JP3957309B2 - Operation control method for two-pump heat source equipment - Google Patents

Operation control method for two-pump heat source equipment Download PDF

Info

Publication number
JP3957309B2
JP3957309B2 JP2005083187A JP2005083187A JP3957309B2 JP 3957309 B2 JP3957309 B2 JP 3957309B2 JP 2005083187 A JP2005083187 A JP 2005083187A JP 2005083187 A JP2005083187 A JP 2005083187A JP 3957309 B2 JP3957309 B2 JP 3957309B2
Authority
JP
Japan
Prior art keywords
pump
discharge pressure
heat source
feed header
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005083187A
Other languages
Japanese (ja)
Other versions
JP2006266566A (en
Inventor
徳臣 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Air Technologies Co Ltd
Original Assignee
Shin Nippon Air Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Air Technologies Co Ltd filed Critical Shin Nippon Air Technologies Co Ltd
Priority to JP2005083187A priority Critical patent/JP3957309B2/en
Publication of JP2006266566A publication Critical patent/JP2006266566A/en
Application granted granted Critical
Publication of JP3957309B2 publication Critical patent/JP3957309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、地域冷暖房施設等の熱源供給システムや、工場やビルなどの熱源供給システムとして用いられる2ポンプ方式熱源設備の運転制御方法に関する。   The present invention relates to an operation control method for a two-pump heat source facility used as a heat source supply system such as a district cooling and heating facility or a heat source supply system such as a factory or a building.

従来より地域冷暖房施設等の熱源供給システムや、工場やビルなどの熱源供給システムとして用いられている熱源設備として、2ポンプ方式熱源設備が知られている。   2. Description of the Related Art Conventionally, a two-pump heat source facility is known as a heat source supply system that is used as a heat source supply system such as a district cooling and heating facility or a heat source supply system such as a factory or a building.

前記2ポンプ方式熱源設備は、例えば図4に示されるように、戻りヘッダー50からの熱媒が一次送水ポンプ52A〜52Cにより送られ、冷凍機、ボイラ等からなる熱交換器等の熱源機器51A〜51Cを通過し加熱又は冷却された後、第1送りヘッダー54に至り、その後二次送水ポンプ55,55…により第2送りヘッダー57に送られる。そして、この第2送りヘッダー57を介して各部位(部屋)に配置された熱交換器(空調機)58,58…に送給された後、戻りヘッダー50に循環するようになっている。前記第1送りヘッダー54と第2送りヘッダー57との間に配置された二次送水ポンプ55,55…は各々インバーター56を備え、前記第1送りヘッダー54と第2送りヘッダー57との間に第一バイパス64及び第一バイパス弁65が配置されているとともに、前記第1送りヘッダー54と戻りヘッダー50とを繋ぐ第2バイパス62が配置されている(下記特許文献1、2等参照)。   For example, as shown in FIG. 4, the two-pump heat source facility is configured such that a heat medium from the return header 50 is sent by primary water pumps 52 </ b> A to 52 </ b> C, and a heat source device 51 </ b> A such as a heat exchanger including a refrigerator, a boiler, and the like. After passing through ~ 51C and being heated or cooled, it reaches the first feed header 54 and is then sent to the second feed header 57 by the secondary water feed pumps 55, 55. .. Are fed to the heat exchangers (air conditioners) 58, 58... Arranged in each part (room) via the second feed header 57 and then circulated to the return header 50. Secondary water pumps 55, 55... Disposed between the first feed header 54 and the second feed header 57 are each provided with an inverter 56, and between the first feed header 54 and the second feed header 57. A first bypass 64 and a first bypass valve 65 are disposed, and a second bypass 62 that connects the first feed header 54 and the return header 50 is disposed (see Patent Documents 1 and 2 below).

制御装置60による前記二次送水ポンプ55の吐出圧制御は、第2の送りヘッダー57と戻りヘッダー50との差圧DSを検出し、予め設定された必要差圧となるように、二次送水ポンプ55,55…のインバーター56,56…に対し回転数制御をかけることにより、一定の送水圧力条件の下で変流量制御を行う。   The discharge pressure control of the secondary water supply pump 55 by the control device 60 detects the differential pressure DS between the second feed header 57 and the return header 50, and the secondary water supply so that the required differential pressure is set in advance. By controlling the number of revolutions of the inverters 56, 56 of the pumps 55, 55, etc., variable flow rate control is performed under a constant water supply pressure condition.

また、前記熱源機器51A〜51Cの増減段制御は、例えば熱源入口温度TI、往水温度TS、流量F、負荷熱量L((TI−TS)×F)に基づいた台数制御が行われている。   The increase / decrease stage control of the heat source devices 51A to 51C is, for example, unit number control based on the heat source inlet temperature TI, the going water temperature TS, the flow rate F, and the load heat amount L ((TI−TS) × F). .

しかし、小負荷時に冷水往き還り温度差(TI−TS)が低下すると、熱量に変化が無くとも循環流量Qが増大することになる。循環流量Qが熱源機器通水流量Qrより増大すると、還り冷水の一部がバイパス62を通って往き冷水配管側に合流するため冷水往き温度TSが上昇し、熱源機器増段温度設定値を超え、熱源機器は絞り運転を行っているにも関わらず、運転台数の不要な増加が行われるなどの不要な熱源機器の運転が誘発される問題があった。   However, if the cold water return temperature difference (TI-TS) decreases at the time of a small load, the circulation flow rate Q increases even if there is no change in the amount of heat. When the circulation flow rate Q increases from the heat source device water flow rate Qr, a part of the return cold water passes through the bypass 62 and joins to the cold water piping side, so the cold water return temperature TS rises and exceeds the heat source device additional temperature setting value. However, there is a problem that the operation of the unnecessary heat source device is induced, such as an unnecessary increase in the number of operating units, even though the heat source device performs the throttle operation.

小負荷時に発生する水の往き還り温度差が低下する現象の原因としては、循環水量Qを一定値以上に保つことを目的とした末端バイパスの存在、空調負荷制御弁(MV)の締め切り能力不足による漏れ、設備簡素化のために制御弁を廃止した系統の存在などにより往き冷水が熱交換せずに還り冷水配管に入り込むことが挙げられる。これらを防止する方法として、小負荷時には吐出圧を下げることが有効である。同時に、ポンプ吐出圧を下げることはポンプ動力の削減にもつながる。   The cause of the phenomenon that the temperature difference of water going back and forth that occurs at the time of a small load is reduced is the presence of a terminal bypass for the purpose of keeping the circulating water quantity Q above a certain value, and the air conditioning load control valve (MV) deadline capacity is insufficient For example, the chilled water may be returned to the chilled water piping without exchanging heat due to leakage due to the system and the existence of a system that has abolished the control valve to simplify the equipment. As a method for preventing these problems, it is effective to lower the discharge pressure when the load is small. At the same time, lowering the pump discharge pressure leads to a reduction in pump power.

そこで、下記特許文献3では空調機により処理される空調負荷に見合う循環水量Qによってポンプ吐出圧設定値Pを下式(4)に従い増減させる運転制御方法が開示されている。   Therefore, Patent Document 3 below discloses an operation control method in which the pump discharge pressure set value P is increased or decreased according to the following equation (4) by the circulating water amount Q corresponding to the air conditioning load processed by the air conditioner.

Figure 0003957309
Figure 0003957309
特開2002−213802号公報JP 2002-213802 A 特開2004−101104号公報JP 2004-101104 A 特開2003−106731号公報JP 2003-106731 A

しかしながら、上記特許文献3に示されるポンプ制御方法の場合、空調設備の運転状態は建物用途や季節など様々な要因により変化するため、上記(4)式中の定数K0、K1、K2、nは常に変化し、各定数を一定値として同定することは困難である。その結果、運転状態によっては、吐出圧が不足し冷水供給が不十分となる場合があるとともに、小負荷時(特に負荷流量40%以下)においては、ポンプ吐出圧を下げられず必要以上の動力を消費している場合があったり、さらに吐出圧が低い状態で運転が安定してしまうことが考えられるため、変化する熱負荷状態に柔軟に対応できないなどの問題があった。さらに、定数の設定に膨大な運転データを使用する必要があるなどの問題もあった。   However, in the case of the pump control method disclosed in Patent Document 3, the operating state of the air conditioning equipment varies depending on various factors such as building use and season, so the constants K0, K1, K2, and n in the above equation (4) are It always changes and it is difficult to identify each constant as a constant value. As a result, depending on the operating conditions, the discharge pressure may be insufficient and the chilled water supply may be insufficient, and at low loads (especially with a load flow rate of 40% or less), the pump discharge pressure cannot be reduced and more power than necessary. In some cases, it is considered that the operation is stabilized when the discharge pressure is low, and it is not possible to flexibly cope with the changing heat load state. Furthermore, there is a problem that it is necessary to use a large amount of operation data for setting the constants.

そこで本発明の主たる課題は、変化する熱負荷に対応して常時、経済的な運転状態となるように2次ポンプの吐出圧を制御することにより、運転状態の安定化を図るとともに、ポンプ動力の削減により省エネルギー化を実現し得る2ポンプ方式熱源設備の運転制御方法を提供することにある。   Accordingly, the main problem of the present invention is to stabilize the operation state by controlling the discharge pressure of the secondary pump so that the operation state is always economical in response to the changing heat load, and the pump power An object of the present invention is to provide an operation control method for a two-pump heat source facility that can realize energy saving by reducing the amount of heat.

前記課題を解決するために請求項1に係る本発明として、熱媒を冷却又は加熱する複数の熱源機器と各熱源機器に対応して設けられるとともに、冷却又は加熱された熱媒を圧送する1次ポンプと、前記熱源機器からの熱媒を集約する第1送りヘッダと、第1送りヘッダから熱媒を送る複数の2次ポンプと、2次ポンプからの熱媒を集約する第2送りヘッダと、この第2送りヘッダから熱媒が供給される外部負荷機器と、この外部負荷機器を迂回する末端バイパスと、前記外部負荷機器で熱交換された熱媒が戻されるとともに、各熱源機器に分配する戻りヘッダと、第1送りヘッダと第2送りヘッダとを繋ぐ第1バイパス及び第1バイパス弁と、前記第1送りヘッダ部又はその近傍と前記戻りヘッダ部又はその近傍とを繋ぐ第2バイパスと、前記熱源機器の運転台数制御及び前記2次ポンプの運転制御を行う制御装置とを備える2ポンプ方式熱源設備において、
前記熱媒の循環流量Qを測定するための流量計と、往水温度TSを測定する往水温度計と、還水温度TRを測定する還水温度計と、前記第1送りヘッダと第2送りヘッダとの間の差圧dPを測定するポンプ揚程圧力計を配設し、
前記制御装置は、循環流量Q、ポンプ吐出圧設計値Pls、実揚程Ps、循環流量設計値Qs、係数nにより下式(1)に基づき基準ポンプ吐出圧曲線を算出するとともに、この基準ポンプ吐出圧曲線に従って前記2次ポンプを制御するとともに、前記往水温度TSと還水温度TRとの送水温度差(TR-TS)が予め設定された最小設定温度差dTIを下回った場合には、下式(2)に基づき前記基準ポンプ吐出圧曲線による吐出圧Pに対して補正を行うことを特徴とする2ポンプ方式熱源設備の運転制御方法が提供される。
In order to solve the above-mentioned problem, the present invention according to claim 1 includes a plurality of heat source devices for cooling or heating the heat medium and a heat source device that is provided corresponding to each heat source device and that pumps the cooled or heated heat medium. A secondary pump, a first feed header that collects the heat medium from the heat source device, a plurality of secondary pumps that send the heat medium from the first feed header, and a second feed header that collects the heat medium from the secondary pump And an external load device to which a heat medium is supplied from the second feed header, a terminal bypass that bypasses the external load device, and a heat medium that is heat-exchanged by the external load device are returned to each heat source device. A return header to be distributed, a first bypass and a first bypass valve that connect the first feed header and the second feed header, and a second that connects the first feed header portion or the vicinity thereof and the return header portion or the vicinity thereof. Bypass and before In 2 pump type heat source equipment and a control device that performs operation number control and operation control of the secondary pump of the heat source equipment,
A flow meter for measuring the circulating flow rate Q of the heat medium, a forward water thermometer for measuring the forward water temperature TS, a return water thermometer for measuring the return water temperature TR, the first feed header, and the second A pump head pressure gauge is installed to measure the differential pressure dP between the feed header and
The control device calculates a reference pump discharge pressure curve based on the following equation (1) from the circulation flow rate Q, the pump discharge pressure design value Pls, the actual lift Ps, the circulation flow rate design value Qs, and the coefficient n. When the secondary pump is controlled according to the pressure curve and the water supply temperature difference (TR-TS) between the outgoing water temperature TS and the return water temperature TR falls below a preset minimum temperature difference dTI, There is provided an operation control method for a two-pump heat source facility, wherein correction is performed on the discharge pressure P based on the reference pump discharge pressure curve based on the equation (2) .

Figure 0003957309
Figure 0003957309

Figure 0003957309
Figure 0003957309

上記請求項1記載の本発明では、任意に設定するn以外は、すべての計測により若しくは設計時に既知とされる値で制御されるため、変化する熱負荷に対応して常時、経済的な運転状態となるように2次ポンプの吐出圧を制御することが可能となる。   In the present invention as set forth in claim 1, except for arbitrarily set n, since it is controlled by all measurements or values known at the time of design, it is always economical to respond to changing thermal loads. It becomes possible to control the discharge pressure of the secondary pump so as to be in the state.

また、前記基準ポンプ吐出圧曲線は、概ね熱負荷が約40%以下の状態で、ポンプ吐出圧が二次曲線的に低減される曲線となるため、小負荷時に還り冷水の一部がバイパス62を通って往き冷水配管側に合流し冷水往き温度TSが上昇し、熱源機器は絞り運転を行っているにも関わらず、運転台数の不要な増段が行われるのを防止できるようになるとともに、ポンプ動力を削減できるようになる。   Further, the reference pump discharge pressure curve is a curve in which the pump discharge pressure is reduced in a quadratic curve when the heat load is approximately 40% or less, so that a part of the return cold water is bypassed 62 at a small load. The chilled water going temperature TS rises as it passes through the chilled water piping side, and it is possible to prevent unnecessary increase in the number of operating units even though the heat source equipment is in the throttle operation. The pump power can be reduced.

また、特に小負荷時において、往水温度TSと還水温度TRとの送水温度差(TR-TS)が予め設定された最小設定温度差dTIを下回った場合には、前記基準ポンプ吐出圧曲線のポンプ吐出圧P値を補正することにより、最小設定温度差dTIを常時確保することができる。前記「末端バイパス等」とは、末端バイパスの他、空調負荷制御弁(MV)の締め切り能力不足による漏れ、設備簡素化のために制御弁を廃した系統など、往き冷水が熱交換せずに還り冷水配管に入り込む配管経路のことを指す。 Further, when the water supply temperature difference (TR-TS) between the outgoing water temperature TS and the return water temperature TR is less than a preset minimum set temperature difference dTI , particularly at a small load, the reference pump discharge pressure curve The minimum set temperature difference dTI can always be ensured by correcting the pump discharge pressure P value. The above-mentioned “terminal bypass, etc.” refers to leakage due to insufficient air conditioning load control valve (MV) deadlines in addition to terminal bypass, systems that have eliminated control valves to simplify equipment, etc. It refers to the piping route that enters the return cold water piping.

小負荷時において、ポンプ吐出圧が大幅に低減されることにより、最小限の循環水量を確保しながら、往き冷水の一部が還り冷水配管側に入り込むのを防止し、前記最小設定温度差dTIを確保するとともに、さらにポンプ動力の削減が図れるようになる。   When the load is small, the pump discharge pressure is greatly reduced, ensuring a minimum amount of circulating water and preventing a part of the incoming cold water from returning and entering the chilled water piping side. As a result, the pump power can be further reduced.

請求項2に係る本発明として、下式(3)に示すポンプ吐出圧下限値曲線を設定し、前記2次ポンプの吐出圧は前記ポンプ吐出圧下限値曲線を最低吐出圧として制御する請求項1記載の2ポンプ方式熱源設備の運転制御方法が提供される。 As a second aspect of the present invention, a pump discharge pressure lower limit value curve shown in the following equation (3) is set, and the discharge pressure of the secondary pump is controlled by using the pump discharge pressure lower limit value curve as a minimum discharge pressure. 1 Symbol placement of 2 pump type heat source equipment operation control method is provided.

Figure 0003957309
Figure 0003957309

以上詳説のとおり本発明によれば、変化する熱負荷に対応して常時、経済的な運転状態となるように2次ポンプの吐出圧を制御することが可能となるため、運転状態の安定化を図り得るとともに、ポンプ動力の削減により省エネルギー化を実現し得るようになる。   As described above in detail, according to the present invention, it becomes possible to control the discharge pressure of the secondary pump so as to always be in an economical operating state corresponding to the changing heat load, so that the operating state is stabilized. Energy saving can be realized by reducing pump power.

さらに、効果を列挙すれば下記のとおりである。
(1)上記特許文献3の制御方法とは異なり、定数の設定に膨大な運転データを使用しなくとも運転制御可能である。
(2)配管抵抗曲線が負荷状態により変化しても送水温度差補正により追従した運転がある程度可能である。
(3)運転開始時の吐出圧は要求圧よりも高い吐出圧(基準ポンプ吐出圧曲線)から始まるので吐出圧不足による循環水量の不足を防止することができる。
Further, the effects are listed as follows.
(1) Unlike the control method disclosed in Patent Document 3, operation control is possible without using a large amount of operation data for setting constants.
(2) Even if the pipe resistance curve changes depending on the load condition, it is possible to operate to some extent by correcting the water supply temperature difference.
(3) Since the discharge pressure at the start of operation starts from a discharge pressure (reference pump discharge pressure curve) higher than the required pressure, it is possible to prevent a shortage of circulating water due to insufficient discharge pressure.

以下、本発明の実施の形態について図面を参照しながら詳述する。
〔2ポンプ方式熱源設備の構成〕
図1に示された2ポンプ方式熱源設備1は、熱媒を冷却又は加熱する複数の熱源機器2A〜2Cと、各熱源機器2A〜2Cに対応して設けられるとともに、熱媒を圧送する1次ポンプ3A〜3Cと、前記熱源機器2A〜2Cからの熱媒を集約する第1送りヘッダ4と、第1送りヘッダ4から熱媒を供給する2次ポンプ6A〜6Cと、これら2次ポンプ6A〜6Cをそれぞれ回転数制御するインバータ7A〜7Cと、2次ポンプ6A〜6Cから熱媒が供給される第2送りヘッダ5と、第2送りヘッダ5から熱媒が供給される空調機等の外部負荷機器9,9…と、この外部負荷機器9,9…を迂回する末端バイパス18と、前記外部負荷機器9,9…で熱交換された熱媒が戻されるとともに、各熱源機器2A〜2Cに分配する戻りヘッダ10と、前記第1送りヘッダ4と第2送りヘッダ5とを繋ぐ第1バイパス11及び第1バイパス弁12と、前記第1送りヘッダ部4又はその近傍と前記戻りヘッダ部10又はその近傍とを繋ぐ第2バイパス13と、前記熱源機器2A〜2Cの運転台数制御及び前記二次ポンプ6A〜6C(インバータ7A〜7C)の運転制御を行う制御装置8とを備えるものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[Configuration of two-pump heat source equipment]
A two-pump heat source facility 1 shown in FIG. 1 is provided corresponding to a plurality of heat source devices 2A to 2C for cooling or heating a heat medium, and each heat source device 2A to 2C, and 1 that pumps the heat medium. Secondary pumps 3A to 3C, a first feed header 4 that collects the heat medium from the heat source devices 2A to 2C, secondary pumps 6A to 6C that supply the heat medium from the first feed header 4, and these secondary pumps Inverters 7A to 7C that respectively control the rotational speeds of 6A to 6C, a second feed header 5 that is supplied with a heat medium from secondary pumps 6A to 6C, an air conditioner that is supplied with a heat medium from the second feed header 5, and the like Of the external load devices 9, 9 ..., the end bypass 18 bypassing the external load devices 9, 9 ..., and the heat medium exchanged by the external load devices 9, 9 ... are returned, and each heat source device 2A Return header 10 distributed to ~ 2C; The first bypass 11 and the first bypass valve 12 that connect the first feed header 4 and the second feed header 5, the first feed header portion 4 or the vicinity thereof, and the return header portion 10 or the vicinity thereof are connected. 2 bypass 13 and the control apparatus 8 which performs operation number control of the said heat-source equipment 2A-2C and operation control of the said secondary pumps 6A-6C (inverters 7A-7C).

また、計測機器類として、前記熱媒の循環流量を計測するための流量計14と、還水温度TRを測定するための還水温度計15と、往水温度TSを測定する往水温度計20と、熱源機器の入口温度TIを測定するための温度計16と、熱源機器の出口温度TOを測定するための温度計18と、前記第1送りヘッダ4と第2送りヘッダ5との間の差圧dPを測定するためのポンプ揚程圧力計17とを配備している。
〔制御装置8による運転制御〕
本2ポンプ方式熱源設備1においては、前記2次ポンプ6A〜6Cの吐出圧の制御は、図2に示される2次ポンプ吐出圧の算出ロジックフローに従い制御される。先ず、2次ポンプ6A〜6Cの運転制御条件となる基準ポンプ吐出圧曲線を次式(1)により設定する。
As measuring instruments, a flow meter 14 for measuring the circulating flow rate of the heating medium, a return water thermometer 15 for measuring the return water temperature TR, and a forward water thermometer for measuring the outgoing water temperature TS. 20, a thermometer 16 for measuring the inlet temperature TI of the heat source device, a thermometer 18 for measuring the outlet temperature TO of the heat source device, and the first feed header 4 and the second feed header 5 And a pump head pressure gauge 17 for measuring the differential pressure dP.
[Operation control by the control device 8]
In the present two-pump heat source facility 1, the discharge pressures of the secondary pumps 6A to 6C are controlled according to the secondary pump discharge pressure calculation logic flow shown in FIG. First, a reference pump discharge pressure curve that is an operation control condition of the secondary pumps 6A to 6C is set by the following equation (1).

Figure 0003957309
Figure 0003957309

上記(1)式において、係数n以外の数値は、計測値又は設計時に既知な値である。図3に、n=2,3,5とした場合の基準ポンプ吐出圧曲線を示すとともに、比較例としてn=1とした場合の一次曲線の場合と、後述の配管抵抗曲線と、ポンプ吐出圧下限値曲線を示す。図3を見れば明らかなように、係数nを所定の適値に設定することにより、小負荷時(特に40%以下)の時に、熱負荷状態に対応してポンプ吐出圧を2次曲線的に低減し得ることが分かる。なお、n=1とした場合には、ポンプ吐出圧は一次曲線となって小負荷時にポンプ吐出圧を低減することができない。   In the above equation (1), numerical values other than the coefficient n are measured values or values known at the time of design. FIG. 3 shows reference pump discharge pressure curves when n = 2, 3, and 5, and as a comparative example, a primary curve when n = 1, a pipe resistance curve described later, and a pump discharge pressure. A lower limit curve is shown. As is apparent from FIG. 3, by setting the coefficient n to a predetermined appropriate value, the pump discharge pressure can be expressed in a quadratic curve corresponding to the thermal load state at the time of a small load (especially 40% or less). It can be seen that it can be reduced. When n = 1, the pump discharge pressure becomes a linear curve and the pump discharge pressure cannot be reduced at a small load.

本発明の制御方法に従えば、n>1とした場合には、吐出圧曲線は小負荷時に吐出圧を2次曲線的に下げることが可能となりポンプ動力の削減が図れるようになる。また、配管抵抗曲線に対応してn=3やn=5とした曲線を任意に設定することができるので、配管抵抗曲線に応じて適性な吐出圧制御曲線を得ることができる。   According to the control method of the present invention, when n> 1, the discharge pressure curve can lower the discharge pressure like a quadratic curve when the load is small, and the pump power can be reduced. Further, since a curve with n = 3 or n = 5 can be arbitrarily set corresponding to the piping resistance curve, an appropriate discharge pressure control curve can be obtained according to the piping resistance curve.

前記基準ポンプ吐出圧曲線に従って2次ポンプ6A〜6Cが運転制御されるが、予め前記往水温度TSと還水温度TRとの送水温度差(TR-TS)の最小値(最小設定温度差dTI)を設定しておき、前記送水温度差(TR−TS)が最小設定温度差dTIを下回った場合には、送水温度差(TR−TS)が最小設定温度差dTIとなるように、基準ポンプ吐出圧曲線の値Pを以下の計算式で補正する。   Although the secondary pumps 6A to 6C are operated and controlled according to the reference pump discharge pressure curve, the minimum value (minimum set temperature difference dTI) of the water supply temperature difference (TR-TS) between the outgoing water temperature TS and the return water temperature TR in advance. ), And when the water supply temperature difference (TR-TS) falls below the minimum set temperature difference dTI, the reference pump is set so that the water supply temperature difference (TR-TS) becomes the minimum set temperature difference dTI. The value P of the discharge pressure curve is corrected by the following calculation formula.

熱量バランスから下式(5)が得られる。   From the heat balance, the following formula (5) is obtained.

Figure 0003957309
Figure 0003957309

上式(5)をQbについて解くと、下式(6)となる。   When the above equation (5) is solved for Qb, the following equation (6) is obtained.

Figure 0003957309
Figure 0003957309

いま、最低限維持したい送水温度差dTI(例えば、設計送水温度差が5℃の時、dTI=3℃のように設定)とすると、そのとき末端バイパス等の流量Qblは下式(7)より求まる。 Assuming that the water supply temperature difference dTI (for example, dTI = 3 ° C is set when the design water supply temperature difference is 5 ° C), the flow rate Qbl for the terminal bypass is calculated from the following equation (7). I want.

Figure 0003957309
Figure 0003957309

また、末端バイパス等の流量Qb、Qblのときの末端バイパス等の差圧Pb、Pblは末端バイパス等の抵抗係数をCVbとすると、それぞれ下式(8)(9)となる。 Further, the differential pressures Pb and Pbl for the terminal bypass and the like at the flow rates Qb and Qbl for the terminal bypass are represented by the following equations (8) and (9), respectively, where the resistance coefficient for the terminal bypass and the like is CVb.

Figure 0003957309
Figure 0003957309

Figure 0003957309
Figure 0003957309

ここで、末端バイパス等の抵抗係数CVbは、全系統の空調負荷自動弁が開度0%の循環流量Qと、ポンプ吐出圧Pとを用い下式(10)より求めることができる。 Here, the resistance coefficient CVb of the terminal bypass or the like can be obtained from the following equation (10) using the circulation flow rate Q 0 when the air-conditioning load automatic valves of all systems have an opening degree of 0% and the pump discharge pressure P 0 .

Figure 0003957309
Figure 0003957309

以上より、圧力をPb−Pbl下げれば、末端バイパス等の流量はQblとなる。よって、補正後の圧力P’は下式(11)(=(2)式)より求めることができる。   From the above, if the pressure is lowered by Pb−Pbl, the flow rate of the terminal bypass or the like becomes Qbl. Therefore, the corrected pressure P ′ can be obtained from the following equation (11) (= (2) equation).

Figure 0003957309
Figure 0003957309

一方で、前記ポンプ吐出圧には、最低限の冷水流量を確保するために、下限値を設定することが望ましい。   On the other hand, it is desirable to set a lower limit for the pump discharge pressure in order to ensure a minimum cold water flow rate.

ポンプ吐出圧の下限値は、下式(12)で表すことができ、そのグラフは図3に示される曲線となる。   The lower limit value of the pump discharge pressure can be expressed by the following formula (12), and the graph is a curve shown in FIG.

Figure 0003957309
Figure 0003957309

なお、配管抵抗曲線に従い制御される対象は、2次ポンプ6A〜6Cの吸い込み側と吐出側との差圧、つまりポンプ揚程dPであるのが望ましい。   The object controlled according to the piping resistance curve is preferably the differential pressure between the suction side and the discharge side of the secondary pumps 6A to 6C, that is, the pump head dP.

以上より、本発明においては、先ず前記基準ポンプ吐出圧曲線に従って2次ポンプ6A〜6Cが運転制御され、小負荷時において、前記送水温度差(TR−TS)が事前に設定してある最小設定温度差dTIを下回る現象が生じたならば、送水温度差(TR−TS)が最小設定温度差dTIとなるように、基準ポンプ吐出圧曲線の値Pを補正する。また、最低限の流量を確保するために、ポンプ吐出圧が下がった場合でも、前記ポンプ吐出圧下限値曲線を最低吐出圧として2次ポンプ6A〜6Cを制御するようにする。   As described above, in the present invention, first, the secondary pumps 6A to 6C are operated and controlled according to the reference pump discharge pressure curve, and the minimum water temperature difference (TR-TS) is set in advance when the load is small. If a phenomenon that falls below the temperature difference dTI occurs, the value P of the reference pump discharge pressure curve is corrected so that the water supply temperature difference (TR-TS) becomes the minimum set temperature difference dTI. Further, in order to secure the minimum flow rate, even when the pump discharge pressure is lowered, the secondary pumps 6A to 6C are controlled with the pump discharge pressure lower limit curve as the minimum discharge pressure.

本発明に係る2ポンプ方式熱源設備1を示すブロック図である。1 is a block diagram showing a two-pump heat source facility 1 according to the present invention. 2次ポンプ吐出圧の算出ロジックを示すフロー図である。It is a flowchart which shows the calculation logic of a secondary pump discharge pressure. 基準ポンプ吐出圧曲線、配管抵抗曲線及びポンプ吐出圧下限値曲線を示すグラフである。It is a graph which shows a reference | standard pump discharge pressure curve, a piping resistance curve, and a pump discharge pressure lower limit curve. 従来型の2ポンプ方式熱源設備を示すブロック図である。It is a block diagram which shows the conventional 2 pump system heat source installation.

符号の説明Explanation of symbols

1…2ポンプ方式熱源設備、2A〜2C…熱源機器、3A〜3C…1次ポンプ、4…第1送りヘッダ、5…第2送りヘッダ、6A〜6C…2次ポンプ、7A〜7C…インバータ、8…制御装置、9…外部負荷機器、10…戻りヘッダ、11…第1バイパス、12…第1バイパス弁、13…第2バイパス、14…流量計、15・16・18・20…温度計、17…差圧計   DESCRIPTION OF SYMBOLS 1 ... 2 pump system heat source equipment, 2A-2C ... Heat source equipment, 3A-3C ... Primary pump, 4 ... 1st feed header, 5 ... 2nd feed header, 6A-6C ... Secondary pump, 7A-7C ... Inverter , 8 ... control device, 9 ... external load device, 10 ... return header, 11 ... first bypass, 12 ... first bypass valve, 13 ... second bypass, 14 ... flow meter, 15, 16, 18, 20 ... temperature Meter, 17 ... Differential pressure gauge

Claims (2)

熱媒を冷却又は加熱する複数の熱源機器と各熱源機器に対応して設けられるとともに、冷却又は加熱された熱媒を圧送する1次ポンプと、前記熱源機器からの熱媒を集約する第1送りヘッダと、第1送りヘッダから熱媒を送る複数の2次ポンプと、2次ポンプからの熱媒を集約する第2送りヘッダと、この第2送りヘッダから熱媒が供給される外部負荷機器と、この外部負荷機器を迂回する末端バイパスと、前記外部負荷機器で熱交換された熱媒が戻されるとともに、各熱源機器に分配する戻りヘッダと、第1送りヘッダと第2送りヘッダとを繋ぐ第1バイパス及び第1バイパス弁と、前記第1送りヘッダ部又はその近傍と前記戻りヘッダ部又はその近傍とを繋ぐ第2バイパスと、前記熱源機器の運転台数制御及び前記2次ポンプの運転制御を行う制御装置とを備える2ポンプ方式熱源設備において、
前記熱媒の循環流量Qを測定するための流量計と、往水温度TSを測定する往水温度計と、還水温度TRを測定する還水温度計と、前記第1送りヘッダと第2送りヘッダとの間の差圧dPを測定するポンプ揚程圧力計を配設し、
前記制御装置は、循環流量Q、ポンプ吐出圧設計値Pls、実揚程Ps、循環流量設計値Qs、係数nにより下式(1)に基づき基準ポンプ吐出圧曲線を算出するとともに、この基準ポンプ吐出圧曲線に従って前記2次ポンプを制御するとともに、前記往水温度TSと還水温度TRとの送水温度差(TR-TS)が予め設定された最小設定温度差dTIを下回った場合には、下式(2)に基づき前記基準ポンプ吐出圧曲線による吐出圧Pに対して補正を行うことを特徴とする2ポンプ方式熱源設備の運転制御方法。
Figure 0003957309
Figure 0003957309
A plurality of heat source devices for cooling or heating the heat medium, a primary pump for pumping the cooled or heated heat medium and a first heat pump for collecting the heat medium from the heat source device. Feed header, a plurality of secondary pumps that send the heat medium from the first feed header, a second feed header that collects the heat medium from the secondary pump, and an external load to which the heat medium is supplied from the second feed header A device, a terminal bypass that bypasses the external load device, a heat medium that is heat-exchanged by the external load device, and a return header that is distributed to each heat source device; a first feed header and a second feed header; A first bypass and a first bypass valve that connect the first bypass header, a second bypass that connects the first feed header portion or the vicinity thereof and the return header portion or the vicinity thereof, control of the number of operating heat source devices and the secondary pump Operation control In 2 pump type heat source equipment and a control unit that performs,
A flow meter for measuring the circulating flow rate Q of the heat medium, a forward water thermometer for measuring the forward water temperature TS, a return water thermometer for measuring the return water temperature TR, the first feed header, and the second A pump head pressure gauge is installed to measure the differential pressure dP between the feed header and
The control device calculates a reference pump discharge pressure curve based on the following equation (1) from the circulation flow rate Q, the pump discharge pressure design value Pls, the actual lift Ps, the circulation flow rate design value Qs, and the coefficient n. When the secondary pump is controlled according to the pressure curve and the water supply temperature difference (TR-TS) between the outgoing water temperature TS and the return water temperature TR falls below a preset minimum temperature difference dTI, An operation control method for a two-pump heat source facility, wherein a correction is made to the discharge pressure P based on the reference pump discharge pressure curve based on the equation (2) .
Figure 0003957309
Figure 0003957309
下式(3)に示すポンプ吐出圧下限値曲線を設定し、前記2次ポンプの吐出圧は前記ポンプ吐出圧下限値曲線を最低吐出圧として制御する請求項1記載の2ポンプ方式熱源設備の運転制御方法。
Figure 0003957309
Set the pump discharge pressure limit value curve shown in the following equation (3), the secondary pump discharge pressure 2 pump type heat source equipment according to claim 1 Symbol placement controls the pump discharge pressure limit value curve as the minimum discharge pressure Operation control method.
Figure 0003957309
JP2005083187A 2005-03-23 2005-03-23 Operation control method for two-pump heat source equipment Active JP3957309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005083187A JP3957309B2 (en) 2005-03-23 2005-03-23 Operation control method for two-pump heat source equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005083187A JP3957309B2 (en) 2005-03-23 2005-03-23 Operation control method for two-pump heat source equipment

Publications (2)

Publication Number Publication Date
JP2006266566A JP2006266566A (en) 2006-10-05
JP3957309B2 true JP3957309B2 (en) 2007-08-15

Family

ID=37202746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005083187A Active JP3957309B2 (en) 2005-03-23 2005-03-23 Operation control method for two-pump heat source equipment

Country Status (1)

Country Link
JP (1) JP3957309B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4925885B2 (en) * 2007-03-26 2012-05-09 新日本空調株式会社 Flow rate measurement method for piping system equipment
JP5285925B2 (en) * 2008-02-19 2013-09-11 高砂熱学工業株式会社 Air conditioning system
JP4691582B2 (en) * 2008-06-16 2011-06-01 株式会社トーエネック Control device for air conditioning secondary pump
JP5313848B2 (en) * 2009-11-26 2013-10-09 アズビル株式会社 Water supply pressure control system and method
JP6288496B2 (en) * 2013-12-03 2018-03-07 三菱重工サーマルシステムズ株式会社 Heat source machine operation number control device, heat source system, control method and program

Also Published As

Publication number Publication date
JP2006266566A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
EP2837898B1 (en) Air-conditioning system
EP3637006B1 (en) Heat source system
JP5657110B2 (en) Temperature control system and air conditioning system
JP4505363B2 (en) Control method of cold / hot water in air conditioning system
JP4422572B2 (en) Cold / hot water control method for cold / hot heat source machine
EP2693133A1 (en) Heat source system and number-of-machines control method for heat source system
JP6644559B2 (en) Heat source control system, control method and control device
JP5274222B2 (en) Heat source control system for air conditioning equipment
JP3652974B2 (en) Primary pump heat source variable flow rate system
JP2009030823A (en) Air conditioning control system and air conditioning control method
CN109564438B (en) Reduction of return temperature in zone heating and increase of return temperature in zone cooling
JP3957309B2 (en) Operation control method for two-pump heat source equipment
CN103154842A (en) Method for setting the volumetric flow of heating and/or cooling medium through space heat exchangers of a heating and/or cooling system
JP2007327725A (en) Heat pump type water heater
JP4523461B2 (en) Operation control method for 1-pump heat source equipment
JP5284295B2 (en) Heat source control system and heat source control method
JP4440147B2 (en) Operation control method for two-pump heat source equipment
JP2006220363A (en) One pump type heat source equipment
CN112082290A (en) Flow control module and method for controlling flow in a circulation system
US20220390138A1 (en) Capacity control for hvac system
JP5595975B2 (en) Air conditioning piping system
JP6523798B2 (en) Heat source equipment and heat source equipment control method
JP5318446B2 (en) Outside air intake system
JP4369841B2 (en) Heat medium piping system
JP5926660B2 (en) Rotation speed control system and method for cold / hot water circulation pump

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R150 Certificate of patent or registration of utility model

Ref document number: 3957309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250