転台数増加の指標となった閾値流量Qsよりも一段階だけ大流量側の閾値流量Qsに対してポンプ制御線M上で対応する圧力値圧力値Ps(Ps1〜Ps3)に変更する。 Further, when the number N of secondary pumps JB is increased by one in the operation number control, the target pressure Pm in the short-circuit type supply pressure control is set to the threshold flow rate Qs that is an index of the increase in the number of operations at that time. The pressure value Ps (Ps1 to Ps3) corresponding to the threshold flow rate Qs on the large flow rate side on the pump control line M is changed by one step.
換言すれば、各運転台数Nでの2次ポンプ運転における上限側の閾値流量Qs(現状の運転台数Nよりも2次ポンプJBの運転台数を一台増加させる側の台数変更指標となる閾値流量Qs)に対してポンプ制御線M上で対応する圧力値Ps(Ps1〜Ps3)を短絡式の送給圧力制御における目標圧力Pmとする形態で、短絡式送給圧力制御の目標圧力Pmを2次ポンプ運転台数Nの変更毎に段階的に変更する。 In other words, the threshold flow rate Qs on the upper limit side in the secondary pump operation with each operation number N (the threshold flow rate serving as the number change index on the side where the number of operation of the secondary pump JB is increased by one from the current operation number N) Qs) is set so that the pressure value Ps (Ps1 to Ps3) corresponding to the pump control line M on the pump control line M is the target pressure Pm in the short-circuit type supply pressure control, and the target pressure Pm of the short-circuit type supply pressure control is 2 Each time the next pump operation number N is changed, it is changed in stages.
即ち、2次ポンプJBに出力固定型のポンプを用いながらも、上記目標変更制御の下で短絡式の送給圧力制御を行なうことにより、負荷流量Qの変化に対し負荷熱交換器Uへの冷水送給圧力Pは第1実施形態の場合と同様、図4における圧力変化線PLmに沿って変化する。 That is, while using a fixed output pump as the secondary pump JB, by performing short-circuit feed pressure control under the target change control, the load heat exchanger U can be controlled against the change in the load flow rate Q. The cold water supply pressure P changes along the pressure change line PLm in FIG. 4 as in the case of the first embodiment.
つまり、各運転台数Nでの2次ポンプ運転において負荷流量Qが上限側の閾値流量Qsより減少した状態では、その負荷流量Qの減少で生じる出力固定型の運転2次ポンプ全体としての熱媒送給流量うちの余剰分を短絡式の送給圧力制御による短絡流量調整弁Vsの開度調整により短絡還流路3fを通じて逃がし、これにより各運転台数Nでの2次ポンプ運転の夫々につき負荷熱交換器Uへの冷水送給圧力Pを2次ポンプ運転台数N毎の目標圧力Pm(Ps1〜Ps3)に安定的に維持する。
That is, in the state where the load flow rate Q is decreased from the upper limit side threshold flow rate Qs in the secondary pump operation with each operation number N, the heat medium as the entire fixed output operation secondary pump generated by the decrease of the load flow rate Q is obtained. The surplus portion of the feed flow rate is released through the short-
なお、この第3実施形態においても、前述第1実施形態の場合と同様、前記運転台数制御により2次ポンプJBの運転台数Nを変更するのに、各運転台数Nでの2次ポンプ運転で圧力センサPSにより検出される冷水送給圧力Pが短絡式の送給圧力制御における目標圧力Pmの設定許容範囲内にある状態でのみ、負荷流量Qが閾値流量Qsよりも減少(又は増加)すると2次ポンプJBの運転台数Nを一台減少(又は増加)させるようにするのが望ましい。 In the third embodiment, as in the case of the first embodiment, the operation number N of the secondary pumps JB is changed by the operation number control. When the load flow rate Q decreases (or increases) from the threshold flow rate Qs only in a state where the cold water supply pressure P detected by the pressure sensor PS is within the set allowable range of the target pressure Pm in the short-circuit type supply pressure control. It is desirable to decrease (or increase) the number N of operating secondary pumps JB.
負荷熱交換器Uにおける冷水流量調整など、その他については第1実施形態と同じである。 Others, such as the cold water flow rate adjustment in the load heat exchanger U, are the same as those in the first embodiment.
〔別実施形態〕
次に本発明の別実施形態を列記する。
[Another embodiment]
Next, other embodiments of the present invention will be listed.
熱負荷処理システムについて、前述の実施形態では、流量調整処理S3において負荷熱交換器Uの熱媒流量qを流量演算処理S2で演算した適正熱媒流量qs以下に制限した状態で負荷熱量gの変化に応じて調整する例を示したが、場合によっては、安全率や余裕分を見込むなどして負荷熱交換器Uの熱媒流量qを流量演算処理S2で演算した適正熱媒流量qsの近傍流量以下に制限した状態で負荷熱量gの変化に応じて調整するようにしてもよい。 Regarding the heat load processing system, in the above-described embodiment, the load heat quantity g is limited in a state where the heat medium flow rate q of the load heat exchanger U is limited to the appropriate heat medium flow rate qs calculated in the flow rate calculation process S2 in the flow rate adjustment process S3. Although the example adjusted according to a change was shown, depending on the case, the heat medium flow rate q of the load heat exchanger U is calculated in the flow rate calculation process S2 by taking into account the safety factor and the margin. You may make it adjust according to the change of load calorie | heat amount g in the state restrict | limited to the near flow rate or less.
また、負荷熱交換器Uの熱媒流量qを流量演算処理S2で演算した適正熱媒流量qs又はその近傍流量以下に制限するのに代え、前述した第1参考構成の実施する場合には、流量調整処理S3において負荷熱交換器Uの熱媒流量qを流量演算処理S2で演算した適正熱媒流量qs若しくはその近傍流量に調整するようにしてもよい。 Further, instead of limiting the heat medium flow rate q of the load heat exchanger U to the appropriate heat medium flow rate qs calculated in the flow rate calculation process S2 or a flow rate close to it, when the first reference configuration described above is performed, In the flow rate adjustment process S3, the heat medium flow rate q of the load heat exchanger U may be adjusted to the appropriate heat medium flow rate qs calculated in the flow rate calculation process S2 or the vicinity thereof.
流量演算処理S2において演算モデルMDにより適正熱媒流量qsを演算する場合、その演算モデルMDは前述の如き〔式1〕,〔式2〕を用いるものに限らず、負荷熱量gを賄うことが可能な熱媒流量でかつ負荷熱量gが小さくなるほど負荷熱交換器Uの入出口の熱媒温度差Δtを大きくする割合で減量する熱媒流量(即ち、負荷熱量qが小さいときに生じる負荷熱交換器Uの能力的余裕を活用できる熱媒流量)を負荷熱交換器Uの特性データDT及び計測手段7の計測情報に基づき適正熱媒流量qsとして演算し得るものであれば、どのような演算方式の演算モデルMDであってもよい。 When the appropriate heat medium flow rate qs is calculated by the calculation model MD in the flow rate calculation process S2, the calculation model MD is not limited to using [Expression 1] and [Expression 2] as described above, and can cover the load heat amount g. The heat medium flow rate that is reduced at a rate that increases the heat medium temperature difference Δt at the inlet / outlet of the load heat exchanger U as the load heat amount g becomes smaller and the load heat amount g becomes smaller (that is, the load heat generated when the load heat amount q is small). Any heat medium flow rate capable of utilizing the capacity margin of the exchanger U) can be calculated as the appropriate heat medium flow rate qs based on the characteristic data DT of the load heat exchanger U and the measurement information of the measuring means 7. The calculation model MD may be an arithmetic method.
また、前述した第2参考構成を実施する場合には、負荷熱量qが小さいときに生じる負荷熱交換器Uの能力的余裕を活用できる適正熱媒流量qsを流量演算処理S2において演算するのに、負荷演算処理S1での演算負荷熱量gを賄うことが可能な熱媒流量範囲の下限流量又はその流量範囲内における下限近傍流量を負荷熱交換器Uの特性データDT及び計測手段7の計測情報に基づき適正熱媒流量qsとして演算するようにしてもよい。 Further, when the second reference configuration described above is performed, the appropriate heat medium flow rate qs that can utilize the capacity margin of the load heat exchanger U generated when the load heat quantity q is small is calculated in the flow rate calculation process S2. , The lower limit flow rate of the heat medium flow rate range that can cover the calculated load heat amount g in the load calculation process S1, or the flow rate near the lower limit in the flow rate range, the characteristic data DT of the load heat exchanger U and the measurement information of the measuring means 7 May be calculated as an appropriate heating medium flow rate qs.
前述の実施形態では、更新処理S4において計測熱媒温度差Δtに基づき適正熱媒流量qsの更新を行なうようにしたが、これに代え、負荷演算処理S1及び流量演算処理S2を所定の周期で繰り返して流量調整処理S3で用いる適正熱媒流量qsを逐次更新するようにしてもよい。 In the above-described embodiment, the appropriate heat medium flow rate qs is updated based on the measured heat medium temperature difference Δt in the update process S4. Instead, the load calculation process S1 and the flow rate calculation process S2 are performed at a predetermined cycle. The appropriate heat medium flow rate qs used in the flow rate adjustment processing S3 may be updated sequentially.
負荷演算処理S1で負荷熱交換器Uの負荷熱量gを演算するのに、その演算方式としては種々の方式を適用することができる。 In order to calculate the load heat amount g of the load heat exchanger U in the load calculation process S1, various methods can be applied as the calculation method.
熱源システムについて、前述の第1及び第2実施形態では、複数の熱媒ポンプ(2次ポンプJB)の全てが出力可変型のポンプである場合を示し、また、前述の第3実施形態では複数の熱媒ポンプ(2次ポンプJB)の全てが出力固定型のポンプである場合を示したが、本発明は複数の熱媒ポンプにおける一部が出力可変型のポンプで他のものが出力固定型のポンプである場合にも適用できる。 Regarding the heat source system, the first and second embodiments described above show a case where all of the plurality of heat medium pumps (secondary pumps JB) are variable output pumps, and the third embodiment described above includes a plurality of heat medium pumps. The case where all of the heat medium pumps (secondary pumps JB) are fixed output type pumps is shown, but in the present invention, some of the plurality of heat medium pumps are variable output type pumps, and others are output fixed. The present invention can also be applied to a type of pump.
そして、この場合にはポンプ運転台数制御による各運転台数Nでの熱媒ポンプ運転において運転熱媒ポンプのうちに出力可変型のポンプが存在する場合に、その出力可変型の運転ポンプにつき前述のポンプ出力制御を実施し、運転台数Nの変更で運転熱媒ポンプの全てが出力固定型のポンプとなった場合には、前述短絡式の送出圧力制御を行なうようにすればよい。 In this case, when there is a variable output type pump among the operation heat medium pumps in the heat medium pump operation in each operation number N by the pump operation number control, the variable output type operation pump is described above. When the pump output control is performed and all of the operating heat medium pumps become fixed output type pumps by changing the number N of operation, the above-described short-circuit delivery pressure control may be performed.
前述の各実施形態では、冷凍機Rにより冷却する冷水Cを熱媒とする例を示したが、熱媒は冷水Cに限らずブラインや温水などであってもよく、また、熱媒を冷却又は加熱する熱源機も冷凍機に限らず冷温水発生機やボイラあるいは熱交換器など、どのようなものであってもよい。 In each of the above-described embodiments, an example in which the cold water C cooled by the refrigerator R is used as the heat medium is shown. However, the heat medium is not limited to the cold water C, and may be brine, hot water, or the like. Alternatively, the heat source device to be heated is not limited to a refrigerator, and may be any device such as a cold / hot water generator, a boiler, or a heat exchanger.
前述の各実施形態では、1次ポンプJAと2次ポンプJBを備える熱媒循環系において2次ポンプJBを本発明実施対象の熱媒ポンプとする例を示したが、1次ポンプと2次ポンプとを兼ねる熱媒ポンプを備える熱媒循環系において、その熱媒ポンプにつき本発明を適用してもよく、また、熱媒循環系以外で複数の熱媒ポンプにより負荷熱交換器に熱媒を供給する場合にも本発明を適用することができる。 In each of the above-described embodiments, an example in which the secondary pump JB is used as the heat medium pump of the present invention in the heat medium circulation system including the primary pump JA and the secondary pump JB has been described. In a heat medium circulation system including a heat medium pump that also serves as a pump, the present invention may be applied to the heat medium pump, and in addition to the heat medium circulation system, the heat medium is connected to the load heat exchanger by a plurality of heat medium pumps. The present invention can also be applied to the case of supplying.
本発明は空調設備として用いる熱負荷処理システムに限らず、負荷熱交換器に供給する熱媒の流量を負荷熱交換器の負荷熱量の変化に応じて調整する熱負荷処理システムであれば各種分野における種々の目的のシステムに適用することができ、また、本発明の熱負荷処理システムとともに用いる熱源システムについても負荷熱交換器に熱媒を供給する複数の熱媒ポンプを備える熱源システムであれば、各種分野における種々の目的のシステムに適用することができる。 The present invention is not limited to a heat load processing system used as an air conditioner, but can be applied to various fields as long as the heat load processing system adjusts the flow rate of the heat medium supplied to the load heat exchanger according to the change in the load heat amount of the load heat exchanger. In addition, the heat source system used with the heat load processing system of the present invention can be applied to a system for various purposes as long as the heat source system includes a plurality of heat medium pumps that supply the heat medium to the load heat exchanger. It can be applied to systems for various purposes in various fields.
MA 負荷媒体
C 熱媒
U 負荷熱交換器
q 熱媒流量
g 負荷熱量
6,Vb 流量制御手段
7 計測手段
S1 負荷演算処理
Δt 入出口の熱媒温度差
DT 特性データ
qs 適正熱媒流量
MD 演算モデル
S2 流量演算処理
S3 流量調整処理
Δtss 指標温度差
α 設定減少幅
β 設定増大幅
R 熱源機
3b 熱媒送給路
JB 熱媒ポンプ
Q 負荷流量
N 運転台数
5 ポンプ制御手段
P 圧力
L1〜L3 運転台数毎のポンプ性能曲線
M ポンプ制御線
X1〜X3 交点
Qs1〜Qs3 閾値流量(Qs)
FS 流量検出手段
PS 圧力検出手段
Pm 目標圧力
MA Load medium C Heat medium U Load heat exchanger q Heat medium flow rate g
FS Flow rate detection means PS Pressure detection means Pm Target pressure
Claims (7)
前記負荷熱交換器の運転状態を検出する計測手段を設け、
前記流量制御手段は、この計測手段の計測情報に基づいて前記負荷熱量を演算する負荷演算処理と、
前記負荷熱量を賄うことが可能な熱媒流量でかつ前記負荷熱量が小さくなるほど前記負荷熱交換器の入口と出口との熱媒温度差を大きくする割合で減量する熱媒流量を前記負荷熱交換器の特性データ及び前記計測手段の計測情報に基づき適正熱媒流量として演算する所定の演算モデルにより、前記負荷演算処理での演算負荷熱量に対する適正熱媒流量を演算する流量演算処理と、
前記負荷熱交換器の熱媒流量を前記流量演算処理で演算した適正熱媒流量若しくはその近傍流量以下に制限した状態で前記負荷熱量の変化に応じて調整する流量調整処理とを実行する構成にしてある熱負荷処理システム。 A load heat exchanger that cools or heats the load medium by exchanging heat with the heat medium, and the flow rate of the heat medium supplied to the load heat exchanger is the amount of heat required for cooling or heating the load medium in the load heat exchanger. A heat load processing system comprising a flow rate control means for adjusting according to a change in a certain amount of heat,
Providing a measuring means for detecting the operating state of the load heat exchanger;
The flow rate control means, a load calculation process for calculating the load heat amount based on the measurement information of the measurement means,
The load heat exchange is performed to reduce the heat medium flow rate at a rate that increases the heat medium temperature difference between the inlet and the outlet of the load heat exchanger as the load heat amount decreases and the heat medium flow rate can cover the load heat amount. A flow rate calculation process for calculating an appropriate heat medium flow rate with respect to a calculated load heat amount in the load calculation process, according to a predetermined calculation model for calculating as an appropriate heat medium flow rate based on the characteristic data of the vessel and the measurement information of the measuring means;
A flow rate adjustment process is performed in which the heat medium flow rate of the load heat exchanger is adjusted according to a change in the load heat amount in a state where the heat medium flow rate of the load heat exchanger is limited to an appropriate heat medium flow rate calculated in the flow rate calculation process or a flow rate close thereto. Heat load treatment system.
前記負荷熱交換器の冷水流量を調整する流量調整弁を設けるとともに、前記計測手段として室内還気の温度を計測するセンサを設け、
前記流量制御手段は、前記流量調整処理として、前記流量調整弁の上限開度を規定することで前記負荷熱交換器の冷水流量を前記流量演算処理で前記適正熱媒流量として演算した適正冷水流量以下に制限するとともに、
この上限開度規定の下で、前記負荷熱量の変化に応じた熱媒流量の調整として、前記センサにより計測される還気空気の温度と冷房目標温度である設定温度との偏差に応じて前記流量調整弁の開度を調整することで前記負荷熱交換器の冷水流量を調整する構成にしてある請求項1記載の熱負荷処理システム。 It is configured to generate air supply for cooling by causing heat exchange with cold water as a heat medium in the load heat exchanger using a mixed air of indoor return air and outside air as a load medium,
Provided with a flow rate adjustment valve for adjusting the cold water flow rate of the load heat exchanger, and provided with a sensor for measuring the temperature of indoor return air as the measuring means,
The flow rate control means, as the flow rate adjustment process, by defining the upper limit opening of the flow rate adjustment valve, the cold water flow rate of the load heat exchanger is calculated as the appropriate heat medium flow rate in the flow rate calculation process While limiting to
Under this upper limit opening degree regulation, as the adjustment of the heating medium flow rate according to the change of the load heat quantity, the difference between the temperature of the return air measured by the sensor and the set temperature which is the cooling target temperature, The heat load processing system according to claim 1, wherein the cooling water flow rate of the load heat exchanger is adjusted by adjusting an opening degree of the flow rate adjusting valve .
前記流量調整処理において前記計測手段により計測される前記負荷熱交換器の入出口の熱媒温度差が前記指標温度差よりも設定減少幅以上に減少したとき及び設定増大幅以上に増大したとき、前記負荷演算処理及び前記流量演算処理を再度実行して前記流量調整処理で用いる前記適正熱媒流量を更新する構成にしてある請求項1又は2記載の熱負荷処理システム。 The flow rate control means calculates the temperature difference of the heat medium at the inlet and outlet of the load heat exchanger when the heat medium flow rate of the load heat exchanger is set to an appropriate heat medium flow rate calculated by the flow rate calculation process. And calculating as an index temperature difference based on the measurement data of the characteristic data and the measurement information of the measuring means,
When the heat medium temperature difference at the inlet / outlet of the load heat exchanger measured by the measuring means in the flow rate adjustment process is decreased more than a set decrease width and more than a set increase width than the index temperature difference, The thermal load processing system according to claim 1 or 2, wherein the load heat processing and the flow rate calculation are executed again to update the appropriate heat medium flow used in the flow rate adjustment.
熱源機で冷却又は加熱した熱媒を前記負荷熱交換器に供給する熱媒送給路に複数の熱媒ポンプを並列配置で介装するとともに、
前記流量制御手段により調整する熱媒流量である負荷流量の変化に応じて前記熱媒ポン
プの運転台数を変更するポンプ制御手段を装備した熱源システムにおいて、
各運転台数での熱媒ポンプ運転において運転熱媒ポンプの夫々を最大出力で運転した場合における熱媒送給流量と熱媒送給圧力との相関を示す運転台数毎のポンプ性能曲線を設定するとともに、
前記負荷流量とその負荷流量の熱媒を前記負荷熱交換器に供給するのに必要な送給圧力との相関を示すポンプ制御線を設定して、
これら運転台数毎のポンプ性能曲線とポンプ制御線との各交点における流量値又はその近傍流量値の夫々を閾値流量として設定し、
これらの設定に対して前記ポンプ制御手段は、ポンプ運転台数制御として、負荷流量を検出する流量検出手段の検出情報に基づき、
前記閾値流量の各々について、負荷流量が閾値流量よりも減少すると前記熱媒ポンプの運転台数を一台減少させ、かつ、負荷流量が閾値流量よりも増加すると前記熱媒ポンプの運転台数を一台増加させる構成にしてある熱源システム。 A heat source system for use with the thermal load treatment system according to claim 1 ,
While interposing a plurality of heat medium pumps in parallel arrangement in the heat medium supply path for supplying the heat medium cooled or heated by the heat source machine to the load heat exchanger,
In a heat source system equipped with pump control means for changing the number of operating heat medium pumps according to a change in load flow rate that is a heat medium flow rate adjusted by the flow rate control means,
Set the pump performance curve for each number of operating units that shows the correlation between the heat medium supply flow rate and the heat medium supply pressure when each of the operating heat medium pumps is operated at the maximum output in the operation of the heat medium pump with each operating number. With
Setting a pump control line indicating the correlation between the load flow rate and the supply pressure required to supply the load medium with the heat medium of the load flow rate,
Each of the flow rate value at each intersection of the pump performance curve and the pump control line for each number of operating units or its neighboring flow rate value is set as the threshold flow rate,
With respect to these settings, the pump control means, based on the detection information of the flow rate detection means for detecting the load flow rate, as the pump operation number control,
For each of the threshold flow rates, when the load flow rate decreases below the threshold flow rate, the number of operating heat medium pumps decreases by one, and when the load flow rate increases above the threshold flow rate, the number of operating heat medium pumps decreases by one. Heat source system configured to increase.
前記負荷熱交換器への熱媒送給圧力を検出する圧力検出手段の検出情報に基づき運転熱媒ポンプのうちの少なくとも1台の熱媒ポンプの出力を調整して、前記負荷熱交換器への熱媒送給圧力を目標圧力に調整する送給圧力制御と、
前記流量検出手段の検出情報に基づき前記送給圧力制御の目標圧力を負荷流量の変化に応じて変更する目標変更制御とを実行する構成にしてある請求項6記載の熱源システム。 The pump control means, as the pump output control,
Based on the detection information of the pressure detection means for detecting the heat medium supply pressure to the load heat exchanger, the output of at least one heat medium pump of the operation heat medium pumps is adjusted to the load heat exchanger. Supply pressure control to adjust the heat medium supply pressure of the target to the target pressure,
The heat source system according to claim 6, wherein a target change control for changing a target pressure of the supply pressure control according to a change in a load flow rate is executed based on detection information of the flow rate detection means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008333570A JP5261170B2 (en) | 2008-12-26 | 2008-12-26 | Thermal load processing system and heat source system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008333570A JP5261170B2 (en) | 2008-12-26 | 2008-12-26 | Thermal load processing system and heat source system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010156478A JP2010156478A (en) | 2010-07-15 |
JP5261170B2 true JP5261170B2 (en) | 2013-08-14 |
Family
ID=42574520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008333570A Active JP5261170B2 (en) | 2008-12-26 | 2008-12-26 | Thermal load processing system and heat source system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5261170B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111121153A (en) * | 2019-12-20 | 2020-05-08 | 宁波奥克斯电气股份有限公司 | Multi-connected indoor unit and fresh air fan hybrid system and control method thereof |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5642448B2 (en) * | 2010-08-02 | 2014-12-17 | 三菱重工業株式会社 | Flow rate estimation device, heat source unit, and flow rate estimation method |
JP5840466B2 (en) * | 2011-11-22 | 2016-01-06 | 三機工業株式会社 | Variable flow rate control device for heat source pump |
JP2018505375A (en) * | 2014-12-23 | 2018-02-22 | トレイン・エアー・コンディショニング・システムズ・(チャイナ)・カンパニー・リミテッド | Temperature control system and control method thereof |
US10451305B2 (en) | 2015-10-26 | 2019-10-22 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
CN107036232B (en) * | 2017-03-07 | 2019-12-06 | 深圳达实智能股份有限公司 | Cold machine operation energy efficiency optimization control method and device for chilled water storage air conditioning system of hospital |
JP6727452B2 (en) * | 2017-09-22 | 2020-07-22 | 三菱電機株式会社 | Air conditioner |
JP7093649B2 (en) * | 2018-03-08 | 2022-06-30 | 三機工業株式会社 | Heat source system and its control method |
JP2020020412A (en) * | 2018-08-01 | 2020-02-06 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Device and method of supplying pressurized gas to container |
JP7292915B2 (en) * | 2019-03-27 | 2023-06-19 | 株式会社熊谷組 | air conditioning system |
CN113950599B (en) * | 2019-06-03 | 2023-09-22 | 大金工业株式会社 | Device management apparatus, heat source system, management apparatus, and device management system |
KR102192487B1 (en) * | 2019-12-17 | 2020-12-17 | (주)스타즈스터링코리아 | Integrated device for ventilation and temperature control |
CN112856810B (en) * | 2021-01-08 | 2022-03-08 | 宁波方太厨具有限公司 | Control system of heat exchanger, heating stove and outlet water temperature control method of heating stove |
CN114396714B (en) * | 2021-12-14 | 2023-03-24 | 广州智业节能科技有限公司 | System and method for automatically controlling and operating system starting number |
WO2024161579A1 (en) * | 2023-02-02 | 2024-08-08 | 三菱電機株式会社 | Air conditioning system |
CN117870092B (en) * | 2024-01-24 | 2024-10-18 | 广东安旺科技有限公司 | Air conditioner control method, air conditioner and readable storage medium |
CN118031274B (en) * | 2024-04-11 | 2024-08-06 | 深圳市前海能源科技发展有限公司 | Regional concentrated cooling and heating system and method, electronic equipment and medium thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2527643B2 (en) * | 1990-10-29 | 1996-08-28 | 高砂熱学工業株式会社 | A method of controlling the amount of water change in a water heat source air conditioning system |
JP2006009805A (en) * | 1996-01-31 | 2006-01-12 | Hitachi Industrial Equipment Systems Co Ltd | Turbomachinery driving device and its control method |
JPH10213338A (en) * | 1997-01-29 | 1998-08-11 | Toko Electric Co Ltd | Controlling equipment of pump |
JPH10213339A (en) * | 1997-01-30 | 1998-08-11 | Mitsubishi Electric Corp | Air conditioner |
JP3865861B2 (en) * | 1997-04-18 | 2007-01-10 | 三建設備工業株式会社 | Automatic control method for air conditioning equipment |
JP2001235182A (en) * | 2000-02-23 | 2001-08-31 | Shinko Kogyo Co Ltd | Air conditioning system for building |
JP4134781B2 (en) * | 2003-03-26 | 2008-08-20 | 株式会社日立プラントテクノロジー | Air conditioning equipment |
JP3800210B2 (en) * | 2003-08-22 | 2006-07-26 | 木村工機株式会社 | Water source heat pump unit |
JP4435533B2 (en) * | 2003-10-09 | 2010-03-17 | 高砂熱学工業株式会社 | Heat source system and control device |
-
2008
- 2008-12-26 JP JP2008333570A patent/JP5261170B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111121153A (en) * | 2019-12-20 | 2020-05-08 | 宁波奥克斯电气股份有限公司 | Multi-connected indoor unit and fresh air fan hybrid system and control method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2010156478A (en) | 2010-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5261170B2 (en) | Thermal load processing system and heat source system | |
EP2806223B1 (en) | Air-conditioning system that adjusts temperature and humidity | |
JP5515166B2 (en) | Heat source system | |
JP4422572B2 (en) | Cold / hot water control method for cold / hot heat source machine | |
JP5227247B2 (en) | Heat source system operating method and heat source system | |
WO2012173240A1 (en) | Heat source system and control method of same | |
JP2007315695A (en) | Cold and hot water control method for cold and heat source machine, and air conditioning system using it | |
JP2006275397A (en) | Cold/hot water control method for air conditioner | |
WO2011025517A1 (en) | Energy saving method and system for climate control system | |
JP3652974B2 (en) | Primary pump heat source variable flow rate system | |
JP2017129340A (en) | Heat source control system, control method and control device | |
JP4693645B2 (en) | Air conditioning system | |
JP5261153B2 (en) | Heat source system | |
JP3828485B2 (en) | Control device | |
JP5492712B2 (en) | Water supply temperature control apparatus and method | |
JP5737173B2 (en) | Air conditioning system that adjusts temperature and humidity | |
JP2016075425A (en) | Hot water supply system and operation control method of the same | |
JP2010236816A (en) | Heat pump type air conditioner and method of controlling heat pump type air conditioner | |
JP5673524B2 (en) | Air conditioning system that adjusts temperature and humidity | |
JP5572116B2 (en) | Heat source system | |
JP2007327727A (en) | Heat pump water heater | |
US11353234B2 (en) | Air conditioning system | |
JP6866277B2 (en) | Air conditioning system and control method of air conditioning system | |
CN113950599B (en) | Device management apparatus, heat source system, management apparatus, and device management system | |
JP5768151B2 (en) | Heat pump type air conditioner and control method of heat pump type air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120416 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120426 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121011 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130418 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130426 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160502 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5261170 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |