JP3652974B2 - Primary pump heat source variable flow rate system - Google Patents

Primary pump heat source variable flow rate system Download PDF

Info

Publication number
JP3652974B2
JP3652974B2 JP2000292611A JP2000292611A JP3652974B2 JP 3652974 B2 JP3652974 B2 JP 3652974B2 JP 2000292611 A JP2000292611 A JP 2000292611A JP 2000292611 A JP2000292611 A JP 2000292611A JP 3652974 B2 JP3652974 B2 JP 3652974B2
Authority
JP
Japan
Prior art keywords
cold
hot water
load
heat source
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000292611A
Other languages
Japanese (ja)
Other versions
JP2002098358A (en
Inventor
徹 合田
修一 伊藤
法仁 柏木
章一 仲井
久士 齋藤
英樹 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Dan Co Ltd
Original Assignee
Dai Dan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Dan Co Ltd filed Critical Dai Dan Co Ltd
Priority to JP2000292611A priority Critical patent/JP3652974B2/en
Publication of JP2002098358A publication Critical patent/JP2002098358A/en
Application granted granted Critical
Publication of JP3652974B2 publication Critical patent/JP3652974B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、建物の空調負荷状態の変動に応じて熱媒流量を可変制御し、経済的かつ省エネルギー効果の高い熱源制御を行う一次ポンプ方式熱源変流量システムに関する。
【0002】
【従来の技術】
省エネルギー型熱源システムとして、空調負荷に応じた熱媒供給を行うことによって一次側ポンプおよび二次側ポンプの搬送動力の削減を図る一次・二次ポンプ方式熱源変流量システムが既に実現されている。一次・二次ポンプ方式熱源変流量システムでは、一次側ポンプ、二次側ポンプともに可変出力で運転される。
【0003】
一方、熱媒搬送装置が一次側ポンプのみの熱源システム、いわゆる一次ポンプ方式熱源システムにおいては、一般に、一次側ポンプは空調負荷の多寡に関係なく定格出力で運転されており、空調負荷に応じた送水圧力を維持し得る量の熱媒のみが負荷側へ供給されるとともに、余剰熱媒はバイパス管を経由して負荷側と熱交換することなく熱源機に戻されている。
【0004】
【発明が解決しようとする課題】
従来の一次ポンプ方式熱源変流量システムでは、一次側ポンプが空調負荷の多寡に関係なく定格出力で運転されるため、空調負荷が部分負荷となるときは必然的にバイパス管を経由する無駄な熱媒搬送が生じることになる。実際に事務所ビルを始めとする建築物の空調負荷は年間を通じてほとんどが部分負荷であり、常に定格出力での運転を行うことは、経済性や省エネルギー性の面から好ましくない。また、立ち上がり時の制御動作、あるいは、送水温度が条件を満たさない時(冷水送水温度が過大または温水送水温度が過小である場合)のリカバリ制御動作を迅速に行う方法として台数制御、すなわち、熱源機の運転台数を増減させて素早く所定の温度条件に制御する方法があるが、熱源機単位での段階的な変流量制御となるために熱媒の温度条件を満足することが可能になる反面、熱場の流量条件に関しては過大流量または過小流量に陥る危険性があり、かえって制御性や省エネルギー性を損ねるという問題点があった。
【0005】
本発明は上記の事情に鑑みてなされたもので、建物の空調負荷状態の変動に応じて熱媒流量を可変制御し、経済的かつ省エネルギー効果の高い熱源制御を行う一次ポンプ方式熱源変流量システムを提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために本発明は、冷温水を熱源側のみから循環供給させて建物の空調を行う一次ポンプ方式熱源変流量システムであって、空調負荷を処理する負荷側装置と、前記負荷側装置に冷温水を供給する熱源側装置および冷温水搬送装置と、前記熱源側装置に冷却水を供給する冷却塔および冷却水搬送装置と、冷温水送水側管路および冷温水還水側管路を連結するバイパス管と、冷温水および冷却水を空調負荷に応じて循環供給させるように可変制御を行う変流量制御装置とを備え、前記変流量制御装置は、負荷側の負荷状態を判定する負荷状態判定手段と、前記冷温水搬送装置による冷温水搬送量を検知する冷温水搬送量検知手段と、冷温水送水温度が所定範囲内にある場合に前記負荷状態判定手段の判定結果に基づき冷温水搬送装置による冷温水搬送量が所定値以上となるように冷温水搬送装置の制御出力またはバイパス弁の開度を演算し出力し、冷温水送水温度が所定範囲を逸脱する場合に前記負荷状態判定手段の判定結果に基づく高負荷時制御または低負荷時制御を行わず冷温水搬送量を増加させるように冷温水搬送装置の制御出力を演算し出力する手段を備えることを特徴とするものである。
【0009】
また本発明は、前記一次ポンプ方式熱源変流量システムにおいて、前記冷温水搬送量検知手段は、バイパス管流量と負荷側流量の合計値または熱源側流量に基づいて前記冷温水搬送装置による冷温水搬送量が所定値以上であるか否かを検知することを特徴とするものである。
【0010】
また本発明は、前記一次ポンプ方式熱源変流量システムにおいて、前記冷温水搬送量検知手段は、送還水管差圧に基づいて前記冷温水搬送装置による冷温水搬送量が所定値以上であるか否かを検知することを特徴とするものである。
【0012】
また本発明は、前記一次ポンプ方式熱源変流量システムにおいて、前記冷却水搬送装置の制御出力は、前記冷温水搬送装置の制御出力に基づいて演算されることを特徴とするものである。
【0013】
【発明の実施の形態】
以下図面を参照して本発明の実施の形態例を詳細に説明する。
【0014】
図1は本発明の実施形態例に係る一次ポンプ方式熱源変流量システムを示す構成説明図である。
【0015】
図1において、11は冷温水発生機、12は冷温水一次ポンプ、13は冷却塔、14は冷却水ポンプ、15は空調機である。冷温水発生機11は複数台が並列して設けられ、それぞれに冷温水一次ポンプ12、冷却塔13、冷却水ポンプ14が対応して設けられる。16は冷温水発生機11からの冷水または温水を混合させる往ヘッダであり、17は冷温水発生機11へ戻る冷水または温水を混合させる還ヘッダである。バイパス管18は、往ヘッダ16および還水管19、または、往ヘッダ16および還ヘッダ17を連結するように設けられ、バイパス管路上にはバイパス管流量を調整するバイパス弁20が設けられる。配管系はこのバイパス管18を境として、冷温水発生機11等の熱源機器が配置される熱源側と空調機15等の負荷機器が配置される負荷側に区分される。21はポンプ可変流量制御装置(INV)であり、冷温水一次ポンプ12および冷却水ポンプ14に対応して設けられる。22は空調機15への送水温度を測定する送水温度センサー、23は負荷側送水圧を測定する送水圧力計、24、25はそれぞれ負荷流量、バイパス管流量を測定する流量計、26は送水管である。
【0016】
一次ポンプ方式熱源変流量システムは、空調負荷が高負荷であるか低負荷であるかによって制御動作が異なる。
【0017】
空調負荷が高負荷状態となる場合、バイパス弁20は全閉状態に制御されるとともに、空調機15に供給される冷水または温水の量は冷温水一次ポンプ12の出力のみを変化させることにより可変制御される。すなわち、冷温水発生機11によって作られた冷水または温水は、冷温水一次ポンプ12により往ヘッダ16および送水管26を経由して空調機15へ圧送され、空調機15内の搬送空気と熱交換をした後、還ヘッダ17および還水管19を経由して再び冷温水発生機11に戻される。このようにして冷温水発生機11に搬送された空調負荷は、冷房時には冷却水回路の冷却水ポンプ14および冷却塔13を介して外界へ排出される。
【0018】
一方、空調負荷が低負荷状態となる場合は、冷温水発生機11が冷温水流量不足に起因して異常停止することがないように、冷温水一次ポンプ12は所定の最低制御出力、例えば定格の50%出力に制御されるとともに、空調機15に供給される冷水または温水の量はバイパス弁20の開度のみを変化させることにより可変制御される。すなわち、冷温水発生機11によって作られた冷水または温水は、冷温水一次ポンプ12により往ヘッダ16および送水管26を経由して空調機15へ圧送され、同時に余剰の冷水または温水がバイパス管18へ送られる。空調機15に送られた冷水または温水は空調機15内の搬送空気と熱交換をした後、還ヘッダ17および還水管19を経由して再び冷温水発生機11に戻され、バイパス管18へ送られた冷水または温水は負荷側と熱交換することなく還ヘッダ17および還水管19を経由して再び冷温水発生機11に戻される。このようにして冷温水発生機11に搬送された空調負荷は、冷房時には冷却水回路の冷却水ポンプ14および冷却塔13を介して外界へ排出される。
【0019】
27は空調機15の負荷状態の変動に応じて冷温水一次ポンプ12や冷却水ポンプ14やバイパス弁20の最適な制御を行う熱源制御装置である。熱源制御装置27には、現在の運転状態や負荷状態を監視しデータとして取り込む状態入力部28と、空調機15の負荷状態が高負荷状態にあるか低負荷状態にあるかを判定する負荷状態判定部29と、高負荷時における冷温水一次ポンプ12や冷却水ポンプ14やバイパス弁20の制御信号を演算する高負荷制御演算部30と、低負荷時における冷温水一次ポンプ12や冷却水ポンプ14やバイパス弁20の制御信号を演算する低負荷制御演算部31と、負荷側送水温度が設定範囲を逸脱した場合の冷温水一次ポンプ12や冷却水ポンプ14の制御信号を演算する送水温度補償制御演算部32と、冷温水一次ポンプ12や冷却水ポンプ14やバイパス弁20に対する制御信号を出力する制御出力部33が実装される。状態入力部28には、冷温水一次ポンプ12の冷温水搬送量を検知する処理部が設けられ、本実施形態例では、バイパス管流量と負荷流量の合計値が冷温水搬送量として検知される。
【0020】
一次ポンプ方式熱源変流量システムの熱源制御装置27での変流量制御は図2に示すフローチャートのように実施される。すなわち、状態入力部28において、各機器の運転状態や温度・流量等の負荷状態に関する信号が周期的に入力・データ変換され、メモリ内の所定アドレスに格納される。続いて負荷状態判定部29では、例えば状態入力部28を通じて取得した負荷側流量と所定の判定基準値とを比較することにより、負荷側の負荷状態が高負荷であるか低負荷であるかが判定される。なお、所定の判定基準値には、図3(a)に示すように、運転中の冷温水発生機11の定格時送水量QMAXに係数aを乗じた値を用いる。本実施形態例では、係数aは0.5である。
【0021】
負荷流量が所定の判定基準値aQMAX以上である場合は空調負荷が高負荷状態にあると見なし、高負荷制御演算部30において、送水圧力設定値を目標値とするPID制御(送水圧力が目標値となるようなポンプ制御出力を演算)によって最適な冷温水一次ポンプ12の制御出力が演算される。冷却水ポンプ14の制御出力は、設計データを参照して冷温水一次ポンプ12の制御出力に関する一次式としてあらかじめ定義しておくことにより簡単に算出することができる。なお、高負荷状態時では、バイパス弁20は全閉(バイパス弁20が全閉でないときは、徐々に全閉に制御)とする。ここで、送水圧力設定値は負荷側流量に関わらず一定(送水圧一定制御方式)としても良く、また、例えば図3(b)に示すように、対象熱源システムのポンプ特性曲線や配管抵抗曲線に基づいて負荷側流量と送水圧力設定値の関係式をあらかじめ定義しておき、取得した負荷側流量をこの関係式に代入することにより容易に求めるように(流量カスケード圧力制御方式)しても良い。
【0022】
一方、負荷流量が所定の判定基準値aQMAXを下回る場合は空調負荷が低負荷状態にあると見なし、低負荷制御演算部31において、冷温水一次ポンプ12の冷温水搬送量(バイパス管流量および負荷流量の合計値)が、流量設定値(目標値)となるように最適なバイパス弁開度がPID制御により演算される(バイパス弁制御)。なお、低負荷状態時では、冷温水一次ポンプ制御出力を所定の最低制御出力(ポンプが最低制御出力でないときは、徐々に最低制御出力に制御)に固定する。これは、負荷状態に応じて無制限に冷温水一次ポンプ制御出力を下げると冷温水流量が不足し、冷温水発生機11が異常停止することを防止するためである。バイパス弁20は、負荷側で必要としない余剰の冷温水をバイパスする目的で操作される。
【0023】
高負荷制御演算部30または低負荷制御演算部31によって制御された最新の制御出力は後述する送水温度補償制御演算部32を介して制御出力部33へ出力され、冷温水一次ポンプ12や冷却水ポンプ14やバイパス弁20に対する最適な制御信号が各機器に対して出力(ポンプ制御信号・バイパス弁開度信号を制御出力部33から出力)される。なお、負荷変動に起因する高負荷状態と低負荷状態の間の状態遷移を考慮するため、負荷側が高負荷状態にあるときはバイパス弁20を完全に閉止する制御動作を、また、負荷側が低負荷状態にあるときは冷温水一次ポンプ制御出力を所定の最低制御出力に設定する操作を必要に応じて実施する。
【0024】
ところで、省エネルギーに配慮しつつ建物の温熱環境を良好に維持するためには、冷温水流量の最適制御もさることながら、冷温水送水温度の制御性にも留意する必要がある。
【0025】
図4は一次ポンプ方式熱源変流量システムの送水温度補償制御演算部32での送水温度補償制御を示した動作説明図である。すなわち、冷水を対象とする送水温度補償制御の場合、取得した送水温度が補償開始温度(TCS・MAX)を上回ると補償動作が開始し、冷温水一次ポンプ(冷水ポンプ)12の制御出力が現在出力から最大制御出力に向けて徐々に増大する。ここで最大制御出力は通常100%に設定される。このとき、高負荷時通常制御または低負荷時通常制御、すなわち、送水圧力設定値を目標値とするPID制御または流量設定値を目標値とするバイパス弁制御は行わない。その後、補償制御の効果により送水温度が低下して補償終了温度を下回ると補償動作が終了し、冷温水一次ポンプ(冷水ポンプ)12の制御出力が最大制御出力から現在の負荷状態に応じた最適な出力に向けて徐々に減少する。逆に、温水を対象とする温水温度補償制御の場合、取得した送水温度が補償開始温度(THS・MIN)を下回ると補償動作が開始し、冷温水一次ポンプ(温水ポンプ)12の制御出力が現在出力から最大制御出力に向けて徐々に増大する。その後、補償制御の効果により送水温度が上昇して補償終了温度を上回ると補償動作が終了し、冷温水一次ポンプ(温水ポンプ)12の制御出力が最大制御出力から現在の負荷状態に応じた最適な出力に向けて徐々に減少する。
【0026】
次に、図5は本発明の他の実施形態例に係る一次ポンプ方式熱源変流量システムを示す構成説明図である。
【0027】
図5において、11は冷温水発生機、12は冷温水一次ポンプ、13は冷却塔、14は冷却水ポンプ、15は空調機である。冷温水発生機11は複数台が並列して設けられ、それぞれに冷温水一次ポンプ12、冷却塔13、冷却水ポンプ14が対応して設けられる。16は冷温水発生機11からの冷水または温水を混合させる往ヘッダであり、17は冷温水発生機11へ戻る冷水または温水を混合させる還ヘッダ17である。バイパス管18は、往ヘッダ16および還水管19、または、往ヘッダ16および還ヘッダ17を連結するように設けられ、バイパス管路上にはバイパス管流量を調整するバイパス弁20が設けられる。配管系はこのバイパス管18を境として、冷温水発生機11等の熱源機器が配置される熱源側と空調機15等の負荷機器が配置される負荷側に区分される。21はポンプ可変流量制御装置であり、冷温水一次ポンプ12および冷却水ポンプ14に対応して設けられる。22は空調機15への送水温度を測定する送水温度センサー、41は負荷側末端送水圧を測定する実末端圧力計、42は送還水管差圧を測定する差圧計、24は負荷流量を測定する流量計である。また、27は空調機15の負荷状態の変動に応じて冷温水一次ポンプ12や冷却水ポンプ14やバイパス弁20の最適な制御を行う熱源制御装置である。熱源制御装置27には、現在の運転状態や負荷状態を監視しデータとして取り込む状態入力部28と、空調機15の負荷状態が高負荷状態にあるか低負荷状態にあるかを判定する負荷状態判定部29と、高負荷時における冷温水一次ポンプ12や冷却水ポンプ14やバイパス弁20の制御信号を演算する高負荷制御演算部30と、低負荷時における冷温水一次ポンプ12や冷却水ポンプ14やバイパス弁20の制御信号を演算する低負荷制御演算部31と、負荷側送水温度が設定範囲を逸脱した場合の冷温水一次ポンプ12や冷却水ポンプ14の制御信号を演算する送水温度補償制御演算部32と、冷温水一次ポンプ12や冷却水ポンプ14やバイパス弁20に対する制御信号を出力する制御出力部33が実装される。状態入力部28には、冷温水一次ポンプ12の冷温水搬送量を検知する処理部が設けられ、本実施形態例では、送還水管差圧の計測値から求められる流量(低負荷時)または負荷流量(高負荷時)が冷温水搬送量として検知される。
【0028】
図5の一次ポンプ方式熱源変流量システムの熱源制御装置27での変流量制御は図6に示すフローチャートのように実施される。すなわち、状態入力部28において、各機器の運転状態や温度・流量等の負荷状態に関する信号が周期的に入力・データ変換され、メモリ内の所定アドレスに格納される。続いて負荷状態判定部29では、例えば状態入力部28を通じて取得した負荷側流量と所定の判定基準値とを比較することにより、負荷側の負荷状態が高負荷であるか低負荷であるかが判定される。なお、所定の判定基準値には、前述のように、運転中の冷温水発生機11の定格時送水量QMAXに係数aを乗じた値を用いる。本実施形態例では、係数aは0.5である。
【0029】
負荷流量が所定の判定基準値aQMAX以上である場合は空調負荷が高負荷状態にあると見なし、高負荷制御演算部30において、実末端送水圧力設定値を目標値とするPID制御(実末端圧力が目標値となるようなポンプ制御出力を演算)によって最適な冷温水一次ポンプ12の制御出力が演算される。冷却水ポンプ14の制御出力は、設計データを参照して冷温水一次ポンプ12の制御出力に関する一次式としてあらかじめ定義しておくことにより簡単に算出することができる。なお、高負荷状態時では、バイパス弁20は全閉(バイパス弁20が全閉でないときは、徐々に全閉に制御)とする。
【0030】
一方、負荷流量が所定の判定基準値aQMAXを下回る場合は空調負荷が低負荷状態にあると見なし、低負荷制御演算部31において、送還水管差圧が差圧設定値(目標値)となるように最適なバイパス弁開度がPID制御により演算される。なお、低負荷状態時では、冷温水一次ポンプ制御出力を所定の最低制御出力(ポンプが最低制御出力でないときは、徐々に最低制御出力に制御)に固定する。これは、負荷状態に応じて無制限に冷温水一次ポンプ制御出力を下げると冷温水流量が不足し、冷温水発生機11が異常停止することを防止するためである。バイパス弁20は、負荷側で必要としない余剰の冷温水をバイパスする目的で操作される。
【0031】
高負荷制御演算部30または低負荷制御演算部31によって演算された最新の制御データは送水温度補償制御演算部32を介して制御出力部33へ出力され、冷温水一次ポンプ12や冷却水ポンプ14やバイパス弁20に対する適切な制御信号が各機器に対して出力(ポンプ制御信号・バイパス弁開度信号を制御出力部33から出力)される。なお、負荷変動に起因する高負荷状態と低負荷状態の間の状態遷移を考慮するため、負荷側が高負荷状態にあるときはバイパス弁20を完全に閉止する制御動作を、また、負荷側が低負荷状態にあるときは冷温水一次ポンプ制御出力を所定の最低制御出力に設定する操作を必要に応じて実施する。
【0032】
なお、上述の実施形態例では、負荷流量に基づいて空調負荷状態の高低を判定していたが、負荷流量の代わりに送還水管差圧を利用して空調負荷状態の高低を判定するようにしても良く、また、熱源側流量計または送還水管差圧計の計測値を用いて冷温水搬送量を検知するようにしても良い。図7に本発明の他の実施形態例に係る一次ポンプ方式熱源変流量システムの構成を示す。
【0033】
図7において、11は冷温水発生機、12は冷温水一次ポンプ、13は冷却塔、14は冷却水ポンプ、15は空調機、16は往ヘッダ、17は還ヘッダである。バイパス管18は、往ヘッダ16および還ヘッダ17を連結するように設けられ、バイパス管路上にはバイパス管流量を調整するバイパス弁20が設けられる。配管系はこのバイパス管18を境として、冷温水発生機11等の熱源機器が配置される熱源側と空調機15等の負荷機器が配置される負荷側に区分される。21はポンプ可変流量制御装置(INV)であり、冷温水一次ポンプ12および冷却水ポンプ14に対応して設けられる。22は空調機15への送水温度を測定する送水温度センサー、42は往ヘッダ16および還ヘッダ17の差圧を測定する送還水管差圧計、35は熱源側流量を測定する熱源側流量計である。
【0034】
熱源制御装置27に実装される処理部の構成は図1や図5の構成と同様である。なお、状態入力部28には、冷温水一次ポンプ12の冷温水搬送量を検知する処理部が設けられ、本実施形態例では、流量計35によって測定される熱源側流量または送還水管差圧の計測値から求められる流量が冷温水搬送量として検知される。
【0035】
一次ポンプ方式熱源変流量システムの熱源制御装置27での変流量制御は図8に示すフローチャートのように実施される。すなわち、状態入力部28において、各機器の運転状態や温度・流量等の負荷状態に関する信号が周期的に入力・データ変換され、メモリ内の所定アドレスに格納される。続いて負荷状態判定部29では、状態入力部28を通じて取得した送還水管差圧と所定の判定基準値とを比較することにより、負荷側の負荷状態が高負荷であるか低負荷であるかが判定される。
【0036】
送還水管差圧が所定時間継続して所定の判定基準値以である場合は空調負荷が低負荷状態(no)にあると見なし、低負荷制御演算部31において、冷温水一次ポンプ12の冷温水搬送量(熱源側流量)が流量設定値(目標値)となるように、あるいは、送還水管差圧が差圧設定値(目標値)となるように最適なバイパス弁開度がPID制御により演算される。(後者の制御方法を採用する場合は、前記判定基準値が前記差圧設定値よりも大きくなるようにする。)なお、低負荷状態時では、冷温水一次ポンプ制御出力を所定の最低制御出力(ポンプが最低制御出力でないときは、徐々に最低制御出力に制御)に固定する。これは、負荷状態に応じて無制限に冷温水一次ポンプ制御出力を下げると冷温水流量が不足し、冷温水発生機11が異常停止することを防止するためである。バイパス弁20は、負荷側で必要としない余剰の冷温水をバイパスする目的で操作される。冷却水ポンプ14の制御出力は、設計データを参照して冷温水一次ポンプ12の制御出力に関する一次式としてあらかじめ定義しておくことにより簡単に算出することができる。
【0037】
一方、送還水管差圧が所定時間継続して所定の判定基準値を回る場合は空調負荷が高負荷状態(yes)にあると見なし、高負荷制御演算部30において、送還水管差圧設定値を目標値とするPID制御(送還水管差圧が目標値となるようにポンプ制御出力を演算)によって最適な冷温水一次ポンプ12の制御出力が演算される。なお、高負荷状態時では、バイパス弁20は全閉(バイパス弁20が全閉でないときは徐々に全閉に制御)とする。
【0038】
高負荷制御演算部30または低負荷制御演算部31によって演算された最新の制御データは送水温度補償制御演算部32を介して制御出力部33へ出力され、冷温水一次ポンプ12や冷却水ポンプ14やバイパス弁20に対する適切な制御信号が各機器に対して出力(ポンプ制御信号・バイパス弁開度信号を制御出力部33から出力)される。なお、負荷変動に起因する高負荷状態と低負荷状態の間の状態遷移を考慮するため、負荷側が高負荷状態にあるときはバイパス弁20を完全に閉止する制御動作を、また、負荷側が低負荷状態にあるときは冷温水一次ポンプ制御出力を所定の最低制御出力に設定する操作を必要に応じて実施する。
【0039】
【発明の効果】
以上述べたように本発明によれば、建物の空調負荷状態の変動に応じて熱媒流量を可変制御し、経済的かつ省エネルギー効果の高い熱源制御を行うとともに、熱媒温度条件の乱れに対して応答性に優れた熱源制御を行い、熱媒の温度条件や流量条件をともに充足させる一次ポンプ方式熱源変流量システムを提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態例に係る一次ポンプ方式熱源変流量システムを示す構成説明図である。
【図2】図1の一次ポンプ方式熱源変流量システムの変流量制御動作を説明するフローチャートである。
【図3】図1の一次ポンプ方式熱源変流量システムの高負荷時制御および低負荷時制御を説明する図である。
【図4】図1の一次ポンプ方式熱源変流量システムの送水温度補償制御動作を説明する図である。
【図5】本発明の他の実施形態例に係る一次ポンプ方式熱源変流量システムを示す構成説明図である。
【図6】図5の一次ポンプ方式熱源変流量システムの変流量制御動作を説明するフローチャートである。
【図7】本発明の他の実施形態例に係る一次ポンプ方式熱源変流量システムを示す構成説明図である。
【図8】図7の一次ポンプ方式熱源変流量システムの変流量制御動作を説明するフローチャートである。
【符号の説明】
11 冷温水発生機
12 冷温水一次ポンプ
13 冷却塔
14 冷却水ポンプ
15 空調機
16 往ヘッダ
17 還ヘッダ
18 バイパス管
19 還水管
20 バイパス弁
21 ポンプ可変流量制御装置(INV)
22 送水温度センサー
23 送水圧力計
24 負荷流量
25 流量計
26 送水管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a primary pump heat source variable flow system that variably controls a heat medium flow rate according to a change in an air conditioning load state of a building and performs heat source control that is economical and has a high energy saving effect.
[0002]
[Prior art]
As energy-saving heat source systems, primary / secondary pump heat source variable flow systems that reduce the transport power of the primary pump and the secondary pump by supplying a heat medium according to the air conditioning load have already been realized. In the primary / secondary pump heat source variable flow rate system, both the primary and secondary pumps are operated with variable output.
[0003]
On the other hand, in a heat source system in which the heat transfer device has only a primary side pump, that is, a so-called primary pump type heat source system, the primary side pump is generally operated at a rated output regardless of the amount of air conditioning load. Only an amount of the heat medium capable of maintaining the water supply pressure is supplied to the load side, and the surplus heat medium is returned to the heat source machine via the bypass pipe without exchanging heat with the load side.
[0004]
[Problems to be solved by the invention]
In the conventional primary pump heat source variable flow rate system, the primary pump is operated at the rated output regardless of the air conditioning load, so when the air conditioning load becomes a partial load, the waste heat that inevitably passes through the bypass pipe is inevitably used. Media conveyance will occur. Actually, the air conditioning load of buildings such as office buildings is almost always a partial load throughout the year, and it is not preferable to always operate at the rated output from the viewpoint of economy and energy saving. In addition, the number control, that is, the heat source as a method for quickly performing the control operation at the time of start-up or the recovery control operation when the water supply temperature does not satisfy the condition (when the cold water supply temperature is excessive or the hot water supply temperature is excessively low). There is a method to quickly control to a predetermined temperature condition by increasing / decreasing the number of operating machines, but since it becomes stepwise variable flow rate control for each heat source machine, it becomes possible to satisfy the temperature condition of the heat medium However, regarding the flow conditions of the heat field, there is a risk of falling into an excessive flow rate or an excessive flow rate, and there is a problem that controllability and energy saving performance are impaired.
[0005]
The present invention has been made in view of the above circumstances, and a primary pump type heat source variable flow rate system that variably controls the heat medium flow rate according to fluctuations in the air conditioning load state of the building and performs heat source control with high economic and energy saving effect. The purpose is to provide.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a primary-pump heat source variable flow rate system that circulates and supplies cold / hot water only from the heat source side to air-condition the building, the load side device that processes the air conditioning load, and the load Heat source side device and cold / hot water transfer device for supplying cold / hot water to side device, cooling tower and cooling water transfer device for supplying cooling water to the heat source side device, cold / hot water supply side pipe and cold / hot water return water side tube A bypass pipe that connects the passages, and a variable flow rate control device that performs variable control so that cold and hot water and cooling water are circulated and supplied according to the air conditioning load. The variable flow rate control device determines a load state on the load side. Based on the determination result of the load state determination means, the cold / hot water conveyance amount detection means for detecting the cold / hot water conveyance amount by the cold / hot water conveyance device, and the cold / warm water supply temperature within a predetermined range. Cold and hot water transport The control output of the chilled / hot water transfer device or the opening degree of the bypass valve is calculated and output so that the chilled / hot water transfer amount by the device exceeds a predetermined value, and the load state determination means when the chilled / hot water supply temperature deviates from the predetermined range it is characterized in that it comprises means for outputting calculates the control output of the hot and cold water conveying device so as to increase the high-load control or low load hot and cold water conveyance amount without control based on the determination result of .
[0009]
The present invention, the Te primary pump type heat source variable flow system odor, before Symbol hot and cold water conveyance amount detecting means, cold by the cold and hot water conveying device based on the sum or the heat source-side flow rate of the bypass pipe flow and the load side flow It is characterized by detecting whether or not the water conveyance amount is a predetermined value or more.
[0010]
Or also the present invention, the Te primary pump type heat source variable flow system odor, before Symbol hot and cold water conveyance amount detecting means, hot and cold water conveyance amount by the cold and hot water conveying device based on the repatriation water tube differential pressure is the predetermined value or more It is characterized by detecting whether or not.
[0012]
Further, the present invention is characterized in that, in the primary pump heat source variable flow rate system, the control output of the cooling water transfer device is calculated based on the control output of the cold / hot water transfer device.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings.
[0014]
FIG. 1 is a configuration explanatory diagram showing a primary pump type heat source variable flow system according to an embodiment of the present invention.
[0015]
In FIG. 1, 11 is a cold / hot water generator, 12 is a cold / hot water primary pump, 13 is a cooling tower, 14 is a cooling water pump, and 15 is an air conditioner. A plurality of cold / hot water generators 11 are provided in parallel, and a cold / hot water primary pump 12, a cooling tower 13, and a cooling water pump 14 are provided corresponding to each. 16 is a forward header for mixing cold water or hot water from the cold / hot water generator 11, and 17 is a return header for mixing cold water or hot water returning to the cold / hot water generator 11. The bypass pipe 18 is provided so as to connect the forward header 16 and the return water pipe 19 or the forward header 16 and the return header 17, and a bypass valve 20 that adjusts the bypass pipe flow rate is provided on the bypass pipe line. The piping system is divided into a heat source side where a heat source device such as the cold / hot water generator 11 is arranged and a load side where a load device such as an air conditioner 15 is arranged with the bypass pipe 18 as a boundary. Reference numeral 21 denotes a pump variable flow rate control device (INV), which is provided corresponding to the cold / hot water primary pump 12 and the cooling water pump 14. 22 is a water temperature sensor for measuring the temperature of water supplied to the air conditioner 15, 23 is a water pressure gauge for measuring the load-side water pressure, 24 and 25 are flow meters for measuring the load flow and the bypass pipe flow, and 26 is a water pipe. It is.
[0016]
In the primary pump heat source variable flow rate system, the control operation differs depending on whether the air conditioning load is high or low.
[0017]
When the air conditioning load is in a high load state, the bypass valve 20 is controlled to be fully closed, and the amount of cold water or hot water supplied to the air conditioner 15 is variable by changing only the output of the cold / hot water primary pump 12. Be controlled. That is, cold water or hot water produced by the cold / hot water generator 11 is pumped by the cold / hot water primary pump 12 to the air conditioner 15 via the forward header 16 and the water supply pipe 26, and exchanges heat with the carrier air in the air conditioner 15. Then, it is returned again to the cold / hot water generator 11 via the return header 17 and the return water pipe 19. The air conditioning load thus transported to the cold / hot water generator 11 is discharged to the outside through the cooling water pump 14 and the cooling tower 13 of the cooling water circuit during cooling.
[0018]
On the other hand, when the air conditioning load is in a low load state, the cold / hot water primary pump 12 has a predetermined minimum control output, for example, a rating so that the cold / hot water generator 11 does not stop abnormally due to insufficient flow of the cold / hot water. The amount of cold water or hot water supplied to the air conditioner 15 is variably controlled by changing only the opening degree of the bypass valve 20. That is, the cold water or hot water produced by the cold / hot water generator 11 is pumped to the air conditioner 15 via the forward header 16 and the water supply pipe 26 by the cold / hot water primary pump 12, and at the same time, excess cold water or hot water is supplied to the bypass pipe 18. Sent to. The cold water or hot water sent to the air conditioner 15 exchanges heat with the carrier air in the air conditioner 15, and then returns to the cold / hot water generator 11 again via the return header 17 and the return water pipe 19, to the bypass pipe 18. The sent cold water or hot water is returned to the cold / hot water generator 11 again via the return header 17 and the return water pipe 19 without exchanging heat with the load side. The air conditioning load thus transported to the cold / hot water generator 11 is discharged to the outside through the cooling water pump 14 and the cooling tower 13 of the cooling water circuit during cooling.
[0019]
Reference numeral 27 denotes a heat source control device that performs optimal control of the cold / hot water primary pump 12, the cooling water pump 14, and the bypass valve 20 in accordance with fluctuations in the load state of the air conditioner 15. The heat source controller 27 includes a state input unit 28 that monitors the current operating state and load state and captures the data as data, and a load state that determines whether the load state of the air conditioner 15 is a high load state or a low load state A determination unit 29, a high load control calculation unit 30 for calculating control signals of the cold / hot water primary pump 12, the cooling water pump 14, and the bypass valve 20 at the time of high load, and a cold / hot water primary pump 12 and a cooling water pump at the time of low load 14 and the bypass valve 20 control signal calculation unit 31 and the water supply temperature compensation for calculating the control signal of the chilled water primary pump 12 and the cooling water pump 14 when the load side water supply temperature deviates from the set range. The control calculation part 32 and the control output part 33 which outputs the control signal with respect to the cold / hot water primary pump 12, the cooling water pump 14, and the bypass valve 20 are mounted. The state input unit 28 is provided with a processing unit that detects the amount of chilled / hot water transported by the chilled / hot water primary pump 12. In this embodiment, the total value of the bypass pipe flow rate and the load flow rate is detected as the amount of chilled / hot water transported. .
[0020]
The variable flow rate control in the heat source control device 27 of the primary pump type heat source variable flow rate system is performed as shown in the flowchart of FIG. That is, in the state input unit 28, signals relating to the operation state of each device and the load state such as temperature and flow rate are periodically input and data converted, and stored at a predetermined address in the memory. Subsequently, the load state determination unit 29 compares, for example, the load-side flow rate acquired through the state input unit 28 with a predetermined determination reference value to determine whether the load-side load state is high load or low load. Determined. Note that the predetermined determination reference value, as shown in FIG. 3 (a), using a value obtained by multiplying the coefficients a to the rated time of the water supply amount Q MAX of cold and hot water generator 11 during operation. In the present embodiment example, the coefficient a is 0.5.
[0021]
When the load flow rate is equal to or greater than the predetermined determination reference value aQ MAX , it is considered that the air conditioning load is in a high load state, and the high load control calculation unit 30 performs PID control with the water supply pressure set value as a target value (the water supply pressure is a target value). The optimum control output of the chilled / hot water primary pump 12 is calculated by calculating the pump control output to be a value. The control output of the cooling water pump 14 can be easily calculated by defining in advance as a primary expression related to the control output of the cold / hot water primary pump 12 with reference to the design data. In the high load state, the bypass valve 20 is fully closed (when the bypass valve 20 is not fully closed, it is gradually controlled to be fully closed). Here, the water supply pressure set value may be constant regardless of the load-side flow rate (constant water supply pressure control method). For example, as shown in FIG. 3B, the pump characteristic curve and the pipe resistance curve of the target heat source system. If the relational expression between the load-side flow rate and the water supply pressure set value is defined in advance based on the above, and the obtained load-side flow rate can be easily obtained by substituting this relational expression (flow cascade pressure control method) good.
[0022]
On the other hand, when the load flow rate is lower than the predetermined determination reference value aQ MAX , the air-conditioning load is considered to be in a low load state, and the low load control calculation unit 31 performs the cold / hot water conveyance amount (bypass pipe flow rate and The optimum bypass valve opening is calculated by PID control so that the total value of the load flow rate becomes the flow rate set value (target value) (bypass valve control). In the low load state, the cold / hot water primary pump control output is fixed to a predetermined minimum control output (if the pump is not the minimum control output, it is gradually controlled to the minimum control output). This is to prevent the cold / hot water flow rate from being insufficient and the cold / hot water generator 11 from being abnormally stopped when the cold / hot water primary pump control output is lowered indefinitely according to the load state. The bypass valve 20 is operated for the purpose of bypassing excess cold / hot water that is not required on the load side.
[0023]
The latest control output controlled by the high load control calculation unit 30 or the low load control calculation unit 31 is output to the control output unit 33 via the water supply temperature compensation control calculation unit 32 described later, and the cold / hot water primary pump 12 and the cooling water An optimal control signal for the pump 14 and the bypass valve 20 is output to each device (a pump control signal / bypass valve opening signal is output from the control output unit 33). In order to consider the state transition between the high load state and the low load state due to the load fluctuation, when the load side is in the high load state, the control operation for completely closing the bypass valve 20 is performed. When in a load state, an operation for setting the cold / hot water primary pump control output to a predetermined minimum control output is performed as necessary.
[0024]
By the way, in order to maintain the thermal environment of the building satisfactorily while considering energy saving, it is necessary to pay attention to the controllability of the cold / hot water supply temperature as well as the optimal control of the cold / hot water flow rate.
[0025]
FIG. 4 is an operation explanatory view showing water supply temperature compensation control in the water supply temperature compensation control calculation unit 32 of the primary pump type heat source variable flow system. That is, in the case of the water supply temperature compensation control for chilled water, the compensation operation starts when the acquired water supply temperature exceeds the compensation start temperature (T CS · MAX ), and the control output of the chilled / hot water primary pump (cold water pump) 12 is It gradually increases from the current output to the maximum control output. Here, the maximum control output is normally set to 100%. At this time, normal control at high load or normal control at low load, that is, PID control with the water supply pressure set value as the target value or bypass valve control with the flow rate set value as the target value is not performed. After that, when the water supply temperature decreases due to the effect of the compensation control and falls below the compensation end temperature, the compensation operation is finished, and the control output of the cold / hot water primary pump (chilled water pump) 12 is optimal from the maximum control output according to the current load state. Decrease gradually toward a more stable output. Conversely, in the case of hot water temperature compensation control for hot water, the compensation operation starts when the acquired water supply temperature falls below the compensation start temperature ( THS / MIN ), and the control output of the cold / hot water primary pump (hot water pump) 12 Gradually increases from the current output to the maximum control output. After that, when the water supply temperature rises due to the effect of the compensation control and exceeds the compensation end temperature, the compensation operation is finished, and the control output of the cold / hot water primary pump (hot water pump) 12 is optimal from the maximum control output according to the current load state. Decrease gradually toward a more stable output.
[0026]
Next, FIG. 5 is a configuration explanatory view showing a primary pump type heat source variable flow system according to another embodiment of the present invention.
[0027]
In FIG. 5, 11 is a cold / hot water generator, 12 is a cold / hot water primary pump, 13 is a cooling tower, 14 is a cooling water pump, and 15 is an air conditioner. A plurality of cold / hot water generators 11 are provided in parallel, and a cold / hot water primary pump 12, a cooling tower 13, and a cooling water pump 14 are provided corresponding to each. 16 is a forward header that mixes cold water or hot water from the cold / hot water generator 11, and 17 is a return header 17 that mixes cold water or hot water returning to the cold / hot water generator 11. The bypass pipe 18 is provided so as to connect the forward header 16 and the return water pipe 19 or the forward header 16 and the return header 17, and a bypass valve 20 that adjusts the bypass pipe flow rate is provided on the bypass pipe line. The piping system is divided into a heat source side where a heat source device such as the cold / hot water generator 11 is arranged and a load side where a load device such as an air conditioner 15 is arranged with the bypass pipe 18 as a boundary. Reference numeral 21 denotes a pump variable flow rate control device, which is provided corresponding to the cold / hot water primary pump 12 and the cooling water pump 14. 22 is a water supply temperature sensor for measuring the water supply temperature to the air conditioner 15, 41 is a real terminal pressure gauge for measuring the load-side terminal water supply pressure, 42 is a differential pressure gauge for measuring the return water pipe differential pressure, and 24 is for measuring the load flow rate. It is a flow meter. Reference numeral 27 denotes a heat source control device that performs optimal control of the cold / hot water primary pump 12, the cooling water pump 14, and the bypass valve 20 in accordance with a change in the load state of the air conditioner 15. The heat source controller 27 includes a state input unit 28 that monitors the current operating state and load state and captures the data as data, and a load state that determines whether the load state of the air conditioner 15 is a high load state or a low load state A determination unit 29, a high load control calculation unit 30 for calculating control signals of the cold / hot water primary pump 12, the cooling water pump 14, and the bypass valve 20 at the time of high load, and a cold / hot water primary pump 12 and a cooling water pump at the time of low load 14 and the bypass valve 20 control signal calculation unit 31 and the water supply temperature compensation for calculating the control signal of the chilled water primary pump 12 and the cooling water pump 14 when the load side water supply temperature deviates from the set range. The control calculation part 32 and the control output part 33 which outputs the control signal with respect to the cold / hot water primary pump 12, the cooling water pump 14, and the bypass valve 20 are mounted. The state input unit 28 is provided with a processing unit that detects the amount of chilled / hot water transported by the chilled / hot water primary pump 12. In this embodiment, the flow rate (at low load) or load obtained from the measured value of the return water pipe differential pressure The flow rate (at high load) is detected as the cold / hot water conveyance amount.
[0028]
The variable flow rate control in the heat source control device 27 of the primary pump type heat source variable flow rate system of FIG. 5 is performed as shown in the flowchart of FIG. That is, in the state input unit 28, signals relating to the operation state of each device and the load state such as temperature and flow rate are periodically input and data converted, and stored at a predetermined address in the memory. Subsequently, the load state determination unit 29 compares, for example, the load-side flow rate acquired through the state input unit 28 with a predetermined determination reference value to determine whether the load-side load state is high load or low load. Determined. As described above, a value obtained by multiplying the rated water supply amount Q MAX of the operating cold / hot water generator 11 by the coefficient a is used as the predetermined determination reference value. In the present embodiment example, the coefficient a is 0.5.
[0029]
When the load flow rate is equal to or greater than a predetermined determination reference value aQ MAX , it is considered that the air conditioning load is in a high load state, and the high load control calculation unit 30 performs PID control (actual terminal) with the actual terminal water supply pressure setting value as a target value. The optimal control output of the cold / hot water primary pump 12 is calculated by calculating the pump control output so that the pressure becomes the target value. The control output of the cooling water pump 14 can be easily calculated by defining in advance as a primary expression related to the control output of the cold / hot water primary pump 12 with reference to the design data. In the high load state, the bypass valve 20 is fully closed (when the bypass valve 20 is not fully closed, it is gradually controlled to be fully closed).
[0030]
On the other hand, when the load flow rate is lower than the predetermined determination reference value aQ MAX , it is considered that the air conditioning load is in a low load state, and in the low load control calculation unit 31, the return water pipe differential pressure becomes the differential pressure set value (target value). Thus, the optimum bypass valve opening is calculated by PID control. In the low load state, the cold / hot water primary pump control output is fixed to a predetermined minimum control output (if the pump is not the minimum control output, it is gradually controlled to the minimum control output). This is to prevent the cold / hot water flow rate from being insufficient and the cold / hot water generator 11 from being abnormally stopped when the cold / hot water primary pump control output is lowered indefinitely according to the load state. The bypass valve 20 is operated for the purpose of bypassing excess cold / hot water that is not required on the load side.
[0031]
The latest control data calculated by the high load control calculation unit 30 or the low load control calculation unit 31 is output to the control output unit 33 via the water supply temperature compensation control calculation unit 32, and the cold / hot water primary pump 12 and the cooling water pump 14 are output. In addition, an appropriate control signal for the bypass valve 20 is output to each device (pump control signal / bypass valve opening signal is output from the control output unit 33). In order to consider the state transition between the high load state and the low load state due to the load fluctuation, when the load side is in the high load state, the control operation for completely closing the bypass valve 20 is performed. When in a load state, an operation for setting the cold / hot water primary pump control output to a predetermined minimum control output is performed as necessary.
[0032]
In the above-described embodiment, the level of the air conditioning load state is determined based on the load flow rate, but the level of the air conditioning load state is determined using the return water pipe differential pressure instead of the load flow rate. Alternatively, the cold / hot water conveyance amount may be detected using the measurement value of the heat source side flow meter or the return water pipe differential pressure gauge. FIG. 7 shows a configuration of a primary pump heat source variable flow rate system according to another embodiment of the present invention.
[0033]
In FIG. 7, 11 is a cold / hot water generator, 12 is a cold / hot water primary pump, 13 is a cooling tower, 14 is a cooling water pump, 15 is an air conditioner, 16 is a forward header, and 17 is a return header. The bypass pipe 18 is provided so as to connect the forward header 16 and the return header 17, and a bypass valve 20 that adjusts the flow rate of the bypass pipe is provided on the bypass pipe line. The piping system is divided into a heat source side where a heat source device such as the cold / hot water generator 11 is arranged and a load side where a load device such as an air conditioner 15 is arranged with the bypass pipe 18 as a boundary. Reference numeral 21 denotes a pump variable flow rate control device (INV), which is provided corresponding to the cold / hot water primary pump 12 and the cooling water pump 14. Reference numeral 22 denotes a water supply temperature sensor for measuring the water supply temperature to the air conditioner 15, reference numeral 42 denotes a return water pipe differential pressure meter for measuring the differential pressure between the forward header 16 and the return header 17, and reference numeral 35 denotes a heat source side flow meter for measuring the heat source side flow rate. .
[0034]
The configuration of the processing unit mounted on the heat source control device 27 is the same as the configuration of FIGS. 1 and 5. The state input unit 28 is provided with a processing unit that detects the amount of chilled / hot water transported by the chilled / hot water primary pump 12. In this embodiment, the heat source side flow rate or the return water pipe differential pressure measured by the flow meter 35 is provided. The flow rate obtained from the measured value is detected as the cold / hot water conveyance amount.
[0035]
The variable flow rate control in the heat source control device 27 of the primary pump type heat source variable flow rate system is performed as shown in the flowchart of FIG. That is, in the state input unit 28, signals relating to the operation state of each device and the load state such as temperature and flow rate are periodically input and data converted, and stored at a predetermined address in the memory. Subsequently, the load state determination unit 29 compares the return water pipe differential pressure acquired through the state input unit 28 with a predetermined determination reference value to determine whether the load state on the load side is high load or low load. Determined.
[0036]
Regarded repatriation water tube differential pressure between the air conditioning load if a predetermined criteria value hereinafter continuously for a predetermined time period is in a low load state (no), in the low load control calculation unit 31, the hot and cold water primary pump 12 cold The optimal bypass valve opening is controlled by PID control so that the water conveyance amount (heat source side flow rate) becomes the flow rate setting value (target value) or the return water pipe differential pressure becomes the differential pressure setting value (target value). Calculated. (When the latter control method is adopted, the judgment reference value is set to be larger than the differential pressure set value.) In the low load state, the cold / hot water primary pump control output is set to a predetermined minimum control output. (When the pump is not at the minimum control output, gradually control to the minimum control output). This is to prevent the cold / hot water flow rate from being insufficient and the cold / hot water generator 11 from being abnormally stopped when the cold / hot water primary pump control output is lowered indefinitely according to the load state. The bypass valve 20 is operated for the purpose of bypassing excess cold / hot water that is not required on the load side. The control output of the cooling water pump 14 can be easily calculated by defining in advance as a primary expression related to the control output of the cold / hot water primary pump 12 with reference to the design data.
[0037]
On the other hand, regarded as air conditioning load if the repatriation water tube differential pressure rises above a predetermined determination reference value continuously for a predetermined time in a high load state (yes), the high-load control calculation unit 30, repatriation water pipe difference pressure value The optimum control output of the chilled / hot water primary pump 12 is calculated by PID control (calculating the pump control output so that the return water pipe differential pressure becomes the target value). In the high load state, the bypass valve 20 is fully closed (when the bypass valve 20 is not fully closed, it is gradually closed).
[0038]
The latest control data calculated by the high load control calculation unit 30 or the low load control calculation unit 31 is output to the control output unit 33 via the water supply temperature compensation control calculation unit 32, and the cold / hot water primary pump 12 and the cooling water pump 14 are output. In addition, an appropriate control signal for the bypass valve 20 is output to each device (pump control signal / bypass valve opening signal is output from the control output unit 33). In order to consider the state transition between the high load state and the low load state due to the load fluctuation, when the load side is in the high load state, the control operation for completely closing the bypass valve 20 is performed. When in a load state, an operation for setting the cold / hot water primary pump control output to a predetermined minimum control output is performed as necessary.
[0039]
【The invention's effect】
As described above, according to the present invention, the flow rate of the heat medium is variably controlled according to the fluctuation of the air conditioning load state of the building, the heat source is controlled economically and has a high energy saving effect, and the heat medium temperature condition is not disturbed. Thus, it is possible to provide a primary pump type heat source variable flow rate system that performs heat source control with excellent responsiveness and satisfies both the temperature condition and flow rate condition of the heat medium.
[Brief description of the drawings]
FIG. 1 is a configuration explanatory view showing a primary pump heat source variable flow system according to an embodiment of the present invention.
2 is a flowchart for explaining a variable flow rate control operation of the primary pump type heat source variable flow rate system of FIG. 1; FIG.
FIG. 3 is a diagram illustrating high load control and low load control of the primary pump heat source variable flow rate system of FIG. 1;
4 is a diagram for explaining a water supply temperature compensation control operation of the primary pump type heat source variable flow rate system in FIG. 1; FIG.
FIG. 5 is a configuration explanatory diagram showing a primary pump heat source variable flow rate system according to another embodiment of the present invention.
6 is a flowchart for explaining a variable flow rate control operation of the primary pump type heat source variable flow rate system of FIG. 5;
FIG. 7 is a configuration explanatory view showing a primary pump type heat source variable flow rate system according to another embodiment of the present invention.
8 is a flow chart for explaining a variable flow rate control operation of the primary pump type heat source variable flow rate system of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Cold / hot water generator 12 Cold / hot water primary pump 13 Cooling tower 14 Cooling water pump 15 Air conditioner 16 Out header 17 Return header 18 Bypass pipe 19 Return water pipe 20 Bypass valve 21 Pump variable flow control device (INV)
22 Water supply temperature sensor 23 Water supply pressure gauge 24 Load flow rate 25 Flow meter 26 Water supply pipe

Claims (4)

冷温水を熱源側のみから循環供給させて建物の空調を行う一次ポンプ方式熱源変流量システムであって、空調負荷を処理する負荷側装置と、前記負荷側装置に冷温水を供給する熱源側装置および冷温水搬送装置と、前記熱源側装置に冷却水を供給する冷却塔および冷却水搬送装置と、冷温水送水側管路および冷温水還水側管路を連結するバイパス管と、冷温水および冷却水を空調負荷に応じて循環供給させるように可変制御を行う変流量制御装置とを備え、前記変流量制御装置は、負荷側の負荷状態を判定する負荷状態判定手段と、前記冷温水搬送装置による冷温水搬送量を検知する冷温水搬送量検知手段と、冷温水送水温度が所定範囲内にある場合に前記負荷状態判定手段の判定結果に基づき冷温水搬送装置による冷温水搬送量が所定値以上となるように冷温水搬送装置の制御出力またはバイパス弁の開度を演算し出力し、冷温水送水温度が所定範囲を逸脱する場合に前記負荷状態判定手段の判定結果に基づく高負荷時制御または低負荷時制御を行わず冷温水搬送量を増加させるように冷温水搬送装置の制御出力を演算し出力する手段を備えることを特徴とする一次ポンプ方式熱源変流量システム。A primary-pump heat source variable flow system that circulates and supplies cold / hot water only from the heat source side to air-condition the building, and includes a load-side device that processes an air-conditioning load, and a heat source-side device that supplies cold / hot water to the load-side device A cooling tower for supplying cooling water to the heat source side device and a cooling water transfer device, a bypass pipe connecting the cold / hot water supply side pipe and the cold / hot water return water side pipe, A variable flow rate control device that performs variable control so as to circulate and supply cooling water according to an air conditioning load, the variable flow rate control device including a load state determination unit that determines a load state on a load side, and the cold / hot water conveyance A cold / hot water conveyance amount detecting means for detecting a cold / hot water conveyance amount by the apparatus, and a cold / hot water conveyance amount by the cold / hot water conveyance device is predetermined based on a determination result of the load state determination means when the cold / hot water supply temperature is within a predetermined range. Less than The control output of the chilled / hot water transfer device or the opening degree of the bypass valve is calculated and output so that when the chilled / warm water supply temperature deviates from the predetermined range, primary pump type heat source variable flow system characterized in that it comprises means for outputting operation control outputs of the hot and cold water conveying device so as to increase the low load-time cold and hot water conveyance amount without control. 前記冷温水搬送量検知手段は、バイパス管流量と負荷側流量の合計値または熱源側流量に基づいて前記冷温水搬送装置による冷温水搬送量が所定値以上であるか否かを検知することを特徴とする請求項1に記載の一次ポンプ方式熱源変流量システム。  The cold / hot water conveyance amount detection means detects whether or not the cold / hot water conveyance amount by the cold / hot water conveyance device is greater than or equal to a predetermined value based on the total value of the bypass pipe flow rate and the load side flow rate or the heat source side flow rate. The primary pump heat source variable flow rate system according to claim 1, wherein 前記冷温水搬送量検知手段は、送還水管差圧に基づいて前記冷温水搬送装置による冷温水搬送量が所定値以上であるか否かを検知することを特徴とする請求項1に記載の一次ポンプ方式熱源変流量システム。  2. The primary according to claim 1, wherein the cold / hot water conveyance amount detecting means detects whether or not the cold / hot water conveyance amount by the cold / hot water conveyance device is a predetermined value or more based on a return water pipe differential pressure. Pump type heat source variable flow system. 前記冷却水搬送装置の制御出力は、前記冷温水搬送装置の制御出力に基づいて演算されることを特徴とする請求項1ないしのいずれか1項に記載の一次ポンプ方式熱源変流量システム。The control output of the coolant transport device includes a primary pump type heat source variable flow system according to any one of claims 1 to 3, characterized in that it is calculated on the basis of the control output of the cold and hot water conveying device.
JP2000292611A 2000-09-26 2000-09-26 Primary pump heat source variable flow rate system Expired - Fee Related JP3652974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000292611A JP3652974B2 (en) 2000-09-26 2000-09-26 Primary pump heat source variable flow rate system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000292611A JP3652974B2 (en) 2000-09-26 2000-09-26 Primary pump heat source variable flow rate system

Publications (2)

Publication Number Publication Date
JP2002098358A JP2002098358A (en) 2002-04-05
JP3652974B2 true JP3652974B2 (en) 2005-05-25

Family

ID=18775528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000292611A Expired - Fee Related JP3652974B2 (en) 2000-09-26 2000-09-26 Primary pump heat source variable flow rate system

Country Status (1)

Country Link
JP (1) JP3652974B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106225184A (en) * 2016-09-18 2016-12-14 珠海格力电器股份有限公司 Central air conditioner system and control system thereof and control method

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3783859B2 (en) 2002-07-19 2006-06-07 日立プラント建設株式会社 Air conditioning equipment and control method thereof
JP3828485B2 (en) * 2002-12-06 2006-10-04 株式会社三菱地所設計 Control device
JP4249591B2 (en) * 2003-10-23 2009-04-02 株式会社山武 Primary pump type heat source variable flow rate control system and primary pump minimum flow rate securing method
JP4602816B2 (en) * 2005-03-25 2010-12-22 株式会社東芝 Heat source pump control method and air conditioning heat source system
KR100705223B1 (en) * 2005-10-28 2007-04-06 엘지전자 주식회사 Method for dissolving partial overload in air conditioner
JP4829818B2 (en) * 2007-03-15 2011-12-07 新日本空調株式会社 Operation control method for 1 pump heat source equipment
JP5476835B2 (en) * 2009-07-24 2014-04-23 横河電機株式会社 Air conditioning system
JP5284295B2 (en) * 2010-01-28 2013-09-11 株式会社アレフネット Heat source control system and heat source control method
JP5595975B2 (en) * 2011-05-26 2014-09-24 三機工業株式会社 Air conditioning piping system
JP5913066B2 (en) * 2012-11-28 2016-04-27 三機工業株式会社 Heat source system
JP6106049B2 (en) * 2013-08-21 2017-03-29 ウオサブジャパン株式会社 Automatic flow control system
CN104896634B (en) * 2015-05-04 2018-01-19 河南润恒节能技术开发有限公司 The compensation shallow layer geothermal energy of geothermal energy central air-conditioning is the same as well conversion equipment
CN105020822B (en) * 2015-07-31 2017-10-20 新智能源系统控制有限责任公司 Suitable for the change differential pressure control system of air-conditioning Variable flow system
JP6558296B2 (en) * 2016-04-20 2019-08-14 株式会社デンソー Magnetic heat pump device
JP6723450B2 (en) * 2017-06-08 2020-07-15 三菱電機株式会社 Heat source system
CN113623783B (en) * 2020-05-06 2022-11-04 江苏远视环境科技有限公司 Primary pump bidirectional variable flow machine room
CN112628832B (en) * 2021-01-21 2021-12-10 中国建筑西北设计研究院有限公司 Regional energy supply system adopting centralized heat supply and partitioned energy source stations

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106225184A (en) * 2016-09-18 2016-12-14 珠海格力电器股份有限公司 Central air conditioner system and control system thereof and control method
CN106225184B (en) * 2016-09-18 2021-11-02 珠海格力电器股份有限公司 Central air conditioning system and control method thereof

Also Published As

Publication number Publication date
JP2002098358A (en) 2002-04-05

Similar Documents

Publication Publication Date Title
JP3652974B2 (en) Primary pump heat source variable flow rate system
JP4594276B2 (en) Cold / hot water control method for cold / hot heat source machine and air conditioning system used therefor
CN110274361B (en) Water multi-connected air conditioning system and control method of variable-frequency water pump thereof
KR101222331B1 (en) Heat-pump hot water apparatus
JP4422572B2 (en) Cold / hot water control method for cold / hot heat source machine
JP5261170B2 (en) Thermal load processing system and heat source system
JP5537253B2 (en) Water supply control system and control method thereof
JPH1163631A (en) Equipment for controlling temperature of supply water
JP6644559B2 (en) Heat source control system, control method and control device
JP2010255985A (en) Method of operating heat source system and heat source system
JP3851285B2 (en) Control device
JP5227247B2 (en) Heat source system operating method and heat source system
CN105144014A (en) Method for adaptation of a desired value for air conditioning of an IT environment
JP3365997B2 (en) Primary / secondary pump type heat source variable flow system
JP4440147B2 (en) Operation control method for two-pump heat source equipment
JP2007205605A (en) Air conditioning system
JP3957309B2 (en) Operation control method for two-pump heat source equipment
JP2009019842A (en) Water delivery control system and water delivery control method
CN115066583A (en) Thermal energy assembly
JP2001241735A (en) Air conditioning system and its controlling method
US20110112693A1 (en) Water cooling system of building structure for air conditioning system
JP3550336B2 (en) Air conditioning system
JP3987358B2 (en) Flow control system with split flow measurement
JP5038641B2 (en) Heat source device, control method and control program for flow rate of heat medium
JP3884718B2 (en) Control device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3652974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees