JP4523461B2 - Operation control method for 1-pump heat source equipment - Google Patents

Operation control method for 1-pump heat source equipment Download PDF

Info

Publication number
JP4523461B2
JP4523461B2 JP2005067844A JP2005067844A JP4523461B2 JP 4523461 B2 JP4523461 B2 JP 4523461B2 JP 2005067844 A JP2005067844 A JP 2005067844A JP 2005067844 A JP2005067844 A JP 2005067844A JP 4523461 B2 JP4523461 B2 JP 4523461B2
Authority
JP
Japan
Prior art keywords
heat source
heat
flow rate
heat medium
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005067844A
Other languages
Japanese (ja)
Other versions
JP2006250443A (en
Inventor
徳臣 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Air Technologies Co Ltd
Original Assignee
Shin Nippon Air Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Air Technologies Co Ltd filed Critical Shin Nippon Air Technologies Co Ltd
Priority to JP2005067844A priority Critical patent/JP4523461B2/en
Publication of JP2006250443A publication Critical patent/JP2006250443A/en
Application granted granted Critical
Publication of JP4523461B2 publication Critical patent/JP4523461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、地域冷暖房施設等の熱源供給システムや、工場やビルなどの熱源供給システムとして用いられる1ポンプ方式熱源設備における運転制御方法に関する。   The present invention relates to an operation control method in a one-pump heat source facility used as a heat source supply system such as a district cooling and heating facility or a heat source supply system such as a factory or a building.

従来より地域冷暖房施設等の熱源供給システムや、工場やビルなどの熱源供給システムとして用いられる熱源設備として、1ポンプ方式熱源設備が知られている。   2. Description of the Related Art Conventionally, a one-pump heat source facility has been known as a heat source facility used as a heat source supply system such as a district air conditioning facility or a heat source supply system such as a factory or a building.

前記1ポンプ方式熱源設備は、図4に示されるように、熱媒を加熱又は冷却する第1〜第3の熱源機器51A〜51C、及び各熱源機器51A〜51Cで加熱又は冷却された熱媒を圧送する各熱媒ポンプ52A〜52C、各熱媒ポンプ52A〜52Cで圧送された熱媒を集約する送りヘッダ54と、各部位(部屋)に配置された熱交換器(空調機)58,58…に送給された後、熱交換器(空調機)58,58…から還ってきた熱媒を各熱源機器51A〜51Cに分配する戻りヘッダ50と、前記送りヘッダ54と戻りヘッダ50とを繋ぐバイパス62と、その中間に設けられたバイパス弁63と、熱源機器51A〜51Cの制御及びバイパス弁63の開度制御を行う制御装置60とを備える構成となっている。   As shown in FIG. 4, the one-pump heat source equipment includes first to third heat source devices 51 </ b> A to 51 </ b> C that heat or cool a heat medium, and a heat medium heated or cooled by each of the heat source devices 51 </ b> A to 51 </ b> C. The heat medium pumps 52A to 52C for pressure feeding, the feed header 54 for collecting the heat medium pumped by the heat medium pumps 52A to 52C, and the heat exchangers (air conditioners) 58 disposed in each part (room), The return header 50 distributes the heat medium returned from the heat exchangers (air conditioners) 58, 58,... To the heat source devices 51A to 51C, and the feed header 54 and the return header 50. , A bypass valve 63 provided in the middle thereof, and a control device 60 that controls the heat source devices 51A to 51C and controls the opening degree of the bypass valve 63.

かかる熱源設備においては、熱媒ポンプ52A〜52Cにより圧送された熱媒は、熱源機器51A〜51Cにより冷却又は加熱され、送りヘッダ54において混合され、往水管路を介して熱交換器(空調機)58,58…へ供給される。そして、熱交換器(空調機)58,58…において熱交換された後、還水管路を介して戻りヘッダ50に戻され、再び熱媒ポンプ52A〜52Cによって圧送され循環する(下記特許文献1〜3等参照)。   In such a heat source facility, the heat medium pumped by the heat medium pumps 52A to 52C is cooled or heated by the heat source devices 51A to 51C, mixed in the feed header 54, and heat exchanger (air conditioner) via the outgoing water pipe. ) 58, 58. Then, after heat exchange in the heat exchangers (air conditioners) 58, 58..., The heat is returned to the return header 50 through the return water pipe, and is again pumped and circulated by the heat medium pumps 52A to 52C (Patent Document 1 below). -3 etc.)

前記制御装置60による熱源機器51A〜51Cの増減段制御は、例えば図5に示されるように、循環流量Q、熱源入口温度TI、送水温度TSに基づいた台数制御が行われている。   In the increase / decrease stage control of the heat source devices 51A to 51C by the control device 60, for example, as shown in FIG. 5, the number control based on the circulation flow rate Q, the heat source inlet temperature TI, and the water supply temperature TS is performed.

ここで、図5中、熱源機器の減段条件となる熱源機器減段温度設定値TISは、下式(2)より算出される。また、熱源機器増段温度設定値TSSは、年間を通して固定値(通常は8℃)に設定され、下限値流量は冷凍機定格流量×(運転台数−1)、上限値流量は冷凍機定格流量×運転台数とされる。   Here, in FIG. 5, the heat source device step-down temperature setting value TIS that is the step-down condition of the heat source device is calculated from the following equation (2). In addition, the heat source equipment step-up temperature set value TSS is set to a fixed value (usually 8 ° C) throughout the year, the lower limit flow rate is the refrigerator rated flow rate x (number of units -1), and the upper limit flow rate is the refrigerator rated flow rate. × Number of operating units.

Figure 0004523461
Figure 0004523461
特開2000−18683号公報JP 2000-18683 A 特開2004−184052号公報JP 2004-184052 A 特開2004−245560号公報JP 2004-245560 A

しかしながら、前記1ポンプ方式熱源設備においては、熱媒ポンプ52A〜52Cを定格で稼働し、吐出圧を一定とすることで、熱源機器51A〜51Cにおける流量を確保し、不安定化(ハンチング等)を回避するようにしているため、小負荷時においてもポンプ動力を低減することができないなどの問題があった。   However, in the one-pump system heat source facility, the heat medium pumps 52A to 52C are operated at their ratings and the discharge pressure is kept constant, so that the flow rate in the heat source devices 51A to 51C is secured and destabilized (hunting, etc.) Therefore, there is a problem that the pump power cannot be reduced even at a small load.

一方、熱源機器の増減段制御に関し、前記1ポンプ方式熱源設備では、前記熱源機器51A〜51Cにおいては、所定の熱媒温度差(上記例では9℃)である場合に、その最大能力を発揮するようになっているが、実際には特に小負荷時において、水の往き還り温度差が低下する現象が発生している。この往き還り温度差の低下は、バルブの開け過ぎや圧力の掛かりすぎにより熱交換器58に必要以上の冷水が流入していたり、熱交換器58を通過する風量が不足していたり、熱交換器が劣化していたりする場合に起こることもあるし、或いは熱交換器58をバイパスする末端バイパス(図示せず)を設けたことが原因していたり等、様々な原因で生じるものであるが、熱媒の往き還り温度差が低下することにより、熱媒ポンプ52A〜52Cは定格稼働しているが、熱源機器51A〜51Cは自己の冷却能力を絞った運転をしている状態となる。この状態で、熱交換器58が要求する熱量が増大すると、第1の熱源機器51Aが絞り運転しているにも拘わらず、第2、第3の熱源機器51B、51Cへの増段が図られてしまうことになっていた。すなわち、各熱源機器51Aが最大能力を発揮する前に、第2、第3の熱源機器51B、51Cへの不要な増段が行われ、不経済な運転が行われていた。   On the other hand, regarding the increase / decrease stage control of the heat source equipment, in the one-pump heat source equipment, the heat source equipment 51A to 51C exhibits its maximum capacity when there is a predetermined heat medium temperature difference (9 ° C. in the above example). In practice, however, a phenomenon occurs in which the temperature difference between the return and return of water decreases, especially at a small load. This drop in the return temperature difference is due to excessive cold water flowing into the heat exchanger 58 due to excessive opening of the valve or excessive pressure, insufficient air flow through the heat exchanger 58, heat exchange, etc. May occur when the heat exchanger is deteriorated, or may be caused by the provision of a terminal bypass (not shown) that bypasses the heat exchanger 58, for example. When the temperature difference between the return and return of the heat medium is reduced, the heat medium pumps 52A to 52C are operating at a rated operation, but the heat source devices 51A to 51C are in a state of operating with their own cooling capacity reduced. In this state, when the amount of heat required by the heat exchanger 58 increases, the number of steps to the second and third heat source devices 51B and 51C is increased even though the first heat source device 51A is in a throttle operation. It was supposed to be done. That is, before each heat source device 51A exhibits its maximum capacity, unnecessary stages are added to the second and third heat source devices 51B and 51C, and an uneconomic operation is performed.

他方、減段制御に関しては、運転台数毎の前記熱源機器減段温度設定値TISは、TOS=7℃、TRS=12℃の条件でn=2台:TIS=9.5℃、n=3台:TIS=10.3℃、n=4台:TIS=10.75℃となり、運転台数が多くなると熱源機器減段温度設定値TISの温度差が極めて小さくなる。熱源入口温度TIは精度の高い測定が困難であるとともに、前記冷水還り温度(TRS)は仮定値であり、実際には常に変化するため運転台数減少の判断が的確になされないなどの問題もあった。   On the other hand, for the step-down control, the heat source device step-down temperature setting value TIS for each operating unit is T = 2 = TIS = 9.5 ° C., n = 3 under the conditions of TOS = 7 ° C. and TRS = 12 ° C .: TIS = 10.3 ° C, n = 4 units: TIS = 10.75 ° C, and as the number of operating units increases, the temperature difference of the heat source equipment step-down temperature setting value TIS becomes extremely small. The heat source inlet temperature TI is difficult to measure with high accuracy, and the chilled water return temperature (TRS) is an assumed value, and since it always changes in practice, there is a problem that the judgment of decrease in the number of operating units cannot be made accurately. It was.

そこで本発明の主たる課題は、小負荷時の非効率な運転状態でも動力の削減を図るとともに、非効率な増段制御を無くすことにより動力の削減を図るようにした1ポンプ方式熱源設備における運転制御方法を提供することにある。   Therefore, the main problem of the present invention is to operate in a one-pump heat source facility in which power is reduced even in an inefficient operating state at a small load, and power is reduced by eliminating inefficient step-up control. It is to provide a control method.

前記課題を解決するために請求項1に係る本発明として、熱媒を冷却又は加熱する複数の熱源機器と、各熱源機器に対応して設けられるとともに、冷却又は加熱された熱媒を圧送する熱媒ポンプと、前記熱源機器からの熱媒を集約する送りヘッダと、この送りヘッダから熱媒を供給される外部負荷機器と、外部負荷機器で熱交換された熱媒が戻されるとともに、各熱源機器に分配する戻りヘッダと、前記送りヘッダ部又はその近傍と前記戻りヘッダ部又はその近傍とを繋ぐバイパス及びバイパス弁と、前記熱源機器の運転台数制御及び前記熱媒ポンプの運転制御を行う制御装置とを備える1ポンプ方式熱源設備において、
前記熱媒の循環流量Qを測定するための流量計と、往水温度TSを測定する往水温度計と、熱源機器の出口温度TOを測定するための出口温度計と、前記熱源機器への入力値Wを測定する電力計、蒸気流量計又はガス流量計と、前記熱媒ポンプの運転台数検出手段とを配設し、
前記制御装置は、予め熱源出口温度設定値TOS及び熱源増段温度設定値TSSとして、負荷状態を基準に区分された時期毎にそれぞれ、Normal、high、lowの運転状態別の設定数値テーブルを保有し、熱媒の循環流量Q及び熱媒ポンプ運転台数に基づき、熱源出口温度設定値TOS及び熱源増段温度設定値TSSを設定及び変更を行うとともに、前記熱源機器の運転台数の増段制御は循環流量Qと熱源機器定格流量×運転台数で表される上限流量との比較及び往水温度TSと前記熱源増段温度設定値TSSとの比較に基づいて行い、前記熱源機器の運転台数の減段制御は熱媒の循環流量Qと熱源機器定格流量×(運転台数−1)で表される下限流量との比較及び熱源機器への入力値Wと事前に設定された熱源機器減段入力設定値WSとの比較に基づいて行うことを特徴とする1ポンプ方式熱源設備における運転制御方法が提供される。
In order to solve the above-mentioned problem, as the present invention according to claim 1, a plurality of heat source devices for cooling or heating the heat medium, and a heat medium that is provided corresponding to each heat source device and pumps the cooled or heated heat medium. A heat medium pump, a feed header that collects the heat medium from the heat source device, an external load device that is supplied with the heat medium from the feed header, and a heat medium that is heat-exchanged by the external load device are returned, A return header distributed to the heat source device, a bypass and bypass valve connecting the feed header portion or the vicinity thereof and the return header portion or the vicinity thereof, operation number control of the heat source device and operation control of the heat medium pump are performed. In a one-pump heat source facility comprising a control device,
A flow meter for measuring the circulating flow rate Q of the heat medium, a forward water thermometer for measuring the outgoing water temperature TS, an outlet thermometer for measuring the outlet temperature TO of the heat source device, and the heat source device A power meter for measuring the input value W, a steam flow meter or a gas flow meter, and a means for detecting the number of operating heat medium pumps;
The control device has, in advance, a set value table for each operating state of Normal, high, and low as the heat source outlet temperature setting value TOS and the heat source step-up temperature setting value TSS for each period divided based on the load state. The heat source outlet temperature set value TOS and the heat source step increase temperature set value TSS are set and changed based on the circulating flow rate Q of the heat medium and the number of heat medium pumps operated. Decrease the number of operating heat source devices based on the comparison between the circulation flow rate Q and the heat source device rated flow x the upper limit flow rate expressed by the number of units in operation and the comparison between the outgoing water temperature TS and the heat source stage temperature setting value TSS. Stage control is a comparison between the circulation rate Q of the heat medium and the lower limit flow rate expressed by the heat source equipment rated flow x (number of operating units -1), and the input value W to the heat source equipment and the preset heat source equipment reduction input setting. and performing, based on a comparison between the value WS Operation control method in the pump system heat source equipment is provided.

上記請求項1記載の本発明では、従来の熱源設備では固定値とされていた熱源機器出口温度設定値TOSを時期毎に可変設定するとともに、増段条件の一部となる熱源増段温度設定値TSSも時期毎に可変設定するようにした。   In the first aspect of the present invention, the heat source equipment outlet temperature set value TOS, which is a fixed value in the conventional heat source equipment, is variably set for each period, and the heat source stage temperature setting which is a part of the stage increase condition is set. The value TSS is also variably set for each period.

先ず、前記熱源機器出口温度設定値TOSを時期毎に可変設定することにより、機器効率(COP)が向上し消費動力を減少させることができる。すなわち、循環流量Qが少ない状況では、熱源出口温度TOが上昇すれば循環流量の増大によるポンプ動力が増加するが、この増加分は、熱源機器の機器効率(COP)向上による熱源機器動力減少分と比較すると小さいため、熱源機器とポンプとを含めた全体システムで考えると、消費動力は出口温度TOを上昇させることにより減少する。   First, by variably setting the heat source equipment outlet temperature set value TOS for each period, equipment efficiency (COP) can be improved and power consumption can be reduced. In other words, when the circulation flow rate Q is small, if the heat source outlet temperature TO rises, the pump power increases due to the increase in the circulation flow rate. This increase is due to the decrease in the heat source device power due to the improvement in the equipment efficiency (COP) of the heat source equipment. Therefore, when considering the entire system including the heat source device and the pump, the power consumption decreases by increasing the outlet temperature TO.

さらに、減段制御に関しては、熱源機器の減段条件を熱源機器入力値Wとすることで適切な運転台数の削減が判断できるため、不要な熱源機器を運転させる事態を防止することができる。
請求項2に係る本発明として、前記熱源出口温度設定値TOS及び熱源増段温度設定値TSSの変更制御は、循環流量Qと、熱源出口温度上昇による熱源機器の動力削減量とポンプ動力増加量とが釣り合う循環流量設定値Qhとの比較、熱媒ポンプ運転台数、及び循環流量Qと、熱源出口温度設定値TOSをNormalからLowへ変えた時の熱源機器動力の減少分とポンプ動力の増加分とが釣り合う循環流量設定値QIとの比較によって行う請求項1記載の1ポンプ方式熱源設備における運転制御方法が提供される。
Furthermore, regarding the step-down control, since it is possible to determine the appropriate reduction in the number of operating units by setting the step-down condition of the heat source device to the heat source device input value W, it is possible to prevent an unnecessary heat source device from being operated.
As the present invention according to claim 2, the change control of the heat source outlet temperature set value TOS and the heat source additional stage temperature set value TSS includes the circulation flow rate Q, the power reduction amount of the heat source device due to the heat source outlet temperature rise, and the pump power increase amount. Compared with the circulation flow rate setting value Qh that is balanced, the number of operating heat pumps, and the circulation flow rate Q, and the heat source equipment power decrease when the heat source outlet temperature setting value TOS is changed from Normal to Low, and the pump power increase The operation control method for a one-pump heat source facility according to claim 1, wherein the operation control method is performed by comparison with a circulating flow rate set value QI that balances the minute.

請求項3に係る本発明として、前記熱源機器減段入力設定値WSは、下式(1)により求める請求項1,2いずれかに記載の1ポンプ方式熱源設備における運転制御方法が提供される。

Figure 0004523461
According to a third aspect of the present invention, there is provided the operation control method for a one-pump heat source facility according to any one of the first and second aspects, wherein the heat source equipment step-down input set value WS is obtained by the following equation (1). .
Figure 0004523461

以上詳説のとおり本発明によれば、小負荷時の非効率な運転状態であっても、熱源出口温度設定値TOSを上昇させることにより熱源機器効率の上昇により動力の削減を図る。また、熱源機器の運転台数の増段制御は循環流量Q及び往水温度TSに基づいて行い、前記熱源機器の運転台数の減段制御は熱媒の循環流量Q及び熱源機器への入力値Wに基づいて行うことにより、熱源機器は絞り運転を行っているにも拘わらず、運転台数の増加が行われることを防止することができる。   As described above in detail, according to the present invention, even in an inefficient operation state at a small load, the power source outlet temperature set value TOS is increased to reduce power by increasing the heat source equipment efficiency. Further, the increase control of the number of operating heat source devices is performed based on the circulation flow rate Q and the outgoing water temperature TS, and the decrease control of the operation number of the heat source devices is performed based on the circulation flow rate Q of the heat medium and the input value W to the heat source device. By performing based on the above, it is possible to prevent the number of operating units from being increased even though the heat source device is performing the throttle operation.

以下、本発明の実施の形態について図面を参照しながら詳述する。
〔1ポンプ方式熱源設備の構成〕
図1に示される1ポンプ方式熱源設備1は、熱媒を冷却又は加熱する複数の熱源機器2A〜2Cと、各熱源機器2A〜2Cに対応して設けられるとともに、熱媒を圧送する熱媒ポンプ3A〜3Cと、前記熱源機器2A〜2Cからの熱媒を集約する送りヘッダ4と、送りヘッダ4から熱媒が供給される空調機等の外部負荷機器9,9…と、外部負荷機器9,9…で熱交換された熱媒が戻されるとともに、各熱源機器2A〜2Cに分配する戻りヘッダ10と、前記送りヘッダ部4又はその近傍と前記戻りヘッダ部10又はその近傍とを繋ぐバイパス13及びバイパス弁12と、前記熱源機器2A〜2Cの運転台数制御及び前記熱媒ポンプ3A〜3Cの運転制御を行う制御装置8とを備えるものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[Configuration of 1-pump heat source equipment]
A one-pump heat source facility 1 shown in FIG. 1 is provided corresponding to a plurality of heat source devices 2A to 2C for cooling or heating a heat medium and each of the heat source devices 2A to 2C, and a heat medium that pumps the heat medium. The pumps 3A to 3C, the feed header 4 that collects the heat medium from the heat source devices 2A to 2C, the external load devices 9, 9 ... such as an air conditioner to which the heat medium is supplied from the feed header 4, and the external load device The heat medium exchanged by 9, 9... Is returned, and the return header 10 distributed to each of the heat source devices 2A to 2C is connected to the feed header portion 4 or the vicinity thereof and the return header portion 10 or the vicinity thereof. It comprises a bypass 13 and a bypass valve 12 and a control device 8 that controls the operation number of the heat source devices 2A to 2C and the operation control of the heat medium pumps 3A to 3C.

また、計測機器類として、前記熱媒の循環流量を測定するための流量計14と、還水温度TRを測定するための還水温度計15と、往水温度TSを測定する往水温度計20と、熱源機器の入口温度TIを測定するための温度計16と、熱源機器の出口温度TOを測定するための温度計18と、熱源機器2A〜2Cへの入力値Wを測定する電力計、蒸気流量計又はガス流量計(図示せず)と、前記熱媒ポンプ3A〜3Cの運転台数検出手段(図示せず)とを配設している。
〔制御装置8による運転制御〕
前記制御装置8は、予め熱源出口温度設定値TOS及び熱源増段温度設定値TSSとして、負荷状態を基準に区分された時期毎にそれぞれ、Normal、high、lowの運転状態別の設定数値テーブルを保有し、熱媒の循環流量Q及び熱媒ポンプ運転台数に基づき、熱源出口温度設定値TOS及び熱源増段温度設定値TSSを設定及び変更を行うとともに、熱源機器運転台数の増段は循環流量Qと熱源機器定格流量×運転台数で表される上限流量との比較、及び往水温度TSと前記熱源増段温度設定値TSSとの比較に基づいて行い、熱源機器運転台数の減段は循環流量Qと熱源機器定格流量×(運転台数−1)で表される下限流量との比較、及び熱源機器への入力値Wと事前に設定された熱源機器減段入力設定値WSとの比較に基づいて行うようにするものである。
〔熱源出口温度設定値TOS及び熱源増段温度設定値TSSの設定〕
さらに詳述すると、前記熱源出口温度設定値TOS及び熱源増段温度設定値TSSの設定数値テーブルは、過去の実績等に基づき、熱源出口温度設定値TOS及び熱源増段温度設定値TSSの設定値を、例えば月又は季節等の時期毎にそれぞれ、Normal、high、lowの運転状態別に定めたものである。なお、この設定数値テーブルは、表1に示されるように、一般的には熱源出口温度設定値TOS及び熱源増段温度設定値TSSとの温度差が1℃となるように定められる。また、前記設定数値テーブルは、月又は季節等に定めたが、熱源機器の運転状態を負荷状況(稼働状況)に応じて区分するものであれば、どのような指標に従って区分されていてもよい。

Figure 0004523461
As measuring instruments, a flow meter 14 for measuring the circulating flow rate of the heating medium, a return water thermometer 15 for measuring the return water temperature TR, and a forward water thermometer for measuring the outgoing water temperature TS. 20, a thermometer 16 for measuring the inlet temperature TI of the heat source device, a thermometer 18 for measuring the outlet temperature TO of the heat source device, and a wattmeter for measuring an input value W to the heat source devices 2A to 2C A steam flow meter or a gas flow meter (not shown) and an operating number detection means (not shown) of the heat medium pumps 3A to 3C are arranged.
[Operation control by the control device 8]
The control device 8 sets, as the heat source outlet temperature set value TOS and the heat source step-up temperature set value TSS in advance, a set numerical value table for each of the normal, high, and low operating states for each period divided based on the load state. The heat source outlet temperature set value TOS and heat source booster temperature set value TSS are set and changed based on the circulating flow rate Q of the heat medium and the number of operating heat pumps. Q is based on the comparison of the rated flow rate of heat source equipment x the upper limit flow rate expressed by the number of units in operation and the comparison of the incoming water temperature TS and the heat source stage temperature setting value TSS. For comparison of the flow rate Q and the lower limit flow rate expressed by the heat source device rated flow rate x (number of operating units -1), and the comparison between the input value W to the heat source device and the heat source device stepped input setting value WS set in advance. It is to be performed based on.
[Setting of heat source outlet temperature setting value TOS and heat source additional temperature setting value TSS]
More specifically, the setting numerical value table of the heat source outlet temperature setting value TOS and the heat source additional temperature setting value TSS is based on the past results, etc., and the setting value of the heat source outlet temperature setting value TOS and the heat source additional temperature setting value TSS Are determined according to the operation state of Normal, high, and low, for example, every month or season. As shown in Table 1, this set numerical value table is generally determined so that the temperature difference between the heat source outlet temperature set value TOS and the heat source additional stage temperature set value TSS is 1 ° C. In addition, the setting numerical value table is determined for the month or the season, but may be classified according to any index as long as the operation state of the heat source device is classified according to the load situation (operating situation). .
Figure 0004523461

前記制御装置8は、熱媒の循環流量Q、熱媒ポンプ運転台数に基づき、熱源出口温度設定値TOS及び熱源増段温度設定値TSSを設定及び変更を行う。ここで、前記熱源出口温度設定値TOSは、従来は固定値とされていた熱源機器2A〜2Cの出口温度設定値TOを、年間を通して低負荷時期については相対的に熱媒の出口温度を高めに設定することにより熱源機器2A〜2Cの熱源効率を向上させることにより消費動力の低減化を図るものである。   The control device 8 sets and changes the heat source outlet temperature set value TOS and the heat source step-up temperature set value TSS based on the circulating flow rate Q of the heat medium and the number of operating heat medium pumps. Here, the heat source outlet temperature setting value TOS is set to the outlet temperature setting value TO of the heat source devices 2A to 2C, which has been conventionally fixed, and the outlet temperature of the heat medium is relatively increased throughout the year at low load periods. The power consumption is reduced by improving the heat source efficiency of the heat source devices 2A to 2C.

具体的には、図2のフロー図に示されるように、熱源設備1の運転開始時には先ず、時期に対応した熱源出口温度設定値・増段条件normalの読み込みを行い、制御装置8に設定する(Step-1)。   Specifically, as shown in the flowchart of FIG. 2, at the start of operation of the heat source facility 1, first, the heat source outlet temperature set value and the stage increasing condition normal corresponding to the time are read and set in the control device 8. (Step-1).

次に、流量計Fにより測定した循環流量Qと、予め設定された循環流量設定値Qh(以下、上限流量設定値ともいう。)とを比較し、Q≧Qhの場合には熱源機器出口温度設定値TOSと熱源機器増段温度設定値TSSを増段条件Highへ変更する(Step-2)。ここで、上限流量設定値Qhは、熱源出口温度TOの上昇による熱源機器2A〜2Cの動力削減量と、ポンプ動力増加量が釣り合う循環流量である。   Next, the circulation flow rate Q measured by the flow meter F is compared with a preset circulation flow rate setting value Qh (hereinafter also referred to as an upper limit flow rate setting value). When Q ≧ Qh, the heat source equipment outlet temperature is compared. Change the set value TOS and the heat source equipment step-up temperature set value TSS to the step-up condition High (Step-2). Here, the upper limit flow rate setting value Qh is a circulating flow rate that balances the power reduction amount of the heat source devices 2A to 2C due to the rise of the heat source outlet temperature TO and the pump power increase amount.

例えば、熱源機器2A〜2Cを空冷チラーとした場合の前記Qh算出例を下記に示す。   For example, the Qh calculation example when the heat source devices 2A to 2C are air-cooled chillers is shown below.

空冷チラー動力Erefは次式(3)より求まる。   The air-cooled chiller power Eref is obtained from the following equation (3).

Figure 0004523461
Figure 0004523461

Figure 0004523461
Figure 0004523461

一方、ポンプ動力Epompは下式(5)より求まる。   On the other hand, the pump power Epom can be obtained from the following equation (5).

Figure 0004523461
Figure 0004523461

また、循環流量Qは下式(6)より求まる。   The circulation flow rate Q is obtained from the following equation (6).

Figure 0004523461
Figure 0004523461

熱源機器出口温度設定値TOSをNormalからHighへ変えた時の熱源機器動力の増加分とポンプ動力の減少分とが釣り合う条件より下式(7)が成立する。   The following equation (7) is established from the condition that the increase in heat source device power and the decrease in pump power when the heat source device outlet temperature set value TOS is changed from Normal to High.

Figure 0004523461
Figure 0004523461

上式(3)、(5)〜(7)式より下式(8)が成立する。   From the above equations (3) and (5) to (7), the following equation (8) is established.

Figure 0004523461
Figure 0004523461

負荷率qを上式(8)より求め、上式(6)から上限流量設定値Qhを算出する。なお、他の熱源機器についても同様の考え方により算出することができる。   The load factor q is obtained from the above equation (8), and the upper limit flow rate setting value Qh is calculated from the above equation (6). Note that other heat source devices can be calculated based on the same concept.

上記Step-2において、Q<Qhの場合には、熱媒ポンプ3A〜3Cの運転台数が2台以上の場合には熱源機器出口温度設定値TOSと熱源機器増段温度設定値TSSを増段条件Normalを維持する(Step-3)。さらに、循環流量Qが循環流量の下限流量設定値QI以下の場合には、熱源機器出口温度設定値TOSと熱源機器増段温度設定値TSSを増段条件Lowへ変更する(Step-4)。前記循環流量の下限流量設定値QIは、前記上限流量設定値Qhと同じ計算要領によって算出することができる。   In Step-2 above, when Q <Qh, if the number of operating heat medium pumps 3A to 3C is two or more, increase the heat source equipment outlet temperature set value TOS and the heat source equipment increased temperature set value TSS. The condition Normal is maintained (Step-3). Further, when the circulating flow rate Q is equal to or lower than the lower limit flow rate setting value QI of the circulating flow rate, the heat source device outlet temperature setting value TOS and the heat source device increasing temperature setting value TSS are changed to the increasing condition Low (Step-4). The lower limit flow set value QI of the circulating flow can be calculated by the same calculation procedure as the upper limit flow set value Qh.

なお、条件変更があった場合には安定するまでタイマー設定時間の間、待ち時間を設けると共に、熱源機器容量制御に熱源機器出口温度設定値TOSを、熱源台数制御に熱源機器増段温度設定値TSSを発信する。
〔熱源機器の増減段制御〕
熱源機器2A〜2Cの増減段制御に関しては、図3に示されるように、熱源機器運転台数の増段は、循環流量Qと熱源機器定格流量×運転台数で表される上限流量との比較、及び往水温度TSと前記熱源増段温度設定値TSSとの比較に基づいて行い、熱源機器運転台数の減段は循環流量Qと熱源機器定格流量×(運転台数−1)で表される下限流量との比較、及び熱源機器への入力値W(電力、蒸気又はガス計測値)と事前に設定された熱源機器減段入力設定値WSとの比較に基づいて行うようにする。
In addition, if there is a change in conditions, a waiting time is set for the timer setting time until it stabilizes, the heat source equipment outlet temperature setting value TOS is used for heat source equipment capacity control, and the heat source equipment additional temperature setting value is used for heat source number control. Send TSS.
[Increase / decrease control of heat source equipment]
Regarding the increase / decrease stage control of the heat source devices 2A to 2C, as shown in FIG. 3, the increase in the number of operating heat source devices is a comparison between the circulation flow rate Q and the upper limit flow rate represented by the heat source device rated flow × the number of operating units. And the lowering of the number of operating heat source devices is the lower limit expressed by the circulation flow rate Q and the heat source device rated flow x (number of operating units -1). The comparison is made based on the comparison with the flow rate and the comparison between the input value W (electric power, steam or gas measurement value) to the heat source device and the heat source device step-down input set value WS set in advance.

この際、減段条件となる前記熱源機器減段入力設定値WSは、次式(1)により算出する。   At this time, the heat source equipment stage reduction input set value WS, which is the stage reduction condition, is calculated by the following equation (1).

Figure 0004523461
Figure 0004523461

以上のように、減段条件を循環流量Qが前記熱源機器定格流量×(運転台数−1)で表される下限値以下であり、かつ前記入力値Wが熱源機器減段入力設定値WS以下とすることにより、熱源機器出口水温設定値TOS、外気温度、そして経年劣化による能力変化に対応した的確な運転台数削減判断がなされる。因みに、前記運転台数ごとの熱源機器減段入力設定値WSは、a=1.0,b=1.0,C=0.0とした場合、n=2台:WS=50%、n=3台:WS=67%、n=4台:WS=75%と設定値の差が大きく計測対象となる消費電力または電流値、蒸気量、ガス量は精度の高い計測が可能であるため、的確な運転台数削減判断がなされるようになる。   As described above, the circulation flow rate Q is equal to or less than the lower limit value represented by the heat source device rated flow rate × (number of operating units−1), and the input value W is equal to or less than the heat source device reduction step input set value WS. By doing so, it is possible to accurately determine the number of units to be operated in response to changes in capacity due to heat source equipment outlet water temperature set value TOS, outside air temperature, and aging degradation. Incidentally, when the heat source equipment step-down input setting value WS for each of the above-mentioned operating units is a = 1.0, b = 1.0, C = 0.0, n = 2 units: WS = 50%, n = 3 units: WS = 67 %, N = 4 units: WS = 75% and the difference between the set values is large, so the power consumption or current value, steam volume, and gas volume to be measured can be measured with high accuracy, so it is possible to accurately determine the number of units to be operated. Will be made.

また、増段条件を、循環流量Qが前記熱源機器定格流量×運転台数で表される上限値を超え、かつ往水温度TSが熱源機器増段温度設定値TSSを超えた場合とすることにより、熱源機器2A〜2Cが絞り運転を行っているにも拘わらず、運転台数の増加が行われるのを防止することができる。   Further, the stage increase condition is that the circulation flow rate Q exceeds the upper limit value represented by the heat source equipment rated flow rate x the number of units in operation and the water temperature TS exceeds the heat source equipment step increase temperature setting value TSS. It is possible to prevent the number of operating units from being increased even though the heat source devices 2A to 2C are performing the throttle operation.

本発明に係る1ポンプ方式熱源設備1を示すブロック図である。1 is a block diagram showing a one-pump heat source facility 1 according to the present invention. 熱源出口温度設定値TOS及び熱源増段温度設定値TSSの設定・変更方法を示すフロー図である。It is a flowchart which shows the setting / change method of the heat source exit temperature setting value TOS and the heat source stage temperature setting value TSS. 熱源機器の増減段制御を示すフロー図である。It is a flowchart which shows the increase / decrease stage control of a heat source apparatus. 従来の1ポンプ方式熱源設備を示すブロック図である。It is a block diagram which shows the conventional 1 pump system heat source installation. 従来の熱源機器の増減段制御を示すフロー図である。It is a flowchart which shows the increase / decrease stage control of the conventional heat source apparatus.

符号の説明Explanation of symbols

1…1ポンプ方式熱源設備、2A〜2C…熱源機器、3A〜3C…熱媒ポンプ、4…送りヘッダ、8…制御装置、9…外部負荷機器、10…戻りヘッダ、12…バイパス弁、13…バイパス、14…流量計、15・16・20…温度計、17…差圧計   DESCRIPTION OF SYMBOLS 1 ... 1 pump system heat source equipment, 2A-2C ... Heat source apparatus, 3A-3C ... Heat medium pump, 4 ... Feed header, 8 ... Control apparatus, 9 ... External load apparatus, 10 ... Return header, 12 ... Bypass valve, 13 ... Bypass, 14 ... Flow meter, 15, 16, 20 ... Thermometer, 17 ... Differential pressure gauge

Claims (3)

熱媒を冷却又は加熱する複数の熱源機器と、各熱源機器に対応して設けられるとともに、冷却又は加熱された熱媒を圧送する熱媒ポンプと、前記熱源機器からの熱媒を集約する送りヘッダと、この送りヘッダから熱媒を供給される外部負荷機器と、外部負荷機器で熱交換された熱媒が戻されるとともに、各熱源機器に分配する戻りヘッダと、前記送りヘッダ部又はその近傍と前記戻りヘッダ部又はその近傍とを繋ぐバイパス及びバイパス弁と、前記熱源機器の運転台数制御及び前記熱媒ポンプの運転制御を行う制御装置とを備える1ポンプ方式熱源設備において、
前記熱媒の循環流量Qを測定するための流量計と、往水温度TSを測定する往水温度計と、熱源機器の出口温度TOを測定するための出口温度計と、前記熱源機器への入力値Wを測定する電力計、蒸気流量計又はガス流量計と、前記熱媒ポンプの運転台数検出手段とを配設し、
前記制御装置は、予め熱源出口温度設定値TOS及び熱源増段温度設定値TSSとして、負荷状態を基準に区分された時期毎にそれぞれ、Normal、high、lowの運転状態別の設定数値テーブルを保有し、熱媒の循環流量Q及び熱媒ポンプ運転台数に基づき、熱源出口温度設定値TOS及び熱源増段温度設定値TSSを設定及び変更を行うとともに、前記熱源機器の運転台数の増段制御は循環流量Qと熱源機器定格流量×運転台数で表される上限流量との比較及び往水温度TSと前記熱源増段温度設定値TSSとの比較に基づいて行い、前記熱源機器の運転台数の減段制御は熱媒の循環流量Qと熱源機器定格流量×(運転台数−1)で表される下限流量との比較及び熱源機器への入力値Wと事前に設定された熱源機器減段入力設定値WSとの比較に基づいて行うことを特徴とする1ポンプ方式熱源設備における運転制御方法。
A plurality of heat source devices that cool or heat the heat medium, a heat medium pump that is provided corresponding to each heat source device and that pumps the cooled or heated heat medium, and a feed that collects the heat medium from the heat source device A header, an external load device to which a heat medium is supplied from the feed header, a return header to which the heat medium exchanged by the external load device is returned and distributed to each heat source device, and the feed header section or the vicinity thereof 1-pump heat source equipment comprising a bypass and a bypass valve connecting the return header part or the vicinity thereof, and a control device for controlling the number of operating heat source devices and operating the heat medium pump,
A flow meter for measuring the circulating flow rate Q of the heat medium, a forward water thermometer for measuring the outgoing water temperature TS, an outlet thermometer for measuring the outlet temperature TO of the heat source device, and the heat source device A power meter for measuring the input value W, a steam flow meter or a gas flow meter, and a means for detecting the number of operating heat medium pumps;
The control device has, in advance, a set value table for each operating state of Normal, high, and low as the heat source outlet temperature setting value TOS and the heat source step-up temperature setting value TSS for each period divided based on the load state. The heat source outlet temperature set value TOS and the heat source step increase temperature set value TSS are set and changed based on the circulating flow rate Q of the heat medium and the number of heat medium pumps operated. Decrease the number of operating heat source devices based on the comparison between the circulation flow rate Q and the heat source device rated flow x the upper limit flow rate expressed by the number of units in operation and the comparison between the outgoing water temperature TS and the heat source stage temperature setting value TSS. Stage control is a comparison between the circulation rate Q of the heat medium and the lower limit flow rate expressed by the heat source equipment rated flow x (number of operating units -1), and the input value W to the heat source equipment and the preset heat source equipment reduction input setting. and performing, based on a comparison between the value WS Operation control method in the pump system heat source facilities.
前記熱源出口温度設定値TOS及び熱源増段温度設定値TSSの変更制御は、循環流量Qと、熱源出口温度上昇による熱源機器の動力削減量とポンプ動力増加量とが釣り合う循環流量設定値Qhとの比較、熱媒ポンプ運転台数、及び循環流量Qと、熱源出口温度設定値TOSをNormalからLowへ変えた時の熱源機器動力の減少分とポンプ動力の増加分とが釣り合う循環流量設定値QIとの比較によって行う請求項1記載の1ポンプ方式熱源設備における運転制御方法。   The change control of the heat source outlet temperature set value TOS and the heat source outlet temperature set value TSS includes the circulation flow rate Q and the circulation flow rate set value Qh that balances the power reduction amount of the heat source device due to the heat source outlet temperature rise and the pump power increase amount. Comparison, heat medium pump operation number, circulation flow rate Q, and heat flow rate setting value QI that balances the decrease in heat source equipment power and the increase in pump power when heat source outlet temperature setting value TOS is changed from Normal to Low The operation control method in the 1 pump type heat source equipment of Claim 1 performed by comparison with. 前記熱源機器減段入力設定値WSは、下式(1)により求める請求項1,2いずれかに記載の1ポンプ方式熱源設備における運転制御方法。
Figure 0004523461
The operation control method for a one-pump heat source facility according to any one of claims 1 and 2, wherein the heat source device reduction stage input set value WS is obtained by the following equation (1).
Figure 0004523461
JP2005067844A 2005-03-10 2005-03-10 Operation control method for 1-pump heat source equipment Active JP4523461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005067844A JP4523461B2 (en) 2005-03-10 2005-03-10 Operation control method for 1-pump heat source equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005067844A JP4523461B2 (en) 2005-03-10 2005-03-10 Operation control method for 1-pump heat source equipment

Publications (2)

Publication Number Publication Date
JP2006250443A JP2006250443A (en) 2006-09-21
JP4523461B2 true JP4523461B2 (en) 2010-08-11

Family

ID=37091135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005067844A Active JP4523461B2 (en) 2005-03-10 2005-03-10 Operation control method for 1-pump heat source equipment

Country Status (1)

Country Link
JP (1) JP4523461B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5508668B2 (en) * 2007-09-05 2014-06-04 高砂熱学工業株式会社 Heat medium supply system
JP5195696B2 (en) * 2009-09-01 2013-05-08 日立電線株式会社 Cold water circulation system
JP5286479B2 (en) * 2009-09-04 2013-09-11 株式会社Nttファシリティーズ Cold water circulation system
JP5240134B2 (en) * 2009-09-07 2013-07-17 日立電線株式会社 Cold water circulation system
JP7017406B2 (en) 2017-12-27 2022-02-08 三菱重工サーマルシステムズ株式会社 Control device, refrigerator system, control method and program
GB2595378B (en) * 2019-01-18 2022-08-10 Mitsubishi Electric Corp Chilling unit and cold/hot water system
CN112283791B (en) * 2020-10-29 2023-08-11 青岛海信日立空调系统有限公司 Control method of air conditioner and flow valve
CN115218714A (en) * 2022-07-25 2022-10-21 贵州汇通华城股份有限公司 Control device and method for heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153059A (en) * 1982-03-05 1983-09-10 株式会社山武 Method of operating cold and hot water generator
JPS6060474A (en) * 1983-09-13 1985-04-08 鹿島建設株式会社 Energy-conserving operation control system of refrigerator for air-conditioning
JPH04198647A (en) * 1990-11-29 1992-07-20 Shimizu Corp Control system for air conditioning heat source equipment
JPH10238842A (en) * 1997-02-25 1998-09-08 Matsushita Electric Works Ltd Air-conditioning controller and air-conditioning control method using the device
JPH10332219A (en) * 1997-06-02 1998-12-15 Kawasaki Heavy Ind Ltd Heat supply apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153059A (en) * 1982-03-05 1983-09-10 株式会社山武 Method of operating cold and hot water generator
JPS6060474A (en) * 1983-09-13 1985-04-08 鹿島建設株式会社 Energy-conserving operation control system of refrigerator for air-conditioning
JPH04198647A (en) * 1990-11-29 1992-07-20 Shimizu Corp Control system for air conditioning heat source equipment
JPH10238842A (en) * 1997-02-25 1998-09-08 Matsushita Electric Works Ltd Air-conditioning controller and air-conditioning control method using the device
JPH10332219A (en) * 1997-06-02 1998-12-15 Kawasaki Heavy Ind Ltd Heat supply apparatus

Also Published As

Publication number Publication date
JP2006250443A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4523461B2 (en) Operation control method for 1-pump heat source equipment
US9562701B2 (en) Temperature control system and air conditioning system
EP2466220A1 (en) Air conditioning system and method of controlling air conditioning system
US20080162077A1 (en) Method for evaluating and optimizing performance of chiller system
JP6644559B2 (en) Heat source control system, control method and control device
JP2013224794A (en) Method and device for air conditioning control of clean room
US20140374497A1 (en) Heat source system, control device thereof, and control method thereof
JP6681896B2 (en) Refrigeration system
WO2016077559A1 (en) On board chiller capacity calculation
JP4440147B2 (en) Operation control method for two-pump heat source equipment
WO2012096265A1 (en) Heat source system, control method therfor, and program therefor
JP2007127321A (en) Cold water load factor controller for refrigerator
JP5013974B2 (en) Method and apparatus for estimating cooling water temperature
WO2010038334A1 (en) Air conditioner heat source control device and control method
JP4647469B2 (en) Operation method of air conditioning equipment
Winkler Laboratory test report for Fujitsu 12RLS and Mitsubishi FE12NA mini-split heat pumps
KR101843088B1 (en) Geothermal system based on active control according to the amount of heating load and the control method thereof
KR101456878B1 (en) Control Method of Performance Test System for Heat Pump
JP3957309B2 (en) Operation control method for two-pump heat source equipment
JP6523798B2 (en) Heat source equipment and heat source equipment control method
JP5677198B2 (en) Air cooling heat pump chiller
JP2001241735A (en) Air conditioning system and its controlling method
JP2014035101A (en) Air conditioning system
JP4897850B2 (en) Cooling tower performance evaluation system for air conditioning
JPH10300163A (en) Method for operating air conditioner and air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100527

R150 Certificate of patent or registration of utility model

Ref document number: 4523461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140604

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250