JP3997482B2 - Water source air conditioning system - Google Patents

Water source air conditioning system Download PDF

Info

Publication number
JP3997482B2
JP3997482B2 JP2003299179A JP2003299179A JP3997482B2 JP 3997482 B2 JP3997482 B2 JP 3997482B2 JP 2003299179 A JP2003299179 A JP 2003299179A JP 2003299179 A JP2003299179 A JP 2003299179A JP 3997482 B2 JP3997482 B2 JP 3997482B2
Authority
JP
Japan
Prior art keywords
water
heat source
source water
temperature
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003299179A
Other languages
Japanese (ja)
Other versions
JP2005069554A (en
Inventor
勝博 浦野
Original Assignee
木村工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 木村工機株式会社 filed Critical 木村工機株式会社
Priority to JP2003299179A priority Critical patent/JP3997482B2/en
Publication of JP2005069554A publication Critical patent/JP2005069554A/en
Application granted granted Critical
Publication of JP3997482B2 publication Critical patent/JP3997482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は水熱源空調システムに関するものである。   The present invention relates to a water heat source air conditioning system.

水冷ヒートポンプ式空調機を用いた水熱源空調システムとして、特開平6−341683号公報のものがある。このシステムは熱源水路に複数台の水冷ヒートポンプ式空調機を直列に接続し、熱源水が上流側の水冷ヒートポンプ式空調機を通ってからでないと下流側の水冷ヒートポンプ式空調機へ送ることができず、流量も個別に調節できない構成となっている。   As a water heat source air conditioning system using a water-cooled heat pump type air conditioner, there is one disclosed in JP-A-6-341683. In this system, multiple water-cooled heat pump air conditioners are connected in series to the heat source water channel, and the heat source water must be sent through the upstream water-cooled heat pump air conditioner before it can be sent to the downstream water-cooled heat pump air conditioner. In addition, the flow rate cannot be adjusted individually.

このようなシステムの水冷ヒートポンプ式空調機では、熱源水の入口水温の度合により冷暖房能力が大きく変動し、入口水温が高すぎたり低すぎたりすると、ヒートポンプの圧縮機制御だけでは所望の冷暖房能力を得られない場合や、圧縮機が作動しなくなる場合がある。また、同一の熱源水回路に接続される水冷ヒートポンプ式空調機の台数が多くなると上流側と下流側では熱源水の入口水温の変動が大きくなるため、能力ムラが生じる問題がある。さらに、1台でも水冷ヒートポンプ式空調機が故障すると、熱源水の循環ができなくなり、全ての空調機の運転を止めなければならない問題がある。   In such a water-cooled heat pump type air conditioner, the cooling / heating capacity varies greatly depending on the degree of the inlet water temperature of the heat source water, and if the inlet water temperature is too high or too low, the heat pump compressor control alone will give the desired cooling / heating capacity. It may not be obtained or the compressor may not work. In addition, when the number of water-cooled heat pump air conditioners connected to the same heat source water circuit increases, fluctuations in the inlet water temperature of the heat source water increase on the upstream side and the downstream side, which causes a problem of uneven performance. Furthermore, if even one of the water-cooled heat pump type air conditioners breaks down, there is a problem that the heat source water cannot be circulated and the operation of all the air conditioners must be stopped.

特開平6−341683号公報JP-A-6-341683

解決しようとする問題点は、熱源水の入口水温変動が水冷ヒートポンプ式空調機の能力に大きな影響を与える点と水冷ヒートポンプ式空調機故障時に応急対応ができない点である。   The problem to be solved is that the fluctuation of the inlet water temperature of the heat source water greatly affects the capacity of the water-cooled heat pump type air conditioner, and that emergency response is not possible when the water-cooled heat pump type air conditioner fails.

本発明は上記課題を解決するため、熱源水回路に迂回管を連通連結し、この迂回管に流量制御弁を設け、前記迂回管における前記流量制御弁より上流部を水冷ヒートポンプ式空調機の熱源水入口路に接続し、前記迂回管における前記流量制御弁より下流部を前記水冷ヒートポンプ式空調機の熱源水出口路に接続し、前記水冷ヒートポンプ式空調機の熱源水入口温度を検出する入口水温用検出器を設けると共に前記水冷ヒートポンプ式空調機の熱源水出口温度を検出する出口水温用検出器を設け、これらの検出器にて検出された熱源水入口温度と熱源水出口温度に基づいて前記流量制御弁を制御して前記水冷ヒートポンプ式空調機への熱源水量を増減させて能力を調節する制御手段を、設け、前記熱源水回路における前記迂回管の上流側連結部と下流側連結部の間に、開閉弁を設けたことを最も主要な特徴とする。   In order to solve the above-mentioned problem, the present invention is configured to connect a bypass pipe to the heat source water circuit, provide a flow control valve in the bypass pipe, and provide a heat source of the water-cooled heat pump air conditioner upstream of the flow control valve in the bypass pipe. An inlet water temperature that is connected to a water inlet passage, connects a downstream portion of the bypass pipe from the flow rate control valve to a heat source water outlet passage of the water-cooled heat pump air conditioner, and detects a heat source water inlet temperature of the water-cooled heat pump air conditioner And an outlet water temperature detector for detecting the temperature of the heat source water outlet of the water-cooled heat pump air conditioner, and based on the heat source water inlet temperature and the heat source water outlet temperature detected by these detectors. A control means for adjusting the capacity by controlling the flow rate control valve to increase or decrease the amount of heat source water to the water-cooled heat pump type air conditioner is provided, and the upstream side connecting portion of the bypass pipe in the heat source water circuit Between the downstream-side connecting portion, and most main feature in that a closing valve.

請求項1の発明では、熱源水の入口水温の変動があっても、流量制御弁12を制御して水冷ヒートポンプ式空調機4への熱源水量を増減させて能力を調節するので、広い水温範囲で所望の冷暖房能力を不足なく得ることができ、圧縮機の負荷を小さくできて省エネとなる。万一水冷ヒートポンプ式空調機4や流量制御弁12が故障しても、開閉弁18を開くことにより熱源水を短絡させて流すことができるので、他の空調機4の運転を止めずにすむ。
請求項2、3の発明では、同一の熱源水回路2に接続される水冷ヒートポンプ式空調機4の台数が多くなって熱源水入口温度が大きく変動しても、個別の水量制御により冷暖房のための能力を調節し、水冷ヒートポンプ式空調機相互の能力ムラを少なくでき、安定した空調を行える。
請求項2の発明では、1管式でかつ熱源水の流量バランスをとれるのでダイレクトレターン方式にでき、配管距離が短くなり設備コストを削減できる。
請求項3の発明では、水冷ヒートポンプ式空調機4の熱源水を往き管でなく返り管2bから導入しているので、冷温水コイル式空調機19に対して熱源水入口温度の変動すなわち能力ムラなどの影響を与えることなく水冷ヒートポンプ式空調機4を併用して運転できる。冷温水コイル式空調機19と水冷ヒートポンプ式空調機4で冷暖房同時運転が行えるので、冬期でも局所的に冷房が必要な場合などに簡単に対応でき、熱源機から冷水又は温水だけを供給すればよいので熱源機の運転コストを抑えることができる。水冷ヒートポンプ式空調機同士で冷暖房同時運転を行う場合は熱源負荷を軽減できる。水冷ヒートポンプ6は返り管1本のみから熱源水を導入して返すので、往き管から導入して返り管に返す場合と比べて、配管が簡単で短くなり、返り管2bさえあればよいので設置場所の制限が少ない。さらにリニューアル時などにおいて冷温水コイル式空調機19用の既設の熱源水回路2をそのまま利用して水冷ヒートポンプ式空調機4を増設することができ、設備コストを削減できる。
請求項4の発明では、熱源水の入口水温の度合に応じて、熱交換効率の低い熱源水入口温度では水量増加により自動的に能力アップを図ることができ、熱交換効率の高い熱源水入口温度では一定のCOPを保ちつつ自動的に水量節減すなわち熱源水の送水ポンプ負荷低減ができる。
In the first aspect of the present invention, even if there is a change in the inlet water temperature of the heat source water, the flow control valve 12 is controlled to adjust the capacity by increasing or decreasing the amount of the heat source water to the water-cooled heat pump type air conditioner 4, so a wide water temperature range Thus, the desired air conditioning capacity can be obtained without shortage, and the load on the compressor can be reduced, resulting in energy saving . Thousands and one water-cooled heat pump type air conditioner 4 and the flow control valve 12 fails, can flow by short-circuiting the heat source water by opening the on-off valve 18, it is not necessary to stop operation of the other air conditioner 4 .
According to the second and third aspects of the present invention, even if the number of water-cooled heat pump air conditioners 4 connected to the same heat source water circuit 2 increases and the heat source water inlet temperature fluctuates greatly, the water source temperature is controlled by individual water amount control. By adjusting the capacity of the air-conditioning system, it is possible to reduce the unevenness in the performance of the water-cooled heat pump air conditioners and to achieve stable air conditioning.
In the invention of claim 2 , since it is a single pipe type and the flow rate balance of the heat source water can be obtained, the direct return method can be used, the piping distance is shortened, and the equipment cost can be reduced.
In the invention of claim 3 , since the heat source water of the water-cooled heat pump type air conditioner 4 is introduced from the return pipe 2b instead of the forward pipe, the fluctuation of the heat source water inlet temperature with respect to the cold / hot water coil type air conditioner 19, that is, uneven performance. The water-cooled heat pump type air conditioner 4 can be used in combination without affecting the above. Since the cooling / heating coil-type air conditioner 19 and the water-cooled heat pump-type air conditioner 4 can perform simultaneous cooling and heating operations, it is possible to easily cope with cases where local cooling is necessary even in winter, and only supply cold water or hot water from the heat source machine. Since it is good, the operating cost of the heat source machine can be suppressed. When performing cooling and heating simultaneous operation between water-cooled heat pump air conditioners, the heat source load can be reduced. Since the water-cooled heat pump 6 introduces and returns the heat source water from only one return pipe, the pipe is simpler and shorter than the case where it is introduced from the forward pipe and returned to the return pipe, and only the return pipe 2b is required. There are few place restrictions. Furthermore, at the time of renewal or the like, the existing heat source water circuit 2 for the cold / hot water coil type air conditioner 19 can be used as it is, and the water cooling heat pump type air conditioner 4 can be added, and the equipment cost can be reduced.
According to the invention of claim 4 , according to the degree of the inlet water temperature of the heat source water, at the heat source water inlet temperature having a low heat exchange efficiency, the capacity can be automatically increased by increasing the amount of water, and the heat source water inlet having a high heat exchange efficiency. While maintaining a constant COP at the temperature, it is possible to automatically reduce the amount of water, that is, to reduce the load of the water supply water pump.

図1と図2は、本発明の水熱源空調システムの一実施例を示しており、この水熱源空調システムは、熱源機1と、熱源機1で温度調整された熱源水が流れる熱源水回路2と、熱源水を矢印方向に送る送水ポンプ3と、熱源水回路2に熱源水出入口が接続された水冷ヒートポンプ式空調機4と、を備えている。熱源機1は、温水用のボイラーと冷水用の冷却塔又はチラーなどと図示省略の切換機構により熱源水を温水と冷水に切換え自在として構成する。   1 and 2 show an embodiment of a water heat source air conditioning system of the present invention. This water heat source air conditioning system is a heat source water circuit through which a heat source unit 1 and heat source water whose temperature is adjusted by the heat source unit 1 flow. 2, a water supply pump 3 for sending the heat source water in the direction of the arrow, and a water-cooled heat pump type air conditioner 4 having a heat source water inlet / outlet connected to the heat source water circuit 2. The heat source unit 1 is configured so that the heat source water can be switched between hot water and cold water by a hot water boiler, a cooling tower or chiller for cold water, and a switching mechanism (not shown).

水冷ヒートポンプ式空調機4はケーシング5内に水冷ヒートポンプ6と給気用送風機7とを備え、水冷ヒートポンプ式空調機4の空気入口は還気取入用や外気取入用としてダクトなどを介して室内などの被空調空間や屋外と連通させ、水冷ヒートポンプ式空調機4の空気出口は給気用としてダクトなどを介して室内などの被空調空間に連通させる。水冷ヒートポンプ6は、熱源水で冷媒の熱交換をする水熱交換器8と、冷媒で空調用空気の熱交換をする空気熱交換器9と、圧縮機10と、膨張弁と、冷媒循環方向の正逆の切換弁(四方弁)と、図示省略の受液器等と、を配管接続して冷媒循環回路を構成しかつ切換弁により水熱交換器8と空気熱交換器9の吸熱と放熱(蒸発機能と凝縮機能)を切換自在に構成する。この水冷ヒートポンプ6の空気熱交換器9にて空調用空気を冷却又は加熱し、冷房運転と暖房運転を切換自在に行い、被空調空間に給気して空調する。この水冷ヒートポンプ6で冷房と暖房を行うときの熱源水の使用限界水温範囲の一例を上げると10℃〜45℃である。なお、水熱交換器8は、2重管式やプレート型その他各種構造のものとするも自由である。   The water-cooled heat pump type air conditioner 4 is provided with a water-cooled heat pump 6 and an air supply blower 7 in a casing 5, and the air inlet of the water-cooled heat pump type air conditioner 4 is used for return air intake or outside air intake via a duct or the like. The air outlet of the water-cooled heat pump type air conditioner 4 communicates with the air-conditioned space such as the room via a duct for supplying air. The water-cooled heat pump 6 includes a water heat exchanger 8 that exchanges heat of refrigerant with heat source water, an air heat exchanger 9 that exchanges heat of air-conditioning air using refrigerant, a compressor 10, an expansion valve, and a refrigerant circulation direction. The reversing switching valve (four-way valve) and a liquid receiver (not shown) are connected to each other to form a refrigerant circulation circuit, and the heat absorption of the water heat exchanger 8 and the air heat exchanger 9 is achieved by the switching valve. Heat dissipation (evaporation function and condensation function) can be switched. The air heat exchanger 9 of the water-cooled heat pump 6 cools or heats the air-conditioning air so that the cooling operation and the heating operation can be switched freely, and the air-conditioned space is supplied and air-conditioned. When an example of the use limit water temperature range of the heat source water when performing cooling and heating with this water cooling heat pump 6 is raised, it is 10 ° C to 45 ° C. The water heat exchanger 8 can be of any type such as a double pipe type, a plate type, or other various structures.

熱源水回路2には迂回管11を連通連結し、この迂回管11に流量制御弁12を設け、迂回管11における流量制御弁12より上流部を水冷ヒートポンプ式空調機4の水冷ヒートポンプ6の熱源水入口路に接続し、迂回管11における流量制御弁12より下流部を水冷ヒートポンプ式空調機4の水冷ヒートポンプ6の熱源水出口路に接続し、熱源水回路2における迂回管11の上流側連結部と下流側連結部の間に、開閉弁18を設ける。この流量制御弁12と開閉弁18は二方弁を用いればよい。開放弁18は通常閉じておき、水冷ヒートポンプ6や流量制御弁12が故障した場合などに開いて、熱源水回路2が詰まらないように応急処置をとることができる。流量制御弁12は後述の制御手段17により、水冷ヒートポンプ6の運転を停止するときは全開として熱源水が水熱交換器8にその内部抵抗により流れないようにし、水冷ヒートポンプ6の運転を行うときは開度調節を行い所定流量の熱源水が水熱交換器8に流れるようにする。したがって、熱源水回路2と水冷ヒートポンプ6の間に送水ポンプを設けなくても熱源水を分流させて必要水量だけ水冷ヒートポンプ6に流すことができる。   A bypass pipe 11 is connected to the heat source water circuit 2, a flow control valve 12 is provided in the bypass pipe 11, and a heat source of the water-cooled heat pump 6 of the water-cooled heat pump type air conditioner 4 is disposed upstream of the flow control valve 12 in the bypass pipe 11. Connected to the water inlet path, connected downstream of the flow control valve 12 in the bypass pipe 11 to the heat source water outlet path of the water cooled heat pump 6 of the water-cooled heat pump type air conditioner 4, and connected upstream of the bypass pipe 11 in the heat source water circuit 2 An on-off valve 18 is provided between the part and the downstream connection part. The flow control valve 12 and the on-off valve 18 may be two-way valves. The release valve 18 is normally closed and opened when the water-cooled heat pump 6 or the flow control valve 12 breaks down, and emergency measures can be taken so that the heat source water circuit 2 is not clogged. When the operation of the water-cooled heat pump 6 is stopped by the control means 17 which will be described later, the flow control valve 12 is fully opened so that the heat source water does not flow into the water heat exchanger 8 due to its internal resistance, and the water-cooled heat pump 6 is operated. Adjusts the opening so that a predetermined flow rate of heat source water flows to the water heat exchanger 8. Therefore, even if a water supply pump is not provided between the heat source water circuit 2 and the water-cooled heat pump 6, the heat source water can be diverted and allowed to flow through the water-cooled heat pump 6 by a necessary amount.

水冷ヒートポンプ式空調機4の水冷ヒートポンプ6の熱源水入口路や熱源水出口路などには、水冷ヒートポンプ式空調機4の水冷ヒートポンプ6の熱源水入口温度を検出する入口水温用検出器15を設けると共に水冷ヒートポンプ式空調機4の水冷ヒートポンプ6の熱源水出口温度を検出する出口水温用検出器16を設け、これらの検出器15、16にて検出された熱源水入口温度と熱源水出口温度に基づいて流量制御弁12を制御して水冷ヒートポンプ式空調機4の水冷ヒートポンプ6への熱源水量を増減させて能力を調節する制御手段17を、設ける。具体的には、入口水温用検出器15と出口水温用検出器16にて検出された熱源水入口温度と熱源水出口温度の差を算出しこの算出値が前記熱源水入口温度に応じて予め定められた温度差設定値となるように流量制御弁12を制御する制御手段17とし、冷房運転では前記熱源水入口温度が高くなるにしたがって水冷ヒートポンプ式空調機4の水冷ヒートポンプ6への熱源水量が増加するように前記温度差設定値を定めると共に暖房運転では前記熱源水入口温度が低くなるにしたがって水冷ヒートポンプ式空調機4の水冷ヒートポンプ6への熱源水量が増加するように前記温度差設定値を定める。   An inlet water temperature detector 15 for detecting the heat source water inlet temperature of the water cooling heat pump 6 of the water cooling heat pump air conditioner 4 is provided in the heat source water inlet path and the heat source water outlet path of the water cooling heat pump 6 of the water cooling heat pump type air conditioner 4. In addition, an outlet water temperature detector 16 for detecting the heat source water outlet temperature of the water cooling heat pump 6 of the water cooling heat pump type air conditioner 4 is provided, and the heat source water inlet temperature and the heat source water outlet temperature detected by these detectors 15 and 16 are provided. Based on this, a control means 17 is provided for controlling the flow rate control valve 12 to adjust the capacity by increasing or decreasing the amount of heat source water to the water-cooled heat pump 6 of the water-cooled heat pump type air conditioner 4. Specifically, the difference between the heat source water inlet temperature and the heat source water outlet temperature detected by the inlet water temperature detector 15 and the outlet water temperature detector 16 is calculated, and this calculated value is determined in advance according to the heat source water inlet temperature. The control means 17 controls the flow rate control valve 12 so as to have a set temperature difference set value. In the cooling operation, the amount of heat source water to the water cooling heat pump 6 of the water cooling heat pump type air conditioner 4 as the heat source water inlet temperature increases. In the heating operation, the temperature difference set value is determined such that the amount of heat source water to the water cooled heat pump 6 of the water cooled heat pump type air conditioner 4 increases as the temperature of the heat source water inlet decreases. Determine.

水冷ヒートポンプ6への熱源水量が増えるにしたがって熱源水出入口の温度差が小さくなり、温度差が大きくなると熱源水量が減少するのを利用し、たとえば、熱交換効率の低い熱源水入口温度となる場合は水量増加により自動的に能力アップを図り、熱交換効率の高い熱源水入口温度となる場合は一定のCOPを保ちつつ水量節減するような、温度差設定値を選択する。なお、上記以外の方法で流量制御弁12を制御して水冷ヒートポンプ式空調機4の水冷ヒートポンプ6への熱源水量を増減させて能力を調節するのも自由である。その一例を上げると、入口水温用検出器15と出口水温用検出器16にて熱源水入口温度と熱源水出口温度を検出しこの熱源水出口温度が前記熱源水入口温度に応じて予め定められた熱源水出口温度設定値となるように流量制御弁12を制御する制御手段17とし、冷房運転では前記熱源水入口温度が高くなるにしたがって水冷ヒートポンプ式空調機4の水冷ヒートポンプ6への熱源水量が増加するように前記熱源水出口温度設定値を定めると共に暖房運転では前記熱源水入口温度が低くなるにしたがって水冷ヒートポンプ式空調機4の水冷ヒートポンプ6への熱源水量が増加するように前記熱源水出口温度設定値を定めるようにする。   When the temperature difference of the heat source water inlet / outlet becomes smaller as the amount of heat source water to the water-cooled heat pump 6 increases and the temperature difference becomes larger, the amount of heat source water decreases, for example, when the heat source water inlet temperature becomes low in heat exchange efficiency. Automatically increases the capacity by increasing the amount of water, and when the heat source water inlet temperature has a high heat exchange efficiency, a temperature difference set value is selected so as to reduce the water amount while maintaining a constant COP. It is also possible to adjust the capacity by controlling the flow rate control valve 12 by a method other than the above to increase or decrease the amount of heat source water to the water-cooled heat pump 6 of the water-cooled heat pump type air conditioner 4. As an example, the inlet water temperature detector 15 and the outlet water temperature detector 16 detect the heat source water inlet temperature and the heat source water outlet temperature, and the heat source water outlet temperature is predetermined according to the heat source water inlet temperature. The control means 17 controls the flow rate control valve 12 so that the heat source water outlet temperature set value is set, and in the cooling operation, the amount of heat source water to the water cooling heat pump 6 of the water cooling heat pump type air conditioner 4 as the heat source water inlet temperature increases. The heat source water outlet temperature set value is determined so as to increase, and in the heating operation, the amount of heat source water to the water cooling heat pump 6 of the water cooling heat pump type air conditioner 4 increases as the heat source water inlet temperature decreases. Set the outlet temperature setpoint.

図2では、複数台の水冷ヒートポンプ式空調機4を備え、熱源水回路2を1本の主管が往き管と返り管を兼用する1管式として、各水冷ヒートポンプ式空調機4の熱源水出入口を前記主管に別個の迂回管11を介して接続し、これらの水冷ヒートポンプ式空調機一台ずつ順に熱源水が流れるように構成し、各水冷ヒートポンプ式空調機4毎に、流量制御弁12と熱源水入口温度を検出する入口水温用検出器15と熱源水出口温度を検出する出口水温用検出器16と、を設け、これらの検出器15、16にて検出された各水冷ヒートポンプ式空調機4毎の熱源水入口温度と熱源水出口温度に基づいて各々対応する流量制御弁12を個別に制御して各水冷ヒートポンプ式空調機4への熱源水量を増減させて能力を個別に調節する制御手段17と、している。   In FIG. 2, a plurality of water-cooled heat pump type air conditioners 4 are provided, and the heat source water circuit 2 is a single pipe type in which one main pipe serves as both an outgoing pipe and a return pipe. Is connected to the main pipe via a separate bypass pipe 11, and the heat source water flows through each of the water-cooled heat pump air conditioners one by one, and each water-cooled heat pump air conditioner 4 has a flow control valve 12 and An inlet water temperature detector 15 for detecting the heat source water inlet temperature and an outlet water temperature detector 16 for detecting the heat source water outlet temperature are provided, and each of the water-cooled heat pump air conditioners detected by these detectors 15 and 16 is provided. Control for individually adjusting the capacity by individually controlling the flow rate control valve 12 corresponding to each of the heat source water inlet temperature and the heat source water outlet temperature for every four to increase or decrease the amount of heat source water to each water-cooled heat pump type air conditioner 4 Means 17; To have.

全ての水冷ヒートポンプ式空調機4で冷房運転する場合、熱源水を空調機4の水熱交換器8に流し、水冷ヒートポンプ6の循環冷媒が水熱交換器8で凝縮(放熱)し空気熱交換器9で蒸発(吸熱)するように機能させ、熱源水で循環冷媒を凝縮させ、空気熱交換器9で空調用空気を冷却する。熱源水回路2から水熱交換器8に入った熱源水は前記冷媒放熱作用により温度上昇し熱源水回路2に戻るが、下流側にいくにしたがって空調機4の熱源水入口温度が高くなるので、制御手段17にて各々の空調機4に対応する流量制御弁12を制御して熱源水量を調節する。水熱交換器8から熱源水回路2に出た熱源水は熱源機1に戻って温度調整され、熱源水回路2を循環する。   When cooling operation is performed with all water-cooled heat pump air conditioners 4, heat source water is passed to the water heat exchanger 8 of the air conditioner 4, and the circulating refrigerant in the water-cooled heat pump 6 condenses (heatsinks) in the water heat exchanger 8 to exchange air heat. The refrigerant 9 functions so as to evaporate (heat absorption), the circulating refrigerant is condensed with the heat source water, and the air heat exchanger 9 cools the air-conditioning air. The heat source water that has entered the water heat exchanger 8 from the heat source water circuit 2 rises in temperature due to the refrigerant heat dissipation action and returns to the heat source water circuit 2, but the heat source water inlet temperature of the air conditioner 4 increases as it goes downstream. The control means 17 controls the flow rate control valve 12 corresponding to each air conditioner 4 to adjust the heat source water amount. The heat source water output from the water heat exchanger 8 to the heat source water circuit 2 returns to the heat source unit 1 to be temperature-adjusted and circulates in the heat source water circuit 2.

全ての水冷ヒートポンプ式空調機4で暖房運転する場合、熱源水を空調機4の水熱交換器8に流し、水冷ヒートポンプ6の循環冷媒が水熱交換器で蒸発(吸熱)し空気熱交換器で凝縮(放熱)するように機能させ、熱源水で循環冷媒を蒸発させ、空気熱交換器9で空調用空気を加熱する。熱源水回路2から水熱交換器8に入った熱源水は前記冷媒蒸発作用により温度降下し熱源水回路2に戻るが、下流側にいくにしたがって空調機4の熱源水入口温度が低くなるので、制御手段17にて各々の空調機4に対応する流量制御弁12を制御して熱源水量を調節する。水熱交換器8から熱源水回路2に出た熱源水は熱源機1に戻って温度調整され、熱源水回路2を循環する。   When heating operation is performed with all the water-cooled heat pump type air conditioners 4, the heat source water is supplied to the water heat exchanger 8 of the air conditioner 4, and the circulating refrigerant of the water-cooled heat pump 6 is evaporated (heat absorption) in the water heat exchanger. The refrigerant is allowed to condense (heat radiation) in order to evaporate the circulating refrigerant with the heat source water, and the air heat exchanger 9 heats the air for air conditioning. The heat source water that has entered the water heat exchanger 8 from the heat source water circuit 2 drops in temperature due to the refrigerant evaporating action and returns to the heat source water circuit 2, but the heat source water inlet temperature of the air conditioner 4 decreases as it goes downstream. The control means 17 controls the flow rate control valve 12 corresponding to each air conditioner 4 to adjust the heat source water amount. The heat source water output from the water heat exchanger 8 to the heat source water circuit 2 returns to the heat source unit 1 to be temperature-adjusted and circulates in the heat source water circuit 2.

局所的に寒暖差が大きくなるなどして、適数の水冷ヒートポンプ式空調機4で冷房運転、適数の水冷ヒートポンプ式空調機4で暖房運転を同時に行う場合、水冷ヒートポンプ式空調機4の熱源水入口温度が使用限界水温範囲外とならないように冷房運転の水冷ヒートポンプ式空調機4と暖房運転の水冷ヒートポンプ式空調機4を組合わせて配列することにより、複数の水冷ヒートポンプ式空調機4の相互の熱移動により熱源負荷が相殺されて小さくなるので、省エネとなり安価な冷却塔などを使用でき設備コストの低減を図れる。   When the cooling operation is performed with an appropriate number of water-cooled heat pump air conditioners 4 and the heating operation is performed simultaneously with an appropriate number of water-cooled heat pump air conditioners 4 due to a local increase in temperature difference, the heat source of the water-cooled heat pump air conditioner 4 By arranging the water-cooled heat pump type air conditioner 4 for cooling operation and the water-cooled heat pump type air conditioner 4 for heating operation in combination so that the water inlet temperature does not fall outside the usable water temperature range, a plurality of water-cooled heat pump type air conditioners 4 are arranged. Since the heat source load is offset by the mutual heat transfer and becomes smaller, it is possible to save energy, use an inexpensive cooling tower, etc., and reduce the equipment cost.

図3は、複数台の水冷ヒートポンプ式空調機4を備え、熱源水回路2を往き管2aと返り管2bの2管式とし、1台又は複数台の冷温水コイル式空調機19の熱源水出入口を往き管2aと返り管2bに並列に接続し、各水冷ヒートポンプ式空調機4の熱源水出入口を返り管2bに別個の迂回管11を介して接続し、各水冷ヒートポンプ式空調機4毎に、流量制御弁12と熱源水入口温度を検出する入口水温用検出器15と熱源水出口温度を検出する出口水温用検出器16と、を設け、これらの検出器15、16にて検出された各水冷ヒートポンプ式空調機4毎の熱源水入口温度と熱源水出口温度に基づいて各々対応する流量制御弁12を個別に制御して各水冷ヒートポンプ式空調機4への熱源水量を増減させて能力を個別に調節する制御手段17と、したものである。冷温水コイル式空調機19は、図示省略するが、ケーシング内に熱源水回路2の熱源水が通水される冷温水コイルと給気用送風機とを備え、この冷温水コイルにて空調用空気を冷却又は加熱し、冷房運転と暖房運転を切換自在に行い、被空調空間に給気して空調する。冷温水コイル式空調機19にはエアハンドリングユニットやファンコイルユニットなど各種のものが適用される。   FIG. 3 includes a plurality of water-cooled heat pump type air conditioners 4, and the heat source water circuit 2 is a two-pipe type of the forward pipe 2 a and the return pipe 2 b, and the heat source water of one or a plurality of cold / hot water coil type air conditioners 19. The inlet / outlet is connected in parallel to the forward pipe 2a and the return pipe 2b, the heat source water inlet / outlet of each water-cooled heat pump air conditioner 4 is connected to the return pipe 2b via a separate bypass pipe 11, and each water-cooled heat pump air conditioner 4 is connected. Are provided with a flow rate control valve 12, an inlet water temperature detector 15 for detecting the heat source water inlet temperature, and an outlet water temperature detector 16 for detecting the heat source water outlet temperature, which are detected by these detectors 15, 16. In addition, the flow rate control valve 12 corresponding to each water-cooled heat pump air conditioner 4 is individually controlled based on the heat source water inlet temperature and the heat source water outlet temperature for each water-cooled heat pump air conditioner 4 to increase or decrease the amount of heat source water to each water-cooled heat pump air conditioner 4. Control means to adjust the ability individually 7, it is obtained by. Although not shown in the drawings, the cold / hot water coil type air conditioner 19 includes a cold / hot water coil through which the heat source water of the heat source water circuit 2 is passed through the casing and an air supply blower. Is cooled or heated to switch between cooling operation and heating operation, and air is supplied to the air-conditioned space for air conditioning. Various types such as an air handling unit and a fan coil unit are applied to the cold / hot water coil air conditioner 19.

冷温水コイル式空調機19で冷房運転する場合、往き管2aに熱源水(冷水)を流して冷温水コイル式空調機19の冷温水コイルで空調用空気を冷却する。往き管2aから冷温水コイル式空調機19の冷温水コイルに入った熱源水は空調用空気から吸熱して温度上昇(たとえば7〜10℃から12〜15℃へ)し返り管2bに出る。この返り管2bの熱源水を水冷ヒートポンプ式空調機4の水熱交換器8に流し、前記実施例のごとく冷房運転又は暖房運転を行う。水熱交換器8から返り管2bに出た熱源水は熱源機1に戻り温度調整され、熱源水回路2を循環する。   When performing the cooling operation with the cold / hot water coil type air conditioner 19, heat source water (cold water) is supplied to the forward pipe 2 a to cool the air-conditioning air with the cold / hot water coil of the cold / hot water coil type air conditioner 19. The heat source water that has entered the cold / hot water coil of the cold / hot water coil air conditioner 19 from the forward pipe 2a absorbs heat from the air-conditioning air, rises in temperature (for example, from 7 to 10 ° C. to 12 to 15 ° C.), and returns to the return pipe 2b. The heat source water of the return pipe 2b is supplied to the water heat exchanger 8 of the water-cooled heat pump type air conditioner 4, and the cooling operation or the heating operation is performed as in the above embodiment. The heat source water discharged from the water heat exchanger 8 to the return pipe 2b is returned to the heat source unit 1 to adjust the temperature and circulate in the heat source water circuit 2.

冷温水コイル式空調機19で暖房運転する場合、往き管2aに熱源水(温水)を流して冷温水コイル式空調機19の冷温水コイルで空調用空気を加熱する。往き管2aから冷温水コイル式空調機19の冷温水コイルに入った熱源水は空調用空気に放熱して温度降下(たとえば40〜45℃から35〜40℃へ)し返り管2bに出る。この返り管2bの熱源水を水冷ヒートポンプ式空調機4の水熱交換器8に流し、前記実施例のごとく冷房運転又は暖房運転を行う。水熱交換器8から返り管2bに出た熱源水は熱源機1に戻り温度調整され、熱源水回路2を循環する。   When performing the heating operation with the cold / hot water coil type air conditioner 19, the heat source water (hot water) is supplied to the forward pipe 2 a and the air for air conditioning is heated by the cold / hot water coil of the cold / hot water coil type air conditioner 19. The heat source water that has entered the cold / hot water coil of the cold / hot water coil type air conditioner 19 from the forward pipe 2a dissipates heat to the air-conditioning air and drops in temperature (for example, from 40 to 45 ° C. to 35 to 40 ° C.) and returns to the return pipe 2b. The heat source water of the return pipe 2b is supplied to the water heat exchanger 8 of the water-cooled heat pump type air conditioner 4, and the cooling operation or the heating operation is performed as in the above embodiment. The heat source water discharged from the water heat exchanger 8 to the return pipe 2b is returned to the heat source unit 1 to adjust the temperature and circulate in the heat source water circuit 2.

前述のごとく水冷ヒートポンプ6で空調用空気を冷却(冷房)・加熱(暖房)を行うときの熱源水の使用限界水温範囲が冷温水コイル式空調機19の冷温水コイルよりも広いので、冷温水コイル式空調機19の冷温水コイルから出た(他の冷温水コイル式空調機19の冷温水コイルでは冷暖房できないような温度の)熱源水を用いて、水冷ヒートポンプ6で冷却(冷房)・加熱(暖房)を行える。したがって、既設の空調機や熱源水回路はそのままで、水冷ヒートポンプ式空調機4を増設するだけ能力アップでき、施工が容易で、低コストでリニューアルできる。   As described above, the water-cooled heat pump 6 cools (cools) and heats (heats) the air-conditioning air, so that the usable water temperature range of the heat source water is wider than that of the cold / hot water coil of the cold / hot water coil air conditioner 19. Cooling (cooling) and heating with a water-cooled heat pump 6 using heat source water (temperature that cannot be cooled and heated by the cold / hot water coils of other cold / hot water coil air conditioners 19) from the cold / hot water coil of the coil air conditioner 19 (Heating) can be performed. Therefore, the existing air conditioner and the heat source water circuit can be maintained as they are, and the capacity can be increased by adding the water-cooled heat pump type air conditioner 4, and the construction can be easily performed and renewed at a low cost.

図4は、前記各実施例において、熱源水回路2(図1の1管式では主管、図3の2管式では返り管2b)に流量制御弁12を設け、熱源水回路2における流量制御弁12より上流部を水冷ヒートポンプ式空調機4の水冷ヒートポンプ6の熱源水入口路に接続し、熱源水回路2における流量制御弁12より下流部を水冷ヒートポンプ式空調機4の水冷ヒートポンプ6の熱源水出口路に接続した実施例で、その他の構成は前記実施例と同様であるので省略する。   4, in each of the above embodiments, the flow rate control valve 12 is provided in the heat source water circuit 2 (the main pipe in the one-pipe type in FIG. 1 and the return pipe 2 b in the two-pipe type in FIG. 3) to control the flow rate in the heat source water circuit 2. The upstream part from the valve 12 is connected to the heat source water inlet passage of the water cooling heat pump 6 of the water cooling heat pump type air conditioner 4, and the downstream part from the flow control valve 12 in the heat source water circuit 2 is the heat source of the water cooling heat pump 6 of the water cooling heat pump type air conditioner 4. In the embodiment connected to the water outlet passage, the other configurations are the same as those in the embodiment described above, and will be omitted.

なお、前記各実施例において、水冷ヒートポンプ式空調機4と冷温水コイル式空調機19の台数の増減は自由である。熱源水回路2はダイレクトレターン方式、リバースレターン方式やこれらの併用方式など各種の方式に変更自由である。さらに、返り管2bに昇圧用の送水ポンプを設けるも自由である。本発明の返り管2bとしては、たとえば主管の返り管と、この主管から並列に分岐する枝管の返り管のいずれも含まれるものとする。また、図3の実施例などの2管式の熱源水回路2の返り管2bでなく往き管2aに、水冷ヒートポンプ式空調機4と流量制御弁12、開閉弁18、迂回管11などを設けるも自由である。   In each of the above embodiments, the number of water-cooled heat pump air conditioners 4 and cold / hot water coil air conditioners 19 can be freely increased or decreased. The heat source water circuit 2 can be freely changed to various methods such as a direct return method, a reverse return method, and a combination thereof. Furthermore, it is also free to provide a pressure increasing water pump in the return pipe 2b. The return pipe 2b of the present invention includes, for example, both a return pipe of a main pipe and a return pipe of a branch pipe branched in parallel from the main pipe. In addition, a water-cooled heat pump type air conditioner 4, a flow control valve 12, an on-off valve 18, a bypass pipe 11, and the like are provided not on the return pipe 2b of the two-pipe heat source water circuit 2 in the embodiment of FIG. Is also free.

水熱源空調システムの要部簡略説明図である。It is a principal part simplified explanatory view of a water heat source air-conditioning system. 水熱源空調システムの全体簡略説明図である。1 is an overall simplified explanatory diagram of a water heat source air conditioning system. 他の水熱源空調システムの全体簡略説明図である。It is the whole simplified explanatory drawing of another water-source air-conditioning system. 別の水熱源空調システムの要部簡略説明図である。It is a principal part simplified explanatory view of another water heat source air-conditioning system.

符号の説明Explanation of symbols

2 熱源水路
2b 返り管
4 水冷ヒートポンプ式空調機
11 迂回管
12 流量制御弁
15 入口水温用検出器
16 出口水温用検出器
17 制御手段
18 開閉弁
19 冷温水コイル式空調機
2 Heat source channel 2b Return pipe 4 Water-cooled heat pump type air conditioner 11 Detour pipe 12 Flow control valve 15 Inlet water temperature detector 16 Outlet water temperature detector 17 Control means 18 On-off valve 19 Cold / hot water coil type air conditioner

Claims (4)

熱源水回路2に迂回管11を連通連結し、この迂回管11に流量制御弁12を設け、前記迂回管11における前記流量制御弁12より上流部を水冷ヒートポンプ式空調機4の熱源水入口路に接続し、前記迂回管11における前記流量制御弁12より下流部を前記水冷ヒートポンプ式空調機4の熱源水出口路に接続し、前記水冷ヒートポンプ式空調機4の熱源水入口温度を検出する入口水温用検出器15を設けると共に前記水冷ヒートポンプ式空調機4の熱源水出口温度を検出する出口水温用検出器16を設け、これらの検出器15、16にて検出された熱源水入口温度と熱源水出口温度に基づいて前記流量制御弁12を制御して前記水冷ヒートポンプ式空調機4への熱源水量を増減させて能力を調節する制御手段17を、設け、前記熱源水回路2における前記迂回管11の上流側連結部と下流側連結部の間に、開閉弁18を設けたことを特徴とする水熱源空調システム。   A bypass pipe 11 is connected in communication with the heat source water circuit 2, a flow control valve 12 is provided in the bypass pipe 11, and an upstream portion of the bypass pipe 11 from the flow control valve 12 is a heat source water inlet path of the water-cooled heat pump air conditioner 4. To the heat source water outlet path of the water-cooled heat pump air conditioner 4 and to detect the heat source water inlet temperature of the water-cooled heat pump air conditioner 4 A water temperature detector 15 and an outlet water temperature detector 16 for detecting the heat source water outlet temperature of the water-cooled heat pump type air conditioner 4 are provided, and the heat source water inlet temperature and the heat source detected by these detectors 15 and 16 are provided. Control means 17 for adjusting the capacity by controlling the flow rate control valve 12 based on the water outlet temperature to increase or decrease the amount of heat source water to the water-cooled heat pump type air conditioner 4 is provided. Between the upstream-side connecting portion and the downstream-side connecting portion of the bypass pipe 11 at 2, water heat source air conditioning system, characterized in that a closing valve 18. 複数台の水冷ヒートポンプ式空調機4を備え、熱源水回路2を1本の主管が往き管と返り管を兼用する1管式として、前記各水冷ヒートポンプ式空調機4の熱源水出入口を前記主管に別個の迂回管11を介して接続し、前記各水冷ヒートポンプ式空調機4毎に、流量制御弁12と熱源水入口温度を検出する入口水温用検出器15と熱源水出口温度を検出する出口水温用検出器16と、を設け、これらの検出器15、16にて検出された前記各水冷ヒートポンプ式空調機4毎の熱源水入口温度と熱源水出口温度に基づいて各々対応する前記流量制御弁12を個別に制御して前記各水冷ヒートポンプ式空調機4への熱源水量を増減させて能力を個別に調節する制御手段17と、した請求項1記載の水熱源空調システム。 A plurality of water-cooled heat pump type air conditioners 4 are provided, and the heat source water circuit 2 is a single pipe type in which one main pipe also serves as an outgoing pipe and a return pipe, and the heat source water inlet / outlet of each of the water cooled heat pump type air conditioners 4 is the main pipe. Are connected via separate bypass pipes 11, and each water-cooled heat pump type air conditioner 4 has a flow rate control valve 12, an inlet water temperature detector 15 for detecting the heat source water inlet temperature, and an outlet for detecting the heat source water outlet temperature. A water temperature detector 16, and the corresponding flow rate control based on the heat source water inlet temperature and the heat source water outlet temperature for each of the water-cooled heat pump air conditioners 4 detected by the detectors 15, 16. The water heat source air conditioning system according to claim 1, wherein the control means 17 is configured to individually adjust the capacity by individually controlling the valves 12 to increase or decrease the amount of heat source water to each of the water cooled heat pump type air conditioners 4 . 複数台の水冷ヒートポンプ式空調機4を備え、熱源水回路2を往き管2aと返り管2bの2管式とし、1台又は複数台の冷温水コイル式空調機19の熱源水出入口を往き管2aと返り管2bに並列に接続し、前記各水冷ヒートポンプ式空調機4の熱源水出入口を前記返り管2bに別個の迂回管11を介して接続し、前記各水冷ヒートポンプ式空調機4毎に、流量制御弁12と熱源水入口温度を検出する入口水温用検出器15と熱源水出口温度を検出する出口水温用検出器16と、を設け、これらの検出器15、16にて検出された前記各水冷ヒートポンプ式空調機4毎の熱源水入口温度と熱源水出口温度に基づいて各々対応する前記流量制御弁12を個別に制御して前記各水冷ヒートポンプ式空調機4への熱源水量を増減させて能力を個別に調節する制御手段17と、した請求項1記載の水熱源空調システム。 A plurality of water-cooled heat pump type air conditioners 4 are provided, the heat source water circuit 2 is a two-pipe type of the forward pipe 2a and the return pipe 2b, and the heat source water inlet / outlet of one or a plurality of cold / hot water coil type air conditioners 19 is provided. 2a and the return pipe 2b are connected in parallel, the heat source water inlet / outlet of each of the water-cooled heat pump type air conditioners 4 is connected to the return pipe 2b via a separate bypass pipe 11, and each of the water-cooled heat pump type air conditioners 4 is connected. The flow rate control valve 12, the inlet water temperature detector 15 for detecting the heat source water inlet temperature, and the outlet water temperature detector 16 for detecting the heat source water outlet temperature are provided and detected by these detectors 15, 16. Based on the heat source water inlet temperature and the heat source water outlet temperature for each water-cooled heat pump air conditioner 4, the corresponding flow control valves 12 are individually controlled to increase or decrease the amount of heat source water to each water-cooled heat pump air conditioner 4. Let the ability individually And a control means 17 for section water heat source air conditioning system of claim 1, wherein the. 入口水温用検出器15と出口水温用検出器16にて検出された熱源水入口温度と熱源水出口温度の差を算出しこの算出値が前記熱源水入口温度に応じて予め定められた温度差設定値となるように流量制御弁12を制御する制御手段17とし、冷房運転では前記熱源水入口温度が高くなるにしたがって水冷ヒートポンプ式空調機4への熱源水量が増加するように前記温度差設定値を定めると共に暖房運転では前記熱源水入口温度が低くなるにしたがって前記水冷ヒートポンプ式空調機4への熱源水量が増加するように前記温度差設定値を定めた請求項1、2又は3記載の水熱源空調システム。 The difference between the heat source water inlet temperature and the heat source water outlet temperature detected by the inlet water temperature detector 15 and the outlet water temperature detector 16 is calculated, and this calculated value is a temperature difference determined in advance according to the heat source water inlet temperature. The control means 17 for controlling the flow rate control valve 12 to be a set value is used, and in the cooling operation, the temperature difference setting is performed so that the amount of heat source water to the water-cooled heat pump type air conditioner 4 increases as the temperature of the heat source water inlet increases. in the heating operation with determining the value of claims 1, 2 or 3, wherein the heat source water is defined the temperature difference setpoint to increase to the water-cooled heat pump type air conditioner 4 in accordance with the heat source water inlet temperature is lower Water source air conditioning system.
JP2003299179A 2003-08-22 2003-08-22 Water source air conditioning system Expired - Lifetime JP3997482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003299179A JP3997482B2 (en) 2003-08-22 2003-08-22 Water source air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003299179A JP3997482B2 (en) 2003-08-22 2003-08-22 Water source air conditioning system

Publications (2)

Publication Number Publication Date
JP2005069554A JP2005069554A (en) 2005-03-17
JP3997482B2 true JP3997482B2 (en) 2007-10-24

Family

ID=34404468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003299179A Expired - Lifetime JP3997482B2 (en) 2003-08-22 2003-08-22 Water source air conditioning system

Country Status (1)

Country Link
JP (1) JP3997482B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103765134A (en) * 2011-08-23 2014-04-30 B/E航空公司 Aircraft galley liquid cooling system
US9964343B2 (en) 2014-04-21 2018-05-08 Mitsubishi Electric Corporation Refrigeration cycle apparatus
KR20180058985A (en) * 2016-11-25 2018-06-04 엘지전자 주식회사 Air conditioner and controlling method of thereof

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051835A (en) * 2005-08-19 2007-03-01 Sanki Eng Co Ltd Waste heat using system
JP2009192186A (en) * 2008-02-18 2009-08-27 Hitachi Appliances Inc Refrigeration system
JP5147990B2 (en) * 2009-04-03 2013-02-20 三菱電機株式会社 Air conditioner
EP2431675B1 (en) 2009-05-12 2019-09-11 Mitsubishi Electric Corporation Air conditioner
JP5594650B2 (en) * 2010-05-14 2014-09-24 三浦工業株式会社 Steam system
CN102269456A (en) * 2011-07-13 2011-12-07 沈阳农业大学 Micro ground source indoor air-conditioning system
CN103733002B (en) * 2011-08-19 2015-11-25 三菱电机株式会社 Conditioner
JP5518812B2 (en) * 2011-09-06 2014-06-11 木村工機株式会社 External air conditioner with air conditioning function
CN102830581B (en) * 2012-09-11 2015-03-25 广东威创视讯科技股份有限公司 Radiating device of projector
CN103292397B (en) * 2013-05-22 2016-03-02 西安工程大学 Vertical heat pipe and indirect-direct multistage influence diagram air-conditioner set of pipe
ITMI20131947A1 (en) * 2013-11-22 2015-05-23 Aggradi Walter Ferrari AIR CONDITIONING SYSTEM, RELATED PERIPHERAL AIR CONDITIONING UNIT AND HYDRAULIC NETWORK REDEVELOPMENT PROCESS FOR HEATING.
CN104315633B (en) * 2014-10-21 2017-04-05 东南大学 For the handpiece Water Chilling Units in air conditioner refrigerating field, method of work and cold-producing medium
JP6528467B2 (en) * 2015-03-04 2019-06-12 富士電機株式会社 Heat pump type steam generating device and operating method of heat pump type steam generating device
CN105091166A (en) * 2015-08-21 2015-11-25 苏州斯卡柏通讯技术有限公司 Control system for solar-energy and shallow geothermal-energy hybrid air conditioner
CN105115023A (en) * 2015-09-24 2015-12-02 北京英豪阳光太阳能工业有限公司 No-water floor heating system
CN105783156B (en) * 2016-03-15 2018-06-12 湘潭大学 A kind of vertical monoblock type water-loop heat pump unit
JP6341326B2 (en) * 2016-08-03 2018-06-13 ダイキン工業株式会社 Refrigeration unit heat source unit
CN106196730A (en) * 2016-08-24 2016-12-07 佛山市新鹏工业服务有限公司 A kind of air energy Water temp controller group and use its water-bath system
CN106585944B (en) * 2016-12-11 2019-01-04 黄浩 The application method of circulating refrigeration system in a kind of ship

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103765134A (en) * 2011-08-23 2014-04-30 B/E航空公司 Aircraft galley liquid cooling system
CN103765134B (en) * 2011-08-23 2015-11-25 B/E航空公司 Airborne vehicle kitchen liquid cooling system
US9964343B2 (en) 2014-04-21 2018-05-08 Mitsubishi Electric Corporation Refrigeration cycle apparatus
KR20180058985A (en) * 2016-11-25 2018-06-04 엘지전자 주식회사 Air conditioner and controlling method of thereof
KR102550626B1 (en) * 2016-11-25 2023-07-04 엘지전자 주식회사 Air conditioner and controlling method of thereof

Also Published As

Publication number Publication date
JP2005069554A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP3997482B2 (en) Water source air conditioning system
US20230092215A1 (en) Air conditioning system with capacity control and controlled hot water generation
JP6644154B2 (en) Air conditioner
JP3800210B2 (en) Water source heat pump unit
JP4582243B2 (en) Dehumidification system
JP2723953B2 (en) Air conditioner
JP2014035092A (en) Air conditioning system
KR100511242B1 (en) Air conditioner
JP4203758B2 (en) Water-cooled heat pump type ground-heated air conditioning system
WO2018043454A1 (en) Air conditioning and hot water supplying system
JP6084737B1 (en) Air conditioning system
JP2013002749A (en) Air conditioning device
JP2010243005A (en) Dehumidification system
KR101321545B1 (en) Air conditioner
CN111750461B (en) Air conditioning system
JP2018112356A (en) Air Conditioning System
JP5827717B2 (en) Fan coil type radiant air conditioning panel air conditioner with heat pump
JP4097405B2 (en) Engine cooling method and apparatus and refrigeration apparatus
JP5066022B2 (en) Air conditioning system
KR101642437B1 (en) Cooling and heating system
KR20100024157A (en) Heat pump system and method for controlling the same
KR100682718B1 (en) Air conditioner having refrigerants distributor for branch
JP2006084084A (en) Air conditioner and its operation method
KR20110085393A (en) Air conditioner
KR102032178B1 (en) Integral air conditioning system for heating and cooling

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070725

R150 Certificate of patent or registration of utility model

Ref document number: 3997482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250