JP4203758B2 - Water-cooled heat pump type ground-heated air conditioning system - Google Patents

Water-cooled heat pump type ground-heated air conditioning system Download PDF

Info

Publication number
JP4203758B2
JP4203758B2 JP2005042090A JP2005042090A JP4203758B2 JP 4203758 B2 JP4203758 B2 JP 4203758B2 JP 2005042090 A JP2005042090 A JP 2005042090A JP 2005042090 A JP2005042090 A JP 2005042090A JP 4203758 B2 JP4203758 B2 JP 4203758B2
Authority
JP
Japan
Prior art keywords
water
air
heat
pressure gas
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005042090A
Other languages
Japanese (ja)
Other versions
JP2006226627A (en
Inventor
恵一 木村
満津雄 森田
勝博 浦野
Original Assignee
木村工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 木村工機株式会社 filed Critical 木村工機株式会社
Priority to JP2005042090A priority Critical patent/JP4203758B2/en
Publication of JP2006226627A publication Critical patent/JP2006226627A/en
Application granted granted Critical
Publication of JP4203758B2 publication Critical patent/JP4203758B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps

Description

本発明は水冷ヒートポンプ式地中熱利用空調システムに関するものである。   The present invention relates to a water-cooled heat pump type underground heat utilization air conditioning system.

地中熱を利用して空調するシステムとして、水冷ヒートポンプ式空調機と、空調機に使用する熱媒を地中熱にて温度調節する地中熱交換器(地中熱交換井)と、備え、この空調機と地中熱交換器を配管で直結して循環させ、地中熱交換器で温度調節した熱媒を空調機に流して空調するものがある。このシステムでは、空調ゾーン毎に水冷ヒートポンプ式空調機を個別に設け、熱媒を分流させて個別空調可能としている。   As a system for air conditioning using geothermal heat, equipped with a water-cooled heat pump type air conditioner, and a ground heat exchanger (ground heat exchange well) that adjusts the temperature of the heat medium used in the air conditioner with ground heat Some air conditioners and underground heat exchangers are directly connected by piping and circulated, and a heat medium whose temperature is adjusted by the underground heat exchanger is flowed to the air conditioners for air conditioning. In this system, a water-cooled heat pump type air conditioner is individually provided for each air-conditioning zone, and individual air-conditioning is possible by dividing the heat medium.

特開2003−207174号公報JP 2003-207174 A 特開昭61−110859号公報JP-A-61-110859

ところが、個別空調の必要な病院やホテルなどでも空き部屋が必ずあるため、全てのゾーンを空調する必要がなく、個別に空調機を揃えるとなると設備面などで無駄が生じる問題がある。また、熱媒に不凍液を使用しているので水質管理や廃棄処理が面倒である。また、熱源側熱交換器と圧縮機と複数の給気側熱交換器を備え、例えば一方の給気側熱交換器で空気冷却(冷房)し、他方の給気側熱交換器で空気加熱(暖房)できる空調用ヒートポンプ回路として、特開昭61−110859号公報のものがある。これは、圧縮機の冷媒出口を高圧ガス管に、冷媒入口を低圧ガス管に接続し、熱源側熱交換器の冷媒出入口の一方を、高圧ガス管と低圧ガス管に切換自在に接続し、熱源側熱交換器の冷媒出入口の他方を膨張弁を介して液管に接続し、各給気側熱交換器の冷媒出入口の一方を、高圧ガス管と低圧ガス管に切換自在に接続し、各給気側熱交換器の冷媒出入口の他方を、膨張弁を介して液管に接続し、構成している。このような構成では、熱交換器毎に膨張弁が必要となり回路が複雑で製作に手間がかかりコストアップとなる問題がある。また、電子膨張弁を用いた場合、個々の膨張弁制御が必要で制御が複雑となる。   However, since there are always vacant rooms even in hospitals and hotels that require individual air conditioning, it is not necessary to air-condition all the zones. Moreover, since antifreeze is used for the heat medium, water quality management and disposal are troublesome. Also, a heat source side heat exchanger, a compressor, and a plurality of air supply side heat exchangers are provided. For example, air cooling (cooling) is performed with one air supply side heat exchanger, and air is heated with the other air supply side heat exchanger. As a heat pump circuit for air conditioning that can be (heated), there is one disclosed in JP-A-61-110859. The refrigerant outlet of the compressor is connected to the high-pressure gas pipe, the refrigerant inlet is connected to the low-pressure gas pipe, and one of the refrigerant inlets and outlets of the heat source side heat exchanger is switchably connected to the high-pressure gas pipe and the low-pressure gas pipe. The other of the refrigerant inlet / outlet of the heat source side heat exchanger is connected to the liquid pipe via an expansion valve, and one of the refrigerant inlet / outlet of each air supply side heat exchanger is connected to the high pressure gas pipe and the low pressure gas pipe in a switchable manner, The other refrigerant inlet / outlet of each air supply side heat exchanger is connected to a liquid pipe via an expansion valve. In such a configuration, there is a problem that an expansion valve is required for each heat exchanger, the circuit is complicated, and it takes time and effort to manufacture. In addition, when an electronic expansion valve is used, individual expansion valve control is required and the control becomes complicated.

本発明は上記課題を解決するため、空気を分流させて複数のゾーンへ個別に風量制御自在として給気する水冷ヒートポンプ式空調機と、地中熱にて水温調節する地中熱交換器と、を熱源水が循環するように配管した。また、水槽と、空気を分流させて複数のゾーンへ個別に風量制御自在として給気する水冷ヒートポンプ式空調機と、地中熱にて水温調節する地中熱交換器と、を熱源水が循環するように配管した。また、第1と第2の水槽と、この第1水槽から前記第2水槽へ水を送る熱源水回路と、この熱源水回路の水が通水されると共に空気を分流させて複数のゾーンへ個別に風量制御自在として給気する水冷ヒートポンプ式空調機と、前記第2水槽から前記第1水槽へ水を流量調節自在に送りかつ地熱にて水温調節する地熱交換水路と、を備え、前記第2水槽と前記第1水槽をバイパス水路にて連通すると共にこのバイパス水路に開閉弁を設けたことを最も主要な特徴とする。   In order to solve the above problems, the present invention is a water-cooled heat pump type air conditioner that divides air and supplies air to a plurality of zones individually as air volume controllable, a geothermal heat exchanger that adjusts the water temperature by underground heat, Was piped so that the heat source water circulated. In addition, the heat source water circulates in the water tank, a water-cooled heat pump air conditioner that divides the air and supplies air to the multiple zones individually as air volume control is possible, and an underground heat exchanger that adjusts the water temperature using underground heat. Piping was done. In addition, the first and second water tanks, the heat source water circuit for sending water from the first water tank to the second water tank, the water in the heat source water circuit is passed, and the air is diverted to a plurality of zones. A water-cooled heat pump type air conditioner that individually feeds air volume as freely controllable, and a geothermal exchange channel that sends water from the second water tank to the first water tank in a flow-adjustable manner and adjusts the water temperature by geothermal heat, and The main feature is that the two water tanks and the first water tank are communicated with each other through a bypass water channel, and an open / close valve is provided in the bypass water channel.

請求項1の発明によれば、空調ゾーン毎に水冷ヒートポンプ式空調機を個別に設けて運転する場合と比べて、トータルの空調能力が小さくてよいため、設備や運転の無駄を省けてコストを節減できる。空調機と地中熱交換器の間に水槽を設けるだけで良く、構造が簡単で設備コストも安くつく。空調機運転の負荷状態に応じて、地熱交換水路への水搬送を止めて水槽と空調機の間だけで熱源水を循環させることができ運転コストの節減を図れ、省エネとなる。また、空調機運転前に熱源水を所定水温範囲にするためにウォーミングアップする場合など、熱源水回路への水搬送を止めて水槽と地熱交換水路の間だけで熱源水を循環させることができ運転コストの節減を図れ、省エネとなる。空調機で熱交換して水温が変化した返り水を第2水槽に送るので、第1水槽では前記返り水混合による水温変化が無くて空調機の熱源水温が安定し、水冷ヒートポンプの圧縮機負荷が減るうえ、第2水槽からの水と地中との温度差が大きくなるので自然の地熱エネルギーをより多く利用でき、省エネを図れる。
請求項2の発明によれば、地熱と補助熱源の両方で安定した水温調節ができ、かつ水凍結による不具合も防止でき、水を熱源水としているので不凍液とくらべて水質管理や廃棄処理に手間がかからない。また、地熱と補助熱源の一方のみを使用し他方を故障時のバックアップ用として使用することもできる。片方の第1水槽のみの水量を補助的に水温調節すればよいので補助熱源機の容量が小さくて済み省エネを図れる。
請求項3の発明によれば、高価な膨張弁が1つで済み、構造が簡略化されて配管作業などが容易となるので小型化でき、コストダウンを図れ、制御も簡単になる。
According to the invention of claim 1 , since the total air-conditioning capacity may be small compared with the case where a water-cooled heat pump type air conditioner is individually provided for each air-conditioning zone, the cost can be reduced by eliminating waste of equipment and operation. You can save. It is only necessary to provide a water tank between the air conditioner and the underground heat exchanger, and the structure is simple and the equipment cost is low. Depending on the load condition of the air conditioner operation, the water supply to the geothermal exchange channel can be stopped and the heat source water can be circulated only between the water tank and the air conditioner, so that the operation cost can be reduced and the energy is saved. In addition, when warming up to bring the heat source water to the specified water temperature range before operating the air conditioner, the water supply to the heat source water circuit is stopped and the heat source water can be circulated only between the water tank and the geothermal exchange water channel. Costs can be saved and energy can be saved. Since the return water whose temperature has changed due to heat exchange with the air conditioner is sent to the second tank, the water temperature in the first tank does not change due to the mixing of the return water, the air source heat temperature is stabilized, and the compressor load of the water-cooled heat pump In addition, since the temperature difference between the water from the second tank and the ground becomes large, more natural geothermal energy can be used and energy saving can be achieved.
According to the invention of claim 2 , stable water temperature control can be performed by both geothermal and auxiliary heat sources, and troubles due to water freezing can be prevented. Since water is used as heat source water, it is troublesome in water quality management and disposal processing compared to antifreeze liquid. It does not take. It is also possible to use only one of geothermal and auxiliary heat sources and use the other for backup in the event of a failure. Since the water temperature of only one of the first water tanks may be adjusted supplementarily, the capacity of the auxiliary heat source machine can be reduced and energy can be saved.
According to the invention of claim 3 , only one expensive expansion valve is required, the structure is simplified and piping work is facilitated, so that the size can be reduced, the cost can be reduced, and the control is simplified.

図1〜図3は、本発明の水冷ヒートポンプ式地中熱利用空調システムの第1の実施例を示しており、この水冷ヒートポンプ式地中熱利用空調システムは、空気を分流させて複数のゾーンへ個別に風量制御自在として給気する水冷ヒートポンプ式空調機3と、地中熱にて水温調節する地中熱交換器9と、を熱源水が循環するように配管したものである。熱源水は、送水ポンプにより流量調節自在として矢印方向に送られて水冷ヒートポンプ式空調機3の熱源側水熱交換器14にて熱交換された後、地中熱交換器9にて水温調節され循環する。地中熱交換器9は地中に埋設して地中熱にて熱源水を熱交換する。図例では、地中熱交換器9は、U字管式の地中熱交換井を示しているが他のものでもよい。   1 to 3 show a first embodiment of a water-cooled heat pump type underground heat-use air conditioning system according to the present invention. This water-cooled heat pump type underground heat-use air conditioning system is configured to divide air into a plurality of zones. A water-cooled heat pump type air conditioner 3 that supplies air so that the air volume can be controlled individually and a ground heat exchanger 9 that adjusts the water temperature by underground heat are piped so that the heat source water circulates. The heat source water is sent in the direction of the arrow so that the flow rate can be adjusted by a water pump, and after heat exchange is performed in the heat source side water heat exchanger 14 of the water-cooled heat pump type air conditioner 3, the water temperature is adjusted in the underground heat exchanger 9. Circulate. The underground heat exchanger 9 is buried in the ground and heat-exchanges the heat source water by underground heat. In the illustrated example, the underground heat exchanger 9 shows a U-shaped underground heat exchange well, but may be other.

水冷ヒートポンプ式空調機3のケーシング11内には、複数の給気側送風路15…(図例では2つ)を備え、この各給気側送風路15ごとに個別に冷媒蒸発・冷媒凝縮切換自在な給気側空気熱交換器12と送風機13を設けて、1台の水冷ヒートポンプ式空調機3で、一のゾーンで冷房し、他のゾーンで暖房するような冷暖同時運転自在とする。各給気側送風路15には還気口、風量制御自在な外気取入口及び複数の給気口を設けて、ダクトと吹出口及び吸込口を介して各ゾーンに連通させ、セントラル方式で循環空調しつつ排気口16や換気扇17にて換気する。図例では変風量(VAV)による空調方式を例示しているが、他方式とするも自由である。また、加湿器18はケーシング11内又は室内に別置き(図示省略)として湿度調節を行う。   The casing 11 of the water-cooled heat pump type air conditioner 3 is provided with a plurality of air supply side air passages 15 (two in the illustrated example), and refrigerant evaporation / refrigerant condensation switching is individually performed for each air supply side air passage 15. A free air supply side air heat exchanger 12 and a blower 13 are provided so that one water-cooled heat pump type air conditioner 3 can be cooled and heated simultaneously in one zone and heated in another zone. Each air supply side air passage 15 is provided with a return air port, an outside air intake port that can control the air volume, and a plurality of air supply ports, and communicates with each zone through a duct, an air outlet, and a suction port, and circulates in a central manner. Ventilation is performed with the exhaust port 16 and the ventilation fan 17 while air conditioning. In the example shown in the figure, an air conditioning system using variable air volume (VAV) is illustrated, but other systems may be freely used. Further, the humidifier 18 performs humidity adjustment as a separate installation (not shown) in the casing 11 or in the room.

水冷ヒートポンプ式空調機3の水冷ヒートポンプは、循環冷媒に対して蒸発・圧縮・凝縮・膨張の工程順を繰返し、この循環冷媒と熱交換する空気や熱源水に対して冷媒蒸発工程で吸熱を冷媒凝縮工程で放熱を各々行うもので、循環冷媒の蒸発工程と凝縮工程を行う熱源側水熱交換器14及び複数の給気側空気熱交換器12…と、循環冷媒を圧縮する圧縮機19と、循環冷媒を膨張させる温度自動膨張弁や電子膨張弁などの膨張弁20と、低圧液管A及び高圧液管Bと、低圧ガス管Cと高圧ガス管Dと、を少なくとも備え、圧縮機19の冷媒出口を高圧ガス管Dに接続すると共に圧縮機19の冷媒入口を低圧ガス管Cに接続し、熱源側水熱交換器14の冷媒出入口の一方を、高圧ガス管Dと低圧ガス管Cとに開閉弁23a、23bを介して分岐接続して、高圧ガス管Dと低圧ガス管Cに切換自在に接続し、熱源側水熱交換器14の冷媒出入口の他方を、高圧液管Bと低圧液管Aに分岐接続すると共に、高圧液管側の第一分岐管には高圧液管方向へのみ冷媒を流す第一逆止弁21aを設け、かつ低圧液管側の第二分岐管には熱源側水熱交換器方向へのみ冷媒を流す第二逆止弁21bを設けて、高圧液管Bと低圧液管Aに切換自在に接続し、熱源側水熱交換器14の冷媒出入口の他方と第一・第二分岐管との間に開閉弁25を設ける。   The water-cooled heat pump of the water-cooled heat pump type air conditioner 3 repeats the steps of evaporation, compression, condensation, and expansion with respect to the circulating refrigerant, and the refrigerant absorbs heat in the refrigerant evaporation step with respect to air and heat source water that exchanges heat with the circulating refrigerant. Each of them performs heat dissipation in the condensation process, and includes a heat source side water heat exchanger 14 and a plurality of air supply side air heat exchangers 12 that perform the evaporation process and the condensation process of the circulating refrigerant, and a compressor 19 that compresses the circulating refrigerant. And an expansion valve 20 such as an automatic temperature expansion valve or an electronic expansion valve for expanding the circulating refrigerant, a low pressure liquid pipe A and a high pressure liquid pipe B, a low pressure gas pipe C and a high pressure gas pipe D, and a compressor 19. The refrigerant outlet of the compressor 19 is connected to the high pressure gas pipe D, the refrigerant inlet of the compressor 19 is connected to the low pressure gas pipe C, and one of the refrigerant inlets and outlets of the heat source side water heat exchanger 14 is connected to the high pressure gas pipe D and the low pressure gas pipe C. And through the on-off valves 23a and 23b. The high-pressure gas pipe D and the low-pressure gas pipe C are switchably connected, the other refrigerant inlet / outlet of the heat source side water heat exchanger 14 is branched and connected to the high-pressure liquid pipe B and the low-pressure liquid pipe A. The first branch pipe on the liquid pipe side is provided with a first check valve 21a that allows the refrigerant to flow only in the direction of the high pressure liquid pipe, and the second branch pipe on the low pressure liquid pipe side has the refrigerant only in the direction of the heat source side water heat exchanger. The second check valve 21b is provided to connect the high-pressure liquid pipe B and the low-pressure liquid pipe A so that they can be switched, and the other refrigerant inlet / outlet of the heat source side water heat exchanger 14 is connected to the first and second branch pipes. An on-off valve 25 is provided between them.

各給気側空気熱交換器12の冷媒出入口の一方は、高圧ガス管Dと低圧ガス管Cとに開閉弁23a、23bを介して分岐接続して、高圧ガス管Dと低圧ガス管Cに切換自在に接続し、各給気側空気熱交換器12の冷媒出入口の他方を、高圧液管Bと低圧液管Aに分岐接続すると共に、高圧液管側の第三分岐管には高圧液管方向へのみ冷媒を流す第三逆止弁22aを設け、かつ低圧液管側の第四分岐管には給気側空気熱交換器方向へのみ冷媒を流す第四逆止弁22bを設けて、高圧液管Bと低圧液管Aに切換自在に接続し、各給気側空気熱交換器12の冷媒出入口の他方と前記第三・第四分岐管との間に開閉弁24を設け、高圧液管Bと低圧液管Aとを膨張弁20を介して接続する。このように第一・第二・第三・第四逆止弁21a、21b、22a、22bを設けた構成とすれば、各給気側空気熱交換器12の冷媒出入口の他方と高圧液管Bと低圧液管Aとの接続切換の制御と、熱源側水熱交換器14の冷媒出入口の他方と高圧液管Bと低圧液管Aとの接続切換の制御と、が各々不要で、かつ高価な3方弁や電磁開閉弁を使わずに済み、コストダウンを図れる。なお、図示省略するが、膨張弁20を電子膨張弁とした場合は、圧縮機19の冷媒温度と冷媒圧力により膨張弁操作を行い制御する。開閉弁24、23a、23b、25は電磁弁などを用いる。熱源側水熱交換器14は、たとえば幾枚もの伝熱板(プレート)を重ねその伝熱板と伝熱板の間を熱源水と2つの冷媒が交互に流れて互いに熱交換するように構成されたプレート式熱交換器とする。この水冷ヒートポンプの給気側空気熱交換器12にて空調用空気を冷却又は加熱し、冷房運転と暖房運転を切換自在に行い、各ゾーンに給気して空調する。   One of the refrigerant inlets and outlets of each air supply side air heat exchanger 12 is branched and connected to the high-pressure gas pipe D and the low-pressure gas pipe C via the open / close valves 23a and 23b, and is connected to the high-pressure gas pipe D and the low-pressure gas pipe C. The other refrigerant inlet / outlet of each air supply side air heat exchanger 12 is branched and connected to the high pressure liquid pipe B and the low pressure liquid pipe A, and the high pressure liquid is connected to the third branch pipe on the high pressure liquid pipe side. A third check valve 22a for flowing the refrigerant only in the pipe direction is provided, and a fourth check valve 22b for flowing the refrigerant only in the direction of the air supply side air heat exchanger is provided in the fourth branch pipe on the low pressure liquid pipe side. The high-pressure liquid pipe B and the low-pressure liquid pipe A are switchably connected, and an on-off valve 24 is provided between the other refrigerant inlet / outlet of each air supply side air heat exchanger 12 and the third and fourth branch pipes, The high pressure liquid pipe B and the low pressure liquid pipe A are connected via the expansion valve 20. If the first, second, third, and fourth check valves 21a, 21b, 22a, and 22b are thus provided, the other refrigerant inlet / outlet of each air supply side air heat exchanger 12 and the high-pressure liquid pipe are provided. Control of connection switching between B and the low-pressure liquid pipe A, and control of connection switching between the other refrigerant inlet / outlet of the heat source side water heat exchanger 14, the high-pressure liquid pipe B, and the low-pressure liquid pipe A are not necessary, and This eliminates the need for expensive three-way valves and electromagnetic on-off valves, thus reducing costs. Although not shown, when the expansion valve 20 is an electronic expansion valve, the expansion valve is operated and controlled by the refrigerant temperature and the refrigerant pressure of the compressor 19. As the on-off valves 24, 23a, 23b, 25, electromagnetic valves or the like are used. The heat source side water heat exchanger 14 is configured such that, for example, a number of heat transfer plates (plates) are stacked and heat source water and two refrigerants alternately flow between the heat transfer plates and the heat transfer plates to exchange heat with each other. A plate heat exchanger is used. The air-conditioning air is cooled or heated by the air supply side air heat exchanger 12 of this water-cooled heat pump, and the cooling operation and the heating operation can be switched freely to supply air to each zone for air conditioning.

この水冷ヒートポンプ式空調機3で冷房運転する場合は、熱源側水熱交換器14の冷媒出入口の一方の高圧ガス管側の開閉弁23aを開および低圧ガス管側の開閉弁23bを閉にし、2つの給気側空気熱交換器12の冷媒出入口の一方の高圧ガス管側の開閉弁23aを閉および低圧ガス管側の開閉弁23bを開にし、開閉弁24、25を開にする。これにより冷媒が、圧縮機19から高圧ガス状態で熱源側水熱交換器14に流れ、凝縮して高圧液状態で膨張弁20に流れ、減圧して低圧液状態で一方の給気側空気熱交換器12と他方の給気側空気熱交換器12に分流し、各々蒸発して低圧ガス状態で合流して圧縮機19に戻り、このサイクルを繰返す。このようにして給気側空気熱交換器12にて給気用空気を冷却して冷房運転を行うが、一方の給気側空気熱交換器12のみ冷房運転する場合は、運転側の開閉弁24を開および停止側の開閉弁24を閉にする。   When performing cooling operation with this water-cooled heat pump type air conditioner 3, the high-pressure gas pipe side on-off valve 23a on the refrigerant inlet / outlet of the heat source side water heat exchanger 14 is opened and the low-pressure gas pipe on-off valve 23b is closed, The on-off valve 23a on the high-pressure gas pipe side of the refrigerant inlet / outlet of the two supply-side air heat exchangers 12 is closed, the on-off valve 23b on the low-pressure gas pipe side is opened, and the on-off valves 24 and 25 are opened. As a result, the refrigerant flows from the compressor 19 to the heat source side water heat exchanger 14 in the high pressure gas state, condenses and flows to the expansion valve 20 in the high pressure liquid state, and is decompressed to one of the air supply side air heat in the low pressure liquid state. The flow is divided into the exchanger 12 and the other air supply side air heat exchanger 12, and each of them is evaporated and merged in a low-pressure gas state to return to the compressor 19, and this cycle is repeated. In this way, the supply air air heat exchanger 12 cools the supply air and performs the cooling operation. When only one of the supply air air heat exchangers 12 performs the cooling operation, the operation side on-off valve is operated. 24 is opened and the on-off valve 24 on the stop side is closed.

次に暖房運転する場合は、熱源側水熱交換器14の冷媒出入口の一方の高圧ガス管側の開閉弁23aを閉および低圧ガス管側の開閉弁23bを開にし、2つの給気側空気熱交換器12の冷媒出入口の一方の高圧ガス管側の開閉弁23aを開および低圧ガス管側の開閉弁23bを閉にし、開閉弁24、25を開にする。これにより冷媒が、圧縮機19から高圧ガス状態で一方の給気側空気熱交換器12と他方の給気側空気熱交換器12に分流し、各々凝縮して高圧液状態で合流して膨張弁20に流れ、減圧して低圧液状態で熱源側水熱交換器14に流れ、蒸発して低圧ガス状態で圧縮機19に戻り、このサイクルを繰返す。このようにして給気側空気熱交換器12にて給気用空気を加熱して暖房運転を行うが、一方の給気側空気熱交換器12のみ暖房運転する場合は、運転側の開閉弁24を開および停止側の開閉弁24を閉にする。   Next, when heating operation is performed, two supply-side air is formed by closing one high-pressure gas pipe side opening / closing valve 23a and opening the low-pressure gas pipe side opening / closing valve 23b at the refrigerant inlet / outlet of the heat source side water heat exchanger 14. The on / off valve 23a on the high pressure gas pipe side of the refrigerant inlet / outlet of the heat exchanger 12 is opened, the on / off valve 23b on the low pressure gas pipe side is closed, and the on / off valves 24 and 25 are opened. As a result, the refrigerant is diverted from the compressor 19 to the one air supply side air heat exchanger 12 and the other air supply side air heat exchanger 12 in the high pressure gas state, and condenses and expands by condensing in the high pressure liquid state. It flows to the valve 20, is decompressed and flows to the heat source side water heat exchanger 14 in the low pressure liquid state, evaporates and returns to the compressor 19 in the low pressure gas state, and this cycle is repeated. In this way, the supply air air heat exchanger 12 heats the supply air to perform the heating operation, but when only one supply air air heat exchanger 12 performs the heating operation, the operation side on-off valve 24 is opened and the on-off valve 24 on the stop side is closed.

次に、暖房運転と冷房運転を同時にし暖房負荷と冷房負荷に差があり冷房負荷の方が大きい場合は、熱源側水熱交換器14の冷媒出入口の一方の高圧ガス管側の開閉弁23aを開および低圧ガス管側の開閉弁23bを閉にし、一方の給気側空気熱交換器12の冷媒出入口の一方の高圧ガス管側の開閉弁23aを開および低圧ガス管側の開閉弁23bを閉にし、他方の給気側空気熱交換器12の冷媒出入口の一方の高圧ガス管側の開閉弁23aを閉および低圧ガス管側の開閉弁23bを開にし、開閉弁24、25を開にする。これにより冷媒が、圧縮機19から高圧ガス状態で熱源側水熱交換器14と一方の給気側空気熱交換器12に分流し、各々凝縮して高圧液状態で合流して膨張弁20に流れ、減圧して低圧液状態で他方の給気側空気熱交換器12に流れ、蒸発して低圧ガス状態で圧縮機19に戻り、このサイクルを繰返す。このようにして一方の給気側空気熱交換器12にて給気用空気を加熱して暖房運転を行い、他方の給気側空気熱交換器12にて給気用空気を冷却して冷房運転を行う。   Next, when the heating operation and the cooling operation are performed at the same time and there is a difference between the heating load and the cooling load and the cooling load is larger, the on-off valve 23a on the one high-pressure gas pipe side of the refrigerant inlet / outlet of the heat source side water heat exchanger 14 Open and close the open / close valve 23b on the low pressure gas pipe side, open the open / close valve 23a on the high pressure gas pipe side of the refrigerant inlet / outlet of one supply side air heat exchanger 12, and open / close valve 23b on the low pressure gas pipe side Is closed, one open / close valve 23a on the high pressure gas pipe side of the refrigerant inlet / outlet of the other air supply side air heat exchanger 12 is closed, and the open / close valve 23b on the low pressure gas pipe side is opened, and the open / close valves 24 and 25 are opened. To. As a result, the refrigerant is split from the compressor 19 into the heat source side water heat exchanger 14 and one of the air supply side air heat exchangers 12 in a high pressure gas state, condensed and joined in the high pressure liquid state to the expansion valve 20. Flow, depressurize and flow to the other air supply side air heat exchanger 12 in the low pressure liquid state, evaporate and return to the compressor 19 in the low pressure gas state, and repeat this cycle. In this way, one of the air supply side air heat exchangers 12 heats the air for supply air to perform a heating operation, and the other air supply side air heat exchanger 12 cools the air for supply air and cools it. Do the driving.

次に、暖房運転と冷房運転を同時にし暖房負荷と冷房負荷に差があり暖房負荷の方が大きい場合は、熱源側水熱交換器14の冷媒出入口の一方の高圧ガス管側の開閉弁23aを閉および低圧ガス管側の開閉弁23bを開にし、一方の給気側空気熱交換器12の冷媒出入口の一方の高圧ガス管側の開閉弁23aを開および低圧ガス管側の開閉弁23bを閉にし、他方の給気側空気熱交換器12の冷媒出入口の一方の高圧ガス管側の開閉弁23aを閉および低圧ガス管側の開閉弁23bを開にし、開閉弁24、25を開にする。これにより冷媒が、圧縮機19から高圧ガス状態で一方の給気側空気熱交換器12に流れ、凝縮して高圧液状態で膨張弁20に流れ、減圧して低圧液状態で熱源側水熱交換器14と他方の給気側空気熱交換器12に分流し、各々蒸発して低圧ガス状態で合流して圧縮機19に戻り、このサイクルを繰返す。このようにして一方の給気側空気熱交換器12にて給気用空気を加熱して暖房運転を行い、他方の給気側空気熱交換器12にて給気用空気を冷却して冷房運転を行う。また、冷暖同時運転で、暖房負荷と冷房負荷が釣り合う場合、開閉弁25を閉にすることにより、熱源側水熱交換器14を使わずに冷暖房同時運転を行えて省エネとなる。   Next, when the heating operation and the cooling operation are performed at the same time and there is a difference between the heating load and the cooling load and the heating load is larger, the on-off valve 23a on the one high-pressure gas pipe side of the refrigerant inlet / outlet of the heat source side water heat exchanger 14 Is closed and the open / close valve 23b on the low-pressure gas pipe side is opened, the open / close valve 23a on the high-pressure gas pipe side of the refrigerant inlet / outlet of the one air supply side air heat exchanger 12 is opened, and the open / close valve 23b on the low-pressure gas pipe side Is closed, one open / close valve 23a on the high pressure gas pipe side of the refrigerant inlet / outlet of the other air supply side air heat exchanger 12 is closed, and the open / close valve 23b on the low pressure gas pipe side is opened, and the open / close valves 24 and 25 are opened. To. Thus, the refrigerant flows from the compressor 19 to the one air supply side air heat exchanger 12 in the high pressure gas state, condenses and flows to the expansion valve 20 in the high pressure liquid state, and decompresses to heat source side water heat in the low pressure liquid state. The flow is divided into the exchanger 14 and the other air supply side air heat exchanger 12, and each of them is evaporated and merged in a low-pressure gas state to return to the compressor 19, and this cycle is repeated. In this way, one of the air supply side air heat exchangers 12 heats the air for supply air to perform a heating operation, and the other air supply side air heat exchanger 12 cools the air for supply air and cools it. Do the driving. Further, when the heating load and the cooling load are balanced in the cooling and heating simultaneous operation, by closing the on-off valve 25, the cooling and heating simultaneous operation can be performed without using the heat source side water heat exchanger 14, thereby saving energy.

なお、給気側空気熱交換器12と開閉弁24、23a、23bと第三・第四逆止弁22a、22bの数の増減や、開閉弁25を省略するも自由である。また、給気側空気熱交換器12の冷媒出入口の一方を、高圧ガス管Dと低圧ガス管Cとに三方弁を介して分岐接続して、高圧ガス管Dと低圧ガス管Cに切換自在に接続したり、熱源側水熱交換器14の冷媒出入口の一方を、高圧ガス管Dと低圧ガス管Cとに三方弁を介して分岐接続して、高圧ガス管Dと低圧ガス管Cに切換自在に接続してもよい。同様に、給気側空気熱交換器12の冷媒出入口の他方を、高圧液管Bと低圧液管Aとに三方弁を介して分岐接続して、高圧液管Bと低圧液管Aに切換自在に接続したり、熱源側水熱交換器14の冷媒出入口の他方を、高圧液管Bと低圧液管Aとに三方弁を介して分岐接続して、高圧液管Bと低圧液管Aに切換自在に接続してもよい。   The number of the supply air air heat exchanger 12, the on-off valves 24, 23a, 23b, the third and fourth check valves 22a, 22b can be increased or decreased, and the on-off valve 25 can be omitted. One of the refrigerant inlets and outlets of the air supply side air heat exchanger 12 is branched and connected to the high-pressure gas pipe D and the low-pressure gas pipe C via a three-way valve so that the high-pressure gas pipe D and the low-pressure gas pipe C can be switched. Or one of the refrigerant inlets and outlets of the heat source side water heat exchanger 14 is branched and connected to the high pressure gas pipe D and the low pressure gas pipe C via a three-way valve to connect the high pressure gas pipe D and the low pressure gas pipe C to each other. You may connect so that switching is possible. Similarly, the other refrigerant inlet / outlet of the air supply side air heat exchanger 12 is branched and connected to the high pressure liquid pipe B and the low pressure liquid pipe A via a three-way valve, and switched to the high pressure liquid pipe B and the low pressure liquid pipe A. The other side of the refrigerant inlet / outlet of the heat source side water heat exchanger 14 is branched and connected to the high pressure liquid pipe B and the low pressure liquid pipe A via a three-way valve so that the high pressure liquid pipe B and the low pressure liquid pipe A are connected. May be connected to be switchable.

図4は本発明の第2の実施例で、この水冷ヒートポンプ式地中熱利用空調システムは、水槽1と、空気を分流させて複数のゾーンへ個別に風量制御自在として給気する水冷ヒートポンプ式空調機3と、地中熱にて水温調節する地中熱交換器9と、を熱源水が循環するように配管したもので、地中熱交換器9で調節した水温が所定範囲外のときに水槽1の水温を調節する補助熱源機5を、設けている。熱源水は、送水ポンプにより流量調節自在として矢印方向に送られて水冷ヒートポンプ式空調機3の熱源側水熱交換器14にて熱交換された後、地中熱交換器9にて水温調節されて水槽1に戻り、これらを循環する。補助熱源機5としてはボイラー、チラー、電気ヒーターや太陽熱温水器など加熱や冷却の自在な各種機器を用いることができ、地中熱交換器9で調整した水温が所定水温以下の場合には補助熱源機5にて加熱し所定範囲内に調節するので熱源水の凍結防止も図れて不凍液を使わずに済む。水冷ヒートポンプ式空調機3と地中熱交換器9は前記実施例と同様のものであるので説明は省略する。   FIG. 4 shows a second embodiment of the present invention. This water-cooled heat pump type ground heat-use air-conditioning system is a water-cooled heat pump type that divides the water into the water tank 1 and supplies the air to a plurality of zones individually for controllable air volume. When the heat source water is circulated through the air conditioner 3 and the underground heat exchanger 9 that adjusts the water temperature by underground heat, and the water temperature adjusted by the underground heat exchanger 9 is outside a predetermined range. An auxiliary heat source machine 5 for adjusting the water temperature of the water tank 1 is provided. The heat source water is sent in the direction of the arrow so that the flow rate can be adjusted by a water pump, and after heat exchange is performed in the heat source side water heat exchanger 14 of the water-cooled heat pump type air conditioner 3, the water temperature is adjusted in the underground heat exchanger 9. Return to the water tank 1 and circulate them. As the auxiliary heat source device 5, various devices that can be freely heated and cooled such as a boiler, a chiller, an electric heater, and a solar water heater can be used. When the water temperature adjusted by the underground heat exchanger 9 is lower than a predetermined water temperature, the auxiliary heat source device 5 is assisted. The heat source device 5 is heated and adjusted within a predetermined range, so that the heat source water can be prevented from freezing and the use of an antifreeze liquid can be avoided. Since the water-cooled heat pump type air conditioner 3 and the underground heat exchanger 9 are the same as those in the above embodiment, the description is omitted.

図5は本発明の第3の実施例で、この水冷ヒートポンプ式地中熱利用空調システムは、第1と第2の水槽1a、1bと、この第1水槽1aから第2水槽1bへ水を送る熱源水回路2と、この熱源水回路2の水が通水されると共に空気を分流させて複数のゾーンへ個別に風量制御自在として給気する水冷ヒートポンプ式空調機3と、第2水槽1bから第1水槽1aへ水を流量調節自在に送りかつ地熱にて水温調節する地熱交換水路4と、を備え、第2水槽1bと第1水槽1aをバイパス水路8にて連通すると共にこのバイパス水路8に開閉弁10を設け、地熱交換水路4で調節した水温が所定範囲外のときに第1水槽1aの水温を調節する補助熱源機5を、設けている。水冷ヒートポンプ式空調機3と地中熱交換器9と補助熱源機5は前記実施例と同様のものであるので説明は省略する。   FIG. 5 shows a third embodiment of the present invention. This water-cooled heat pump type geothermal heat-use air conditioning system supplies water to the first and second water tanks 1a and 1b and from the first water tank 1a to the second water tank 1b. A heat source water circuit 2 to be sent, a water-cooled heat pump air conditioner 3 through which the water of the heat source water circuit 2 is passed and the air is diverted and individually supplied to a plurality of zones so that the air volume can be controlled, and a second water tank 1b And a geothermal heat exchange water channel 4 for controlling the water temperature by geothermal heat and supplying water to the first water tank 1a in a flow-adjustable manner. The second water tank 1b and the first water tank 1a are communicated by a bypass water channel 8 and this bypass water channel 8 is provided with an on-off valve 10 and an auxiliary heat source device 5 for adjusting the water temperature of the first water tank 1a when the water temperature adjusted in the geothermal exchange channel 4 is outside a predetermined range. Since the water-cooled heat pump type air conditioner 3, the underground heat exchanger 9, and the auxiliary heat source unit 5 are the same as those in the above embodiment, the description thereof is omitted.

熱源水回路2は、往き管2aと返り管2bと送水ポンプ6とを備え、第1水槽1aと水冷ヒートポンプ式空調機3を往き管2aを介して、第2水槽1bと水冷ヒートポンプ式空調機3を返り管2bを介して通水自在に連通させる。熱源水は、送水ポンプ6により流量調節自在として第1水槽1aから矢印方向に送られて、往き管2aから空調機3に入り、水冷ヒートポンプにて熱交換された後、返り管2bに出て第2水槽1bに出る。地熱交換水路4は、往き管4aと返り管4bと送水ポンプ7と地中熱交換器9とを備え、第2水槽1bと地中熱交換器9を往き管4aを介して、第1水槽1aと地中熱交換器9を返り管4bを介して通水自在に連通させる。熱源水は、送水ポンプ7により流量調節自在として第2水槽1bから矢印方向に送られて、往き管4aから地中熱交換器9に入り、地中熱にて熱交換された後、返り管4bに出て第1水槽1aに出る。   The heat source water circuit 2 includes a forward pipe 2a, a return pipe 2b, and a water pump 6. The first water tank 1a and the water-cooled heat pump air conditioner 3 are connected to the second water tank 1b and the water-cooled heat pump air conditioner via the forward pipe 2a. 3 is made to communicate freely through the return pipe 2b. The heat source water is sent from the first water tank 1a in the direction of the arrow so that the flow rate can be adjusted by the water pump 6, enters the air conditioner 3 from the forward pipe 2a, is heat-exchanged by the water-cooled heat pump, and then goes out to the return pipe 2b. It goes out to the 2nd water tank 1b. The geothermal exchange water channel 4 includes a forward pipe 4a, a return pipe 4b, a water pump 7, and a ground heat exchanger 9, and the second water tank 1b and the ground heat exchanger 9 are connected to the first water tank via the forward pipe 4a. 1a and the underground heat exchanger 9 are communicated freely through the return pipe 4b. The heat source water is sent from the second water tank 1b in the direction of the arrow so that the flow rate can be adjusted by the water pump 7, enters the underground heat exchanger 9 from the forward pipe 4a, and is exchanged by underground heat. It goes out to 4b and goes out to the 1st water tank 1a.

たとえば、空調機の通常運転では、開閉弁10を閉じて第1と第2の水槽1a、1bの水を熱源水回路2と地熱交換水路4の間で循環させる。空調機運転の負荷状態に応じて、第1と第2の水槽1a、1bと熱源水回路2の間だけで熱源水を循環させる場合には送水ポンプ7を止めて開閉弁10を開放すればよく、また空調機運転前に熱源水を所定水温範囲にするためにウォーミングアップする場合などのように水槽1a、1bと地熱交換水路4の間だけで熱源水を循環させるには送水ポンプ6を止めて開閉弁10を開放すればよく、無駄な搬送動力を使わずに済む。   For example, in the normal operation of the air conditioner, the on-off valve 10 is closed to circulate the water in the first and second water tanks 1a, 1b between the heat source water circuit 2 and the geothermal exchange water channel 4. If the heat source water is circulated only between the first and second water tanks 1a, 1b and the heat source water circuit 2 according to the load condition of the air conditioner operation, the water supply pump 7 is stopped and the on-off valve 10 is opened. Well, to circulate the heat source water only between the water tanks 1a, 1b and the geothermal exchange water channel 4 as in the case of warming up to bring the heat source water into a predetermined water temperature range before operating the air conditioner, the water pump 6 is stopped. Thus, it is sufficient to open the on-off valve 10 and useless transport power is not required.

なお、前記各実施例において水冷ヒートポンプ式空調機3の構造の変更は自由で給気側送風路15の数の増減は自由で1つのみとするも自由である。   In each of the above-described embodiments, the structure of the water-cooled heat pump type air conditioner 3 can be freely changed, and the number of the air supply side air passages 15 can be freely increased or decreased.

水冷ヒートポンプ式地中熱利用空調システムの第1の実施例。1st Example of a water-cooled heat pump type ground heat utilization air conditioning system. 水冷ヒートポンプ式空調機の正面図。The front view of a water cooling heat pump type air conditioner. 水冷ヒートポンプの簡略説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 水冷ヒートポンプ式地中熱利用空調システムの第2の実施例。The 2nd Example of a water-cooling heat pump type underground heat utilization air-conditioning system. 水冷ヒートポンプ式地中熱利用空調システムの第3の実施例。3rd Example of a water-cooled heat pump type underground heat utilization air-conditioning system.

符号の説明Explanation of symbols

1 水槽
1a 第1水槽
1b 第2水槽
2 熱源水回路
3 水冷ヒートポンプ式空調機
4 地熱交換水路
5 補助熱源機
8 バイパス路
9 地中熱交換器
10 開閉弁
11 ケーシング
12 給気側空気熱交換器
14 熱源側水熱交換器
15 給気側送風路
19 圧縮機
20 膨張弁
A 低圧液管
B 高圧液管
C 低圧ガス管
D 高圧ガス管
DESCRIPTION OF SYMBOLS 1 Water tank 1a 1st water tank 1b 2nd water tank 2 Heat source water circuit 3 Water-cooled heat pump type air conditioner 4 Geothermal exchange water channel 5 Auxiliary heat source device 8 Bypass channel 9 Ground heat exchanger 10 On-off valve 11 Casing 12 Supply side air heat exchanger 14 Heat source side water heat exchanger 15 Supply air side air passage 19 Compressor 20 Expansion valve A Low pressure liquid pipe B High pressure liquid pipe C Low pressure gas pipe D High pressure gas pipe

Claims (3)

第1と第2の水槽(1a、1b)と、この第1水槽(1a)から前記第2水槽(1b)へ水を送る熱源水回路(2)と、この熱源水回路(2)の水が通水されると共に空気を分流させて複数のゾーンへ個別に風量制御自在として給気する水冷ヒートポンプ式空調機(3)と、前記第2水槽(1b)から前記第1水槽(1a)へ水を流量調節自在に送りかつ地熱にて水温調節する地熱交換水路(4)と、を備え、前記第2水槽(1b)と前記第1水槽(1a)をバイパス水路(8)にて連通すると共にこのバイパス水路(8)に開閉弁(10)を設けたことを特徴とする水冷ヒートポンプ式地中熱利用空調システム。 First and second water tanks (1a, 1b), a heat source water circuit (2) for sending water from the first water tank (1a) to the second water tank (1b), and water in the heat source water circuit (2) And a water-cooled heat pump air conditioner (3) for supplying air to each of the plurality of zones for individually controlling the air volume, and from the second water tank (1b) to the first water tank (1a). A geothermal exchange water channel (4) that feeds water with adjustable flow rate and adjusts the water temperature by geothermal heat, and communicates the second water tank (1b) and the first water tank (1a) with a bypass water channel (8). In addition , a water-cooled heat pump type underground heat-use air conditioning system characterized in that an open / close valve (10) is provided in the bypass water channel (8) . 地熱交換水路(4)で調節した水温が所定範囲外のときに第1水槽(1a)の水温を調節する補助熱源機(5)を、設けた請求項1記載の水冷ヒートポンプ式地中熱利用空調システム。The water-cooled heat pump type ground heat utilization according to claim 1, further comprising an auxiliary heat source device (5) for adjusting the water temperature of the first water tank (1a) when the water temperature adjusted in the geothermal exchange channel (4) is outside a predetermined range. Air conditioning system. 水冷ヒートポンプ式空調機(3)のケーシング(11)内に、複数の給気側送風路(15…)を備え、この各給気側送風路(15)ごとに個別に冷媒蒸発・冷媒凝縮切換自在な給気側空気熱交換器(12)を設け、前記水冷ヒートポンプ式空調機(3)の水冷ヒートポンプが、循環冷媒の蒸発工程と凝縮工程を行う熱源側水熱交換器(14)及び複数の給気側空気熱交換器(12…)と、循環冷媒を圧縮する圧縮機(19)と、循環冷媒を膨張させる膨張弁(20)と、低圧液管(A)及び高圧液管(B)と、低圧ガス管(C)と高圧ガス管(D)と、を少なくとも備え、前記圧縮機(19)の冷媒出口を前記高圧ガス管(D)に接続すると共に前記圧縮機(19)の冷媒入口を前記低圧ガス管(C)に接続し、前記熱源側水熱交換器(14)の冷媒出入口の一方を、前記高圧ガス管(D)と前記低圧ガス管(C)に切換自在に接続し、前記熱源側水熱交換器(14)の冷媒出入口の他方を、前記高圧液管(B)と前記低圧液管(A)に切換自在に接続し、前記各給気側空気熱交換器(12)の冷媒出入口の一方を、前記高圧ガス管(D)と前記低圧ガス管(C)に切換自在に接続し、前記各給気側空気熱交換器(12)の冷媒出入口の他方を、前記高圧液管(B)と前記低圧液管(A)に切換自在に接続し、前記高圧液管(B)と前記低圧液管(A)とを前記膨張弁(20)を介して接続した請求項1又は2記載の水冷ヒートポンプ式地中熱利用空調システム。 A plurality of air supply side air passages (15) are provided in the casing (11) of the water-cooled heat pump air conditioner (3), and refrigerant evaporation / refrigerant condensation switching is individually performed for each air supply side air passage (15). A free air supply side air heat exchanger (12) is provided, and the water-cooled heat pump of the water-cooled heat pump type air conditioner (3) includes a heat-source-side water heat exchanger (14) for performing an evaporation process and a condensation process of the circulating refrigerant, and a plurality of , A compressor (19) for compressing the circulating refrigerant, an expansion valve (20) for expanding the circulating refrigerant, a low-pressure liquid pipe (A), and a high-pressure liquid pipe (B ), A low-pressure gas pipe (C), and a high-pressure gas pipe (D), the refrigerant outlet of the compressor (19) is connected to the high-pressure gas pipe (D), and the compressor (19) A refrigerant inlet is connected to the low-pressure gas pipe (C), and the heat source side water heat exchanger (14 One of the refrigerant inlets and outlets is switchably connected to the high pressure gas pipe (D) and the low pressure gas pipe (C), and the other refrigerant inlet and outlet of the heat source side water heat exchanger (14) is connected to the high pressure liquid pipe. (B) and the low pressure liquid pipe (A) are switchably connected, and one of the refrigerant inlets and outlets of each of the air supply side air heat exchangers (12) is connected to the high pressure gas pipe (D) and the low pressure gas pipe ( C), and the other refrigerant inlet / outlet of each air supply side air heat exchanger (12) is switchably connected to the high pressure liquid pipe (B) and the low pressure liquid pipe (A), The water-cooled heat pump type underground heat utilization air conditioning system according to claim 1 or 2, wherein the high-pressure liquid pipe (B) and the low-pressure liquid pipe (A) are connected via the expansion valve (20) .
JP2005042090A 2005-02-18 2005-02-18 Water-cooled heat pump type ground-heated air conditioning system Active JP4203758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005042090A JP4203758B2 (en) 2005-02-18 2005-02-18 Water-cooled heat pump type ground-heated air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005042090A JP4203758B2 (en) 2005-02-18 2005-02-18 Water-cooled heat pump type ground-heated air conditioning system

Publications (2)

Publication Number Publication Date
JP2006226627A JP2006226627A (en) 2006-08-31
JP4203758B2 true JP4203758B2 (en) 2009-01-07

Family

ID=36988151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005042090A Active JP4203758B2 (en) 2005-02-18 2005-02-18 Water-cooled heat pump type ground-heated air conditioning system

Country Status (1)

Country Link
JP (1) JP4203758B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100846128B1 (en) 2007-02-27 2008-07-14 주식회사 탑솔 A geothmal heat-pump system
JP6351199B2 (en) * 2010-10-21 2018-07-04 楊 泰和 Temperature equalization system for semiconductor application equipment
KR101164360B1 (en) 2010-11-10 2012-08-02 이상훈 Heat pump apparatus comprising vapor injection compressor
CN102338504B (en) * 2011-10-17 2013-03-06 浙江理工大学 Absorption-compression type dual-temperature second-kind heat pump system
DE202012100119U1 (en) * 2012-01-13 2013-04-22 Tempra-Tech Gmbh heat pump system
KR101186903B1 (en) 2012-05-03 2012-10-09 에너지귀뚜라미(주) Hybrid for heat pump system of control method
CN103629863B (en) * 2012-08-20 2015-11-18 中国移动通信集团公司 A kind of refrigeration system, device and method

Also Published As

Publication number Publication date
JP2006226627A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
JP3997482B2 (en) Water source air conditioning system
JP4203758B2 (en) Water-cooled heat pump type ground-heated air conditioning system
JP6644154B2 (en) Air conditioner
JP2005299935A (en) Air conditioner
JP2006292313A (en) Geothermal unit
WO2010137078A1 (en) Refrigeration cycle device and air-conditioning device
EP2541169A1 (en) Air conditioner and air-conditioning hot-water-supplying system
KR101706865B1 (en) Air conditioning system
JP2006258406A (en) Water cooled heat pump type subterranean heat utilizing air conditioning system
JP4182494B2 (en) Large temperature difference air conditioning system
JP4434821B2 (en) Air conditioner
EP2541170A1 (en) Air-conditioning hot-water-supply system
KR20190087200A (en) Module type hybrid outdoor unit for air conditioning apparatus
JP2006162207A (en) Ground heat utilizing water cooled heat pump air conditioning system
KR20040094101A (en) By-pass device with variable flow rate of multi air-conditioner system
KR20180076397A (en) Automotive air conditioning system
US20210063092A1 (en) Heat transfer circuit with flow dependent heat exchanger
KR20060061695A (en) Cooling and heating system
CA3028624C (en) Central air conditioning and heat pump system with energy efficient arrangement
KR100860047B1 (en) Apparatus and method for cooling and heating water using heat pump
KR101561133B1 (en) Heating and cooling devices with dehumidification function
KR101642437B1 (en) Cooling and heating system
KR101339297B1 (en) Multifunctional heat pump system using the geothermal heat
KR20120093668A (en) Heat pump system for vehicle
KR102128497B1 (en) Data center indoor cooling system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080917

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4203758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250