JP2006258406A - Water cooled heat pump type subterranean heat utilizing air conditioning system - Google Patents

Water cooled heat pump type subterranean heat utilizing air conditioning system Download PDF

Info

Publication number
JP2006258406A
JP2006258406A JP2005080581A JP2005080581A JP2006258406A JP 2006258406 A JP2006258406 A JP 2006258406A JP 2005080581 A JP2005080581 A JP 2005080581A JP 2005080581 A JP2005080581 A JP 2005080581A JP 2006258406 A JP2006258406 A JP 2006258406A
Authority
JP
Japan
Prior art keywords
air
heat exchanger
heat
water
temperature control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005080581A
Other languages
Japanese (ja)
Inventor
Katsuhiro Urano
勝博 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimura Kohki Co Ltd
Original Assignee
Kimura Kohki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimura Kohki Co Ltd filed Critical Kimura Kohki Co Ltd
Priority to JP2005080581A priority Critical patent/JP2006258406A/en
Publication of JP2006258406A publication Critical patent/JP2006258406A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Central Air Conditioning (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water cooled heat pump type subterranean heat utilizing air conditioning system capable of controlling temperature in a plurality of spaces to be air-conditioned having different temperature control zones at low cost and of eliminating waste in facilities and operation to reduce cost. <P>SOLUTION: Piping is performed to circulate a heat medium in a heat source side water heat exchanger of a water cooled heat pump type air conditioner 3 and a subterranean heat exchanger for adjusting temperature of the heat medium by subterranean heat. A plurality of air supply side air heat exchangers 12 of the water cooled heat pump type air conditioner 3 are used in common in the heat source side water heat exchanger 14. The plurality of air supply side air heat exchangers 12 are classified into the heat exchanger for controlling low temperature and the heat exchanger for controlling high temperature, are mutually communicated to supply air cooled by the air supply side air heat exchanger 12 for controlling low temperature into a low temperature control side space L to be air-conditioned, and are mutually communicated to supply air heated by the air supply side air heat exchanger 12 for controlling high temperature into a high temperature control side space H to be air-conditioned. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は水冷ヒートポンプ式地中熱利用空調システムに関するものである。   The present invention relates to a water-cooled heat pump type underground heat utilization air conditioning system.

温室や穀物類の低温倉庫などの農産物対象の空調や、方位により日射負荷が大幅に異なる建物の空調は、通常よりも制御すべき温度範囲が広く、各々専用の空調機を用いて加熱や冷却を行い温度制御している。ところが、このような温度制御域の異なる複数の被空調空間がある場合、各々の被空調空間ごとに空調機を設置しなければならず設備コストと運転コストが高くなる問題がある。   Air conditioning for agricultural products such as greenhouses and low-temperature warehouses for grains, and air conditioning for buildings where the solar radiation load varies greatly depending on the orientation, have a wider temperature range to be controlled than usual. The temperature is controlled. However, when there are a plurality of air-conditioned spaces having different temperature control areas, an air conditioner must be installed for each air-conditioned space, resulting in a problem that the equipment cost and the operating cost are increased.

特開2002−267283号公報JP 2002-267283 A 特開昭61−110859号公報JP-A-61-110859

また、熱源側熱交換器と圧縮機と複数の給気側熱交換器を備え、例えば一方の給気側熱交換器で空気冷却(冷房)し、他方の給気側熱交換器で空気加熱(暖房)できる空調用ヒートポンプ回路として、特開昭61−110859号公報のものがある。これは、圧縮機の冷媒出口を高圧ガス管に、冷媒入口を低圧ガス管に接続し、熱源側熱交換器の冷媒出入口の一方を、高圧ガス管と低圧ガス管に切換自在に接続し、熱源側熱交換器の冷媒出入口の他方を膨張弁を介して液管に接続し、各給気側熱交換器の冷媒出入口の一方を、高圧ガス管と低圧ガス管に切換自在に接続し、各給気側熱交換器の冷媒出入口の他方を、膨張弁を介して液管に接続し、構成している。このような構成では、熱交換器毎に膨張弁が必要となり回路が複雑で製作に手間がかかりコストアップとなる問題がある。また、電子膨張弁を用いた場合、個々の膨張弁制御が必要で制御が複雑となる。   Also, a heat source side heat exchanger, a compressor, and a plurality of air supply side heat exchangers are provided. For example, air cooling (cooling) is performed with one air supply side heat exchanger, and air is heated with the other air supply side heat exchanger. As a heat pump circuit for air conditioning that can be (heated), there is one disclosed in JP-A-61-110859. The refrigerant outlet of the compressor is connected to the high-pressure gas pipe, the refrigerant inlet is connected to the low-pressure gas pipe, and one of the refrigerant inlets and outlets of the heat source side heat exchanger is switchably connected to the high-pressure gas pipe and the low-pressure gas pipe. The other of the refrigerant inlet / outlet of the heat source side heat exchanger is connected to the liquid pipe via an expansion valve, and one of the refrigerant inlet / outlet of each air supply side heat exchanger is connected to the high pressure gas pipe and the low pressure gas pipe in a switchable manner, The other refrigerant inlet / outlet of each air supply side heat exchanger is connected to a liquid pipe via an expansion valve. In such a configuration, there is a problem that an expansion valve is required for each heat exchanger, the circuit is complicated, and it takes time and effort to manufacture. In addition, when an electronic expansion valve is used, individual expansion valve control is required and the control becomes complicated.

本発明は上記課題を解決するため、温度制御域の異なる複数の被空調空間へ給気する水冷ヒートポンプ式空調機における熱源側水熱交換器と、熱媒を地中熱にて温度調節する地中熱交換器と、を熱媒が循環するように配管し、前記水冷ヒートポンプ式空調機の複数の給気側空気熱交換器を前記熱源側水熱交換器にて共用すると共に、複数の前記給気側空気熱交換器を低温制御用と高温制御用に分け、複数の前記被空調空間の低温制御側被空調空間に前記低温制御用給気側空気熱交換器にて冷却された空気が給気されるように連通させると共に、複数の前記被空調空間の高温制御側被空調空間に前記高温制御用給気側空気熱交換器にて加熱された空気が給気されるように連通させたことを最も主要な特徴とする。   In order to solve the above problems, the present invention provides a heat-source-side water heat exchanger in a water-cooled heat pump type air conditioner that supplies air to a plurality of air-conditioned spaces having different temperature control areas, and a ground in which the temperature of the heat medium is adjusted by underground heat. A medium heat exchanger and a piping so that a heat medium circulates, and a plurality of air supply side air heat exchangers of the water-cooled heat pump type air conditioner are shared by the heat source side water heat exchanger, The air supply side air heat exchanger is divided into low temperature control and high temperature control, and the air cooled by the low temperature control air supply side air heat exchanger is placed in the low temperature control side air conditioning space of the plurality of air conditioned spaces. The air is communicated so as to be supplied with air, and the air heated by the high-temperature control supply-side air heat exchanger is connected to the high-temperature control-side air-conditioned spaces of the plurality of air-conditioned spaces. Is the main feature.

請求項1の発明によれば、1台の空調機で温度制御域の異なる複数の被空調空間を温度制御でき、設備コストと運転コストの削減を図り得る。共用の熱源側水熱交換器内で冷媒蒸発と冷媒凝縮が同時に行われる分、省エネとなり、熱源側水熱交換器の負荷ひいては地中熱交換器の設備(能力)を小さくできて、設備コストと運転コストの削減を図れる。しかも地中熱交換器を熱源としているのでボイラーなどの熱源機と比べてCO2の排出がなくクリーンである。熱源側水熱交換器を共用しているので部品点数の削減とコンパクト化を図れる。
請求項2の発明によれば、高価な膨張弁が1つで済み、構造が簡略化されて配管作業などが容易となるので小型化でき、コストダウンを図れ、制御も簡単になる。
請求項3の発明によれば、圧力損失が減少して熱交換効率が向上するので小型の送風機を用いることができ騒音低減を図れる。給気側空気熱交換器も小型化でき空調機をコンパクト化できる。
According to the first aspect of the present invention, it is possible to control the temperature of a plurality of air-conditioned spaces having different temperature control areas with one air conditioner, and to reduce the equipment cost and the operation cost. Energy saving is achieved because refrigerant evaporation and refrigerant condensation are simultaneously performed in the common heat source side water heat exchanger, and the equipment cost can be reduced because the load on the heat source side water heat exchanger and the equipment (capacity) of the underground heat exchanger can be reduced. And reduce operating costs. Moreover, since the underground heat exchanger is used as a heat source, CO2 is not discharged and it is clean as compared with a heat source device such as a boiler. Since the heat source side water heat exchanger is shared, the number of parts can be reduced and the size can be reduced.
According to the invention of claim 2, only one expensive expansion valve is required, the structure is simplified and piping work is facilitated, so that the size can be reduced, the cost can be reduced, and the control is also simplified.
According to the invention of claim 3, since the pressure loss is reduced and the heat exchange efficiency is improved, a small blower can be used and noise can be reduced. The air supply side air heat exchanger can also be miniaturized and the air conditioner can be made compact.

図1〜図4は、本発明の水冷ヒートポンプ式地中熱利用空調システムの一実施例で、実線及び点線の白抜き矢印は風向きを示す。この空調システムは、温度制御域の異なる複数の被空調空間へ給気する水冷ヒートポンプ式空調機3における熱媒を熱源とする熱源側水熱交換器14と、熱媒を地中熱にて温度調節する地中熱交換器9と、を熱媒が循環するように配管したもので、熱源水などの熱媒は、図示省略の送水ポンプにより矢印方向に送られて水冷ヒートポンプ式空調機3の熱源側水熱交換器14にて熱交換された後、地中熱交換器9にて温度調節され、これらを循環する。地中熱交換器9は建物の下の地中や屋外などの地中に埋設して地中熱にて熱媒を熱交換する。図例では、地中熱交換器9は、U字管式を示しているが他のものでもよい。   1-4 is one Example of the water-cooling heat pump type ground-heat utilization air-conditioning system of this invention, A solid line and a dotted line white arrow show a wind direction. This air conditioning system includes a heat source side water heat exchanger 14 that uses a heat medium as a heat source in the water-cooled heat pump type air conditioner 3 that supplies air to a plurality of air-conditioned spaces having different temperature control areas, and the heat medium is heated to underground heat. The ground heat exchanger 9 to be adjusted is piped so that the heat medium circulates, and the heat medium such as heat source water is sent in the direction of the arrow by a water pump (not shown) and is supplied to the water-cooled heat pump air conditioner 3. After heat exchange in the heat source side water heat exchanger 14, the temperature is adjusted in the underground heat exchanger 9, and these are circulated. The underground heat exchanger 9 is buried under the building or underground such as outdoors, and exchanges heat with the underground heat. In the example shown in the drawing, the underground heat exchanger 9 has a U-tube type, but other types may be used.

この水冷ヒートポンプ式空調機3の複数(図例では2つ)の給気側空気熱交換器12…を熱源側水熱交換器14にて共用すると共に、複数の給気側空気熱交換器12を低温制御用と高温制御用に分け、複数の被空調空間の低温制御側被空調空間Lに低温制御用給気側空気熱交換器12にて冷却された空気が給気されるように連通させると共に、複数の被空調空間の高温制御側被空調空間Hに高温制御用給気側空気熱交換器12にて加熱された空気が給気されるように連通させる。なお、低温制御側被空調空間Lの例をあげると茸類や穀物などの保存倉庫などで、高温制御側被空調空間Hを例をあげるとは野菜や果物栽培などの温室などであり、両者L、Hは同一建屋内の異なる階に設ける場合や、互いに隔絶された同一フロアに設ける場合など種々自由である。温度制御域の一例としては、低温制御側被空調空間Lは5℃〜15℃、高温制御側被空調空間Hは20℃〜35℃である。   A plurality of (two in the illustrated example) supply-side air heat exchangers 12 of the water-cooled heat pump air conditioner 3 are shared by the heat source-side water heat exchanger 14 and a plurality of supply-side air heat exchangers 12. Are divided into those for low temperature control and for high temperature control, and communicated so that the air cooled by the low temperature control air supply side air heat exchanger 12 is supplied to the low temperature control side air conditioning space L of the plurality of air conditioned spaces. In addition, the air heated by the high-temperature control air supply side air heat exchanger 12 is communicated with the high-temperature control-side air-conditioned space H of the plurality of air-conditioned spaces. An example of the low-temperature control-side air-conditioned space L is a storage warehouse for potatoes and grains, and an example of the high-temperature control-side air-conditioned space H is a greenhouse for vegetable and fruit cultivation. L and H can be freely used when they are provided on different floors in the same building or when they are provided on the same floor isolated from each other. As an example of the temperature control region, the low-temperature control-side air-conditioned space L is 5 ° C to 15 ° C, and the high-temperature control-side air-conditioned space H is 20 ° C to 35 ° C.

水冷ヒートポンプ式空調機3のケーシング11内には、複数の給気側送風路15…(図例では2つ)を備え、この各給気側送風路15ごとに個別に冷媒蒸発・冷媒凝縮切換自在な給気側空気熱交換器12と送風機13を設けて、1台の水冷ヒートポンプ式空調機3で、低温制御側被空調空間Lで冷房し、高温制御側被空調空間Hで暖房するような冷暖同時運転自在とする。また、加湿器18は必要に応じてケーシング11内又は室内に別置き(図示省略)として湿度調節を行う。低温制御用給気側空気熱交換器12を設けた給気側送風路15には低温制御側被空調空間Lと空気循環するようにダクト等の給気路5と還気路6を介して連通し、高温制御用給気側空気熱交換器12を設けた給気側送風路15には高温制御側被空調空間Hと空気循環するようにダクト等の給気路5と還気路6を介して連通する。ケーシング11には風量制御自在な外気取入口を設け、給気側空気熱交換器12に外気通風されるように給気側送風路15に連通する。排気や換気が必要な場合は排気口16や図示省略の換気扇にて行う。図例では、還気と外気を混合給気しているが、還気循環のみ、あるいは外気の給気のみなどに構成を変更するも自由で、還気や外気、給気はダンパなどにて風量調整自在にするも自由である。   The casing 11 of the water-cooled heat pump type air conditioner 3 is provided with a plurality of air supply side air passages 15 (two in the illustrated example), and refrigerant evaporation / refrigerant condensation switching is individually performed for each air supply side air passage 15. Free air supply side air heat exchanger 12 and blower 13 are provided, and one water-cooled heat pump type air conditioner 3 is used to cool in low-temperature control-side air-conditioned space L and to heat in high-temperature control-side air-conditioned space H. It can be operated at the same time. Further, the humidifier 18 adjusts the humidity as needed separately in the casing 11 or in the room (not shown). The air supply side air passage 15 provided with the low temperature control air supply side air heat exchanger 12 is connected to the low temperature control side air-conditioned space L via an air supply path 5 and a return air path 6 such as a duct. A supply air passage 5 provided with a high temperature control air supply side air heat exchanger 12 is communicated with an air supply passage 5 such as a duct and a return air passage 6 so as to circulate with the high temperature control side air-conditioned space H. Communicate via The casing 11 is provided with an outside air inlet that can control the air volume, and communicates with the air supply side air passage 15 so that the outside air can be ventilated through the air supply side air heat exchanger 12. When exhaust or ventilation is required, the exhaust port 16 or a ventilation fan (not shown) is used. In the example shown, return air and outside air are mixed and supplied, but the configuration can be changed to only return air circulation or outside air supply. The air volume can be adjusted freely.

水冷ヒートポンプ式空調機3の水冷ヒートポンプは、循環冷媒に対して蒸発・圧縮・凝縮・膨張の工程順を繰返し、この循環冷媒と熱交換する空気や熱媒に対して冷媒蒸発工程で吸熱を冷媒凝縮工程で放熱を各々行うもので、循環冷媒の蒸発工程と凝縮工程を行う熱源側水熱交換器14及び複数の給気側空気熱交換器12…と、循環冷媒を圧縮する圧縮機19と、循環冷媒を膨張させる温度自動膨張弁や電子膨張弁などの膨張弁20と、低圧液管A及び高圧液管Bと、低圧ガス管Cと高圧ガス管Dと、を少なくとも備え、圧縮機19の冷媒出口を高圧ガス管Dに接続すると共に圧縮機19の冷媒入口を低圧ガス管Cに接続し、熱源側水熱交換器14の冷媒出入口の一方を、高圧ガス管Dと低圧ガス管Cとに開閉弁23a、23bを介して分岐接続して、高圧ガス管Dと低圧ガス管Cに切換自在に接続し、熱源側水熱交換器14の冷媒出入口の他方を、高圧液管Bと低圧液管Aに分岐接続すると共に、高圧液管側の第一分岐管には高圧液管方向へのみ冷媒を流す第一逆止弁21aを設け、かつ低圧液管側の第二分岐管には熱源側水熱交換器方向へのみ冷媒を流す第二逆止弁21bを設けて、高圧液管Bと低圧液管Aに切換自在に接続し、熱源側水熱交換器14の冷媒出入口の他方と第一・第二分岐管との間に開閉弁25を設ける。   The water-cooled heat pump of the water-cooled heat pump type air conditioner 3 repeats the steps of evaporation, compression, condensation and expansion with respect to the circulating refrigerant, and the refrigerant absorbs heat in the refrigerant evaporation step with respect to the air and heat medium exchanged with the circulating refrigerant. Each of them performs heat dissipation in the condensation process, and includes a heat source side water heat exchanger 14 and a plurality of air supply side air heat exchangers 12 that perform the evaporation process and the condensation process of the circulating refrigerant, and a compressor 19 that compresses the circulating refrigerant. And an expansion valve 20 such as an automatic temperature expansion valve or an electronic expansion valve for expanding the circulating refrigerant, a low pressure liquid pipe A and a high pressure liquid pipe B, a low pressure gas pipe C and a high pressure gas pipe D, and a compressor 19. The refrigerant outlet of the compressor 19 is connected to the high pressure gas pipe D, the refrigerant inlet of the compressor 19 is connected to the low pressure gas pipe C, and one of the refrigerant inlets and outlets of the heat source side water heat exchanger 14 is connected to the high pressure gas pipe D and the low pressure gas pipe C. Branches via on-off valves 23a and 23b Subsequently, the high-pressure gas pipe D and the low-pressure gas pipe C are connected so as to be switchable, and the other refrigerant inlet / outlet of the heat source side water heat exchanger 14 is branched and connected to the high-pressure liquid pipe B and the low-pressure liquid pipe A. The first branch pipe on the liquid pipe side is provided with a first check valve 21a that allows the refrigerant to flow only in the direction of the high pressure liquid pipe, and the second branch pipe on the low pressure liquid pipe side has the refrigerant only in the direction of the heat source side water heat exchanger. The second check valve 21b is provided to connect the high-pressure liquid pipe B and the low-pressure liquid pipe A so that they can be switched, and the other refrigerant inlet / outlet of the heat source side water heat exchanger 14 is connected to the first and second branch pipes. An on-off valve 25 is provided between them.

各給気側空気熱交換器12の冷媒出入口の一方は、高圧ガス管Dと低圧ガス管Cとに開閉弁23a、23bを介して分岐接続して、高圧ガス管Dと低圧ガス管Cに切換自在に接続し、各給気側空気熱交換器12の冷媒出入口の他方を、高圧液管Bと低圧液管Aに分岐接続すると共に、高圧液管側の第三分岐管には高圧液管方向へのみ冷媒を流す第三逆止弁22aを設け、かつ低圧液管側の第四分岐管には給気側空気熱交換器方向へのみ冷媒を流す第四逆止弁22bを設けて、高圧液管Bと低圧液管Aに切換自在に接続し、各給気側空気熱交換器12の冷媒出入口の他方と前記第三・第四分岐管との間に開閉弁24を設け、高圧液管Bと低圧液管Aとを膨張弁20を介して接続する。このように第一・第二・第三・第四逆止弁21a、21b、22a、22bを設けた構成とすれば、各給気側空気熱交換器12の冷媒出入口の他方と高圧液管Bと低圧液管Aとの接続切換の制御と、熱源側水熱交換器14の冷媒出入口の他方と高圧液管Bと低圧液管Aとの接続切換の制御と、が各々不要で、かつ高価な3方弁や電磁開閉弁を使わずに済み、コストダウンを図れる。なお、図示省略するが、膨張弁20を電子膨張弁とした場合は、圧縮機19の冷媒温度と冷媒圧力により膨張弁操作を行い制御する。開閉弁24、23a、23b、25は電磁弁などを用いる。給気側空気熱交換器12の伝熱管は圧損の少ない楕円管にするのが好ましいが円形管でもよい。熱源側水熱交換器14は、たとえば幾枚もの伝熱板(プレート)を重ねその伝熱板と伝熱板の間を熱媒と冷媒が交互に流れて互いに熱交換するように構成されたプレート式熱交換器とする。この水冷ヒートポンプの給気側空気熱交換器12にて空調用空気を冷却又は加熱し、各被空調空間に給気して空調する。   One of the refrigerant inlets and outlets of each air supply side air heat exchanger 12 is branched and connected to the high-pressure gas pipe D and the low-pressure gas pipe C via the open / close valves 23a and 23b, and is connected to the high-pressure gas pipe D and the low-pressure gas pipe C. The other refrigerant inlet / outlet of each air supply side air heat exchanger 12 is branched and connected to the high pressure liquid pipe B and the low pressure liquid pipe A, and the high pressure liquid is connected to the third branch pipe on the high pressure liquid pipe side. A third check valve 22a for flowing the refrigerant only in the pipe direction is provided, and a fourth check valve 22b for flowing the refrigerant only in the direction of the air supply side air heat exchanger is provided in the fourth branch pipe on the low pressure liquid pipe side. The high-pressure liquid pipe B and the low-pressure liquid pipe A are switchably connected, and an on-off valve 24 is provided between the other refrigerant inlet / outlet of each air supply side air heat exchanger 12 and the third and fourth branch pipes, The high pressure liquid pipe B and the low pressure liquid pipe A are connected via the expansion valve 20. If the first, second, third, and fourth check valves 21a, 21b, 22a, and 22b are thus provided, the other refrigerant inlet / outlet of each air supply side air heat exchanger 12 and the high-pressure liquid pipe are provided. Control of connection switching between B and the low-pressure liquid pipe A, and control of connection switching between the other refrigerant inlet / outlet of the heat source side water heat exchanger 14, the high-pressure liquid pipe B, and the low-pressure liquid pipe A are not necessary, and This eliminates the need for expensive three-way valves and electromagnetic on-off valves, thus reducing costs. Although not shown, when the expansion valve 20 is an electronic expansion valve, the expansion valve is operated and controlled by the refrigerant temperature and the refrigerant pressure of the compressor 19. As the on-off valves 24, 23a, 23b, 25, electromagnetic valves or the like are used. The heat transfer tube of the air supply side air heat exchanger 12 is preferably an elliptic tube with little pressure loss, but may be a circular tube. The heat source side water heat exchanger 14 is a plate type configured such that, for example, a plurality of heat transfer plates (plates) are stacked and a heat medium and a refrigerant alternately flow between the heat transfer plates and the heat transfer plates to exchange heat with each other. A heat exchanger is used. The air-conditioning air is cooled or heated by the air supply side air heat exchanger 12 of the water-cooled heat pump, and air is supplied to each air-conditioned space for air conditioning.

例えば、高温制御用の給気側空気熱交換器12で空気加熱(暖房運転)し、低温制御用の給気側空気熱交換器12で空気冷却(冷房運転)し、暖房負荷と冷房負荷に差があり冷房負荷の方が大きい場合は、熱源側水熱交換器14の冷媒出入口の一方の高圧ガス管側の開閉弁23aを開および低圧ガス管側の開閉弁23bを閉にし、高温制御用の給気側空気熱交換器12の冷媒出入口の一方の高圧ガス管側の開閉弁23aを開および低圧ガス管側の開閉弁23bを閉にし、低温制御用の給気側空気熱交換器12の冷媒出入口の一方の高圧ガス管側の開閉弁23aを閉および低圧ガス管側の開閉弁23bを開にし、開閉弁24、25を開にする。これにより冷媒が、圧縮機19から高圧ガス状態で熱源側水熱交換器14と高温制御用の給気側空気熱交換器12に分流し、各々凝縮して高圧液状態で合流して膨張弁20に流れ、減圧して低圧液状態で低温制御用の給気側空気熱交換器12に流れ、蒸発して低圧ガス状態で圧縮機19に戻り、このサイクルを繰返す。このようにして高温制御用の給気側空気熱交換器12にて給気用空気の加熱を行い、低温制御用の給気側空気熱交換器12にて給気用空気の冷却を行う。   For example, air heating (heating operation) is performed by the supply-side air heat exchanger 12 for high-temperature control, and air cooling (cooling operation) is performed by the supply-side air heat exchanger 12 for low-temperature control, so that the heating load and the cooling load are reduced. If there is a difference and the cooling load is larger, the high-pressure gas pipe-side on / off valve 23a and the low-pressure gas pipe-side on / off valve 23b of the refrigerant inlet / outlet of the heat source side water heat exchanger 14 are opened and the high-temperature control is performed. Open / close valve 23a on one high-pressure gas pipe side and close low-pressure gas pipe side open / close valve 23b of the refrigerant inlet / outlet of the air supply side air heat exchanger 12 for use, and supply air air heat exchanger for low temperature control The on-off valve 23a on one high-pressure gas pipe side of the refrigerant inlet / outlet 12 is closed, the on-off valve 23b on the low-pressure gas pipe side is opened, and the on-off valves 24 and 25 are opened. As a result, the refrigerant is diverted from the compressor 19 to the heat source side water heat exchanger 14 and the supply side air heat exchanger 12 for high temperature control in a high pressure gas state, and is condensed and joined in a high pressure liquid state. The flow is reduced to 20 and the pressure is reduced to flow in the low-pressure liquid state to the supply-side air heat exchanger 12 for low-temperature control, evaporated and returned to the compressor 19 in the low-pressure gas state, and this cycle is repeated. In this manner, the supply air is heated by the supply-side air heat exchanger 12 for high temperature control, and the supply air is cooled by the supply-side air heat exchanger 12 for low temperature control.

また、高温制御用の給気側空気熱交換器12で空気加熱(暖房運転)し、低温制御用の給気側空気熱交換器12で空気冷却(冷房運転)し、暖房負荷と冷房負荷に差があり暖房負荷の方が大きい場合は、熱源側水熱交換器14の冷媒出入口の一方の高圧ガス管側の開閉弁23aを閉および低圧ガス管側の開閉弁23bを開にし、高温制御用の給気側空気熱交換器12の冷媒出入口の一方の高圧ガス管側の開閉弁23aを開および低圧ガス管側の開閉弁23bを閉にし、低温制御用の給気側空気熱交換器12の冷媒出入口の一方の高圧ガス管側の開閉弁23aを閉および低圧ガス管側の開閉弁23bを開にし、開閉弁24、25を開にする。これにより冷媒が、圧縮機19から高圧ガス状態で高温制御用の給気側空気熱交換器12に流れ、凝縮して高圧液状態で膨張弁20に流れ、減圧して低圧液状態で熱源側水熱交換器14と低温制御用の給気側空気熱交換器12に分流し、各々蒸発して低圧ガス状態で合流して圧縮機19に戻り、このサイクルを繰返す。このようにして高温制御用の給気側空気熱交換器12にて給気用空気を加熱を行い、低温制御用の給気側空気熱交換器12にて給気用空気の冷却を行う。また、暖房負荷と冷房負荷が釣り合う場合、開閉弁25を閉にすることにより、熱源側水熱交換器14を使わずに冷暖房同時運転を行えて省エネとなる。   Further, air heating (heating operation) is performed by the supply-side air heat exchanger 12 for high-temperature control, and air cooling (cooling operation) is performed by the supply-side air heat exchanger 12 for low-temperature control. When there is a difference and the heating load is larger, one of the refrigerant inlets and outlets of the heat source side water heat exchanger 14 is closed with the high pressure gas pipe side open / close valve 23a closed and the low pressure gas pipe side open / close valve 23b open to control the high temperature. Open / close valve 23a on one high-pressure gas pipe side and close low-pressure gas pipe side open / close valve 23b of the refrigerant inlet / outlet of the air supply side air heat exchanger 12 for use, and supply air air heat exchanger for low temperature control The on-off valve 23a on one high-pressure gas pipe side of the refrigerant inlet / outlet 12 is closed, the on-off valve 23b on the low-pressure gas pipe side is opened, and the on-off valves 24 and 25 are opened. As a result, the refrigerant flows from the compressor 19 to the supply side air heat exchanger 12 for high temperature control in the high pressure gas state, condenses and flows to the expansion valve 20 in the high pressure liquid state, and decompresses to the heat source side in the low pressure liquid state. The flow is divided into the water heat exchanger 14 and the supply-side air heat exchanger 12 for low-temperature control, and each of them is evaporated and merged in a low-pressure gas state and returned to the compressor 19, and this cycle is repeated. In this way, the supply air is heated by the supply-side air heat exchanger 12 for high-temperature control, and the supply air is cooled by the supply-side air heat exchanger 12 for low-temperature control. Further, when the heating load and the cooling load are balanced, by closing the on-off valve 25, the cooling / heating simultaneous operation can be performed without using the heat source side water heat exchanger 14, thereby saving energy.

なお、本発明は図例のものに限定されず、低温制御側被空調空間L、高温制御側被空調空間H、給気側送風路15、給気側空気熱交換器12、送風機13、開閉弁24、23a、23b及び第三・第四逆止弁22a、22bの数の増減や、開閉弁25を省略するも自由である。また、給気側空気熱交換器12の冷媒出入口の一方を、高圧ガス管Dと低圧ガス管Cとに三方弁を介して分岐接続して、高圧ガス管Dと低圧ガス管Cに切換自在に接続したり、熱源側水熱交換器14の冷媒出入口の一方を、高圧ガス管Dと低圧ガス管Cとに三方弁を介して分岐接続して、高圧ガス管Dと低圧ガス管Cに切換自在に接続してもよい。同様に、給気側空気熱交換器12の冷媒出入口の他方を、高圧液管Bと低圧液管Aとに三方弁を介して分岐接続して、高圧液管Bと低圧液管Aに切換自在に接続したり、熱源側水熱交換器14の冷媒出入口の他方を、高圧液管Bと低圧液管Aとに三方弁を介して分岐接続して、高圧液管Bと低圧液管Aに切換自在に接続してもよい。   In addition, this invention is not limited to the thing of a figure example, The low temperature control side air-conditioned space L, the high temperature control side air-conditioned space H, the air supply side ventilation path 15, the air supply side air heat exchanger 12, the air blower 13, opening and closing The number of the valves 24, 23a, 23b and the third and fourth check valves 22a, 22b can be increased or decreased, and the open / close valve 25 can be omitted. One of the refrigerant inlets and outlets of the air supply side air heat exchanger 12 is branched and connected to the high-pressure gas pipe D and the low-pressure gas pipe C via a three-way valve so that the high-pressure gas pipe D and the low-pressure gas pipe C can be switched. Or one of the refrigerant inlets and outlets of the heat source side water heat exchanger 14 is branched and connected to the high pressure gas pipe D and the low pressure gas pipe C via a three-way valve to connect the high pressure gas pipe D and the low pressure gas pipe C to each other. You may connect so that switching is possible. Similarly, the other refrigerant inlet / outlet of the air supply side air heat exchanger 12 is branched and connected to the high pressure liquid pipe B and the low pressure liquid pipe A via a three-way valve, and switched to the high pressure liquid pipe B and the low pressure liquid pipe A. The other side of the refrigerant inlet / outlet of the heat source side water heat exchanger 14 is branched and connected to the high pressure liquid pipe B and the low pressure liquid pipe A via a three-way valve so that the high pressure liquid pipe B and the low pressure liquid pipe A are connected. May be connected to be switchable.

水冷ヒートポンプ式地中熱利用空調システムの斜視図。The perspective view of a water-cooling heat pump type underground heat utilization air-conditioning system. 同側面図。The same side view. 水冷ヒートポンプ式空調機の正面図。The front view of a water cooling heat pump type air conditioner. 水冷ヒートポンプの簡略説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG.

符号の説明Explanation of symbols

3 水冷ヒートポンプ式空調機
9 地中熱交換器
12 給気側空気熱交換器
14 熱源側水熱交換器
19 圧縮機
20 膨張弁
A 低圧液管
B 高圧液管
C 低圧ガス管
D 高圧ガス管
L 低温制御側被空調空間
H 高温制御側被空調空間
3 Water-cooled heat pump type air conditioner 9 Ground heat exchanger 12 Supply air air heat exchanger 14 Heat source side water heat exchanger 19 Compressor 20 Expansion valve A Low pressure liquid pipe B High pressure liquid pipe C Low pressure gas pipe D High pressure gas pipe L Low-temperature controlled air-conditioned space H High-temperature controlled air-conditioned space

Claims (3)

温度制御域の異なる複数の被空調空間へ給気する水冷ヒートポンプ式空調機3における熱源側水熱交換器14と、熱媒を地中熱にて温度調節する地中熱交換器9と、を熱媒が循環するように配管し、前記水冷ヒートポンプ式空調機3の複数の給気側空気熱交換器12…を前記熱源側水熱交換器14にて共用すると共に、複数の前記給気側空気熱交換器12を低温制御用と高温制御用に分け、複数の前記被空調空間の低温制御側被空調空間Lに前記低温制御用給気側空気熱交換器12にて冷却された空気が給気されるように連通させると共に、複数の前記被空調空間の高温制御側被空調空間Hに前記高温制御用給気側空気熱交換器12にて加熱された空気が給気されるように連通させたことを特徴とする水冷ヒートポンプ式地中熱利用空調システム。   The heat source side water heat exchanger 14 in the water-cooled heat pump type air conditioner 3 that supplies air to a plurality of air-conditioned spaces with different temperature control areas, and the underground heat exchanger 9 that adjusts the temperature of the heat medium with underground heat, Piping is performed so that the heat medium circulates, and the plurality of air supply side air heat exchangers 12 of the water-cooled heat pump air conditioner 3 are shared by the heat source side water heat exchanger 14 and a plurality of the air supply sides The air heat exchanger 12 is divided into low temperature control and high temperature control, and the air cooled by the low temperature control air supply side air heat exchanger 12 is supplied to the low temperature control side air conditioning space L of the plurality of air conditioned spaces. The air is communicated so as to be supplied with air, and the air heated by the high-temperature control supply-side air heat exchanger 12 is supplied to the high-temperature control-side air-conditioned spaces H of the plurality of air-conditioned spaces. A water-cooled heat pump type ground-heated air conditioning system characterized by communication Beam. 水冷ヒートポンプ式空調機3の水冷ヒートポンプが、循環冷媒の蒸発工程と凝縮工程を行う熱源側水熱交換器14及び複数の給気側空気熱交換器12…と、循環冷媒を圧縮する圧縮機19と、循環冷媒を膨張させる膨張弁20と、低圧液管A及び高圧液管Bと、低圧ガス管Cと高圧ガス管Dと、を少なくとも備え、前記圧縮機19の冷媒出口を前記高圧ガス管Dに接続すると共に前記圧縮機19の冷媒入口を前記低圧ガス管Cに接続し、前記熱源側水熱交換器14の冷媒出入口の一方を、前記高圧ガス管Dと前記低圧ガス管Cに切換自在に接続し、前記熱源側水熱交換器14の冷媒出入口の他方を、前記高圧液管Bと前記低圧液管Aに切換自在に接続し、前記各給気側空気熱交換器12の冷媒出入口の一方を、前記高圧ガス管Dと前記低圧ガス管Cに切換自在に接続し、前記各給気側空気熱交換器12の冷媒出入口の他方を、前記高圧液管Bと前記低圧液管Aに切換自在に接続し、前記高圧液管Bと前記低圧液管Aとを前記膨張弁20を介して接続した請求項1記載の水冷ヒートポンプ式地中熱利用空調システム。   A water-cooled heat pump of the water-cooled heat pump type air conditioner 3 includes a heat source side water heat exchanger 14 and a plurality of air supply side air heat exchangers 12 that perform an evaporation process and a condensation process of the circulating refrigerant, and a compressor 19 that compresses the circulating refrigerant. And an expansion valve 20 for expanding the circulating refrigerant, a low pressure liquid pipe A and a high pressure liquid pipe B, a low pressure gas pipe C and a high pressure gas pipe D, and the refrigerant outlet of the compressor 19 is connected to the high pressure gas pipe And the refrigerant inlet of the compressor 19 is connected to the low pressure gas pipe C, and one of the refrigerant inlets and outlets of the heat source side water heat exchanger 14 is switched to the high pressure gas pipe D and the low pressure gas pipe C. The other refrigerant inlet / outlet of the heat source side water heat exchanger 14 is connected to the high pressure liquid pipe B and the low pressure liquid pipe A in a freely switchable manner, and the refrigerant of each supply side air heat exchanger 12 is connected. One of the inlets and outlets is connected to the high pressure gas pipe D and the low pressure gas. The other refrigerant inlet / outlet of each air supply side air heat exchanger 12 is switchably connected to the high pressure liquid pipe B and the low pressure liquid pipe A, and is connected to the high pressure liquid pipe B. The water-cooled heat pump type underground heat-use air conditioning system according to claim 1, wherein the low-pressure liquid pipe A is connected via the expansion valve 20. 給気側空気熱交換器12の伝熱管を楕円管にした請求項1又は2記載の水冷ヒートポンプ式地中熱利用空調システム。   The water-cooled heat pump type underground heat-use air conditioning system according to claim 1 or 2, wherein the heat transfer tube of the air supply side air heat exchanger 12 is an elliptical tube.
JP2005080581A 2005-03-18 2005-03-18 Water cooled heat pump type subterranean heat utilizing air conditioning system Pending JP2006258406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005080581A JP2006258406A (en) 2005-03-18 2005-03-18 Water cooled heat pump type subterranean heat utilizing air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005080581A JP2006258406A (en) 2005-03-18 2005-03-18 Water cooled heat pump type subterranean heat utilizing air conditioning system

Publications (1)

Publication Number Publication Date
JP2006258406A true JP2006258406A (en) 2006-09-28

Family

ID=37097860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005080581A Pending JP2006258406A (en) 2005-03-18 2005-03-18 Water cooled heat pump type subterranean heat utilizing air conditioning system

Country Status (1)

Country Link
JP (1) JP2006258406A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524967A (en) * 2008-06-16 2011-09-08 グリーンフィールド エネジー リミテッド Thermal energy system and operating method thereof
CN103925729A (en) * 2013-01-15 2014-07-16 珠海格力电器股份有限公司 Air-conditioning system and central air-conditioner with same
CN105258230A (en) * 2015-09-30 2016-01-20 广东美的制冷设备有限公司 Window type air conditioner and control method thereof
CN106091466A (en) * 2016-07-29 2016-11-09 北京华誉能源技术股份有限公司 A kind of have the air-cooled heat pump unit that defrosting controls
US9556856B2 (en) 2007-07-06 2017-01-31 Greenfield Master Ipco Limited Geothermal energy system and method of operation
US9915247B2 (en) 2007-07-06 2018-03-13 Erda Master Ipco Limited Geothermal energy system and method of operation
US10309693B2 (en) 2011-03-08 2019-06-04 Erda Master Ipco Limited Thermal energy system and method of operation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9556856B2 (en) 2007-07-06 2017-01-31 Greenfield Master Ipco Limited Geothermal energy system and method of operation
US9915247B2 (en) 2007-07-06 2018-03-13 Erda Master Ipco Limited Geothermal energy system and method of operation
JP2011524967A (en) * 2008-06-16 2011-09-08 グリーンフィールド エネジー リミテッド Thermal energy system and operating method thereof
US9360236B2 (en) 2008-06-16 2016-06-07 Greenfield Master Ipco Limited Thermal energy system and method of operation
US10309693B2 (en) 2011-03-08 2019-06-04 Erda Master Ipco Limited Thermal energy system and method of operation
US10921030B2 (en) 2011-03-08 2021-02-16 Erda Master Ipco Limited Thermal energy system and method of operation
CN103925729A (en) * 2013-01-15 2014-07-16 珠海格力电器股份有限公司 Air-conditioning system and central air-conditioner with same
CN103925729B (en) * 2013-01-15 2016-08-24 珠海格力电器股份有限公司 Air-conditioning system and include the central air-conditioning of this system
CN105258230A (en) * 2015-09-30 2016-01-20 广东美的制冷设备有限公司 Window type air conditioner and control method thereof
CN105258230B (en) * 2015-09-30 2017-12-19 广东美的制冷设备有限公司 Window air conditioner and its control method
CN106091466A (en) * 2016-07-29 2016-11-09 北京华誉能源技术股份有限公司 A kind of have the air-cooled heat pump unit that defrosting controls

Similar Documents

Publication Publication Date Title
CN102770715B (en) Air conditioner
JP5373964B2 (en) Air conditioning and hot water supply system
JP2006292313A (en) Geothermal unit
JP5395950B2 (en) Air conditioner and air conditioning hot water supply system
JP2006258406A (en) Water cooled heat pump type subterranean heat utilizing air conditioning system
JP4203758B2 (en) Water-cooled heat pump type ground-heated air conditioning system
JP2009036413A (en) Geothermal heat pump-type dry air conditioning system
EP2541170A1 (en) Air-conditioning hot-water-supply system
CN112460696A (en) Temperature and humidity independent control air conditioning system
WO2017119137A1 (en) Air-conditioning device
KR100696718B1 (en) Air Conditioner System for Heating and Dehumidificaton
WO2011104834A1 (en) Air conditioner
JP5499153B2 (en) Air conditioner
JP6747920B2 (en) Air conditioning system
JPH01247966A (en) Air conditioner
CN210036067U (en) Multifunctional greenhouse machine
JP2006052882A (en) Heat pump type air conditioner
JP4096890B2 (en) Heat pump air conditioner
JP5066022B2 (en) Air conditioning system
KR100682718B1 (en) Air conditioner having refrigerants distributor for branch
CN216977194U (en) Heat pump water heater
JP7306582B2 (en) refrigeration cycle equipment
CN217058001U (en) Fluorine-water integrated machine capable of simultaneously providing high-temperature chilled water and low-dew-point fresh air
CN113654259B (en) Refrigerating system and refrigerating equipment
CN211476361U (en) Multifunctional air source heat pump system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080618