JP2001235182A - Air conditioning system for building - Google Patents

Air conditioning system for building

Info

Publication number
JP2001235182A
JP2001235182A JP2000046491A JP2000046491A JP2001235182A JP 2001235182 A JP2001235182 A JP 2001235182A JP 2000046491 A JP2000046491 A JP 2000046491A JP 2000046491 A JP2000046491 A JP 2000046491A JP 2001235182 A JP2001235182 A JP 2001235182A
Authority
JP
Japan
Prior art keywords
water temperature
outlet
condenser
inlet
conditioning system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000046491A
Other languages
Japanese (ja)
Inventor
Yasushi Nabeshima
泰 鍋島
Yasushi Murata
寧 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Sinko Industries Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Sinko Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd, Sinko Industries Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP2000046491A priority Critical patent/JP2001235182A/en
Publication of JP2001235182A publication Critical patent/JP2001235182A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioning system for a building which can be manufactured at reduced manufacturing costs by using a plate type heat exchanger as a condenser and can be operated efficiently by a simple control system without circulation of a refrigerant being hindered, in an air conditioning system having a secondary side, in which a refrigerant is circulated, connected with a gravitation type heat pipe. SOLUTION: The air conditioning system for the building has the secondary side, in which the refrigerant is circulated, connected with the gravitation type heat pipe. The plate type heat exchanger is used as the condenser, and water temperature difference between water temperatures at an inlet and an outlet on the primary side of the condenser is monitored or water temperature at the outlet in the case the temperature at the inlet is constant is monitored. In this system, water flow rate on the primary side is controlled in such a manner that the water temperature difference between the water temperatures at the inlet and the outlet or the water temperature at the outlet coincides respectively with a water temperature difference between the water temperatures at the inlet and the outlet, or a water temperature at the outlet at a secondary side peak load, which is known in advance, irrespective variation of the secondary side load.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒が循環する二
次側が重力式ヒートパイプに接続するビル空調システ
ム、特に、重力式ヒートパイプに接続した凝縮器とその
制御に係わるビル空調システムの技術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a building air conditioning system in which a secondary side through which a refrigerant circulates is connected to a gravity heat pipe, and more particularly to a condenser air conditioner connected to a gravity heat pipe and a building air conditioning system related to control thereof. Belongs to the field.

【0002】[0002]

【従来の技術】従来より、ビルデングの空調システム
は、熱源装置と空調機との間の熱搬送を行なう熱媒体に
通常は水が用いられるが、この空調機を被空調室である
居室側に設置する場合もああり、居室での漏水事故の恐
れがあってあまり好まれない。そこで、近時、ビル空調
システムでは冷媒を熱源装置から空調機の熱交換器へ直
接導くシステムが注目され、例えば、ヒートポンプ等の
屋外ユニットを熱源装置として屋上等の屋外に設置し、
一方、屋内の居室側には屋外ユニットから冷媒配管で直
結された室内ユニットが空調機として設置して冷暖房が
行なわれている。
2. Description of the Related Art Conventionally, in a building air-conditioning system, water is usually used as a heat medium for transferring heat between a heat source device and an air conditioner. There is a case where it is installed, and there is a risk of water leakage in the living room, so it is not preferred. In recent years, attention has been paid to a system that directly guides a refrigerant from a heat source device to a heat exchanger of an air conditioner in a building air conditioning system.For example, an outdoor unit such as a heat pump is installed outdoors as a heat source device on a roof or the like,
On the other hand, on the indoor living room side, an indoor unit directly connected with a refrigerant pipe from an outdoor unit is installed as an air conditioner to perform cooling and heating.

【0003】これらの従来技術は、例えば、特開平1-17
4834号公報や特開平6-265176号公報として既に提案され
ており、その概略は図1に示すように、一次側にはヒー
トポンプチラー(図示せず)等に接続され冷やされた冷水
がポンプeによってシェルチューブ式熱交換器(凝縮器d)
に送給され、二次側の冷媒の液体と気体との相変化を利
用して、自然循環させる重力式ヒートパイプに接続した
ビル空調システムである。このビル空調システムの各空
調機aは、負荷を処理するため膨張弁bで蒸発器cへの冷
媒液の供給量を調整し、蒸発器cで熱交換後の冷媒ガス
は系内で最も低圧となる凝縮器dへ吸引され、吸引され
た凝縮器d内の冷媒ガスはポンプeで搬送された冷水によ
って凝縮して冷媒液となり受液器fに貯留され、貯留さ
れた冷媒液は重力によって膨張弁bに達して循環する。
[0003] These prior arts are disclosed, for example, in Japanese Patent Application Laid-Open No. 1-17 / 1990.
No. 4834 and Japanese Patent Application Laid-Open No. 6-265176 have already been proposed. As shown in FIG. 1, a cooling water connected to a heat pump chiller (not shown) or the like is cooled on the primary side by a pump e. By shell tube heat exchanger (condenser d)
Is a building air-conditioning system connected to a gravity-type heat pipe that circulates naturally by utilizing the phase change between the liquid and gas of the secondary-side refrigerant. Each air conditioner a of this building air conditioning system adjusts the supply amount of the refrigerant liquid to the evaporator c by the expansion valve b in order to process the load, and the refrigerant gas after heat exchange in the evaporator c has the lowest pressure in the system. The refrigerant gas in the condenser d is condensed by the cold water conveyed by the pump e, becomes a refrigerant liquid, is stored in the receiver f, and the stored refrigerant liquid is caused by gravity. Reach and circulate to expansion valve b.

【0004】このように重力式ヒートパイプの冷媒ガス
の循環力は圧力差で、冷媒液の循環力は重力(ヘッド)
によって成り立っており、したがって、冷媒の循環力は
ポンプ等の送給とは異なり大きくないため、熱交換器で
ある凝縮器dでの通過抵抗が小さいことが求められ、冷
媒流路が広く通過抵抗が極力小さなシェルチューブ式熱
交換器が重力式ヒートパイプの凝縮器dとして採用され
ている。
As described above, the circulation force of the refrigerant gas in the gravity heat pipe is a pressure difference, and the circulation force of the refrigerant liquid is the gravity (head).
Therefore, since the circulation force of the refrigerant is not large unlike the supply of a pump or the like, the passage resistance in the condenser d, which is a heat exchanger, is required to be small, and the refrigerant flow path is wide. However, the smallest possible shell tube heat exchanger is adopted as the condenser d of the gravity heat pipe.

【0005】[0005]

【発明が解決しようとする課題】上述したように、ビル
空調システムの凝縮器として、冷媒流路の広いシェルチ
ューブ式熱交換器が採用されているが、シェルチューブ
式熱交換器はプレート式熱交換器に比べて容積が大きく
スペース的に不利であるうえ、高価であるという問題点
があった。そのため、重力式ヒートパイプの凝縮器とし
て、シェルチューブ式熱交換器の代わりに安価なプレー
ト式熱交換器を用いることも考えられるが、重力式ヒー
トパイプにおける冷媒の循環力は大きくないため、凝縮
器の通過抵抗が小さいことが求められるのに反してプレ
ート式熱交換器を採用した場合には、プレート式熱交換
器のプレート間の隙間は狭く、冷媒の流路の通過抵抗が
大きいため、特に、朝方等の部分負荷状態になると凝縮
器dがより低圧になることと相俟って、冷媒液を熱交換
器内に保持してしまい、冷媒の循環が阻害されるという
問題点があり、現状では使用されていない。
As described above, a shell tube type heat exchanger having a wide refrigerant flow path is employed as a condenser of a building air conditioning system, but the shell tube type heat exchanger is a plate type heat exchanger. There is a problem that the volume is large compared with the exchanger, which is disadvantageous in terms of space, and is expensive. Therefore, it is conceivable to use an inexpensive plate heat exchanger instead of the shell tube heat exchanger as the condenser of the gravity heat pipe. When a plate-type heat exchanger is adopted, whereas the passage resistance of the heat exchanger is required to be small, the gap between the plates of the plate-type heat exchanger is small, and the passage resistance of the refrigerant flow path is large. In particular, there is a problem that when a partial load state is reached in the morning or the like, the refrigerant d is held in the heat exchanger in combination with the lower pressure of the condenser d, and the circulation of the refrigerant is hindered. , Currently not used.

【0006】本発明は、上記の問題点に鑑みてなされた
もので、その課題は、冷媒が循環する二次側が重力式ヒ
ートパイプに接続するビル空調システムにおいて、凝縮
器としてプレート式熱交換器を用いて製造コストを安価
にし、かつ、冷媒液の循環が阻害されることがなく、簡
素な制御系で効率的に空調システムを稼働させ、保守の
容易なビル空気調和システムを提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a plate type heat exchanger as a condenser in a building air conditioning system in which a secondary side through which a refrigerant circulates is connected to a gravity type heat pipe. To provide a building air-conditioning system that is easy to maintain by reducing the production cost and efficiently operating the air conditioning system with a simple control system without hindering the circulation of the refrigerant liquid. is there.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めに、請求項1に記載の発明は、冷媒が循環する二次側
が重力式ヒートパイプに接続するビル空調システムにお
いて、凝縮器としてプレート式熱交換器を用いるととも
に、該凝縮器の一次側での出入口での水温差を監視する
か、又は入口水温が一定の場合は出口水温を監視して、
二次側での負荷の変動に係わらず前記出入口水温差又は
出口水温を所定の値になるように制御するビル空気調和
システムである。上記の課題を解決するために、請求項
2に記載の発明は、冷媒が循環する二次側が重力式ヒー
トパイプに接続するビル空調システムにおいて、凝縮器
としてプレート式熱交換器を用いるとともに、該凝縮器
の一次側での出入口での水温差を監視するか、又は入口
水温が一定の場合は出口水温を監視して、二次側での負
荷の変動に係わらず前記出入口水温差又は出口水温を、
それぞれ予め知られた二次側のピーク負荷時での出入口
水温差又は出口水温になるように一次側の水量を制御す
るビル空気調和システムである。
According to a first aspect of the present invention, there is provided a building air-conditioning system in which a secondary side through which a refrigerant circulates is connected to a gravity-type heat pipe. Using a heat exchanger and monitoring the difference in water temperature at the inlet and outlet on the primary side of the condenser, or monitoring the outlet water temperature if the inlet water temperature is constant,
This is a building air conditioning system that controls the inlet / outlet water temperature difference or the outlet water temperature to a predetermined value regardless of a change in load on the secondary side. In order to solve the above problems, the invention according to claim 2 uses a plate-type heat exchanger as a condenser in a building air conditioning system in which a secondary side through which a refrigerant circulates is connected to a gravity heat pipe. Monitor the water temperature difference at the inlet and outlet on the primary side of the condenser, or if the inlet water temperature is constant, monitor the outlet water temperature, regardless of the load fluctuation on the secondary side, the outlet water temperature difference or the outlet water temperature. To
This is a building air-conditioning system that controls the amount of water on the primary side so that the temperature difference between the inlet and outlet ports or the outlet water temperature at the time of peak load on the secondary side is known in advance.

【0008】[0008]

【発明の実施の形態】本発明の本質は、重力式ヒートパ
イプの冷房サイクルにおいて、安価なプレート式熱交換
器を凝縮器として採用しても冷媒の循環力を阻害させる
ことがないものであるが、このために、二次側熱量であ
る負荷に見合った一次側熱量の水量を凝縮器に供給して
凝縮器を能力を制御することである。具体的には、凝縮
器の能力を制御の手段として、二次側熱量の冷媒による
負荷を監視して制御するのではなく、一次側媒体の水量
のみを監視・制御することにより、空調システムを稼働
させるものであるが、結果として二次側熱量の負荷の変
動に対応するものである。さらに詳しくは、凝縮器での
冷却水の出入口での水温差、又は入口水温が一定の場合
は出口水温を監視し、その値が一定になるように一次側
の冷水の水量を制御することである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The essence of the present invention is that in the cooling cycle of a gravity heat pipe, even if an inexpensive plate heat exchanger is used as a condenser, the circulation power of the refrigerant is not hindered. However, for this purpose, the capacity of the condenser is controlled by supplying the water quantity of the primary heat quantity corresponding to the load which is the secondary heat quantity to the condenser. Specifically, instead of monitoring and controlling the load due to the refrigerant of the secondary heat amount as a means of controlling the capacity of the condenser, the air conditioning system is monitored and controlled by monitoring only the water amount of the primary medium. Although it is operated, it responds to fluctuations in the load of the secondary heat as a result. More specifically, by monitoring the difference in water temperature between the inlet and outlet of the cooling water in the condenser, or the outlet water temperature when the inlet water temperature is constant, and controlling the amount of cold water on the primary side so that the value becomes constant. is there.

【0009】ここで、本発明の好適なビル空調システム
の実施例を図面に沿って説明する。 [実施例1]本発明の第1の実施例を、図2に沿って説明
するが、一次側にはヒートポンプチラー(図示せず)等に
接続され冷やされた水がポンプ1によって、三方弁2を
介してプレート式熱交換器である凝縮器3の入口31に供
給され、熱交換された水は凝縮器3の出口32から排出さ
れる。前記の三方弁2は駆動機構21によって制御され、
ヒートポンプチラー等からの冷水の一部を凝縮器3を通
過させずにバイパス通路23から直接出口32側に導く構成
になっている。そして、凝縮器3の入口31の近傍に設け
た入口温度センサー4からの温度データと、凝縮器3の出
口32の近傍に設けた出口温度センサー5とからの温度デ
ータとを演算制御器22に入力して、演算制御器22で演算
してその出力により三方弁2の駆動機構21を制御する。
一方、凝縮器3の二次側の出口33には冷媒が液化した冷
媒液が排出され、排出された冷媒液は縦型の受液器6に
一時的に貯留され重力により各空調機7に送られる。こ
の冷媒液は膨張弁71で蒸発器72への冷媒液の供給量を調
整し、調整された冷媒液は空調機7の蒸発器72で熱交換
して冷媒ガスになり、蒸発器72で熱交換後の冷媒ガスは
系内で最も低圧となる凝縮器3へ吸引され、吸引された
凝縮器3内の冷媒ガスはポンプ1で搬送された冷水によ
って凝縮し冷媒液となり循環する。
A preferred embodiment of a building air-conditioning system according to the present invention will now be described with reference to the drawings. [Embodiment 1] A first embodiment of the present invention will be described with reference to FIG. 2. On the primary side, cooled water connected to a heat pump chiller (not shown) or the like is supplied by a pump 1 by a three-way valve. The water is supplied to the inlet 31 of the condenser 3 which is a plate-type heat exchanger via the pipe 2, and the water subjected to heat exchange is discharged from the outlet 32 of the condenser 3. The three-way valve 2 is controlled by a drive mechanism 21,
Part of the cold water from the heat pump chiller or the like is guided from the bypass passage 23 directly to the outlet 32 side without passing through the condenser 3. Then, the temperature data from the inlet temperature sensor 4 provided near the inlet 31 of the condenser 3 and the temperature data from the outlet temperature sensor 5 provided near the outlet 32 of the condenser 3 are sent to the arithmetic and control unit 22. The driving mechanism 21 of the three-way valve 2 is input and calculated by a calculation controller 22 and the output thereof is used to control the driving mechanism 21 of the three-way valve 2.
On the other hand, the refrigerant liquid in which the refrigerant is liquefied is discharged to the outlet 33 on the secondary side of the condenser 3, and the discharged refrigerant liquid is temporarily stored in the vertical liquid receiver 6 and is supplied to each air conditioner 7 by gravity. Sent. This refrigerant liquid adjusts the supply amount of the refrigerant liquid to the evaporator 72 by the expansion valve 71, and the adjusted refrigerant liquid exchanges heat with the evaporator 72 of the air conditioner 7 to become a refrigerant gas, and the heat is converted by the evaporator 72. The exchanged refrigerant gas is sucked into the condenser 3 having the lowest pressure in the system, and the sucked refrigerant gas in the condenser 3 is condensed by the cold water transported by the pump 1 and circulates as a refrigerant liquid.

【0010】ここで、本実施例に使用するプレート式熱
交換器である凝縮器3の構造について図3に沿って説明
すると、一対のフレーム351、352の間に複数の伝導プレ
ート36が積層され、各伝導プレート36の間には、一次側
の冷却水通路37と二次側の冷媒通路38とが交互に形成さ
れように構成され、この冷却水通路37は一方のフレーム
351に設けられた一次側の冷却水の入口31と出口32に連
通するように、また、冷媒通路38は二次側の冷媒ガスの
入口33と冷媒液の出口34に連通するように構成される。
即ち、冷却水の入口31は主に冷却水通路37を形成する伝
導プレート361の水流通孔311にのみ連通し、出口32は主
に冷却水通路37を形成する伝導プレート361の水流通孔3
21にのみ連通し、冷媒液の入口33は主に冷媒通路38を形
成する伝導プレート362の冷媒ガス流通孔331にのみ連通
し、冷媒ガスの出口34は主に冷媒通路38を形成する伝導
プレート362の冷媒液流通孔341にのみ連通するように構
成される。かくして、一次側の冷却水は伝導プレート36
によって挟まれた幅の狭い冷却水通路37を通過する間に
伝導プレート36を冷却し、二次側の冷媒は冷却された伝
導プレート35のプレートに挟まれた狭い冷媒通路38を通
過する間に伝導プレート36によって冷やされて冷媒ガス
から冷媒液に相変化をしつつ受液器に排出される。
Here, the structure of the condenser 3 which is a plate heat exchanger used in this embodiment will be described with reference to FIG. 3. A plurality of conductive plates 36 are laminated between a pair of frames 351 and 352. A primary-side cooling water passage 37 and a secondary-side refrigerant passage 38 are alternately formed between the conductive plates 36, and the cooling water passage 37 is provided on one frame.
The coolant passage 38 is configured to communicate with the inlet 33 of the coolant gas on the secondary side and the outlet 34 of the coolant liquid on the secondary side so as to communicate with the inlet 31 and the outlet 32 of the cooling water on the primary side provided in the 351. You.
That is, the cooling water inlet 31 mainly communicates only with the water circulation hole 311 of the conduction plate 361 forming the cooling water passage 37, and the outlet 32 mainly forms the water circulation hole 3 of the conduction plate 361 forming the cooling water passage 37.
The refrigerant gas inlet 33 communicates only with the refrigerant gas passage hole 331 of the conduction plate 362 that mainly forms the refrigerant passage 38, and the refrigerant gas outlet 34 mainly communicates with the refrigerant plate 38 that forms the refrigerant passage 38. It is configured to communicate only with the refrigerant liquid circulation hole 341 of 362. Thus, the cooling water on the primary side is
The cooling plate 36 cools the conduction plate 36 while passing through the narrow cooling water passage 37 sandwiched by, and the refrigerant on the secondary side passes through the narrow refrigerant passage 38 sandwiched between the plates of the cooled conduction plate 35. The cooling gas is cooled by the conductive plate 36 and is discharged to the receiver while undergoing a phase change from the refrigerant gas to the refrigerant liquid.

【0011】[作動]第1の実施例は以上のような構成で
あるから、以下のように制御し駆動する。まず、二次側
のピーク負荷時の凝縮器3での入口温度センサー4での
水温をT1、出口温度センサー5で水温をT2、凝縮器3内
を流れる水量をLとすると、朝方等の空調機の稼働率が
低い部分負荷状態では、二次側の負荷が減少し冷媒循環
量が減少するため、凝縮器3での熱交換量が減少する。
ここで、ピーク負荷時と同一の水量Lであれば、冷媒液
が過冷却し凝縮器3内の圧力が低下して、プレート間の
冷媒液は自然落下が阻害されるように作用すると同時
に、二次側では出口水温T2が低下し出入口水温差ΔTが
減少する。そこで、本実施例では出入口水温差ΔTを監
視して、演算制御器22で、三方弁2が凝縮器3に対して
全開時のピーク負荷時の温度差、即ち、温度差 ΔT3=
T2−T1の設定値になるよう水量Lを制御するが、二次側
の負荷が減少している場合は出入口水温差ΔTが減少し
ているので、出入口水温差ΔTが大きくなるような水量
L、即ち、三方弁2での凝縮器3への水量Lを減少すよう
に作動し、余分な冷水は三方弁2によりバイパス通路23
からヒートポンプチラーに排出し、これにより、凝縮器
3への水量Lが減少するように調整されることにより、
凝縮器3内の圧力の変動がなくなるため、凝縮器3で冷
媒液を保持することがなく重力式ヒートパイプの循環が
連続的に成立する。逆に、空調機の稼働率が高くなって
負荷が大きくなると冷媒の循環量が増加するため、出口
水温T2が上昇し出入口水温差ΔTが増加して設定値から
外れると、これを入口温度センサー4、出口温度センサ
ー5、および、演算制御器22で検出して、ピーク負荷時
の設定値である温度差ΔT3になるように、即ち、出入口
水温差ΔTが小さくなるように水量Lを増加するように作
動する。したがって、凝縮器3の二次側の負荷変動を監
視することなく、一次側の水温差ΔTを監視し、その値
が一定になるよう水量Lを調整することにより、二次側
の負荷が変動しても、冷媒液が熱交換器3内に保持され
ることがなくなり、常に凝縮器3の能力制御が可能とな
り、結果として、凝縮器3としてプレート式熱交換器を
用いた場合に二次側熱量の負荷が変動しても、一次側熱
量の制御だけでビル空気調和システムの稼働を可能にし
たものであり、プレート式熱交換器の凝縮器3を用いた
場合の問題点であった凝縮器3での冷媒液保持という不
都合を解消できる。
[Operation] Since the first embodiment has the above configuration, it is controlled and driven as follows. First, assuming that the water temperature at the inlet temperature sensor 4 of the condenser 3 at the peak load on the secondary side is T1, the water temperature at the outlet temperature sensor 5 is T2, and the amount of water flowing through the condenser 3 is L, the air conditioner in the morning, etc. In the partial load state where the operation rate of the machine is low, the load on the secondary side decreases and the amount of circulating refrigerant decreases, so that the amount of heat exchange in the condenser 3 decreases.
Here, if the amount of water L is the same as at the time of the peak load, the refrigerant liquid is supercooled, the pressure in the condenser 3 is reduced, and the refrigerant liquid between the plates acts so as to prevent spontaneous fall. On the secondary side, the outlet water temperature T2 decreases and the inlet / outlet water temperature difference ΔT decreases. Therefore, in the present embodiment, the inlet / outlet water temperature difference ΔT is monitored, and the arithmetic and control unit 22 controls the three-way valve 2 with respect to the condenser 3 so that the temperature difference at the peak load when the valve is fully opened, ie, the temperature difference ΔT3 =
The water amount L is controlled so as to be the set value of T2−T1, but when the load on the secondary side is reduced, the inlet / outlet water temperature difference ΔT is reduced, so that the inlet / outlet water temperature difference ΔT is increased.
L, that is, the amount of water L to the condenser 3 at the three-way valve 2 is reduced.
Is discharged to the heat pump chiller, whereby the amount of water L to the condenser 3 is adjusted so as to decrease.
Since the pressure in the condenser 3 does not fluctuate, the circulation of the gravity heat pipe is continuously established without holding the refrigerant liquid in the condenser 3. Conversely, when the operating rate of the air conditioner increases and the load increases, the amount of circulation of the refrigerant increases.Therefore, when the outlet water temperature T2 rises and the inlet / outlet water temperature difference ΔT increases and deviates from the set value, it is detected by an inlet temperature sensor. 4, the outlet temperature sensor 5, and the water amount L is detected by the arithmetic and control unit 22 to increase the temperature difference ΔT3, which is the set value at the time of peak load, that is, the inlet / outlet water temperature difference ΔT is reduced. Works as follows. Therefore, without monitoring the secondary-side load fluctuation of the condenser 3, the primary-side water temperature difference ΔT is monitored, and the water amount L is adjusted so that the value becomes constant. However, the refrigerant liquid is not retained in the heat exchanger 3 and the capacity of the condenser 3 can always be controlled. As a result, when the plate heat exchanger is used as the condenser 3, Even if the load of the side heat quantity fluctuates, it is possible to operate the building air conditioning system only by controlling the primary side heat quantity, which is a problem when the condenser 3 of the plate heat exchanger is used. The inconvenience of holding the refrigerant liquid in the condenser 3 can be eliminated.

【0012】[実施例2]次に、本発明の第2の実施例を
図4に沿って説明するが、実施例1と異なるのは、実施
例1におけるバイパス通路23を設けることなく、三方弁
2の代わりに流量制御可能な二方弁2aとした構成で、
他の構成は実施例1と同じである。したがって、実施例
1と同じ構成の説明は省略し、上記の異なる構成および
作用について説明する。第2の実施例も、一次側媒体の
水量Lのみを監視し、二次側熱量の負荷の変動があって
も、一次側熱量のみを制御して、結果として二次側の負
荷変動に対応可能にしたものであり、そのため、凝縮器
3での冷却水の出入口での水温差を監視し、その値が一
定になるように一次側の冷水の水量Lを制御するが、凝
縮器3の入口31の近傍に設けた入口温度センサー4からの
温度データと、凝縮器3の出口32の近傍に設けた出口温
度センサー5とからの温度データとを演算制御器22に入
力して、演算制御器22で演算してその出力により二方弁
2aの駆動機構21により駆動し、二方弁2aにより凝縮器
3への流量Lを直接制御する。一方、実施例1と同様に
凝縮器3の二次側の出口33には冷媒が液化した冷媒液が
排出され、排出された冷媒液は横型の受液器6に一時的
に貯留され重力により各空調機7に送られる。なお、受
液器6は実施例1では縦型の受液器を、実施例2では横
型の受液器を用いたが、空調システム全体や設備環境の
状況によって、適宜選択して用いればよい。作動も実施
例1とほぼ同じであるが、出入口水温差ΔTを監視し
て、演算制御器22で、二方弁2aが凝縮器3に対して全
開時のピーク負荷時の温度差、即ち、温度差 ΔT3=T2
−T1の設定値になるよう二方弁2aでの凝縮器3への水
量Lが減少するように制御する。即ち、空調機の稼働率
が低く二次側の負荷が減少している場合は出入口水温差
ΔTが減少しているので、出入口水温差ΔTが大きくなる
ように二方弁2aで凝縮器3への水量Lを直接減少すよう
に作動する。逆に、空調機の稼働率が高くなって二次側
の負荷が大きくなると冷媒の循環量が増加するため、出
口水温T2が上昇し出入口水温差ΔTが増加するので、ピ
−ク負荷時の設定値である温度差ΔT3に近づくように、
即ち、出入口水温差ΔTが小さくなるように水量Lを増加
するように作動する。したがって、プレート式熱交換器
である凝縮器3を用いても、凝縮器3の二次側の負荷変
動を監視することなく、一次側の出入口の水温差ΔTを
監視し、その値が一定になるよう水量Lを調整すること
により、二次側の負荷が変動しても、冷媒液が熱交換器
3内に保持されることがなくなり、ビル空気調和システ
ムの稼働が可能となる。
Second Embodiment Next, a second embodiment of the present invention will be described with reference to FIG. 4. The difference from the first embodiment is that a three-way Instead of the valve 2, a two-way valve 2a capable of controlling the flow rate is used.
Other configurations are the same as those of the first embodiment. Therefore, the description of the same configuration as that of the first embodiment will be omitted, and the different configuration and operation will be described. The second embodiment also monitors only the amount of water L in the primary medium and controls only the amount of heat on the primary side even if the load of the amount of heat on the secondary side fluctuates. Therefore, the temperature difference between the inlet and outlet of the cooling water in the condenser 3 is monitored, and the amount L of the cooling water on the primary side is controlled so that the value becomes constant. The temperature data from the inlet temperature sensor 4 provided near the inlet 31 and the temperature data from the outlet temperature sensor 5 provided near the outlet 32 of the condenser 3 are input to the arithmetic controller 22 for arithmetic control. The output is operated by the drive mechanism 21 of the two-way valve 2a, and the flow rate L to the condenser 3 is directly controlled by the two-way valve 2a. On the other hand, as in the first embodiment, the refrigerant liquid obtained by liquefying the refrigerant is discharged to the outlet 33 on the secondary side of the condenser 3, and the discharged refrigerant liquid is temporarily stored in the horizontal liquid receiver 6 and gravity is applied. Sent to each air conditioner 7. In addition, although the vertical type liquid receiver was used as the liquid receiver 6 in Example 1, and the horizontal type liquid receiver was used in Example 2, it may be suitably selected and used according to the whole air conditioning system or the condition of the equipment environment. . The operation is almost the same as that of the first embodiment, except that the temperature difference ΔT between the inlet and outlet is monitored, and the arithmetic controller 22 controls the temperature difference at the peak load when the two-way valve 2a is fully opened with respect to the condenser 3, that is, Temperature difference ΔT3 = T2
Control is performed such that the amount of water L to the condenser 3 at the two-way valve 2a decreases so as to reach the set value of -T1. That is, when the operation rate of the air conditioner is low and the load on the secondary side is reduced, the inlet / outlet water temperature difference ΔT is reduced. It operates so as to directly reduce the amount of water L in the tank. Conversely, when the operation rate of the air conditioner increases and the load on the secondary side increases, the circulation amount of the refrigerant increases, so that the outlet water temperature T2 increases and the inlet / outlet water temperature difference ΔT increases. In order to approach the temperature difference ΔT3 which is the set value,
That is, the operation is performed so as to increase the water amount L so as to reduce the inlet / outlet water temperature difference ΔT. Therefore, even if the condenser 3 which is a plate heat exchanger is used, the water temperature difference ΔT at the inlet and outlet on the primary side is monitored without monitoring the load fluctuation on the secondary side of the condenser 3 and the value is kept constant. By adjusting the water amount L so that the refrigerant liquid does not remain in the heat exchanger 3 even when the load on the secondary side fluctuates, the building air conditioning system can be operated.

【0013】[実施例3]次に、本発明の第3の実施例を
図5に沿って説明するが、実施例1と異なるのは、実施
例1における入口温度センサー4を省いた構成で、他の
構成は実施例1と同じである。したがって、実施例1と
同じ構成の説明は省略し、上記の異なる構成および作用
について説明するが、第3の実施例はビル空調システム
において、一次側の冷水の水温がほぼ一定の場合に、こ
れに対応してビル空気調和システムをより安価に構築す
る場合である。第3の実施例も、凝縮器3としてプレー
ト式熱交換器を用い、該凝縮器3の一次側での入口水温
がほぼ一定の場合は出口水温のみを監視して、出口水温
を所定の値になるように一次側媒体の水量Lのみを制御
することにより、結果として、二次側熱量の負荷が変動
しても、一次側熱量の制御だけでビル空気調和システム
の稼働を可能にしたものである。そして、第3の実施例
の場合には、入口水温がほぼ一定であるから、この値を
予め、演算制御器22aに入力して、出口水温Tを出口セン
サー5によって検出すれば、凝縮器3の一次側での出入
口水温差ΔTが検出されることになり、演算制御器22aは
実施例1と同様に作動するので説明を省くが、演算制御
器22aにより実施例1と同様に三方弁2を稼働制御す
る。したがって、実施例3においてもプレート式熱交換
器である凝縮器3を用いても、凝縮器3の二次側の負荷
変動を監視することなく、一次側の水温差ΔTを監視
し、その値が一定になるよう水量Lを調整することによ
り、二次側の負荷が変動しても、冷媒液が熱交換器3内
に保持されることがなくなり、ビル空気調和システムの
稼働が可能となる。
Third Embodiment Next, a third embodiment of the present invention will be described with reference to FIG. 5. The difference from the first embodiment is that the inlet temperature sensor 4 in the first embodiment is omitted. The other configuration is the same as that of the first embodiment. Therefore, the description of the same configuration as that of the first embodiment is omitted, and the above-described different configuration and operation will be described. However, in the third embodiment, when the temperature of the cold water on the primary side is substantially constant in the building air conditioning system, In this case, a building air-conditioning system is constructed at a lower cost. Also in the third embodiment, a plate heat exchanger is used as the condenser 3, and when the inlet water temperature on the primary side of the condenser 3 is almost constant, only the outlet water temperature is monitored, and the outlet water temperature is set to a predetermined value. By controlling only the amount L of water in the primary medium so that the load on the secondary heat quantity fluctuates, the building air conditioning system can be operated only by controlling the primary heat quantity. It is. In the case of the third embodiment, since the inlet water temperature is almost constant, if this value is input to the arithmetic controller 22a in advance and the outlet water temperature T is detected by the outlet sensor 5, the condenser 3 Since the inlet / outlet water temperature difference ΔT on the primary side is detected and the arithmetic and control unit 22a operates in the same manner as in the first embodiment, the description is omitted. However, the arithmetic and control unit 22a uses the three-way valve 2 as in the first embodiment. Operation control. Therefore, even in the third embodiment, even when the condenser 3 which is a plate-type heat exchanger is used, the water temperature difference ΔT on the primary side is monitored without monitoring the load fluctuation on the secondary side of the condenser 3 and its value is monitored. By adjusting the amount of water L so as to be constant, the refrigerant liquid is not retained in the heat exchanger 3 even if the load on the secondary side fluctuates, and the building air conditioning system can be operated. .

【0014】[実施例4]次に、本発明の第4の実施例を
図6に沿って説明するが、実施例2と異なるのは、実施
例2における入口温度センサー4を省いた構成で、他の
構成は実施例1と同じである。したがって、実施例2と
同じ構成の説明は省略し、上記の異なる構成および作用
について説明するが、第4の実施例は実施例3と同様に
ビル空調システムにおいて、一次側の冷水の水温がほぼ
一定の場合に、これに対応してビル空気調和システムを
より安価に構築する場合である。即ち、第4の実施例の
場合には、入口水温がほぼ一定であるから、この値を予
め、演算制御器22aに入力して、出口水温Tを出口センサ
ー5によって検出すれば、凝縮器3の一次側での出入口
水温差ΔTが検出されることになり、演算制御器22aは実
施例2と同様に作動するので説明を省くが、演算制御器
22aにより実施例2と同様に二方弁2aを作動制御する。
したがって、実施例4においてもプレート式熱交換器で
ある凝縮器3を用いても、凝縮器3の二次側の負荷変動
を監視することなく、一次側の水温差ΔTを監視し、そ
の値が一定になるよう水量Lを調整することにより、二
次側の負荷が変動しても、冷媒液が熱交換器3内に保持
されることがなくなり、ビル空気調和システムの稼働が
可能となる。
[Embodiment 4] Next, a fourth embodiment of the present invention will be described with reference to FIG. 6. The difference from the second embodiment is that the inlet temperature sensor 4 in the second embodiment is omitted. The other configuration is the same as that of the first embodiment. Therefore, the description of the same configuration as that of the second embodiment will be omitted, and the above-described different configuration and operation will be described. However, in the fourth embodiment, the temperature of the primary-side cold water in the building air-conditioning system is almost the same as in the third embodiment. In certain cases, the building air conditioning system is correspondingly constructed at a lower cost. That is, in the case of the fourth embodiment, since the inlet water temperature is substantially constant, if this value is input in advance to the arithmetic and control unit 22a and the outlet water temperature T is detected by the outlet sensor 5, the condenser 3 Since the inlet / outlet water temperature difference ΔT on the primary side is detected and the arithmetic and control unit 22a operates in the same manner as in the second embodiment, a description thereof will be omitted.
The operation of the two-way valve 2a is controlled by 22a in the same manner as in the second embodiment.
Therefore, even in the fourth embodiment, even if the condenser 3 which is a plate heat exchanger is used, the water temperature difference ΔT on the primary side is monitored without monitoring the load fluctuation on the secondary side of the condenser 3 and the value thereof is monitored. By adjusting the amount of water L so as to be constant, the refrigerant liquid is not retained in the heat exchanger 3 even if the load on the secondary side fluctuates, and the building air conditioning system can be operated. .

【0015】[実施例5]次に、本発明の第5の実施例を
図7に沿って説明するが、実施例1と異なるのは、実施
例1における三方弁2やバイパス通路23を設けることな
く、インバータ制御のポンプ1aとした構成で、他の構
成は実施例1と同じである。したがって、実施例1と同
じ構成の説明は省略し、上記の異なる構成および作用に
ついての説明する。第5の実施例のも、インバータ制御
器24により稼働するポンプ1aで流量を直接制御するも
ので、凝縮器3の入口31の近傍に設けた入口温度センサ
ー4からの温度データと、凝縮器3の出口32の近傍に設け
た出口温度センサー5とからの温度データとを演算制御
器22に入力して、演算制御器22bで演算してインバータ
制御器24によりポンプ1aを制御し、ポンプ1aの送給流量
Lを制御する。作動も実施例1とほぼ同じであるが、出
入口水温差ΔTを監視して、空調機の稼働率が低く温度
差が小さい場合には、演算制御器22で凝縮器3のピーク
負荷時の温度差 ΔT3=T2−T1の設定値になるようイン
バータ制御器24およびポンプ1aにより水量Lを減少する
ように制御する。逆に、空調機の稼働率が高くなって二
次側の負荷が大きくなると冷媒の循環量が増加するた
め、出口水温T2が上昇し出入口水温差ΔTが増加するの
で、ピ−ク負荷時の設定値温度差ΔT3に近づくように、
即ち、出入口水温差ΔTが小さくなるように水量Lを増加
するように作動する。したがって、プレート式熱交換器
である凝縮器3を用いても、凝縮器3の二次側の負荷変
動を監視することなく、一次側の水温差ΔTを監視し、
その値が一定になるよう水量Lを調整することにより、
二次側の負荷が変動しても、冷媒液が熱交換器3内に保
持されることがなくなり、ビル空気調和システムの稼働
が可能となる。
Fifth Embodiment Next, a fifth embodiment of the present invention will be described with reference to FIG. 7. The difference from the first embodiment is that a three-way valve 2 and a bypass passage 23 in the first embodiment are provided. Instead, the configuration is the same as that of the first embodiment except that the configuration is an inverter-controlled pump 1a. Therefore, the description of the same configuration as that of the first embodiment will be omitted, and the different configuration and operation will be described. In the fifth embodiment, too, the flow rate is directly controlled by the pump 1a operated by the inverter controller 24, and the temperature data from the inlet temperature sensor 4 provided near the inlet 31 of the condenser 3, The temperature data from the outlet temperature sensor 5 provided in the vicinity of the outlet 32 is input to the arithmetic and control unit 22, calculated by the arithmetic and control unit 22b, and controlled by the inverter controller 24 to control the pump 1a. The feed flow rate L is controlled. The operation is almost the same as that of the first embodiment. However, when the operation temperature of the air conditioner is low and the temperature difference is small, the operation controller 22 controls the temperature of the condenser 3 at the peak load by monitoring the inlet / outlet water temperature difference ΔT. The inverter controller 24 and the pump 1a control the water amount L to be reduced so that the difference ΔT3 = T2−T1. Conversely, when the operation rate of the air conditioner increases and the load on the secondary side increases, the circulation amount of the refrigerant increases, so that the outlet water temperature T2 increases and the inlet / outlet water temperature difference ΔT increases. In order to approach the set value temperature difference ΔT3,
That is, the operation is performed so as to increase the water amount L so as to reduce the inlet / outlet water temperature difference ΔT. Therefore, even if the condenser 3 which is a plate heat exchanger is used, the water temperature difference ΔT on the primary side is monitored without monitoring the load fluctuation on the secondary side of the condenser 3,
By adjusting the amount of water L so that the value is constant,
Even if the load on the secondary side fluctuates, the refrigerant liquid is not retained in the heat exchanger 3, and the building air conditioning system can be operated.

【0016】[実施例6]次に、本発明の第6の実施例を
図8に沿って説明するが、実施例5と異なるのは、実施
例5における入口温度センサー4を省いた構成で、他の
構成は実施例5と同じである。したがって、実施例6と
同じ構成の説明は省略し、上記の異なる構成および作用
について説明するが、第6の実施例はビル空調システム
において、一次側の冷水の水温がほぼ一定の場合に、こ
れに対応してビル空気調和システムをより安価に構築す
る場合である。第6の実施例も、凝縮器3としてプレー
ト式熱交換器を用い、該凝縮器3の一次側での入口水温
がほぼ一定の場合は出口水温のみを監視して、出口水温
を所定の値になるように一次側媒体の水量Lのみを制御
することにより、結果として、二次側熱量の負荷の変動
しても、一次側熱量の制御だけでビル空気調和システム
の稼働を可能にしたものである。そして、第6の実施例
の場合には、実施例3および4と同じように入口水温が
ほぼ一定であるから、この値を予め、演算制御器22bに
入力して、出口水温Tを出口センサー5によって検出す
れば、凝縮器3の一次側での出入口水温差ΔTが検出さ
れることになり、演算制御器22bは実施例5と同様に作
動するので説明を省くが、演算制御器22bにより実施例
5と同様にインバータ制御器24およびポンプ1aで水量L
を制御する。したがって、実施例6においてもプレート
式熱交換器である凝縮器3を用いても、凝縮器3の二次
側の負荷変動を監視することなく、一次側の水温差ΔT
を監視し、その値が一定になるよう水量Lを調整するこ
とにより、二次側の負荷が変動しても、冷媒液が熱交換
器3内に保持されることがなくなり、ビル空気調和シス
テムの稼働が可能となる。
[Embodiment 6] Next, a sixth embodiment of the present invention will be described with reference to FIG. 8. The difference from the fifth embodiment is a configuration in which the inlet temperature sensor 4 in the fifth embodiment is omitted. The other configuration is the same as that of the fifth embodiment. Therefore, the description of the same configuration as that of the sixth embodiment will be omitted, and the above-described different configuration and operation will be described. However, in the sixth embodiment, when the temperature of the cold water on the primary side is substantially constant in the building air conditioning system, In this case, a building air-conditioning system is constructed at a lower cost. In the sixth embodiment, a plate heat exchanger is used as the condenser 3. When the inlet water temperature on the primary side of the condenser 3 is almost constant, only the outlet water temperature is monitored, and the outlet water temperature is set to a predetermined value. By controlling only the amount of water L in the primary medium so that the load on the secondary heat quantity fluctuates, the building air conditioning system can be operated only by controlling the primary heat quantity. It is. In the case of the sixth embodiment, since the inlet water temperature is almost constant as in the case of the third and fourth embodiments, this value is input in advance to the arithmetic and control unit 22b, and the outlet water temperature T is detected by the outlet sensor. 5, the inlet / outlet water temperature difference ΔT on the primary side of the condenser 3 is detected, and the arithmetic and control unit 22b operates in the same manner as in the fifth embodiment. In the same manner as in the fifth embodiment, the water amount L is controlled by the inverter controller 24 and the pump 1a.
Control. Therefore, even in the sixth embodiment, even if the condenser 3 which is a plate-type heat exchanger is used, the primary-side water temperature difference ΔT can be obtained without monitoring the load fluctuation on the secondary side of the condenser 3.
Is monitored, and the amount of water L is adjusted so that the value becomes constant, so that the refrigerant liquid is not retained in the heat exchanger 3 even if the load on the secondary side fluctuates, and the building air conditioning system Operation becomes possible.

【0017】なお、本発明の特徴を損うものでなけれ
ば、上記の実施例に限定されるものでないことは勿論で
ある。例えば、各実施例では、出入口水温温度差又は出
口水温の基準を、それぞれ予め知られた二次側のピーク
負荷時での出口水温差又は水温として、一次側の水量を
制御するようにしたが、設定値は必ずしも二次側のピー
ク負荷時での出入口水温差又は出口水温ではなく、プレ
ート式熱交換器である凝縮器が過冷却になって冷媒の通
過が阻害されないようにすればよく、設定値を適宜に変
更してもよい。
It is needless to say that the present invention is not limited to the above embodiment unless the characteristics of the present invention are impaired. For example, in each embodiment, the reference of the inlet / outlet water temperature difference or the outlet water temperature is set as the outlet water temperature difference or the water temperature at the time of the peak load of the secondary side which is known in advance, and the primary side water amount is controlled. The set value is not necessarily the inlet / outlet water temperature difference or the outlet water temperature at the time of the peak load on the secondary side, and it suffices that the condenser, which is a plate-type heat exchanger, is overcooled so that passage of the refrigerant is not hindered, The set value may be changed as appropriate.

【0018】[0018]

【発明の効果】以上説明したように、請求項1に記載の
発明によれば、冷媒が循環する二次側が重力式ヒートパ
イプに接続するビル空調システムにおいて、凝縮器とし
てプレート式熱交換器を用いるとともに、該凝縮器の一
次側での出入口での水温差を監視するか、又は入口水温
が一定の場合は出口水温を監視して、二次側での負荷の
変動に係わらず前記出入口水温差又は出口水温を所定の
値になるように制御するビル空気調和システムであるか
ら、安価なプレート式熱交換器を凝縮器として用いるこ
とができ経済的に有利であるという効果が得られ、稼働
制御も一次側の水量を監視して制御すればよいので構成
が簡素であり、保守も容易であるという効果が得られ
る。また、請求項2に記載の発明によれば、請求項1の
構成での制御の基準を、それぞれ予め知られた二次側の
ピーク負荷時での出入口水温差又は出口水温としたか
ら、請求項1の効果に加えて、より確実に凝縮器での冷
媒の通過阻害を防止できるという効果が得られる。
As described above, according to the first aspect of the present invention, a plate type heat exchanger is used as a condenser in a building air conditioning system in which the secondary side through which a refrigerant circulates is connected to a gravity type heat pipe. In addition to monitoring the difference in water temperature at the inlet and outlet on the primary side of the condenser, or monitoring the outlet water temperature when the inlet water temperature is constant, regardless of load fluctuation on the secondary side, Since it is a building air-conditioning system that controls the temperature difference or the outlet water temperature to a predetermined value, an inexpensive plate-type heat exchanger can be used as a condenser, which has the effect of being economically advantageous, and has the effect of operating. Since the control may be performed by monitoring the amount of water on the primary side, the configuration is simple, and an effect that maintenance is easy can be obtained. According to the second aspect of the present invention, since the control criterion in the configuration of the first aspect is the difference between the inlet and outlet water temperature or the outlet water temperature at the time of the peak load on the secondary side which is known in advance, In addition to the effect of item 1, an effect is obtained that the inhibition of refrigerant passage in the condenser can be more reliably prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の重力式ヒートパイプを用いたビル空調シ
ステムの概略を説明する説明図
FIG. 1 is an explanatory view schematically illustrating a conventional building air conditioning system using a gravity heat pipe.

【図2】本発明のプレート式熱交換器の凝縮器によるビ
ル空調システムの第1の実施例の概略を説明する説明図
FIG. 2 is an explanatory view schematically illustrating a first embodiment of a building air conditioning system using a condenser of a plate heat exchanger according to the present invention.

【図3】本発明の実施例に用いるプレート式熱交換器の
凝縮器で、図3(a)はその斜視図、図3(b)は熱交換の伝
導プレート部分の分解斜視図
3 (a) is a perspective view of a condenser of a plate heat exchanger used in an embodiment of the present invention, and FIG. 3 (b) is an exploded perspective view of a conduction plate portion for heat exchange.

【図4】本発明のプレート式熱交換器の凝縮器によるビ
ル空調システムの第2の実施例の概略を説明する説明図
FIG. 4 is an explanatory view for explaining an outline of a second embodiment of the building air conditioning system using the condenser of the plate heat exchanger of the present invention.

【図5】本発明のプレート式熱交換器の凝縮器によるビ
ル空調システムの第3の実施例の概略を説明する説明図
FIG. 5 is an explanatory view illustrating an outline of a third embodiment of a building air conditioning system using a condenser of a plate heat exchanger according to the present invention.

【図6】本発明のプレート式熱交換器の凝縮器によるビ
ル空調システムの第4の実施例の概略を説明する説明図
FIG. 6 is an explanatory view schematically illustrating a fourth embodiment of a building air conditioning system using a condenser of a plate heat exchanger according to the present invention.

【図7】本発明のプレート式熱交換器の凝縮器によるビ
ル空調システムの第5の実施例の概略を説明する説明図
FIG. 7 is an explanatory view for explaining an outline of a fifth embodiment of the building air conditioning system using the condenser of the plate heat exchanger of the present invention.

【図8】本発明のプレート式熱交換器の凝縮器によるビ
ル空調システムの第6の実施例の概略を説明する説明図
である。
FIG. 8 is an explanatory diagram illustrating an outline of a sixth embodiment of a building air-conditioning system using a condenser of a plate heat exchanger according to the present invention.

【符号の説明】[Explanation of symbols]

1,1a…ポンプ 2…三方弁 2a…二方弁 21,21a…駆動機構 22,22a、22b…演算制御器 23…バイパス通路 24…インバータ制御器 3…凝縮器 31…一次側入口 311,321…水流通孔 32…一次側出口 33…二次側入口 331…冷媒ガス流通孔 34…一次側出口 341…冷媒液流通孔 351,352…フレーム 36,361,362…伝導プレート 37…冷却水通路 38…冷媒通路 4…入口温度センサー 5…出口温度センサー 6…受液器 7…空調機 71…膨張弁 72…蒸発器 1, 1a Pump 2 Three-way valve 2a Two-way valve 21, 21a Drive mechanism 22, 22a, 22b Arithmetic controller 23 Bypass passage 24 Inverter controller 3 Condenser 31 Primary inlet 311,321 Water Flow hole 32 ... Primary side outlet 33 ... Secondary side inlet 331 ... Refrigerant gas flow hole 34 ... Primary side outlet 341 ... Refrigerant liquid flow hole 351,352 ... Frame 36,361,362 ... Conductive plate 37 ... Cooling water passage 38 ... Refrigerant passage 4 ... Inlet temperature Sensor 5 ... Outlet temperature sensor 6 ... Liquid receiver 7 ... Air conditioner 71 ... Expansion valve 72 ... Evaporator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】冷媒が循環する二次側が重力式ヒートパイ
プに接続するビル空調システムにおいて、凝縮器として
プレート式熱交換器を用いるとともに、該凝縮器の一次
側での出入口での水温差を監視するか、又は入口水温が
一定の場合は出口水温を監視して、二次側での負荷の変
動に係わらず前記出入口水温差又は出口水温を所定の値
になるように制御することを特徴とするビル空気調和シ
ステム。
In a building air conditioning system in which a refrigerant circulating on a secondary side is connected to a gravity heat pipe, a plate heat exchanger is used as a condenser, and a difference in water temperature between an inlet and an outlet on the primary side of the condenser is determined. Monitoring or, if the inlet water temperature is constant, monitoring the outlet water temperature, and controlling the outlet / outlet water temperature difference or the outlet water temperature to be a predetermined value regardless of the load fluctuation on the secondary side. And building air conditioning system.
【請求項2】冷媒が循環する二次側が重力式ヒートパイ
プに接続するビル空調システムにおいて、凝縮器として
プレート式熱交換器を用いるとともに、該凝縮器の一次
側での出入口での水温差を監視するか、又は入口水温が
一定の場合は出口水温を監視して、二次側での負荷の変
動に係わらず前記出入口水温差又は出口水温を、それぞ
れ予め知られた二次側のピーク負荷時での出入口水温差
又は出口水温になるように一次側の水量を制御すること
を特徴とするビル空気調和システム。
2. A building air conditioning system in which a refrigerant circulating on a secondary side is connected to a gravity type heat pipe, a plate heat exchanger is used as a condenser, and a water temperature difference between an inlet and an outlet on the primary side of the condenser is reduced. Monitor or, if the inlet water temperature is constant, monitor the outlet water temperature, regardless of the fluctuation of the load on the secondary side, the outlet water temperature difference or the outlet water temperature, respectively, the secondary peak load known in advance A building air-conditioning system characterized by controlling the amount of water on the primary side such that the difference between the inlet / outlet water temperature at the time or the outlet water temperature is obtained.
JP2000046491A 2000-02-23 2000-02-23 Air conditioning system for building Withdrawn JP2001235182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000046491A JP2001235182A (en) 2000-02-23 2000-02-23 Air conditioning system for building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000046491A JP2001235182A (en) 2000-02-23 2000-02-23 Air conditioning system for building

Publications (1)

Publication Number Publication Date
JP2001235182A true JP2001235182A (en) 2001-08-31

Family

ID=18568887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000046491A Withdrawn JP2001235182A (en) 2000-02-23 2000-02-23 Air conditioning system for building

Country Status (1)

Country Link
JP (1) JP2001235182A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036506A (en) * 2007-07-09 2009-02-19 Ntt Facilities Inc Air-conditioning system and its operating method
JP2010156478A (en) * 2008-12-26 2010-07-15 Taikisha Ltd Thermal load processing system and heat source system
JP2010216771A (en) * 2009-03-18 2010-09-30 Fuji Electric Systems Co Ltd Local cooling system, and device for controlling the same and program
JP2010216765A (en) * 2009-03-18 2010-09-30 Fuji Electric Systems Co Ltd Local cooling system
CN107906670A (en) * 2017-11-13 2018-04-13 南京天加环境科技有限公司 A kind of quick loading control method of modularization cold water heat pump unit
JP2021063601A (en) * 2019-10-10 2021-04-22 栗田工業株式会社 Method for estimating bypass ratio of heat exchange system with bypass flow path for heat medium
EP3998436A4 (en) * 2019-07-09 2022-08-24 Daikin Industries, Ltd. Water quantity adjustment device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036506A (en) * 2007-07-09 2009-02-19 Ntt Facilities Inc Air-conditioning system and its operating method
JP2010156478A (en) * 2008-12-26 2010-07-15 Taikisha Ltd Thermal load processing system and heat source system
JP2010216771A (en) * 2009-03-18 2010-09-30 Fuji Electric Systems Co Ltd Local cooling system, and device for controlling the same and program
JP2010216765A (en) * 2009-03-18 2010-09-30 Fuji Electric Systems Co Ltd Local cooling system
CN107906670A (en) * 2017-11-13 2018-04-13 南京天加环境科技有限公司 A kind of quick loading control method of modularization cold water heat pump unit
EP3998436A4 (en) * 2019-07-09 2022-08-24 Daikin Industries, Ltd. Water quantity adjustment device
US11506435B2 (en) 2019-07-09 2022-11-22 Daikin Industries, Ltd. Water regulator
JP2021063601A (en) * 2019-10-10 2021-04-22 栗田工業株式会社 Method for estimating bypass ratio of heat exchange system with bypass flow path for heat medium
JP7388113B2 (en) 2019-10-10 2023-11-29 栗田工業株式会社 Method for estimating the bypass ratio of a heat exchange system equipped with a heat medium bypass flow path

Similar Documents

Publication Publication Date Title
EP3500805B1 (en) Systems and methods for controlling a refrigeration system
US20060107683A1 (en) Air conditioning system and method for controlling the same
JP3997482B2 (en) Water source air conditioning system
US4932221A (en) Air-cooled cooling apparatus
US6807817B2 (en) Method for operating compressors of air conditioner
KR20040050477A (en) An air-condition system
JP2000161721A (en) Air conditioner
JP4203758B2 (en) Water-cooled heat pump type ground-heated air conditioning system
JP4493889B2 (en) Air conditioning system
KR101227751B1 (en) Heat pump type hot water supply system using waste heat
JP2001235182A (en) Air conditioning system for building
KR101145978B1 (en) Heat pump type air conditioning system using waste heat
KR20180072368A (en) Integrating type air conditioning and heat pump system
JPH04222358A (en) Air conditioner
US5275010A (en) Control method and apparatus of absorption chiller heater
CN110864387A (en) Air conditioning unit
EP3754268A1 (en) Water chiller
JPH0518647A (en) Defrost device for cooling device having two-dimensional refrigeration cycle
KR101641245B1 (en) Chiller
CN220911734U (en) Cooling system
CN220471827U (en) Air conditioning system and battery pack thermal management system
CN219531042U (en) Air conditioning system
JP3299414B2 (en) Refrigerant circulation type air conditioning system
US20230314039A1 (en) HVAC System
JPH07151359A (en) Refrigerant circulation type air conditioning system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501