JP2009036413A - Geothermal heat pump-type dry air conditioning system - Google Patents

Geothermal heat pump-type dry air conditioning system Download PDF

Info

Publication number
JP2009036413A
JP2009036413A JP2007200126A JP2007200126A JP2009036413A JP 2009036413 A JP2009036413 A JP 2009036413A JP 2007200126 A JP2007200126 A JP 2007200126A JP 2007200126 A JP2007200126 A JP 2007200126A JP 2009036413 A JP2009036413 A JP 2009036413A
Authority
JP
Japan
Prior art keywords
air
heat
heat exchanger
heat pump
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007200126A
Other languages
Japanese (ja)
Other versions
JP4445530B2 (en
Inventor
Keiichi Kimura
恵一 木村
Matsuo Morita
満津雄 森田
Katsuhiro Urano
勝博 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimura Kohki Co Ltd
Original Assignee
Kimura Kohki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimura Kohki Co Ltd filed Critical Kimura Kohki Co Ltd
Priority to JP2007200126A priority Critical patent/JP4445530B2/en
Publication of JP2009036413A publication Critical patent/JP2009036413A/en
Application granted granted Critical
Publication of JP4445530B2 publication Critical patent/JP4445530B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a geothermal heat pump-type dry air conditioning system capable of saving energy by controlling the temperature and humidity of supplied air without reheating, and reducing equipment costs and operation costs for air conditioning. <P>SOLUTION: This geothermal heat pump-type dry air conditioning system comprises an air conditioner 1 having a compression-type heat pump A applying a heat medium as a heat source, a heat source water circuit 3 for circulating the heat medium, an underground heat exchanger 4 connected with the heat source water circuit 3 and adjusting a temperature of the heat medium, and a variable air volume unit 5 capable of individually adjusting the air supply volume from the air conditioner 1. The heat pump A comprises an air supply-side heat exchanger 6 for processing the outside air to exchange heat of the outside air, and an air supply-side heat exchanger 7 for processing return air, to exchange heat of the return air. The heat pump A, a humidifier 9 for humidifying the outside air, and an air blower 10 for mixing the return air passing through the air supply-side heat exchanger 7 for processing return air, and the outside air passing through the air supply-side heat exchanger 6 for processing the outside air and the humidifier 9, are disposed in a casing 8 of the air conditioner 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は地中熱利用ヒートポンプ式ドライ空調システムに関するものである。   The present invention relates to a heat pump type dry air conditioning system using geothermal heat.

従来の外気混合形の空調機では外気と還気を混合した後、冷温水コイルなどで冷却や除湿、加熱などを行っている。ところが、このような方式の空調機では、例えば夏期の冷房運転の場合、冷却減湿後に再熱しなければ給気の湿度制御ができないため、還気風量分の空気を余分に冷却、再熱するエネルギーが必要で運転コストが高くなる。しかも、熱源水回路を4管式として冷水コイルと温水コイルに冷水と温水を別々に流して運転する空調機の場合、4管式の熱源水回路では配管距離が長くて設備コストがかかり、冷水と温水を同時に作る必要があるため熱源機の運転コストや設備コストもかかる。   In a conventional outside air mixing type air conditioner, outside air and return air are mixed and then cooled, dehumidified, heated, etc. by a cold / hot water coil or the like. However, in this type of air conditioner, for example, in the case of a cooling operation in summer, the humidity of the supply air cannot be controlled unless it is reheated after cooling and dehumidification. Energy is required and operating costs are high. In addition, in the case of an air conditioner that operates with cold water and hot water separately flowing through a cold water coil and a hot water coil with a 4-pipe heat source water circuit, the 4-pipe heat source water circuit has a long piping distance and requires equipment costs. Because it is necessary to make water and hot water at the same time, the operation cost and equipment cost of the heat source machine are also required.

特開平4−174225号公報JP-A-4-174225 実開平2−96534号公報Japanese Utility Model Publication No. 2-96534 特開昭63−233244号公報JP-A-63-233244

また、変風量ダクト方式(VAV)による多室個別空調において、VAV風量変動による静圧変化を圧力センサにて検出し、その変動に応じて空調機側の風量制御を行っているため、制御が複雑でコスト高となる問題があった。また、地中熱を利用し空調を行うシステムで、地中熱交換器を地表近くの地中に埋設した場合、太陽熱の影響を受けやすく、冬期に夜間運転を行って地中熱交換器で長時間連続して採熱を続けると、周辺の地中温度が低下し続けて、熱媒が凍結する問題がある。このような熱媒凍結を防止するために不凍液を使用するとなると土壌汚染の心配が残ることになる。また、地中熱交換器で必要な熱量を得るためには、深層部に向け縦穴を特殊な掘削機械で長時間かけて掘らねばならず、しかも穴の崩れ防止や泥土や湧水などの処理も必要で、非常に手間と時間がかかりコスト高となる問題がある。そのために、一つの穴にU字状地中熱交換器の容量の大きくしたものを埋めたり、一つの穴に複数本を埋めたりしており、U字状地中熱交換器では往路も復路も同じ経路を熱媒が流れるため、例えば冬期では、熱媒が地表へ戻る際、せっかく採熱温調した熱媒が地上近くで放熱して、熱ロスが生じる問題がある。   Also, in multi-room individual air conditioning by variable air volume duct method (VAV), the static pressure change due to VAV air volume fluctuation is detected by the pressure sensor, and the air volume control on the air conditioner side is performed according to the fluctuation, so the control is There was a problem that was complicated and expensive. In addition, if a geothermal heat exchanger is embedded in the ground near the surface, it is susceptible to solar heat and is operated at night in the winter. If heat is continuously collected for a long time, the underground temperature in the surrounding area continues to drop, and there is a problem that the heat medium freezes. If antifreeze is used to prevent such heat medium freezing, there is a concern about soil contamination. In addition, in order to obtain the amount of heat required by the underground heat exchanger, it is necessary to dig vertical holes into the deep layer with a special excavator for a long time. There is also a problem that it is necessary and time consuming and time consuming. For this purpose, one hole is filled with a U-shaped underground heat exchanger with a larger capacity, or one hole is filled with multiple pipes. However, since the heat medium flows through the same path, for example, in the winter season, when the heat medium returns to the ground surface, there is a problem that the heat medium whose temperature is adjusted is dissipated near the ground and heat loss occurs.

本発明は上記課題を解決するため、熱媒を熱源とする圧縮式のヒートポンプを有する空調機と、送水ポンプにて前記熱媒を循環させる熱源水回路と、この熱源水回路に接続されて前記熱媒を温度調節する地中熱交換器と、複数の室内毎に設けられて前記空調機からの給気風量を個別に調整自在な変風量ユニットと、を備え、前記ヒートポンプは、外気を熱交換する外気処理用の給気側熱交換器と、還気を熱交換する還気処理用の給気側熱交換器と、を備え、前記空調機のケーシング内に、外気を加湿する加湿器と、前記還気処理用給気側熱交換器を通った還気と前記外気処理用給気側熱交換器及び前記加湿器を通った外気とを混合して給気する給気用送風機と、を設けたことを最も主要な特徴とする。   In order to solve the above-mentioned problems, the present invention provides an air conditioner having a compression heat pump that uses a heat medium as a heat source, a heat source water circuit that circulates the heat medium using a water supply pump, and the heat source water circuit connected to the heat source water circuit. A ground heat exchanger that adjusts the temperature of the heat medium, and a variable air volume unit that is provided for each of the plurality of rooms and that can individually adjust the air supply amount from the air conditioner, and the heat pump heats the outside air. A humidifier for humidifying the outside air in the casing of the air conditioner, comprising: a supply-side heat exchanger for external air treatment to be exchanged; and a supply-side heat exchanger for return air treatment for exchanging the return air And an air supply blower that mixes and supplies the return air that has passed through the supply air side heat exchanger for return air processing and the outside air that has passed through the air supply side heat exchanger for external air processing and the humidifier. The most important feature is that

請求項1の発明によれば、夏期の冷房運転の場合、外気を外気処理用給気側熱交換器で冷却減湿した除湿空気と、還気を還気処理用給気側熱交換器で乾き冷却した(前記除湿空気より高温の)空気と、を所定比率で混合することで再熱せずに給気の温湿度制御ができる。外気負荷と室内負荷(冷房負荷)を個別に処理するので、還気を余分に冷却、再熱するエネルギーが不要で省エネとなり、運転コストを削減できる。冬期の暖房運転の場合、外気を外気処理用給気側熱交換器で加熱し、加湿器で加湿して湿度調整した空気と、還気を還気処理用給気側熱交換器で加熱した空気と、を所定比率で混合することで給気を温湿度制御できる。地中熱を利用した熱源なのでチラーなどの熱源機と比べて大幅に省エネ化を図れる。変風量ユニットにより1台の空調機で複数の室内の空調を個別制御でき、省エネ化を図り得る。
請求項2の発明によれば、中間期などに外気のみを給気して外気冷房を行うことができ、省エネとなる。
請求項3の発明によれば、高価な圧力センサなどを使用せずに多室個別空調制御が簡単にできる。変風量ユニットの風量変動に応じて空調機の送風機風量と圧縮機容量を適正に調整して給気量と冷暖房能力のバランスをとり、室内送風量のしぼりすぎによる気流の不均一や温度ムラなどを防止できる。
請求項4の発明によれば、冬期に加熱装置で熱媒を加熱して熱源の熱量不足を補うことができる。冬期に夜間運転する場合、加熱装置で熱媒の凍結を防止でき、長時間の連続空調運転を行えると共に、環境汚染の心配の無い水を熱媒として使用でき、不凍液を使わずに済む。さらに、冬期で空調機の弱運転時または停止時のときに、加熱装置を用いて地中熱交換器から地中へ放熱して蓄熱し、その蓄熱を利用して運転を行うこともでき、電力の平準化と省エネに役立つ。
請求項5の発明によれば、厳冬期など外気温度が非常に低い場合に外気を予熱してから、熱交換器で加熱できるので空調機の最大負荷を減らすことができ、空調機の小型化を図れる。
請求項6の発明によれば、地中熱交換器の往路管部を細くて長い渦巻き状として地表近くに埋め、熱媒を地熱流に対してカウンターフローで流して、熱交換効率を良くしつつ地中で広範囲に分散して少しずつ熱交換させることにより、熱媒を温度調節するために必要とされる地熱量を得ることができ、かつ地中から奪う単位体積当りの地熱量を少なくできる。往路管部は継ぎ目のない1本の管を巻設するだけよいので加工が簡単になり、バネ状に巻設して伸縮性をもたせてあるので免震性に優れ、地震に対する耐久性が十分で、破損による熱媒漏れなどを防止できる。地中熱交換器の復路管部は地上に熱媒を戻すだけでよいので短くてよく、地中との再熱交換による熱ロスが皆無で、熱交換効率の向上を図れて熱媒温度が安定する。往路管部の埋設用穴は地表近くをパワーショベルなどの普通の掘削機械で浅く掘るだけでよく、掘削の時間と費用の削減を図れて施工が容易となる。
請求項7の発明によれば、空調機の部品点数の削減とコンパクト化、省スペース化を図れる。
請求項8の発明では、圧力損失が減少して熱交換効率が向上するので小型の送風機を用いることができ騒音低減を図れる。給気側熱交換器も小型化でき空調機をコンパクト化できる。
According to the invention of claim 1, in the case of the cooling operation in summer, dehumidified air obtained by cooling and dehumidifying the outside air with the supply air side heat exchanger for outside air treatment, and return air with the supply air side heat exchanger for return air treatment. The temperature and humidity of the supplied air can be controlled without reheating by mixing the air that has been dried and cooled (higher than the dehumidified air) at a predetermined ratio. Since the outside air load and the indoor load (cooling load) are processed separately, the energy for cooling and reheating the return air is unnecessary, saving energy and reducing operating costs. In the case of heating operation in winter, the outside air is heated by the supply air side heat exchanger for outside air treatment, the humidity is adjusted by humidifying the humidifier, and the return air is heated by the supply air side heat exchanger for return air treatment. The temperature and humidity can be controlled by mixing air with a predetermined ratio. Since it is a heat source that uses geothermal heat, it can greatly save energy compared to heat source devices such as chillers. The variable air volume unit can individually control the air conditioning in a plurality of rooms with a single air conditioner, thereby saving energy.
According to the invention of claim 2, it is possible to cool the outside air by supplying only the outside air in the intermediate period or the like, which is energy saving.
According to the invention of claim 3, multi-room individual air conditioning control can be easily performed without using an expensive pressure sensor or the like. The air flow of the air conditioner and the compressor capacity are adjusted appropriately according to the air flow fluctuation of the variable air volume unit to balance the air supply and cooling / heating capacity. Can be prevented.
According to the invention of claim 4, the heat medium can be heated by the heating device in the winter to compensate for the shortage of heat of the heat source. When operating at night in the winter, the heating device can prevent freezing of the heat medium, continuous air-conditioning operation can be performed for a long time, water that does not cause environmental pollution can be used as the heat medium, and antifreeze can be avoided. Furthermore, at the time of weak operation or stop of the air conditioner in winter, it is possible to dissipate heat from the underground heat exchanger to the ground using a heating device and store heat, and to operate using the stored heat, Useful for power leveling and energy saving.
According to the invention of claim 5, since the outside air can be preheated when the outside air temperature is very low such as in the severe winter season and then heated by the heat exchanger, the maximum load of the air conditioner can be reduced, and the air conditioner can be downsized. Can be planned.
According to the invention of claim 6, the forward pipe portion of the underground heat exchanger is buried in the vicinity of the ground surface as a thin and long spiral, and the heat medium is caused to flow in a counter flow with respect to the geothermal flow to improve the heat exchange efficiency. However, it is possible to obtain the amount of geothermal heat required to adjust the temperature of the heating medium by dispersing it in a wide area in the ground and gradually exchanging heat, and to reduce the amount of geothermal heat per unit volume taken from the ground. it can. The outgoing pipe section only needs to be wound with a single seamless pipe, making it easy to process, and it is wound in a spring shape to provide elasticity, providing excellent seismic isolation and sufficient durability against earthquakes Therefore, leakage of heat medium due to breakage can be prevented. The return pipe section of the underground heat exchanger only needs to return the heat medium to the ground, so it can be short, there is no heat loss due to reheat exchange with the ground, and the heat medium temperature can be improved by improving the heat exchange efficiency. Stabilize. The burial hole in the forward pipe section only needs to be dug shallowly with a normal excavator such as a power shovel near the ground surface, and the construction can be facilitated by reducing excavation time and cost.
According to the invention of claim 7, the number of parts of the air conditioner can be reduced, the size can be reduced, and the space can be saved.
In the invention of claim 8, since the pressure loss is reduced and the heat exchange efficiency is improved, a small blower can be used and noise can be reduced. The air supply side heat exchanger can also be miniaturized and the air conditioner can be made compact.

図1と図2は、本発明の地中熱利用ヒートポンプ式ドライ空調システムの実施例を示しており、この地中熱利用ヒートポンプ式ドライ空調システムは、熱媒を熱源とする圧縮式のヒートポンプAを有する空調機1と、送水ポンプ2にて熱媒を矢印方向に循環させる熱源水回路3と、この熱源水回路3に接続されて熱媒を温度調節する地中熱交換器4と、複数の室内B毎に設けられて空調機1からの給気風量を個別に調整自在な変風量ユニット5と、VAV制御手段15と、空調機1に取入れられる還気風量と外気風量を制御するダンパ機構11と、温湿度制御手段31と、を備えている。熱源水回路3には、熱媒を加熱するボイラーや空冷ヒートポンプ式チラーなどの加熱装置16を、地中熱交換器4よりも下流で接続する。ダンパ機構11は、比例制御又はオンオフ制御の外気ダンパ28と還気ダンパ29を備え、還気風量をゼロにし外気のみを取入れることにより外気冷房自在に構成する。実線及び点線の白抜き矢印は送風方向を示す。   1 and 2 show an embodiment of a heat pump type dry air-conditioning system using geothermal heat according to the present invention. This heat pump type dry air-conditioning system using geothermal heat is a compression heat pump A using a heat medium as a heat source. A heat source water circuit 3 that circulates the heat medium in the direction of the arrow by the water pump 2, a ground heat exchanger 4 that is connected to the heat source water circuit 3 and adjusts the temperature of the heat medium, Provided in each room B, the variable air volume unit 5 that can individually adjust the air supply air volume from the air conditioner 1, the VAV control means 15, and the damper that controls the return air volume and the outside air volume that are taken into the air conditioner 1. The mechanism 11 and the temperature / humidity control means 31 are provided. A heating device 16 such as a boiler for heating the heat medium or an air-cooled heat pump chiller is connected to the heat source water circuit 3 downstream of the underground heat exchanger 4. The damper mechanism 11 includes an outside air damper 28 and a return air damper 29 that are proportionally controlled or on / off controlled, and is configured to be able to cool the outside air by setting the return air volume to zero and taking in only the outside air. Solid and dotted white arrows indicate the blowing direction.

ヒートポンプAは、循環冷媒に対して圧縮・凝縮・膨張・蒸発の工程順を繰返し、この循環冷媒と熱交換する給気用空気と熱媒(熱源水)に対して冷媒蒸発工程で吸熱を冷媒凝縮工程で放熱を各々行うもので、循環冷媒の蒸発工程と凝縮工程であって互いに異なる工程を行う給気側熱交換器6、7及び熱源側熱交換器20と、循環冷媒を圧縮する可変容量式で容量制御自在な圧縮機13と、循環冷媒を膨張させる電子膨張弁等の冷媒循環量制御自在な減圧機構14と、給気側熱交換器6、7及び熱源側熱交換器20の蒸発工程と凝縮工程を切換えるバルブ等の冷媒流路切換機構21と、を少なくとも備え、これらを冷媒が循環するように配管接続して成る。   The heat pump A repeats the compression / condensation / expansion / evaporation process sequence with respect to the circulating refrigerant, and absorbs heat in the refrigerant evaporation process with respect to the supply air and heat medium (heat source water) for heat exchange with the circulating refrigerant. The heat release is performed in the condensation process, and the supply side heat exchangers 6 and 7 and the heat source side heat exchanger 20 that perform different processes in the circulation refrigerant evaporation process and the condensation process, and the variable for compressing the circulation refrigerant. The capacity-type and capacity-controllable compressor 13, the refrigerant circulation amount controllable decompression mechanism 14 such as an electronic expansion valve for expanding the circulating refrigerant, the supply side heat exchangers 6 and 7, and the heat source side heat exchanger 20 It comprises at least a refrigerant flow path switching mechanism 21 such as a valve for switching between the evaporation process and the condensation process, and these are connected by piping so that the refrigerant circulates.

給気側熱交換器6、7は、外気を冷却・加熱切換自在として熱交換する外気処理用の給気側熱交換器6と還気を冷却・加熱切換自在として熱交換する還気処理用の給気側熱交換器7とであって同一工程を行う2つで構成し、外気処理用と還気処理用の2つの給気側熱交換器6、7を、熱源側熱交換器20と圧縮機13で共用し、冷媒が給気側熱交換器6、7に並列に分流して通過したあと再び一つに合流するように構成する。具体的には、熱源側熱交換器20を外気処理用給気側熱交換器6と還気処理用給気側熱交換器7とに減圧機構14を介して分岐接続し、圧縮機13を外気処理用給気側熱交換器6と還気処理用給気側熱交換器7とに冷媒流路切換機構21を介して分岐接続、かつ圧縮機13を熱源側熱交換器20に冷媒流路切換機構21を介して接続して、冷媒が圧縮機13から熱源側熱交換器20へ流れる方向又は冷媒が圧縮機13から給気側熱交換器6、7へ流れる方向に切換自在とする。   The supply air side heat exchangers 6 and 7 are for return air processing for exchanging heat so that the outside air can be cooled / heated and switched for heat exchange, and the return air can be cooled and heated for switching. And the two air supply side heat exchangers 7 and 7 for performing the same process, and the two air supply side heat exchangers 6 and 7 for the outside air treatment and the return air treatment are replaced with the heat source side heat exchanger 20. And the compressor 13, and the refrigerant is configured so as to be merged again after passing through the supply-side heat exchangers 6 and 7 in parallel. Specifically, the heat source side heat exchanger 20 is branched and connected to the outside air processing supply side heat exchanger 6 and the return air processing supply side heat exchanger 7 via the decompression mechanism 14, and the compressor 13 is connected. The outside air processing supply side heat exchanger 6 and the return air processing supply side heat exchanger 7 are branched and connected via the refrigerant flow switching mechanism 21, and the compressor 13 is supplied to the heat source side heat exchanger 20 through the refrigerant flow. It connects via the path switching mechanism 21, and it can switch in the direction in which a refrigerant | coolant flows from the compressor 13 to the heat source side heat exchanger 20, or the direction in which a refrigerant flows from the compressor 13 to the air supply side heat exchangers 6 and 7. .

空調機1のケーシング8内には、ヒートポンプAと、外気を加湿する加湿量制御自在な加湿器9と、還気処理用給気側熱交換器7を通った通過還気と外気処理用給気側熱交換器6及び加湿器9を通った通過外気とを混合して混合空気を給気する可変風量式の風量制御自在な給気用送風機10と、加熱装置16にて加熱された熱媒にて外気を予熱する熱交換コイル19と、を設け、熱交換コイル19は、外気処理用給気側熱交換器6の風上に設ける。なお、圧縮機13、加湿器9、送風機10及び減圧機構14は比例制御方式とするのが好ましいが他の制御方式であってもよい。この熱交換コイル19と給気側熱交換器6、7のフィンチューブは低圧損の楕円管にするのが好ましいが、円形管にするも自由である。ケーシング8には、外気取入口、還気取入口及び給気口を設け、給気口と室内などの複数の室内B…を、給気路30を介して各々連通させる。給気路30は、空調機1から複数の室内Bに空気を分流送風するための複数の分岐送風路12…を有し、分岐送風路12毎に、この分岐送風路12の送風量を調整自在な変風量ユニット5を、設ける。   Inside the casing 8 of the air conditioner 1 is a heat pump A, a humidifier 9 that humidifies the outside air, and a return air treatment supply-side heat exchanger 7 that passes through the return air and the supply for outside air treatment. A variable air volume type air volume controllable air blower 10 that mixes the outside air passing through the air side heat exchanger 6 and the humidifier 9 and supplies mixed air, and heat heated by the heating device 16 A heat exchange coil 19 that preheats the outside air with a medium, and the heat exchange coil 19 is provided on the upwind side of the supply air side heat exchanger 6 for treating the outside air. Note that the compressor 13, the humidifier 9, the blower 10, and the pressure reducing mechanism 14 are preferably set to a proportional control method, but may be other control methods. The fin tubes of the heat exchange coil 19 and the supply side heat exchangers 6 and 7 are preferably low-pressure-loss elliptical tubes, but circular tubes are also free. The casing 8 is provided with an outside air intake port, a return air intake port, and an air supply port, and the air supply port and a plurality of rooms B such as a room are communicated with each other via an air supply path 30. The air supply passage 30 has a plurality of branch air passages 12 for shunting air from the air conditioner 1 to the plurality of rooms B, and adjusts the air flow rate of the branch air passage 12 for each branch air passage 12. A flexible variable air volume unit 5 is provided.

温湿度制御手段31は、所定の室内Bの検出温湿度が設定温湿度になるように圧縮機13と減圧機構14と加湿器9と給気用送風機10を制御する。この温湿度制御手段31は、各室内Bの温湿度を個別に設定する設定器32と、外気の温湿度と各室内Bの温湿度を個別に検出する検出器33と、所定の室内Bの設定温湿度及び検出温湿度と外気の検出温湿度とから所定の室内Bの検出温湿度が設定温湿度になるように圧縮機13への容量増減信号と減圧機構14への冷媒循環量増減信号と加湿器9への加湿量増減信号と給気用送風機10への風量増減信号とを出力する制御器34と、を備える。   The temperature / humidity control means 31 controls the compressor 13, the decompression mechanism 14, the humidifier 9, and the air supply blower 10 so that the detected temperature / humidity in the predetermined room B becomes the set temperature / humidity. The temperature / humidity control means 31 includes a setting device 32 that individually sets the temperature and humidity of each room B, a detector 33 that individually detects the temperature and humidity of the outside air and the temperature and humidity of each room B, and a predetermined room B. The capacity increase / decrease signal to the compressor 13 and the refrigerant circulation amount increase / decrease signal to the decompression mechanism 14 so that the detected temperature / humidity in the predetermined room B becomes the set temperature / humidity from the set temperature / humidity, the detected temperature / humidity, and the detected temperature / humidity of the outside air. And a controller 34 that outputs a humidification amount increase / decrease signal to the humidifier 9 and an airflow increase / decrease signal to the air supply fan 10.

VAV制御手段15は、空調機1と各変風量ユニット5を連結する分岐送風路12毎の変風量ユニットボリュームポイントと分岐送風路内径比ポイントとの積算値を全分岐送風路分合計すると共にその合計積算値の全変風量ユニット最大ボリューム時合計積算値に対する比に基いて給気用送風機10の風量制御及びヒートポンプAの圧縮機13の容量制御を行う。変風量ユニット5は、室内Bの熱負荷に応じて自動又は手動で駆動され、各分岐送風路12の送風量を個別に制御する。例えば「切」が0ポイント、「弱」が2ポイント、「中」は3ポイント、「強」は4ポイントのように、送風量変動に対する変風量ユニットボリュームポイントを設定する。なお、変風量ユニット5は分岐送風路12毎に設けているが、図例と異なる部位に設けるも自由である。分岐送風路12は、その分岐送風路内径(断面積)によって風量が変わるので、変風量ユニット上流側の分岐送風路内径比ポイントを補正係数として、例えば表1のように設定する。   The VAV control means 15 sums up the integrated values of the air flow rate unit volume points and the branch air passage inner diameter ratio points for each branch air passage 12 connecting the air conditioner 1 and each air flow amount unit 5 for all the branch air passages. Based on the ratio of the total integrated value to the total integrated value at the time of all variable air volume unit maximum volumes, the air volume control of the air supply blower 10 and the capacity control of the compressor 13 of the heat pump A are performed. The variable air volume unit 5 is driven automatically or manually according to the heat load in the room B, and individually controls the air flow rate of each branch air flow path 12. For example, the variable air volume unit volume point with respect to the air flow variation is set such that “off” is 0 points, “weak” is 2 points, “medium” is 3 points, and “strong” is 4 points. In addition, although the variable air volume unit 5 is provided for every branch ventilation path 12, it is also free to provide in the site | part different from the example of a figure. Since the air volume of the branch air passage 12 varies depending on the inner diameter (cross-sectional area) of the branch air passage, the branch air passage inner diameter ratio point on the upstream side of the variable air flow unit is set as a correction coefficient as shown in Table 1, for example.

Figure 2009036413
Figure 2009036413

この変風量ユニットボリュームポイントと分岐送風路内径比ポイントの積算値を分岐送風路12毎に算出し、それらを全分岐送風路分合計する。その合計積算値が全変風量ユニット最大ボリューム時合計積算値に対して何割あるかによって、空調機1の送風機10の風量とヒートポンプ用圧縮機13の容量を変動させる。例えば表2のように分岐送風路12の内径(mm)が75、100、100、200であったとすると、全変風量ユニット最大ボリューム時の合計積算値が48となる。そして、空調機運転中の変風量ユニットボリュームポイントが、分岐送風路No1が4(強)、分岐送風路No2が3(中)、分岐送風路No3が2(弱)、分岐送風路No4が3(中)の場合、合計積算値が35となるので、送風機10と圧縮機13を定格出力の73%(35/48×100)で駆動し、全体の給気バランスをとり省エネ化を図る。なお、前記の各ポイント数値は一例で変更は自由であり、送風機10の風量制御のみを行うVAV制御手段15に、構成するも自由である。   An integrated value of this variable air volume unit volume point and branch air passage inner diameter ratio point is calculated for each branch air passage 12, and these are totaled for all branch air passages. The air volume of the blower 10 of the air conditioner 1 and the capacity of the compressor 13 for the heat pump are varied depending on what percentage of the total integrated value is relative to the total integrated value at the time of the total variable air volume unit maximum volume. For example, if the inner diameter (mm) of the branch air passage 12 is 75, 100, 100, 200 as shown in Table 2, the total integrated value at the time of the maximum volume of all variable air volume units is 48. And the variable air volume unit volume point during air conditioner operation is that branch air passage No1 is 4 (strong), branch air passage No2 is 3 (medium), branch air passage No3 is 2 (weak), and branch air passage No4 is 3 In the case of (medium), since the total integrated value is 35, the blower 10 and the compressor 13 are driven at 73% (35/48 × 100) of the rated output to achieve overall air supply balance and save energy. In addition, each said point numerical value is an example, and can change freely, and it is also free to comprise in the VAV control means 15 which performs only the air volume control of the air blower 10. FIG.

Figure 2009036413
Figure 2009036413

地中の地表近くに埋設される地中熱交換器4は、熱媒が渦巻き状に下りながら流れる樹脂製の往路管部22と、この往路管部22から出た熱媒を地上へ戻す復路管部23と、を備えている。地中熱交換器4の往路管部22を細くて長い渦巻き状として地表近くに埋め、熱媒を地熱流に対してカウンターフローで流して、熱交換効率を良くしつつ地中で広範囲に分散して少しずつ熱交換させることにより、熱媒を温度調節するために必要とされる地熱量を得ることができ、かつ地中から奪う単位体積当りの地熱量を少なくできる。往路管部22は継ぎ目のない1本の管を巻設するだけよいので加工が簡単になり、バネ状に巻設して伸縮性をもたせてあるので免震性に優れ、地震に対する耐久性が十分で、破損による熱媒漏れなどを防止できる。地中熱交換器4の復路管部23は地上に熱媒を戻すだけでよいので短くてよく、地中との再熱交換による熱ロスが皆無で、熱交換効率の向上を図れて熱媒温度が安定する。往路管部22の埋設用穴は地表近くをパワーショベルなどの普通の掘削機械で浅く掘るだけでよく、掘削の時間と費用の削減を図れて施工が容易となる。   The underground heat exchanger 4 buried near the surface of the ground includes a resin-made forward pipe section 22 in which the heat medium flows while spirally descending, and a return path for returning the heat medium from the forward pipe section 22 to the ground. A tube portion 23. The forward pipe section 22 of the underground heat exchanger 4 is embedded in the vicinity of the ground surface as a thin and long spiral, and the heat medium is flowed in a counter flow with respect to the geothermal flow, and the heat exchange efficiency is improved and dispersed widely in the ground. By exchanging heat little by little, the amount of geothermal heat required to adjust the temperature of the heating medium can be obtained, and the amount of geothermal heat taken per unit volume from the ground can be reduced. The outgoing pipe section 22 can be easily processed by winding only one seamless pipe, and it is wound in a spring shape so that it has elasticity, so it has excellent seismic isolation and durability against earthquakes. It is sufficient and can prevent leakage of heat medium due to breakage. The return pipe section 23 of the underground heat exchanger 4 may be short because it only needs to return the heat medium to the ground, there is no heat loss due to reheat exchange with the ground, and the heat exchange efficiency can be improved. The temperature stabilizes. It is only necessary to dig the hole near the ground surface shallowly with an ordinary excavating machine such as a power shovel, and the construction and the excavation time and cost can be reduced and the construction becomes easy.

この往路管部22は下方に向かって順次縮径するように巻設し、一巻き毎に地中熱交換器4の往路管部22の径の大きさを変えることで管部同士の熱交換領域の重複部をなくし、地中の広い範囲で満遍なく熱交換させて地中温度の早期回復を図り、かつ熱交換効率を向上させる。しかも、下方に向かって順次縮径するように巻設した往路管部22では、その形状に合わせて埋設用穴は擂り鉢状でよいので掘りやすく、一層施工が容易となる。また往路管部22は扁平管とする。これにより短径側外面から管中央部の熱媒への伝熱が早く、熱交換効率がさらに良くなり、扁平管なので曲げやすく、往路管部22を渦巻き状に簡単に形成することができる。   The forward pipe portion 22 is wound so as to be gradually reduced in diameter downward, and heat exchange between the pipe portions is performed by changing the diameter of the forward pipe portion 22 of the underground heat exchanger 4 for each turn. It eliminates overlapping areas and allows heat to be evenly exchanged over a wide area in the ground to achieve early recovery of underground temperature and improve heat exchange efficiency. In addition, in the forward pipe portion 22 wound so as to be gradually reduced in diameter toward the lower side, the embedding hole may be shaped like a bowl, so that it is easy to dig, and construction becomes easier. In addition, the outgoing pipe section 22 is a flat pipe. Thereby, heat transfer from the outer surface on the short diameter side to the heat medium at the center of the tube is fast, heat exchange efficiency is further improved, and since it is a flat tube, it is easy to bend and the forward tube portion 22 can be easily formed in a spiral shape.

熱源水回路3には、地中熱交換器4に対して熱媒を流通・バイパス切換自在な第1切換機構17と、加熱装置16に対して熱媒を流通・バイパス切換自在な第2切換機構18と、熱交換コイル19に対して熱媒を流通・バイパス切換自在な第3切換機構24と、を設ける。第1切換機構17は、熱源水回路3に地中熱交換器4の熱媒入口を三方弁などの第1の切換弁25を介して接続しかつ第1切換弁25の下流で地中熱交換器4の熱媒出口を接続して成る。第2切換機構18は、熱源水回路3に加熱装置16の熱媒入口を三方弁などの第2の切換弁26を介して接続しかつ第2切換弁26の下流で加熱装置16の熱媒出口を接続して成る。第3切換機構24は、熱源水回路3に熱交換コイル19の熱媒入口を三方弁などの第3の切換弁27を介して接続しかつ第3切換弁27の下流で熱交換コイル19の熱媒出口を接続して成る。なお、図示省略するが切換機構17、18、24は、二方弁を、各機器4、16、19の熱媒入口と熱媒出口の間の熱源水回路3と、各機器4、16、19の熱媒入口に、各々設けて構成したり、その他の種々の構成とするも自由である。   In the heat source water circuit 3, a first switching mechanism 17 that allows flow and bypass switching of the heat medium to the underground heat exchanger 4, and a second switch that allows flow and bypass switching of the heat medium to the heating device 16 can be switched. A mechanism 18 and a third switching mechanism 24 that can freely switch and bypass the heat medium with respect to the heat exchange coil 19 are provided. The first switching mechanism 17 connects the heat medium inlet of the underground heat exchanger 4 to the heat source water circuit 3 via a first switching valve 25 such as a three-way valve, and underground heat downstream of the first switching valve 25. The heat medium outlet of the exchanger 4 is connected. The second switching mechanism 18 connects the heat medium inlet of the heating device 16 to the heat source water circuit 3 via a second switching valve 26 such as a three-way valve, and the heat medium of the heating device 16 downstream of the second switching valve 26. Consists of connecting outlets. The third switching mechanism 24 connects the heat medium inlet of the heat exchange coil 19 to the heat source water circuit 3 via a third switching valve 27 such as a three-way valve, and the heat switching coil 19 downstream of the third switching valve 27. It consists of connecting the heat medium outlet. Although not shown, the switching mechanisms 17, 18, 24 are two-way valves, the heat source water circuit 3 between the heat medium inlet and the heat medium outlet of each device 4, 16, 19, and each device 4, 16, Each of the 19 heat medium inlets may be provided and configured in various other configurations.

図1と図2の地中熱利用ヒートポンプ式ドライ空調システムでは、設定器32で設定された温湿度に応じて還気処理用給気側熱交換器7にて還気を冷却又は加熱すると共に外気処理用給気側熱交換器6にて外気を冷却又は加熱した後、両空気を混合し、室内に給気して空調する。室内B毎に設定温湿度が異なる場合は、制御器34にて各設定温湿度を比較して基準となる1つの設定温湿度を選択し、その基準設定温湿度に該当する所定の室内Bの検出温湿度が設定温湿度になるように信号出力して制御し、基準と設定温湿度が異なる室内Bは変風量ユニット5で送風量を増減して温湿度制御する。例えば、冷房運転の場合は最低の設定温湿度を基準とし、暖房運転の場合は最高の設定温湿度を基準とすればよいが、これ以外の基準とするも自由である。   In the heat pump type dry air conditioning system using geothermal heat of FIGS. 1 and 2, the return air is cooled or heated by the return air treatment supply side heat exchanger 7 according to the temperature and humidity set by the setting device 32. After the outside air is cooled or heated by the supply air side heat exchanger 6 for treating outside air, both the air are mixed and supplied to the room for air conditioning. When the set temperature / humidity is different for each room B, the controller 34 compares the set temperature / humidity to select one set temperature / humidity as a reference, and the predetermined room B corresponding to the reference set temperature / humidity is selected. A signal is output and controlled so that the detected temperature / humidity becomes the set temperature / humidity, and the room B having the reference temperature / humidity different from the reference temperature / humidity unit 5 controls the temperature / humidity by increasing / decreasing the air flow rate by the variable air volume unit 5. For example, in the case of cooling operation, the lowest set temperature / humidity may be used as a reference, and in the case of heating operation, the highest set temperature / humidity may be used as a reference.

夏期に冷房運転をする場合、外気を外気処理用給気側熱交換器6で冷却減湿した除湿空気と、還気を還気処理用給気側熱交換器7で乾き冷却した空気と、を所定比率(例えば8:2)で混合すると、前記乾き冷却した空気で、これよりも低温低湿の前記除湿空気を再熱するのと同じ効果が得られ、給気を温湿度制御できる。冬期に暖房運転する場合、外気を外気処理用給気側熱交換器6で加熱し、加湿器9で加湿して湿度調整した空気と、還気を還気処理用給気側熱交換器7で加熱した空気と、を所定比率で混合することで給気を温湿度制御できる。中間期などでは、圧縮機13を停止して外気冷房を行い省エネ化を図ることができる。   When performing the cooling operation in summer, dehumidified air obtained by cooling and dehumidifying the outside air with the supply air side heat exchanger 6 for treating the outside air, and air dried and cooled with the supply air side heat exchanger 7 used for the return air treatment, Is mixed at a predetermined ratio (for example, 8: 2), the same effect as reheating the dehumidified air having a lower temperature and lower humidity can be obtained with the dry and cooled air, and the temperature and humidity can be controlled. In the case of heating operation in winter, the outside air is heated by the supply air side heat exchanger 6 for outside air treatment, the air is humidified by the humidifier 9 and the humidity is adjusted, and the return air is supplied to the supply side heat exchanger 7 for return air treatment. The air supply can be controlled in temperature and humidity by mixing the air heated in step 1 with a predetermined ratio. In the intermediate period or the like, the compressor 13 is stopped and the outside air is cooled to save energy.

なお、本発明は前記各実施例に限定されず、本発明の要旨を逸脱しない範囲で設計変更自由である。それぞれ図示省略するが、空気を熱源とするヒートポンプAとしたり、圧縮機13を外気処理用給気側熱交換器6と還気処理用給気側熱交換器7に共用させずに個別に設けてもよく、さらに、外気と還気の混合比率を変更するも自由である。ダンパ機構11の位置の変更は自由で空調機1に設けても、空調機1に連通する送風路側に設けてもよい。また、前記各実施例において給気側送風機10を各々の熱交換器の風上に設けて押込み式に送風して混合するも自由である。   The present invention is not limited to the above-described embodiments, and the design can be freely changed without departing from the gist of the present invention. Although not shown in the drawings, the heat pump A using air as a heat source is provided, or the compressor 13 is provided individually without being shared by the supply air side heat exchanger 6 for external air processing and the supply air side heat exchanger 7 for return air processing. Furthermore, it is also free to change the mixing ratio of outside air and return air. The position of the damper mechanism 11 can be freely changed and provided on the air conditioner 1 or on the air passage side communicating with the air conditioner 1. Moreover, in each said Example, it is also free to provide the air supply side air blower 10 on the wind of each heat exchanger, and to blow and mix in a pushing type.

本発明の空調システムの全体簡略説明図。BRIEF DESCRIPTION OF THE DRAWINGS The whole air-conditioning system explanatory drawing of this invention. 要部説明図。FIG.

符号の説明Explanation of symbols

1 空調機
3 熱源水回路
4 地中熱交換器
5 変風量ユニット
6 外気処理用給気側熱交換器
7 還気処理用給気側熱交換器
8 ケーシング
9 加湿器
10 給気用送風機
11 ダンパ機構
12 分岐送風路
13 圧縮機
15 VAV制御手段
16 加熱装置
17 第1切換機構
18 第2切換機構
19 熱交換コイル
20 熱源側熱交換器
22 往路管部
23 復路管部
A ヒートポンプ
B 室内
DESCRIPTION OF SYMBOLS 1 Air conditioner 3 Heat source water circuit 4 Ground heat exchanger 5 Ventilation unit 6 Supply air side heat exchanger for outside air treatment 7 Supply air side heat exchanger for return air treatment 8 Casing 9 Humidifier 10 Blower 11 for air supply 11 Damper Mechanism 12 Branch air passage 13 Compressor 15 VAV control means 16 Heating device 17 First switching mechanism 18 Second switching mechanism 19 Heat exchange coil 20 Heat source side heat exchanger 22 Outward pipe section 23 Return pipe section A Heat pump B Indoor

Claims (8)

熱媒を熱源とする圧縮式のヒートポンプAを有する空調機1と、前記熱媒を循環させる熱源水回路3と、この熱源水回路3に接続されて前記熱媒を温度調節する地中熱交換器4と、複数の室内B毎に設けられて前記空調機1からの給気風量を個別に調整自在な変風量ユニット5と、を備え、前記ヒートポンプAは、外気を熱交換する外気処理用の給気側熱交換器6と、還気を熱交換する還気処理用の給気側熱交換器7と、を備え、前記空調機1のケーシング8内に、前記ヒートポンプAと、外気を加湿する加湿器9と、前記還気処理用給気側熱交換器7を通った還気と前記外気処理用給気側熱交換器6及び前記加湿器9を通った外気とを混合して給気する給気用送風機10と、を設けたことを特徴とする地中熱利用ヒートポンプ式ドライ空調システム。   An air conditioner 1 having a compression heat pump A that uses a heat medium as a heat source, a heat source water circuit 3 that circulates the heat medium, and a ground heat exchange that is connected to the heat source water circuit 3 and adjusts the temperature of the heat medium. And a variable air volume unit 5 that is provided for each of a plurality of rooms B and is capable of individually adjusting the amount of air supplied from the air conditioner 1, and the heat pump A is for outside air processing for exchanging heat from outside air. The air supply side heat exchanger 6 and the air supply side heat exchanger 7 for return air processing for exchanging the return air are provided, and the heat pump A and the outside air are placed in the casing 8 of the air conditioner 1. The humidifier 9 to be humidified is mixed with the return air that has passed through the supply air heat exchanger 7 for return air treatment and the outside air that has passed through the supply air heat exchanger 6 for external air treatment and the humidifier 9. A heat pump type dry air conditioner using geothermal heat, characterized in that an air supply fan 10 for supplying air is provided. Stem. 空調機1に取入れられる還気風量と外気風量を制御するダンパ機構11を、備えた請求項1記載の地中熱利用ヒートポンプ式ドライ空調システム。   The heat pump type dry air-conditioning system using geothermal heat according to claim 1, further comprising a damper mechanism 11 for controlling a return air volume and an outside air volume taken into the air conditioner 1. 空調機1と各変風量ユニット5を連結する分岐送風路12毎の変風量ユニットボリュームポイントと分岐送風路内径比ポイントとの積算値を全分岐送風路分合計すると共にその合計積算値の全変風量ユニット最大ボリューム時合計積算値に対する比に基いて前記空調機1の給気用送風機10の風量制御のみ又はこの給気用送風機10の風量制御及びヒートポンプAの圧縮機13の容量制御を行うVAV制御手段15を、備えた請求項1又は2記載の地中熱利用ヒートポンプ式ドライ空調システム。   The integrated values of the air flow rate unit volume point and the branch air passage inner diameter ratio point for each branch air passage 12 connecting the air conditioner 1 and each air flow amount unit 5 are totaled for all the branch air passages, and the total integrated value is completely changed. VAV which performs only the air volume control of the air supply fan 10 of the air conditioner 1 or the air volume control of the air supply fan 10 and the capacity control of the compressor 13 of the heat pump A based on the ratio to the total integrated value at the time of the maximum air volume unit volume. The heat pump type dry air-conditioning system using geothermal heat according to claim 1, further comprising a control means 15. 熱源水回路3に熱媒を加熱する加熱装置16を地中熱交換器4よりも下流で接続し、前記熱源水回路3に、前記地中熱交換器4に対して熱媒を流通・バイパス切換自在な第1切換機構17と、前記加熱装置16に対して熱媒を流通・バイパス切換自在な第2切換機構18と、を設けた請求項1、2又は3記載の地中熱利用ヒートポンプ式ドライ空調システム。   A heating device 16 for heating the heat medium is connected to the heat source water circuit 3 downstream of the underground heat exchanger 4, and the heat medium is circulated and bypassed to the heat source water circuit 3 with respect to the underground heat exchanger 4. The ground heat utilization heat pump according to claim 1, 2 or 3, further comprising: a first switching mechanism 17 capable of switching; and a second switching mechanism 18 capable of switching and bypassing a heat medium with respect to the heating device 16. Type dry air conditioning system. 空調機1に、加熱装置16にて加熱された熱媒にて外気を予熱する熱交換コイル19を、外気処理用給気側熱交換器6の風上に設けた請求項4記載の地中熱利用ヒートポンプ式ドライ空調システム。   The underground of Claim 4 which provided the heat exchange coil 19 which preheats external air with the heat medium heated with the heating apparatus 16 in the air conditioning machine 1 on the wind of the supply side heat exchanger 6 for external air processing. Heat-use heat pump dry air conditioning system. 地中の地表近くに埋設される地中熱交換器4が、熱媒が渦巻き状に下りながら流れる樹脂製の往路管部22と、この往路管部22から出た前記熱媒を地上へ戻す復路管部23と、を備えた請求項1、2、3、4又は5記載の地中熱利用ヒートポンプ式ドライ空調システム。   The underground heat exchanger 4 buried near the ground surface in the ground returns the outward path pipe section 22 made of resin through which the heating medium descends in a spiral shape, and returns the heating medium from the outbound path pipe section 22 to the ground. A heat pump type dry air conditioning system using geothermal heat according to claim 1, comprising a return pipe section 23. 外気処理用と還気処理用の2つの給気側熱交換器6、7を、熱源側熱交換器20と圧縮機13で共用した請求項1、2、3、4、5又は6記載の地中熱利用ヒートポンプ式ドライ空調システム。   The two supply side heat exchangers 6 and 7 for external air processing and return air processing are shared by the heat source side heat exchanger 20 and the compressor 13 according to claim 1, 2, 3, 4, 5, or 6. A heat pump dry air conditioning system using geothermal heat. 給気側熱交換器6、7のフィンチューブを楕円管とした請求項1、2、3、4、5、6又は7記載の地中熱利用ヒートポンプ式ドライ空調システム。   The heat pump type dry air-conditioning system using ground heat according to claim 1, 2, 3, 4, 5, 6 or 7, wherein the fin tubes of the supply air side heat exchangers 6 and 7 are elliptical tubes.
JP2007200126A 2007-07-31 2007-07-31 Heat pump type dry air conditioning system using geothermal heat Active JP4445530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007200126A JP4445530B2 (en) 2007-07-31 2007-07-31 Heat pump type dry air conditioning system using geothermal heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007200126A JP4445530B2 (en) 2007-07-31 2007-07-31 Heat pump type dry air conditioning system using geothermal heat

Publications (2)

Publication Number Publication Date
JP2009036413A true JP2009036413A (en) 2009-02-19
JP4445530B2 JP4445530B2 (en) 2010-04-07

Family

ID=40438485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007200126A Active JP4445530B2 (en) 2007-07-31 2007-07-31 Heat pump type dry air conditioning system using geothermal heat

Country Status (1)

Country Link
JP (1) JP4445530B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100916761B1 (en) * 2009-05-25 2009-09-14 한국지질자원연구원 Ground source heat exchange system with thermal storage well
KR100931705B1 (en) * 2009-04-21 2009-12-14 지에스네오텍 주식회사 Geothermal air-conditioning system of group living facilities
KR100940302B1 (en) * 2009-08-25 2010-02-05 한국지질자원연구원 Ground source heat exchange method with thermal storage well
CN101907373A (en) * 2010-08-17 2010-12-08 上海交通大学 Ground source heat pump air-conditioning system for sectional regulation and control of ground heat exchangers
JP2012159235A (en) * 2011-01-31 2012-08-23 Mitsubishi Heavy Ind Ltd Heat pump system and desiccant air conditioning system using the same
WO2013138962A1 (en) * 2012-03-21 2013-09-26 淄博一村空调有限公司 Double-medium circulation air conditioner for cooling, heating and humidifying
CN107036215A (en) * 2017-06-07 2017-08-11 山东村空调有限公司 A kind of intelligent dual intensity Bieffect air conditioning
CN109737519A (en) * 2019-01-23 2019-05-10 山东一村空调有限公司 A kind of dual intensity economic benefits and social benefits ground temperature central cold-hot air-conditioning
GB2571723A (en) * 2018-03-05 2019-09-11 Ventive Ltd Ventilation system including a heat pump
KR20220025962A (en) * 2020-08-24 2022-03-04 원철호 Water collecting unit cleaning device for geothermal heat pump system and control method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106403330B (en) * 2016-08-30 2018-07-03 湖南中大经纬地热开发科技有限公司 Geothermal utilization method based on source of seawater

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100931705B1 (en) * 2009-04-21 2009-12-14 지에스네오텍 주식회사 Geothermal air-conditioning system of group living facilities
KR100916761B1 (en) * 2009-05-25 2009-09-14 한국지질자원연구원 Ground source heat exchange system with thermal storage well
KR100940302B1 (en) * 2009-08-25 2010-02-05 한국지질자원연구원 Ground source heat exchange method with thermal storage well
CN101907373A (en) * 2010-08-17 2010-12-08 上海交通大学 Ground source heat pump air-conditioning system for sectional regulation and control of ground heat exchangers
JP2012159235A (en) * 2011-01-31 2012-08-23 Mitsubishi Heavy Ind Ltd Heat pump system and desiccant air conditioning system using the same
US20150300696A1 (en) * 2012-03-21 2015-10-22 Shengtang Gao Double-medium circulation air conditioner for cooling, heating and humidifying
WO2013138962A1 (en) * 2012-03-21 2013-09-26 淄博一村空调有限公司 Double-medium circulation air conditioner for cooling, heating and humidifying
US9441860B2 (en) * 2012-03-21 2016-09-13 Shandong Yicun Airconditioning Co., Ltd. Double-medium circulation air conditioner for cooling, heating and humidifying
CN107036215A (en) * 2017-06-07 2017-08-11 山东村空调有限公司 A kind of intelligent dual intensity Bieffect air conditioning
CN107036215B (en) * 2017-06-07 2020-05-15 山东一村空调有限公司 Intelligent dual-energy double-effect air conditioner
GB2571723A (en) * 2018-03-05 2019-09-11 Ventive Ltd Ventilation system including a heat pump
GB2571723B (en) * 2018-03-05 2021-11-24 Ventive Ltd Ventilation system including a heat pump
CN109737519A (en) * 2019-01-23 2019-05-10 山东一村空调有限公司 A kind of dual intensity economic benefits and social benefits ground temperature central cold-hot air-conditioning
KR20220025962A (en) * 2020-08-24 2022-03-04 원철호 Water collecting unit cleaning device for geothermal heat pump system and control method thereof
KR102524857B1 (en) * 2020-08-24 2023-04-24 원철호 Geothermal heat pump system and control method thereof

Also Published As

Publication number Publication date
JP4445530B2 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
JP4445530B2 (en) Heat pump type dry air conditioning system using geothermal heat
JP4207166B2 (en) Dehumidifying air conditioner
JP2009036414A (en) Heat pump-type dry air conditioning system
WO2016179884A1 (en) Variable-refrigerant-flow radiant air-conditioning system
US6976524B2 (en) Apparatus for maximum work
US6385983B1 (en) Multipurpose air conditioning apparatus
CN101363649B (en) Geothermal heat pump air conditioning system for independently controlling temperature and humidity
CN104697085B (en) Divide family combined type air-conditioning system
CN108800375B (en) Air heat source heat pump type air conditioner
CN112460696B (en) Temperature and humidity independent control air conditioning system
CN107270447A (en) A kind of capillary radiation special air conditioner heat pump fresh air group and its control method
JP2006292313A (en) Geothermal unit
JP2017150778A (en) Dehumidifying/reheating air-conditioning system utilizing ground thermal energy
KR100800328B1 (en) Heat pump using underground air as heat source
CN107178836A (en) A kind of fresh air dehumidifying system provided with double heat exchanger cores
JP2017072356A (en) Heat pump type heat source device
JP6425750B2 (en) Air conditioning system
JP2005114254A (en) Air conditioning facility
CN105135552A (en) Air conditioner system
KR100384702B1 (en) Air-conditioning system for a multistory building
JP2010243005A (en) Dehumidification system
CN205014518U (en) Air conditioning system
CN218864371U (en) Fresh air radiation air treatment system
CN215175461U (en) Air treatment unit
WO2023148854A1 (en) Heat-exchange-type ventilation device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100115

R150 Certificate of patent or registration of utility model

Ref document number: 4445530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250