JP5595975B2 - Air conditioning piping system - Google Patents

Air conditioning piping system Download PDF

Info

Publication number
JP5595975B2
JP5595975B2 JP2011118424A JP2011118424A JP5595975B2 JP 5595975 B2 JP5595975 B2 JP 5595975B2 JP 2011118424 A JP2011118424 A JP 2011118424A JP 2011118424 A JP2011118424 A JP 2011118424A JP 5595975 B2 JP5595975 B2 JP 5595975B2
Authority
JP
Japan
Prior art keywords
heat medium
temperature
inverter
pump
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011118424A
Other languages
Japanese (ja)
Other versions
JP2012247113A (en
Inventor
弘明 富田
章 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2011118424A priority Critical patent/JP5595975B2/en
Publication of JP2012247113A publication Critical patent/JP2012247113A/en
Application granted granted Critical
Publication of JP5595975B2 publication Critical patent/JP5595975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ビル、工場等の空気調和設備における冷水、温水等の熱媒体を送給するための空調配管システムに関する。   The present invention relates to an air-conditioning piping system for supplying a heat medium such as cold water or hot water in an air-conditioning facility such as a building or a factory.

複数の店舗及び事務所等が入居するオフィスビル等の建造物、又は、生産工程上温調された空間を要求する工場等の建造物には、複数の空調機が設けられ、各空調機には、熱源機からポンプにより冷水又は温水等の熱媒体が各空調機が受け持つ部屋やゾーンの熱負荷に対応した流量で供給され、冷房や暖房が行われる。
図11は、このような空調機を備えた従来の一次ポンプ方式の空調配管システム100を示す。ここでは、二方弁(流量制御弁)105による流量制御方式が採用されている。
A plurality of air conditioners are installed in buildings such as office buildings where multiple stores and offices, etc., or buildings such as factories that require a temperature-controlled space in the production process. Is supplied with a heat medium such as cold water or hot water from a heat source device at a flow rate corresponding to the heat load of the room or zone that each air conditioner is responsible for, for cooling or heating.
FIG. 11 shows a conventional primary pump type air conditioning piping system 100 equipped with such an air conditioner. Here, a flow rate control method using a two-way valve (flow rate control valve) 105 is employed.

従来の一次ポンプ方式の空調配管システム100は、冷凍機又はボイラのような熱源機101と、熱源機101の入口側に位置して冷水又は温水等の熱媒体を搬送する一次ポンプ102と、熱源機101の出口側に接続されて熱媒体が送給される熱媒体往き主管路103と、熱媒体往き主管路103から分岐した複数の熱媒体往き管路104と、入口側が各熱媒体往き管路104に接続されて互いに並列配置される二方弁105及びAHU(エアハンドリングユニット)やファンコイルユニット等の冷水コイルや温水コイルと処理空気とを熱交換する空調機(以下、空調機という)106と、各空調機106の出口側に接続される熱媒体還り管路107と、各熱媒体還り管路107が合流するように接続されると共に、熱源機101の入口側に接続される熱媒体還り主管路108と、最も熱源機101側の空調機106よりも熱媒体流れ方向上流側において熱媒体往き主管路103に接続される往きヘッダ109と、最も熱源機101側の空調機106よりも熱媒体流れ方向下流側において熱媒体還り主管路108に接続される還りヘッダ110と、流量調整弁112を備えて往きヘッダ109と還りヘッダ110とを繋ぐバイパス管路111とを有する。   A conventional primary pump type air conditioning piping system 100 includes a heat source device 101 such as a refrigerator or a boiler, a primary pump 102 that is located on the inlet side of the heat source device 101 and conveys a heat medium such as cold water or hot water, and a heat source. The heat medium forward main pipe 103 connected to the outlet side of the machine 101 to which the heat medium is fed, a plurality of heat medium forward pipes 104 branched from the heat medium forward main pipe 103, and the inlet side of each heat medium forward pipe The two-way valve 105 connected to the passage 104 and arranged in parallel with each other, and an air conditioner (hereinafter referred to as an air conditioner) that exchanges heat between the chilled water coil such as an AHU (air handling unit) and a fan coil unit, hot water coil, and processing air. 106, the heat medium return pipe 107 connected to the outlet side of each air conditioner 106, and the heat medium return pipe 107 are connected so as to merge, and the inlet side of the heat source machine 101 The connected heat medium return main pipe 108, the forward header 109 connected to the heat medium forward main pipe 103 upstream of the air conditioner 106 on the most heat source apparatus 101 side in the heat medium flow direction, and the most heat source apparatus 101 side A return header 110 connected to the heat medium return main pipe 108 on the downstream side in the heat medium flow direction from the air conditioner 106, and a bypass pipe 111 provided with a flow rate adjusting valve 112 to connect the forward header 109 and the return header 110. Have.

本例では、熱媒体往き管路104と、二方弁105と、空調機106と、熱媒体還り管路107とで温度制御配管系が構成されている。
従来の一次ポンプ方式の空調配管システム100は、一次ポンプ102で、空調機106で温度変化後還ってきて熱源機101にて温調される一定温度の熱媒体を多層階に設けた各空調機106に持ち上げている。
一次ポンプ102は、各空調機106の負荷に対応するために、多量の熱媒体を送る必要がある。また、一次ポンプ102は、熱源機101の圧力損失と各配管、二方弁105及び空調機106の圧損とを受け持つ。
In this example, the heat control pipe line 104, the two-way valve 105, the air conditioner 106, and the heat medium return pipe 107 constitute a temperature control piping system.
The conventional primary pump type air conditioning piping system 100 is a primary pump 102, and each air conditioner is provided with a heat medium of a constant temperature which is returned after the temperature change by the air conditioner 106 and is temperature-controlled by the heat source device 101 on the multilayer floor. 106.
The primary pump 102 needs to send a large amount of heat medium to cope with the load of each air conditioner 106. Further, the primary pump 102 is responsible for the pressure loss of the heat source device 101 and the pressure loss of each pipe, the two-way valve 105 and the air conditioner 106.

各階では、空調機106の負荷変動に対応するため、二方弁105の開度を調節している。二方弁105が絞られると、絞られたことで余分になった熱媒体が熱媒体往き管路104、ひいては熱媒体往き主管路103を流れず、その余分な熱媒体は往きヘッダ109からバイパス管路111を介して還りヘッダ110へ流される。その際、一次ポンプ102は、たとえ変流量制御ができるようになっていても不具合なく負荷変動への対応ができるように、熱源機101の最小流量で熱媒体を送り続ける。そして、不要な熱媒体を往きヘッダ109からバイパス管路111を介して還りヘッダ110に逃がし、残りの熱媒体を熱源機101に搬送するよう運転される。   In each floor, the opening degree of the two-way valve 105 is adjusted in order to cope with the load fluctuation of the air conditioner 106. When the two-way valve 105 is throttled, the excess heat medium due to the restriction is not flown through the heat medium forward conduit 104 and, consequently, the heat medium forward main conduit 103, and the excess heat medium is bypassed from the forward header 109. It flows to the return header 110 via the pipe 111. At that time, the primary pump 102 continues to send the heat medium at the minimum flow rate of the heat source device 101 so that it can cope with load fluctuations without any trouble even if variable flow rate control can be performed. Then, an unnecessary heat medium is returned from the forward header 109 via the bypass conduit 111 to the header 110, and the remaining heat medium is transported to the heat source apparatus 101.

バイパス管路111で熱媒体の冷熱又は温熱を消費せず熱源機101に戻すのは、熱源機101が蒸発器での凍結や同凍結防止のための保護回路起動による負荷追従不能、さらに、吸収式冷凍機の場合凝縮器又は吸収器での吸収液結晶化等の不具合を起こさないようにするために最低確保すべき熱源機101の熱媒体流量が決まっており、その流量を確保するためである。
従来の一次ポンプ式の空調配管システム100では、例えば、建屋の高さ距離や熱源機101からの離れ距離を右方向に大きくなるよう示す、図13に示すように、最上階まで熱媒体を送れるように揚程を確保するため、大きな揚程を有する一次ポンプ102となり、事務所ビル等の各階が略同じ熱負荷を有し、各空調機106の受け持ち熱負荷が略同じことから各階の温度制御配管系の圧損が略同じとなったとしても、一次ポンプ102に近い低層階の温度制御配管系に、図13のように大揚程の搬送動力が付与されて必要以上の熱媒体が入るので、下層階側の二方弁105が絞り勝手になる。
従って、一次ポンプ102側の二方弁105は、抵抗を付けて流量を調整するため、100%負荷の場合でも絞りが必要となり、一次ポンプ102の動力の無駄が生じる。
The reason why the heat source unit 101 returns to the heat source unit 101 without consuming the cold or hot heat of the heat medium in the bypass line 111 is that the heat source unit 101 is not able to follow the load due to freezing in the evaporator or activation of a protection circuit for preventing the freezing, and absorption. In the case of a type refrigerator, the heat medium flow rate of the heat source device 101 that should be secured at least is determined so as not to cause problems such as crystallization of the absorption liquid in the condenser or absorber, and in order to secure the flow rate is there.
In the conventional primary pump type air-conditioning piping system 100, for example, the heat medium can be sent to the top floor as shown in FIG. 13 in which the height distance of the building and the distance from the heat source device 101 are increased in the right direction. In order to secure the lift, the primary pump 102 has a large lift, and each floor of an office building or the like has substantially the same thermal load, and the thermal load carried by each air conditioner 106 is substantially the same, so that the temperature control piping on each floor Even if the pressure loss of the system is substantially the same, the lower-floor temperature control piping system close to the primary pump 102 is provided with a large lift conveying power as shown in FIG. The two-way valve 105 on the floor side is freed up.
Therefore, since the two-way valve 105 on the primary pump 102 side adjusts the flow rate with resistance, it is necessary to restrict the flow even at 100% load, and the power of the primary pump 102 is wasted.

図12は、同様の空調機106を備えた従来の一次ポンプ二次ポンプ方式の空調配管システム200を示す。
従来の一次ポンプ二次ポンプ方式の空調配管システム200では、一次ポンプ102は、熱源機101の圧力損失を受け持ち、二次ポンプ201は負荷側の圧力損失を受け持つように、2つの往きヘッダ109a、109b間に二次ポンプ201と圧力調節弁202とが配置されている。
その他の構成は、従来の一次ポンプ方式の空調配管システム100と同じである。
FIG. 12 shows a conventional primary pump / secondary pump type air conditioning piping system 200 equipped with a similar air conditioner 106.
In the conventional primary pump secondary pump type air conditioning piping system 200, the primary pump 102 is responsible for the pressure loss of the heat source unit 101, and the secondary pump 201 is responsible for the load side pressure loss. A secondary pump 201 and a pressure control valve 202 are disposed between 109b.
Other configurations are the same as those of the conventional primary pump type air conditioning piping system 100.

従来の一次ポンプ二次ポンプ方式の空調配管システム200でも、例えば、図14に示すように、最上階まで熱媒体を送れるように揚程を確保するため、大きな揚程を有する二次ポンプ201となり、事務所ビル等の各階が略同じ熱負荷を有し、各空調機106の受け持ち熱負荷が略同じことから各階の温度制御配管系の圧損が略同じとなったとしても、二次ポンプ201に近い低層階の温度制御配管系に、図14のように大揚程の搬送動力が付与されて必要以上の熱媒体が入るので、下層階側の二方弁105が絞り勝手になる。
従って、二次ポンプ201側の二方弁105は、抵抗を付けて流量を調整するため、100%負荷の場合でも絞りが必要となり、二次ポンプ201の動力の無駄が生じる。
In the conventional primary pump secondary pump type air conditioning piping system 200, for example, as shown in FIG. 14, in order to secure the head so that the heat medium can be sent to the top floor, the secondary pump 201 having a large head is obtained. Each floor of a building has substantially the same heat load, and the thermal load carried by each air conditioner 106 is substantially the same, so even if the pressure loss of the temperature control piping system on each floor is substantially the same, it is close to the secondary pump 201 As shown in FIG. 14, the lower-floor temperature control piping system is provided with a large lift conveying power and more heat medium than necessary, so that the two-way valve 105 on the lower floor side is throttled.
Therefore, since the two-way valve 105 on the secondary pump 201 side is attached with a resistance to adjust the flow rate, throttling is required even in the case of 100% load, and the power of the secondary pump 201 is wasted.

そこで、熱源機から熱媒体往き管路を介して導かれる熱媒体の流量を、各空調機毎に空調負荷を室内温度測定値と設定値との偏差に応じて制御して二方弁105の代替となし、省電力化を図ることができるように、各空調機にそれぞれインバータ付きポンプを設置することが提案されている(例えば、特許文献1参照)。
また、各空調機毎にそれぞれインバータ付きポンプを設置すると共に、各熱媒体往き管路側に逆止弁(逆流防止手段)を設置することが提案されている(例えば、特許文献2参照)。
Therefore, the flow rate of the heat medium guided from the heat source device through the heat medium forward pipe line is controlled for each air conditioner according to the deviation between the indoor temperature measurement value and the set value for each air conditioner. It has been proposed to install an inverter-equipped pump in each air conditioner so that power saving can be achieved (for example, see Patent Document 1).
In addition, it has been proposed to install a pump with an inverter for each air conditioner and to install a check valve (back flow preventing means) on each heat medium forward pipe side (see, for example, Patent Document 2).

特許第3490986号公報Japanese Patent No. 3490986 特許第3708660号公報Japanese Patent No. 3708660

しかし、特許文献1の空気調和施設における搬送動力削減システムでは、各空調機毎のインバータ付きポンプしか熱媒体搬送手段を有さないため、冷凍機の冷水量を可変とするにあたり、冷凍機最小流量確保のため通常100〜50%程度までが可変可能量であるのに対し、各インバータ付きポンプが二次側の空調負荷に応じて流量を絞るため、空調負荷が少ない季節では冷凍機最小流量が確保できないという問題がある。
また、複数の供給管路のうち一系統のみでインバータ付きポンプが停止した際、他の供給管路の動作しているインバータ付きポンプの搬送力により、熱媒体が停止中のインバータ付きポンプや空調機に逆流してしまうという問題がある。
また、特許文献2の液体配管設備では、図12に示すように、一次ポンプ二次ポンプ方式として二次ポンプを設けると、二次ポンプ付近の空調機の温度制御配管系のみが停止した場合、二次ポンプの搬送力により、順方向へ熱媒体が送給されるので逆止弁では止めようがなく、二次ポンプの搬送力によりその停止した温度制御配管系を熱媒体がスルーしてしまい、つまりその分の二次ポンプ搬送動力の無駄が生じてしまう。
However, in the conveyance power reduction system in the air conditioning facility of Patent Document 1, since only the inverter-equipped pump for each air conditioner has the heat medium conveying means, the minimum flow rate of the refrigerator when the amount of cold water in the refrigerator is variable. In order to ensure it, the variable amount is usually about 100 to 50%, but each inverter pump throttles the flow according to the air conditioning load on the secondary side. There is a problem that it cannot be secured.
Also, when a pump with an inverter is stopped in only one system among a plurality of supply pipes, the pump with an inverter and the air conditioner where the heat medium is stopped by the conveying force of the pump with an inverter operating in another supply pipe There is a problem of backflowing into the machine.
Further, in the liquid piping facility of Patent Document 2, as shown in FIG. 12, when the secondary pump is provided as the primary pump secondary pump system, when only the temperature control piping system of the air conditioner near the secondary pump is stopped, Since the heat medium is fed in the forward direction by the transport force of the secondary pump, it cannot be stopped by the check valve, and the heat medium passes through the stopped temperature control piping system by the transport force of the secondary pump. That is, the amount of secondary pump conveyance power corresponding to that amount is wasted.

本発明は斯かる従来の問題点を解決するために為されたもので、その目的は、一次側熱媒ポンプと空調機との距離に関係なく負荷に応じて必要流量を確保することが可能な空調配管システムを提供することにある。   The present invention has been made to solve such a conventional problem, and its purpose is to ensure a necessary flow rate according to the load regardless of the distance between the primary heat medium pump and the air conditioner. Is to provide a simple air conditioning piping system.

請求項に係る発明は、入口側から出口側に向かって、熱媒体往き管路に三方弁、インバータ付き分散ポンプ、温度計及び空調機を備え、前記空調機の出口側に熱媒体還り管路を備えると共に、前記三方弁と前記熱媒体還り管路とを繋ぐバイパス管を備えて、複数のゾーンをそれぞれ独立して前記空調機により熱媒体と空気とを熱交換して空調するための複数の温度制御配管系と、前記複数の温度制御配管系に温度調整した熱媒体をインバータ付き分散ポンプの搬送力により供給する熱源装置と、前記熱源装置の出口側に繋がると共に前記複数の温度制御配管系の入口側に繋がる熱媒体往き主管路と、前記熱源装置の入口側に繋がると共に前記複数の温度制御配管系の出口側に繋がる熱媒体還り主管路と、前記複数の温度制御配管系の往き側に前記熱媒体往き主管路を介して途中で繋がる往きヘッダと、前記複数の温度制御配管系の還り側に前記熱媒体還り主管路を介して途中で繋がる還りヘッダと、前記往きヘッダと前記還りヘッダとを繋ぐ、前記熱源装置の最小流量を確保するためのインバータ付き流量補償用ポンプを備えた一次バイパス管と、前記各温度計からの前記熱媒体の温度を入力し、最低温度又は最高温度を選択するセレクタ及びセレクタ出力信号を基に演算し前記熱源装置の熱媒体設定温度を決定する信号を発する温度指示調節計を有し、かつ前記インバータ付き流量補償用ポンプの回転制御を行う一次側制御装置と、前記ゾーンの負荷に応じて前記インバータ付き分散ポンプの回転制御、前記三方弁の切換制御を行う二次側制御装置とを備え、前記二次側制御装置は、前記空調機の定格運転時には、前記バイパス管を閉じ勝手となるように前記三方弁を制御すると共に、前記インバータ付き分散ポンプを稼働させ、前記空調機の部分負荷運転時には、前記ゾーンの負荷に応じて前記インバータ付き分散ポンプの流量を制御し、前記空調機の停止時には、前記インバータ付き分散ポンプを停止して、前記三方弁の前記熱媒体往き主管路側を閉とするように制御し、前記熱媒体往き主管路からの前記熱媒体の流入を止めると共に前記バイパス管を開くように前記三方弁を制御し、かつ前記一次側制御装置は、前記複数の温度制御配管系の一定数が前記インバータ付き分散ポンプを停止した状態では、前記インバータ付き流量補償用ポンプを駆動させて前記熱源装置の最小流量を確保し、前記複数の温度制御配管系の全てが前記三方弁の熱媒体往き管路上流側と接続される弁体を絞られている状態では、前記熱源装置の出口熱媒体設定温度を、前記複数の温度制御配管系の前記温度計計測値からセレクタが選択した前記最低温度又は前記最高温度を元に、可変制御を行うことを特徴とする。 The invention according to claim 1 is provided with a three-way valve, a dispersion pump with an inverter, a thermometer, and an air conditioner in the heat medium forward line from the inlet side to the outlet side, and the heat medium return pipe on the outlet side of the air conditioner And a bypass pipe connecting the three-way valve and the heat medium return pipe, and independently air-conditioning the plurality of zones by exchanging heat between the heat medium and air independently by the air conditioner. A plurality of temperature control piping systems, a heat source device for supplying a heat medium adjusted in temperature to the plurality of temperature control piping systems by a conveying force of a dispersion pump with an inverter, and connected to an outlet side of the heat source device and the plurality of temperature controls A heat medium forward main pipe connected to the inlet side of the piping system, a heat medium return main pipe connected to the inlet side of the heat source device and connected to the outlet side of the plurality of temperature control piping systems, and the plurality of temperature control piping systems Outward side A forward header connected midway through the heat medium return main pipeline, a return header linked midway through the heat medium return main pipeline to the return side of the plurality of temperature control piping systems, the forward header and the return header A primary bypass pipe having a flow compensation pump with an inverter for securing a minimum flow rate of the heat source device, and a temperature of the heat medium from each thermometer, and a minimum temperature or a maximum temperature is set. A primary side control that has a temperature indicating controller that calculates based on a selector to be selected and a selector output signal and issues a signal for determining a heat medium set temperature of the heat source device, and that controls the rotation of the flow compensation pump with an inverter A secondary-side control device that performs rotation control of the inverter-equipped distributed pump and switching control of the three-way valve according to the load of the zone, During the rated operation of the air conditioner, the three-way valve is controlled so that the bypass pipe is closed, and the distributed pump with the inverter is operated, and during the partial load operation of the air conditioner, the load of the zone According to the control of the flow rate of the dispersion pump with the inverter, at the time of stopping the air conditioner, the dispersion pump with the inverter is stopped, and the three-way valve is controlled so as to close the heat medium forward main line side, The three-way valve is controlled so as to stop the inflow of the heat medium from the main flow path of the heat medium and open the bypass pipe, and the primary side control device has a constant number of the plurality of temperature control piping systems as described above. When the dispersion pump with the inverter is stopped, the flow compensation pump with the inverter is driven to ensure the minimum flow rate of the heat source device, and the plurality of temperature control distributions. In a state in which all of the pipe system is throttled the valve body connected to the upstream side of the heat medium going pipe of the three-way valve, the outlet heat medium set temperature of the heat source device is set to the temperature control piping system. Variable control is performed based on the lowest temperature or the highest temperature selected by a selector from thermometer measurement values.

請求項に係る発明は、請求項に記載の空調配管システムにおいて、前記一次側制御装置は、前記複数の温度制御配管系の一定数が前記インバータ付き分散ポンプを停止した状態を、前記熱媒体還り主管路に設けた流量計の計測値に基づいて判断し、前記インバータ付き流量補償用ポンプの駆動及び回転数を制御することを特徴とする。 The invention according to claim 2, in the air conditioning piping system according to claim 1, wherein the primary controller is a state in which a certain number of said plurality of temperature control piping system stops dispersing pump with the inverter, the heat Judgment is made based on the measured value of a flow meter provided in the medium return main pipeline, and the drive and rotation speed of the inverter-equipped flow compensation pump are controlled.

請求項に係る発明は、入口側から出口側に向かって、熱媒体往き管路に三方弁、インバータ付き分散ポンプ、温度計及び空調機を備え、前記空調機の出口側に熱媒体還り管路を備えると共に、前記三方弁と前記熱媒体還り管路とを繋ぐバイパス管を備えて、複数のゾーンをそれぞれ独立して前記空調機により熱媒体と空気とを熱交換して空調するための複数の温度制御配管系と、前記複数の温度制御配管系に供給される前記熱媒体を温度調整する熱源装置と、前記熱源装置の出口側に繋がると共に前記複数の温度制御配管系の入口側に繋がる熱媒体往き主管路と、前記熱源装置の入口側に繋がると共に前記複数の温度制御配管系の出口側に繋がる熱媒体還り主管路と、前記複数の温度制御配管系の往き側に前記熱媒体往き主管路を介して途中で繋がる往きヘッダと、前記複数の温度制御配管系の還り側に前記熱媒体還り主管路を介して途中で繋がる還りヘッダと、前記往きヘッダと前記還りヘッダとをヘッダ間流量調整弁を介して繋ぐヘッダ間バイパス管と、前記熱媒体還り主管路の前記熱源装置の近傍に位置し、前記熱源装置から前記往きヘッダまでの熱媒体往き主管路、前記還りヘッダまでの熱媒体還り主管路、及び前記熱源装置の熱媒体搬送圧力損失分の揚程を有して前記熱媒体を搬送すると共に、前記熱源装置の最小流量を確保するためのインバータ付き一次ポンプと、前記各温度計からの前記熱媒体の温度を入力し、最低温度又は最高温度を選択するセレクタ及びセレクタ出力信号を基に演算し前記熱源装置の熱媒体設定温度を決定する信号を発する温度指示調節計を有し、かつ前記インバータ付き一次ポンプの回転制御を行う一次側制御装置と、前記ゾーンの負荷に応じて前記インバータ付き分散ポンプの回転制御、前記三方弁の切換制御を行う二次側制御装置とを備え、前記二次側制御装置は、前記空調機の定格運転時には、前記バイパス管を閉じ勝手となるように前記三方弁を制御すると共に、前記インバータ付き分散ポンプを稼働させ、前記空調機の部分負荷運転時には、前記ゾーンの負荷に応じて前記インバータ付き分散ポンプの流量を制御し、前記空調機の停止時には、前記インバータ付き分散ポンプを停止して、前記三方弁の前記熱媒体往き主管路側を閉とするように制御し、前記熱媒体往き主管路からの前記熱媒体の流入を止めると共に前記バイパス管を開くように前記三方弁を制御し、かつ前記一次側制御装置は、前記複数の温度制御配管系の一定数が前記インバータ付き分散ポンプを停止した状態では、前記インバータ付き一次ポンプの流量を調整しつつ前記ヘッダ間流量調整弁の開度を制御して前記熱源装置の最小流量を確保し、前記複数の温度制御配管系の全てが前記三方弁の熱媒体往き管路上流側と接続される弁体を絞られている状態では、前記熱源装置の出口熱媒体設定温度を、前記複数の温度制御配管系の前記温度計計測値からセレクタが選択した前記最低温度又は前記最高温度を元に、可変制御を行うことを特徴とする。 The invention according to claim 3 is provided with a three-way valve, a dispersion pump with an inverter, a thermometer, and an air conditioner in the heat medium forward line from the inlet side to the outlet side, and the heat medium return pipe on the outlet side of the air conditioner And a bypass pipe connecting the three-way valve and the heat medium return pipe, and independently air-conditioning the plurality of zones by exchanging heat between the heat medium and air independently by the air conditioner. A plurality of temperature control piping systems, a heat source device for adjusting the temperature of the heat medium supplied to the plurality of temperature control piping systems, and connected to an outlet side of the heat source device and on an inlet side of the plurality of temperature control piping systems A connecting heat medium forward main line, a heat medium return main line connected to an inlet side of the heat source device and connected to an outlet side of the plurality of temperature control piping systems, and the heat medium on the outgoing side of the plurality of temperature control piping systems Via the outgoing main line The return header connected in the middle via the heat medium return main line to the return side of the plurality of temperature control piping systems, the forward header and the return header via the inter-header flow control valve A bypass pipe between headers to be connected, and the heat source return main pipe in the vicinity of the heat source device, a heat medium return main pipe from the heat source device to the forward header, a heat medium return main pipe to the return header, and A primary pump with an inverter for transporting the heat medium having a head corresponding to the heat medium transport pressure loss of the heat source device and ensuring a minimum flow rate of the heat source device, and the heat medium from each thermometer A temperature indicating controller for inputting a temperature of the heat source, calculating a minimum temperature or a maximum temperature and calculating a heat medium set temperature of the heat source device by calculating based on a selector output signal and a selector output signal And a primary-side control device that performs rotation control of the primary pump with inverter, and a secondary-side control device that performs rotation control of the distributed pump with inverter and switching control of the three-way valve according to the load of the zone. The secondary-side control device controls the three-way valve so that the bypass pipe is closed during the rated operation of the air conditioner, and operates the distributed pump with an inverter. During load operation, the flow rate of the dispersion pump with inverter is controlled according to the load of the zone, and when the air conditioner is stopped, the dispersion pump with inverter is stopped, and the heat medium going main line side of the three-way valve is Controlling the three-way valve to stop the inflow of the heat medium from the heat medium outgoing main pipe line and to open the bypass pipe; and The primary side control device adjusts the flow rate of the primary pump with inverter while adjusting the flow rate of the primary pump with inverter while a certain number of the temperature control piping systems stop the distributed pump with inverter. In a state in which the minimum flow rate of the heat source device is controlled to ensure that all of the plurality of temperature control piping systems have throttled the valve body connected to the upstream side of the heat medium outlet line of the three-way valve, the heat source The outlet heat medium set temperature of the apparatus is variably controlled based on the minimum temperature or the maximum temperature selected by the selector from the thermometer measurement values of the plurality of temperature control piping systems.

請求項に係る発明は、入口側から出口側に向かって、熱媒体往き管路に三方弁、インバータ付き分散ポンプ、温度計及び空調機を備え、前記空調機の出口側に熱媒体還り管路を備えると共に、前記三方弁と前記熱媒体還り管路とを繋ぐバイパス管を備えて、複数のゾーンをそれぞれ独立して前記空調機により熱媒体と空気とを熱交換して空調するための複数の温度制御配管系と、前記複数の温度制御配管系に供給される前記熱媒体を温度調整する熱源装置と、前記熱源装置の出口側に繋がると共に前記複数の温度制御配管系の入口側に繋がる熱媒体往き主管路と、前記熱源装置の入口側に繋がると共に前記複数の温度制御配管系の出口側に繋がる熱媒体還り主管路と、前記複数の温度制御配管系の往き側に前記熱媒体往き主管路を介して途中で繋がる往きヘッダと、前記複数の温度制御配管系の還り側に前記熱媒体還り主管路を介して途中で繋がる還りヘッダと、前記複数の温度制御配管系へ前記熱媒体を搬送するための、前記往きヘッダ以降の前記熱媒体往き主管路、及び前記還りヘッダまでの前記熱媒体還り主管路の熱媒体搬送圧力損失分の揚程を有する前記熱媒体往き主管の往きヘッダ後流に位置するインバータ付き二次ポンプと、前記往きヘッダと前記還りヘッダとをヘッダ間流量調整弁を介して繋ぐヘッダ間バイパス管と、前記熱媒体還り主管路の前記熱源装置の近傍に位置し、前記熱源装置から前記往きヘッダまでの熱媒体往き主管路、前記還りヘッダまでの熱媒体還り主管路、及び前記熱源装置の熱媒体搬送圧力損失分の揚程を有して前記熱媒体を搬送すると共に、前記熱源装置の最小流量を確保するためのインバータ付き一次ポンプと、前記各温度計からの前記熱媒体の温度を入力し、最低温度又は最高温度を選択するセレクタ及びセレクタ出力信号を基に演算し前記熱源装置の熱媒体設定温度を決定する信号を発する温度指示調節計を有し、かつ前記インバータ付き一次ポンプの回転制御を行う一次側制御装置と、前記ゾーンの負荷に応じて前記インバータ付き分散ポンプの回転制御、前記三方弁の切換制御を行う二次側制御装置とを備え、前記二次側制御装置は、前記空調機の定格運転時には、前記バイパス管を閉じ勝手となるように前記三方弁を制御すると共に、前記インバータ付き分散ポンプを稼働させ、前記空調機の部分負荷運転時には、前記ゾーンの負荷に応じて前記インバータ付き分散ポンプの流量を制御し、前記空調機の停止時には、前記インバータ付き分散ポンプを停止して、前記三方弁の前記熱媒体往き主管路側を閉とするように制御し、前記熱媒体往き主管路からの前記熱媒体の流入を止めると共に前記バイパス管を開くように前記三方弁を制御し、かつ前記一次側制御装置は、前記複数の温度制御配管系の一定数が前記インバータ付き分散ポンプを停止した状態では、前記インバータ付き一次ポンプの流量を調整しつつ前記ヘッダ間流量調整弁の開度を制御して前記熱源装置の最小流量を確保し、前記複数の温度制御配管系の全てが前記三方弁の熱媒体往き管路上流側と接続される弁体を絞られている状態では、前記熱源装置の出口熱媒体設定温度を、前記複数の温度制御配管系の前記温度計計測値からセレクタが選択した前記最低温度又は前記最高温度を元に、可変制御を行うことを特徴とする。
The invention according to claim 4 is provided with a three-way valve, a dispersion pump with an inverter, a thermometer, and an air conditioner in the heat medium forward line from the inlet side to the outlet side, and the heat medium return pipe on the outlet side of the air conditioner And a bypass pipe connecting the three-way valve and the heat medium return pipe, and independently air-conditioning the plurality of zones by exchanging heat between the heat medium and air independently by the air conditioner. A plurality of temperature control piping systems, a heat source device for adjusting the temperature of the heat medium supplied to the plurality of temperature control piping systems, and connected to an outlet side of the heat source device and on an inlet side of the plurality of temperature control piping systems A connecting heat medium forward main line, a heat medium return main line connected to an inlet side of the heat source device and connected to an outlet side of the plurality of temperature control piping systems, and the heat medium on the outgoing side of the plurality of temperature control piping systems Via the outgoing main line In order to convey the heat medium to the plurality of temperature control piping systems, the forward header connected in the middle, the return header connected in the middle via the heat medium return main pipeline to the return side of the plurality of temperature control piping systems, With an inverter located in the downstream of the forward header of the heat medium forward main pipe having a head for the heat medium transport pressure loss of the heat medium return main pipe to the return header and the heat medium forward main pipe after the forward header A secondary pump, an inter-header bypass pipe that connects the forward header and the return header via a flow rate adjusting valve between headers, and the heat source return main pipe are located in the vicinity of the heat source apparatus, and from the heat source apparatus A heat medium forward main pipe to the forward header, a heat medium return main pipe to the return header, and a head for a heat medium transport pressure loss of the heat source device, and transporting the heat medium The primary pump with an inverter for ensuring the minimum flow rate of the heat source device and the temperature of the heat medium from each thermometer are input, and the calculation is performed based on the selector that selects the lowest temperature or the highest temperature and the selector output signal. A primary-side control device having a temperature indicating controller for generating a signal for determining a heat medium set temperature of the heat source device and performing rotation control of the primary pump with the inverter, and the dispersion with the inverter according to the load of the zone A secondary-side control device that controls the rotation of the pump and the switching control of the three-way valve, and the secondary-side control device closes the bypass pipe during the rated operation of the air conditioner. And controlling the valve and operating the dispersion pump with the inverter. During the partial load operation of the air conditioner, the dispersion pump with the inverter according to the load of the zone. The flow rate of the pump is controlled, and when the air conditioner is stopped, the dispersion pump with the inverter is stopped, and the heat medium going main line side of the three-way valve is closed and controlled from the heat medium going main line The three-way valve is controlled so as to stop the inflow of the heat medium and open the bypass pipe, and the primary control device has a certain number of the temperature control piping systems stopped the dispersion pump with inverter In the state, while adjusting the flow rate of the primary pump with the inverter, the opening of the flow rate adjusting valve between the headers is controlled to ensure the minimum flow rate of the heat source device, and all of the plurality of temperature control piping systems are the three-way valve In the state where the valve body connected to the upstream side of the heat medium outlet pipe is narrowed, the selector selects the outlet heat medium set temperature of the heat source device from the thermometer measurement values of the plurality of temperature control piping systems. Based on the minimum temperature or the maximum temperature was, and performs variable control.

本発明によれば、インバータ付き分散ポンプによる全揚程受持ち方式とした場合には、インバータ付き流量補償用ポンプは、往きヘッダ・還りヘッダ及び熱源装置間の一次側だけの揚程で最小流量を確保できることから、空調機側のゾーン負荷に応じて必要流量の熱媒体をインバータ付き分散ポンプで供給できるため、インバータ付き分散ポンプ動力の省エネが可能となる。   According to the present invention, in the case of using the total head handling system with a distributed pump with an inverter, the flow compensation pump with an inverter can ensure a minimum flow rate with a head only on the primary side between the forward header / return header and the heat source device. Therefore, since a heat medium having a required flow rate can be supplied by the distributed pump with an inverter according to the zone load on the air conditioner side, the energy of the distributed pump power with the inverter can be saved.

本発明によれば、分散ポンプ系それぞれに、三方弁とバイパス管とで構成するバイパスを設けているので、ゾーン負荷から演算された熱媒体流量が、インバータ付き分散ポンプのインバータの最小周波数から規定される焼損防止最小流量以下の流量となる場合は、インバータ付き分散ポンプ流量を焼損防止最小流量一定にし、かつ余分な流量をバイパス循環で戻して熱量を減少させて、熱媒体の必要熱量のみを確保する、三方弁によるブリードイン式の負荷対応ができる。
そして、インバータ付き分散ポンプが温度制御配管系のみの揚程を受持つ場合、分散ポンプ系での流量を所定の焼損防止最小流量以上を確保することや、その調整機構が三方弁であることから、インバータ付き一次ポンプやインバータ付き二次ポンプの揚程によらず、これら主管路に備わるポンプの揚程に起因する熱媒体の温度制御配管系への押し込みスルーを排除可能なため、インバータ付き一次ポンプやインバータ付き二次ポンプの動力の無駄を無くすことができる。
According to the present invention, each dispersion pump system is provided with a bypass composed of a three-way valve and a bypass pipe, so that the heat medium flow calculated from the zone load is defined from the minimum frequency of the inverter of the dispersion pump with the inverter. If the flow rate is less than the minimum flow rate to prevent burnout, the flow rate of the dispersion pump with inverter is kept constant at the minimum flow rate to prevent burnout, and the excess flow rate is returned by bypass circulation to reduce the amount of heat, and only the required heat amount of the heat medium is reduced. A bleed-in type load with a three-way valve can be secured.
And when the dispersion pump with an inverter takes the head of only the temperature control piping system, the flow rate in the dispersion pump system is ensured to be equal to or greater than the predetermined minimum burnout prevention flow rate, and the adjustment mechanism is a three-way valve. Because it is possible to eliminate the push-through of the heat medium into the temperature control piping system caused by the head of the pump provided in these main pipes regardless of the head of the primary pump with inverter or the secondary pump with inverter, the primary pump or inverter with inverter The waste of power of the attached secondary pump can be eliminated.

本発明によれば、各分散ポンプ系で熱媒体温度を計測し、三方弁とバイパス管とで構成するバイパスと熱媒体往き主管路との熱媒体混合による負荷への往き温度が冷房時最低値を上回った際、又は暖房時最高値を下回った際には、中央の冷凍機等の熱源装置出口熱媒体温度設定値を可変とする制御を行うようにしたので、冷凍機のCOP向上が期待できる。   According to the present invention, the heat medium temperature is measured in each dispersion pump system, and the temperature going to the load due to the heat medium mixing between the bypass and the heat medium going main pipe constituted by the three-way valve and the bypass pipe is the lowest value during cooling. When the temperature exceeds the maximum value during heating or below the maximum value during heating, control is performed to change the heat source device outlet heat medium temperature setting value of the central refrigerator, etc., so that the COP of the refrigerator is expected to improve. it can.

本発明の第一実施形態に係る空調配管システムを示す概略図である。It is the schematic which shows the air-conditioning piping system which concerns on 1st embodiment of this invention. 図1における三方弁の比例制御及び切替を示す説明図である。It is explanatory drawing which shows the proportional control and switching of the three-way valve in FIG. 図1における熱負荷の制御出力と、ポンプ回転数又は熱媒体の空調機入口温度との関係を示す図である。It is a figure which shows the relationship between the control output of the thermal load in FIG. 1, and the pump rotation speed or the air-conditioner inlet temperature of a heat medium. 図1における温度制御配管系の空調ゾーン側の二次側制御装置を示す概略図である。It is the schematic which shows the secondary side control apparatus by the side of the air-conditioning zone of the temperature control piping system in FIG. 図1における温度制御配管系における最低温度又は最高温度を求める構成を示す図である。It is a figure which shows the structure which calculates | requires the minimum temperature or the maximum temperature in the temperature control piping system in FIG. 図1における温度制御配管系における最低温度又は最高温度を求めるフロー図である。It is a flowchart which calculates | requires the minimum temperature or the maximum temperature in the temperature control piping system in FIG. 図1における冷凍機回りの流量と、温度制御配管系におけるインバータ付き分散ポンプ側流量、及びインバータ付き流量補償用ポンプの流量との関係を示す図である。It is a figure which shows the relationship between the flow volume around the refrigerator in FIG. 1, the flow volume of the distributed pump side with an inverter in a temperature control piping system, and the flow volume of the flow compensation pump with an inverter. 図1における空調配管システムにおけるインバータ付きポンプと空調機との関係を示す概略図である。It is the schematic which shows the relationship between the pump with an inverter and air conditioner in the air-conditioning piping system in FIG. 本発明の第二実施形態に係る空調配管システムを示す概略図である。It is the schematic which shows the air-conditioning piping system which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係る空調配管システムを示す概略図である。It is the schematic which shows the air-conditioning piping system which concerns on 3rd embodiment of this invention. 従来の空調配管システムを示す概略図である。It is the schematic which shows the conventional air conditioning piping system. 従来の別の空調配管システムを示す概略図である。It is the schematic which shows another conventional air conditioning piping system. 図11に示す空調配管システムにおけるポンプの揚程及び圧力損失と、熱源装置からの距離との関係を示す概略図である。It is the schematic which shows the relationship between the pump head and pressure loss in the air-conditioning piping system shown in FIG. 11, and the distance from a heat-source apparatus. 図12に示す空調配管システムにおけるポンプの揚程及び圧力損失と、熱源装置からの距離との関係を示す概略図である。”It is the schematic which shows the relationship between the head and pressure loss of a pump in the air-conditioning piping system shown in FIG. 12, and the distance from a heat-source apparatus. ”

以下、本発明を図面に示す実施形態に基づいて説明する。
(第一実施形態)
図1は、本発明の第一実施形態に係る空調配管システム1を示す。
本空調配管システム1は、インバータ付き分散ポンプによる熱媒体全揚程受持ち方式であって、冷凍機又はボイラのような2つの熱源機11と、2つの熱源機11の出口側にそれぞれ接続される流量調整弁12と、流量調整弁12の出口側に接続される往きヘッダ13と、2つの熱源機11の入口側に接続される還りヘッダ14と、往きヘッダ13と還りヘッダ14との間に配置されるインバータ付き流量補償用ポンプ15を有する一次バイパス管15aとを備えている。
インバータ付き流量補償用ポンプ15は、2つの熱源機11の最小流量を確保するために設置されている。2つの熱源機11と流量調整弁12とは、冷凍機台数制御コントローラ40に接続されている。冷凍機台数コントローラ40は、複数の冷凍機を、後述する主管路温度計38,39及び流量計37の計測値から演算される熱量により自動台数制御運転を行うために用いられる。
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
(First embodiment)
FIG. 1 shows an air conditioning piping system 1 according to a first embodiment of the present invention.
This air-conditioning piping system 1 is a heat medium total head handling system using a distributed pump with an inverter, and is connected to two heat source devices 11 such as a refrigerator or a boiler and to the outlet sides of the two heat source devices 11, respectively. The regulating valve 12, the forward header 13 connected to the outlet side of the flow rate regulating valve 12, the return header 14 connected to the inlet side of the two heat source units 11, and the forward header 13 and the return header 14 are arranged. And a primary bypass pipe 15a having a flow compensation pump 15 with an inverter.
The flow rate compensation pump 15 with an inverter is installed to ensure the minimum flow rate of the two heat source units 11. The two heat source devices 11 and the flow rate adjusting valve 12 are connected to the refrigerator number control controller 40. The refrigerator number controller 40 is used to perform an automatic number control operation of a plurality of refrigerators by the amount of heat calculated from measured values of main pipe thermometers 38 and 39 and a flow meter 37 described later.

往きヘッダ13には、2つの熱源機11から後述する複数の温度制御配管系20に熱媒体を送給する熱媒体往き主管路16が接続されている。熱媒体往き主管路16の往きヘッダ13出口近傍には、主管路温度計38が設けられている。
還りヘッダ14には、後述する複数の温度制御配管系20からの熱媒体を移送する熱媒体還り主管路17が接続されている。熱媒体還り主管路17には、還りヘッダ14の入口近傍に流量計37が設けられている。流量計37は、流量調節器35を備えたインバータ付き流量補償用ポンプ制御回路36、及び主管路温度計38,39の計測信号をも取り込む熱量計40に接続されている。インバータ付き流量補償用ポンプ制御回路36は、インバータ付き流量補償用ポンプ15のインバータに接続されている。熱媒体還り主管路17の還りヘッダ入口近傍には、主管路温度計39が設けられている。
The forward header 13 is connected to a heat medium forward main pipe 16 that feeds the heat medium from the two heat source units 11 to a plurality of temperature control piping systems 20 described later. A main pipe thermometer 38 is provided in the vicinity of the outlet of the outgoing header 13 of the heat medium outgoing main pipe line 16.
The return header 14 is connected to a heat medium return main pipe 17 for transferring a heat medium from a plurality of temperature control piping systems 20 described later. A flow meter 37 is provided in the vicinity of the inlet of the return header 14 in the heat medium return main pipeline 17. The flow meter 37 is connected to a flow rate compensation pump control circuit 36 with an inverter provided with a flow rate regulator 35 and a calorimeter 40 that also captures measurement signals of main pipe thermometers 38 and 39. The flow compensation pump control circuit 36 with an inverter is connected to the inverter of the flow compensation pump 15 with an inverter. A main pipe thermometer 39 is provided in the vicinity of the return header inlet of the heat medium return main pipe line 17.

各温度制御配管系20は、入口側から出口側に向かって、熱媒体往き管路18に三方弁21、インバータ付き分散ポンプ22、温度計23及び空調機24を備えると共に、空調機24の出口側に熱媒体還り管路19を備える温度制御配管系主管20aと、三方弁21と熱媒体還り管路19とを繋ぐバイパス管25とを備えている。
そして、各温度制御配管系20は、本空調配管システム1が設置される建物に対して、熱媒体往き主管路16と熱媒体還り主管路17との間に互いに並列配置されている。
各三方弁21の入口側は、熱媒体往き主管路16から分岐した複数の熱媒体往き管路18にそれぞれ接続されている。各バイパス管25は、熱媒体還り主管路17にそれぞれ接続される熱媒体還り管路19にそれぞれ接続されている。
Each temperature control piping system 20 includes a three-way valve 21, an inverter-equipped dispersion pump 22, a thermometer 23, and an air conditioner 24 in the heat medium forward duct 18 from the inlet side toward the outlet side, and the outlet of the air conditioner 24. A temperature control piping system main pipe 20 a provided with a heat medium return pipe 19 on the side, and a bypass pipe 25 connecting the three-way valve 21 and the heat medium return pipe 19 are provided.
And each temperature control piping system 20 is mutually arrange | positioned in parallel with respect to the building in which this air-conditioning piping system 1 is installed between the heat-medium going main pipeline 16 and the heat-medium return main pipeline 17.
The inlet side of each three-way valve 21 is connected to a plurality of heat medium outgoing pipes 18 branched from the heat medium outgoing main pipe 16. Each bypass pipe 25 is connected to a heat medium return pipe 19 connected to the heat medium return main pipe 17, respectively.

各三方弁21は、例えば、図2(a)に示すように、弁21a、21bを開き、弁21cを閉じた状態で、熱媒体往き管路18から供給される熱媒体を各温度制御配管系主管20aに流下させる熱媒体流入パターンと、図2(b)に示すように、弁21aを絞り、弁21b、21cを開いた状態で、バイパス管25からの熱媒体と混合して各温度制御配管系主管20aを流下させてインバータ付き分散ポンプ22、温度計23及び空調機24を流す熱媒体混合パターンと、図2(c)に示すように、インバータ付き分散ポンプ22が停止する際に、弁21aを閉止し、弁21b、21cを開いた状態にする熱媒体停止パターンと、に切り替えられる。
図2(a)に示す熱媒体流入パターンでは、空調機24側のゾーン負荷に応じて、定格に近い負荷ではインバータ付き分散ポンプ22を100%の回転数で回転させる定格運転と、空調機24側のゾーン負荷の低減に伴い、インバータ付き分散ポンプ22に供給される商用電源の周波数を、例えば、50Hzから15Hz程度まで低下して、インバータ付き分散ポンプ22の回転数を低下させる負荷に応じた部分負荷運転と、さらにゾーン負荷の低減が進んで、電源周波数が下限、例えば、15Hz程度に低下して、インバータ付き分散ポンプ22のモータの回転トルクが小さくなってポンプの回転が困難になる直前の最小回転数まで低下させるモータ焼損防止の最小回転運転と、推移して行われる。
For example, as shown in FIG. 2 (a), each three-way valve 21 opens the valves 21a and 21b and closes the valve 21c to supply the heat medium supplied from the heat medium forward pipe 18 to each temperature control pipe. The heat medium inflow pattern to flow down to the system main pipe 20a, and as shown in FIG. 2B, the valve 21a is squeezed and the valves 21b and 21c are opened and mixed with the heat medium from the bypass pipe 25 to each temperature. When the dispersion pump 22 with the inverter stops, as shown in FIG. 2 (c), and the heat medium mixing pattern in which the dispersion pump 22 with the inverter, the thermometer 23 and the air conditioner 24 are caused to flow down the control piping main pipe 20a. , And the heat medium stop pattern for closing the valve 21a and opening the valves 21b and 21c.
In the heat medium inflow pattern shown in FIG. 2A, according to the zone load on the air conditioner 24 side, the rated operation for rotating the dispersion pump 22 with the inverter at 100% rotation speed and the air conditioner 24 at a load close to the rating. With the reduction of the zone load on the side, the frequency of the commercial power supplied to the distributed pump 22 with the inverter is reduced, for example, from about 50 Hz to about 15 Hz, and the load that reduces the rotational speed of the distributed pump 22 with the inverter Immediately before the partial load operation and further reduction of the zone load proceed, the power frequency decreases to the lower limit, for example, about 15 Hz, and the rotational torque of the motor of the distributed pump 22 with the inverter becomes small and the rotation of the pump becomes difficult. The minimum rotational speed of the motor is reduced to the minimum rotational speed to prevent motor burnout.

図2(b)に示す熱媒体混合パターンでは、空調機24側のゾーン負荷の低減に伴い、インバータ付き分散ポンプ22の回転数を低下させ、インバータ付き分散ポンプ22のモータの回転トルクが小さくなってポンプの回転が困難になる直前の最小回転数まで低下させるモータ焼損防止の最小回転運転を行いながら、バイパス管25からの空調機24を通過して暖められた又は冷やされた熱媒体を三方弁21の弁21cから導入し、温度制御配管系主管20aから供給される熱媒体に混合して弁21bへ出して空調機24を通過する前の熱媒体と混合して再び空調機24に取り込ませる。
この熱媒体混合パターンによって、例えば、冷房時には、図3(a)に示すように、ゾーン負荷があまりに小さくなり、インバータ付き分散ポンプ22の回転数が低下できない場合にも、温度制御配管系主管20aを流れる熱媒体の温度を上昇することによって、空調機24の入口温度が高くなる。従って、空調ゾーン26における冷えすぎ現象が解消される。
In the heat medium mixing pattern shown in FIG. 2B, the rotational speed of the dispersion pump 22 with the inverter is decreased and the rotational torque of the motor of the dispersion pump 22 with the inverter is reduced as the zone load on the air conditioner 24 side is reduced. The heat medium that has been warmed or cooled by passing through the air conditioner 24 from the bypass pipe 25 while performing the minimum rotation operation for preventing motor burnout that is reduced to the minimum rotation speed just before the rotation of the pump becomes difficult. It is introduced from the valve 21c of the valve 21, mixed with the heat medium supplied from the temperature control piping system main pipe 20a, mixed with the heat medium before passing through the air conditioner 24 through the valve 21b, and taken into the air conditioner 24 again. Make it.
With this heat medium mixing pattern, for example, at the time of cooling, as shown in FIG. 3A, even when the zone load becomes too small and the rotation speed of the dispersion pump 22 with an inverter cannot be reduced, the temperature control piping main pipe 20a. The inlet temperature of the air conditioner 24 is increased by increasing the temperature of the heat medium flowing through the air. Therefore, the excessive cooling phenomenon in the air conditioning zone 26 is eliminated.

また、例えば、暖房時には、図3(b)に示すように、インバータ付き分散ポンプ22の回転数が低下することによって、温度制御配管系主管20aを流れる熱媒体の温度は下降し、空調機24の入口温度が低くなる。従って、空調ゾーン26における暖めすぎ現象が解消される。
各温度計23は、インバータ付き分散ポンプ22から空調機24へ移送される熱媒体の温度を計測する。各温度計23には、それぞれ往き温度伝送計装線32を介してセレクタ33に連絡している。セレクタ33は、複数の各温度計23の入力信号を受け、設定された設定閾値を超える信号がある場合に、下流の温度調整器34の入力信号として選択して流すよう、温度調整器34に計装線を介して連絡している。温度調整器34は、2つの熱源機11それぞれの機側盤に計装線を介して、機側盤内の調節計の設定値可変用の入力信号を流すよう連絡している。
Further, for example, during heating, as shown in FIG. 3B, the rotational speed of the dispersion pump 22 with the inverter decreases, so that the temperature of the heat medium flowing through the temperature control piping system main pipe 20a decreases, and the air conditioner 24 The inlet temperature of the becomes lower. Therefore, the overheating phenomenon in the air conditioning zone 26 is eliminated.
Each thermometer 23 measures the temperature of the heat medium transferred from the dispersion pump 22 with an inverter to the air conditioner 24. Each thermometer 23 is connected to a selector 33 via an outgoing temperature transmission instrumentation line 32. The selector 33 receives an input signal from each of the plurality of thermometers 23, and when there is a signal exceeding a set threshold value, the selector 33 selects and sends it to the temperature regulator 34 as an input signal to the downstream temperature regulator 34. We communicate via instrumentation lines. The temperature regulator 34 communicates with the machine side panel of each of the two heat source machines 11 via an instrumentation line so that an input signal for changing the set value of the controller in the machine side panel flows.

各空調機24は、空調機24が備える冷却コイル又は加熱コイルにより熱媒体と空気とを熱交換して空調する対象の空調対象室等の空調ゾーン26と連絡している。空調ゾーン26には、例えば、図4に示すように、室内温度計27と湿度計28とが備えられている。室内温度計27は、室内温度調節器29に連絡し、湿度計28は湿度調節器30に連絡している。室内温度調節器29と湿度調節器30とは、計装線を介しセレクタ31を介して三方弁21とインバータ付き分散ポンプ22とに連絡している。   Each air conditioner 24 communicates with an air conditioning zone 26 such as an air conditioning target room to be air-conditioned by exchanging heat between the heat medium and air using a cooling coil or a heating coil provided in the air conditioner 24. The air conditioning zone 26 includes, for example, an indoor thermometer 27 and a hygrometer 28 as shown in FIG. The indoor thermometer 27 communicates with the indoor temperature controller 29, and the hygrometer 28 communicates with the humidity controller 30. The room temperature controller 29 and the humidity controller 30 communicate with the three-way valve 21 and the inverter-equipped dispersion pump 22 via a selector 31 via an instrumentation line.

以上の構成が空調ゾーン26における二次側制御装置であるが、この二次側制御装置の働きは、暖房時は室内温度調節器29からの制御信号のみがセレクタ31で選択され、冷房時は、湿度調節器30に設定された湿度と湿度計28の実測湿度値との偏差に応じた湿度制御信号と、室内温度調節器29に設定された温度と室内温度計27の実測温度値との偏差に応じた温度制御信号とをセレクタ31で比較し大きい信号が選択され、下流の三方弁21,及びインバータ付き分散ポンプ22の各々の熱媒体流量が制御される。その制御の詳細は、上記段落0027〜0030に詳説した通りである。
そして、空調ゾーン26内の室内温度計27と湿度計28とに基づくゾーン負荷制御信号によって、三方弁21の切換制御・比例制御及びインバータ付き分散ポンプ22の回転数制御が行われるように構成されている。
The above configuration is the secondary side control device in the air conditioning zone 26. The operation of this secondary side control device is that only the control signal from the indoor temperature controller 29 is selected by the selector 31 during heating and during cooling. The humidity control signal corresponding to the deviation between the humidity set in the humidity controller 30 and the actually measured humidity value of the hygrometer 28, the temperature set in the indoor temperature controller 29, and the actually measured temperature value of the indoor thermometer 27 The selector 31 compares the temperature control signal corresponding to the deviation and a large signal is selected, and the heat medium flow rates of the downstream three-way valve 21 and the inverter-equipped dispersion pump 22 are controlled. Details of the control are as detailed in the above paragraphs 0027-0030.
The switching control / proportional control of the three-way valve 21 and the rotational speed control of the dispersion pump 22 with the inverter are performed by a zone load control signal based on the indoor thermometer 27 and the hygrometer 28 in the air conditioning zone 26. ing.

次に、本実施形態に係る空調配管システム1の作用を説明する。
先ず、立ち上げ時には、熱源機11を駆動して生成される一定温度の熱媒体を、例えば、図8に示すように、各インバータ付き分散ポンプ22によって往きヘッダ13及び熱媒体往き主管16を介して吸い込むことで各温度制御配管系20へ供給する。
各温度制御配管系20では、三方弁21を弁21aを全開、21cを全閉にして温度制御配管系主管20aに供給されて空調立ち上げ時に運転を始め、その後、空調機24が受け持つ空調ゾーン26の熱負荷に対応した流量で供給するよう、図3のインバータ付き分散ポンプ22のポンプ回転数や空調機入口熱媒体温度になるよう三方弁21の開度を調整して、冷房や暖房が行われる。
Next, the effect | action of the air-conditioning piping system 1 which concerns on this embodiment is demonstrated.
First, at the time of start-up, a heat medium having a constant temperature generated by driving the heat source device 11 is sent through the forward header 13 and the heat medium forward main pipe 16 by each dispersion pump 22 with an inverter as shown in FIG. Then, it is supplied to each temperature control piping system 20 by suction.
In each temperature control piping system 20, the three-way valve 21 is fully opened with the valve 21 a fully closed and 21 c is fully closed and supplied to the temperature control piping system main pipe 20 a to start operation when the air conditioning is started. In order to supply at a flow rate corresponding to the heat load of 26, the opening speed of the three-way valve 21 is adjusted so that the pump rotational speed of the dispersion pump 22 with the inverter of FIG. Done.

各温度制御配管系20から排出される熱媒体は、熱媒体還り主管路17、還りヘッダ14を介してインバータ付き分散ポンプ22の吐出圧力を搬送力にして熱源機11に戻される。つまり、各温度制御配管系20の圧力損失を含み、熱媒体の全揚程、つまり熱媒体の搬送動力を全てインバータ付き分散ポンプ22が受け持っている。
次に、空調ゾーン26のゾーン負荷に応じて空調機24に供給される熱媒体の量は、図2(a)に示す熱媒体流入パターンでは、空調機24側のゾーン負荷に応じて、定格に近い負荷ではインバータ付き分散ポンプ22を100%の回転数で回転させる定格運転と、空調機24側のゾーン負荷の低減に伴い、インバータ付き分散ポンプ22に供給される商用電源の周波数を、例えば、50Hzから15Hz程度まで低下して、インバータ付き分散ポンプ22の回転数を低下させる負荷に応じた部分負荷運転と、さらにゾーン負荷の低減が進んで、電源周波数が下限、例えば、15Hz程度に低下して、インバータ付き分散ポンプ22モータの回転トルクが小さくなってポンプの回転が困難になる直前の最小回転数まで低下させるモータ焼損防止の最小回転運転と、推移してインバータ付き分散ポンプ22の回転数を調節することによって制御される。
The heat medium discharged from each temperature control piping system 20 is returned to the heat source unit 11 through the heat medium return main pipe line 17 and the return header 14 by using the discharge pressure of the dispersion pump 22 with an inverter as a conveying force. In other words, the inverter-equipped dispersion pump 22 takes charge of the entire head of the heat medium, that is, the conveyance power of the heat medium, including the pressure loss of each temperature control piping system 20.
Next, the amount of the heat medium supplied to the air conditioner 24 according to the zone load of the air conditioning zone 26 is rated according to the zone load on the air conditioner 24 side in the heat medium inflow pattern shown in FIG. With the rated operation of rotating the inverter-equipped dispersion pump 22 at a rotation speed of 100% and the reduction of the zone load on the air conditioner 24 side, the frequency of the commercial power supplied to the inverter-equipped dispersion pump 22 is, for example, The partial load operation corresponding to the load that lowers the rotation speed of the dispersion pump 22 with the inverter from 50 Hz to about 15 Hz, and further the reduction of the zone load proceeds, and the power supply frequency is lowered to the lower limit, for example, about 15 Hz. Motor burnout prevention that reduces to the minimum rotation speed just before the rotational torque of the distributed pump 22 motor with inverter becomes small and the rotation of the pump becomes difficult And the minimum rotational operation, is controlled by adjusting the rotational speed of the inverter with the dispersion pump 22 remained.

さらに、空調ゾーン26のゾーン負荷に応じて空調機24に供給される熱媒体の量は、図2(b)に示す熱媒体混合パターンでは、空調機24側のゾーン負荷の低減に伴い、インバータ付き分散ポンプ22の回転数を低下させ、インバータ付き分散ポンプ22のモータの回転トルクが小さくなってポンプの回転が困難になる直前の最小回転数まで低下させるモータ焼損防止の最小回転運転を行いながら、バイパス管25からの空調機24を通過して暖められた又は冷やされた熱媒体を三方弁21の弁21cから導入し、温度制御配管系主管20aから供給される熱媒体に混合して弁21bへ出して空調機24を通過する前の熱媒体と混合して再び空調機24に取り込ませる。   Further, the amount of the heat medium supplied to the air conditioner 24 according to the zone load of the air conditioning zone 26 is increased according to the reduction of the zone load on the air conditioner 24 side in the heat medium mixing pattern shown in FIG. While performing the minimum rotational operation for preventing motor burnout, the rotational speed of the distributed pump 22 with the motor is decreased, and the rotational torque of the motor of the distributed pump 22 with the inverter is decreased to the minimum rotational speed just before the rotation of the pump becomes difficult. The heated or cooled heat medium passing through the air conditioner 24 from the bypass pipe 25 is introduced from the valve 21c of the three-way valve 21 and mixed with the heat medium supplied from the temperature control piping main pipe 20a. 21 b is mixed with the heat medium before passing through the air conditioner 24 and is taken into the air conditioner 24 again.

この、インバータ付き分散ポンプ22の焼損防止最小回転運転、及び三方弁21による熱媒体混合パターンの運転によって、冷房時には各温度制御配管系20の各温度制御配管系主管20aを流下する熱媒体の往き温度を上昇させ、暖房時には各温度制御配管系20の各温度制御配管系主管20aを流下する熱媒体の往き温度を下降させることができる。
例えば、冷房時には、図3(a)に示すように、インバータ付き分散ポンプ22の回転数が焼損防止最小回転数になってさらに制御出力が小さくなった際に、空調機入口温度制御に移行して空調機24の入口温度が高くなる。つまり、熱媒体往き主管路16を流れる熱媒体の温度は一定だが、インバータ付き分散ポンプ22のモータ焼損防止の最小回転運転まで温度制御配管系主管20aを流れる量が減少し、さらに三方弁21による熱媒体混合パターンの運転で、空調機24で熱交換されて温度が高くなった熱媒体が三方弁21の弁21cから流入して混合し、空調機24の入口に導入されるので、空調機24の入口熱媒体温度が高くなる。従って、インバータ付き分散ポンプ22のモータ焼損を防止しつつ、ゾーン負荷に適切に対応できる熱媒体供給が可能となる。
Due to the minimum rotation operation for preventing the burnout of the inverter-equipped dispersion pump 22 and the operation of the heat medium mixing pattern by the three-way valve 21, the flow of the heat medium flowing down the temperature control piping system main pipe 20a of the temperature control piping system 20 during cooling. The temperature can be raised, and the temperature of the heating medium flowing down through each temperature control piping main pipe 20a of each temperature control piping system 20 can be lowered during heating.
For example, at the time of cooling, as shown in FIG. 3A, when the rotation speed of the inverter-equipped dispersion pump 22 becomes the minimum rotation speed for preventing burnout and the control output is further reduced, the process proceeds to the air conditioner inlet temperature control. As a result, the inlet temperature of the air conditioner 24 increases. That is, the temperature of the heat medium flowing through the heat medium going main pipe 16 is constant, but the amount flowing through the temperature control piping main pipe 20a is reduced to the minimum rotation operation for preventing motor burnout of the dispersion pump 22 with the inverter. In the operation of the heat medium mixing pattern, the heat medium whose temperature has been increased by heat exchange in the air conditioner 24 flows from the valve 21c of the three-way valve 21 and mixes and is introduced into the inlet of the air conditioner 24. 24 inlet heat medium temperature becomes high. Accordingly, it is possible to supply the heat medium that can appropriately cope with the zone load while preventing the motor of the inverter distributed pump 22 from being burned out.

逆に、例えば、暖房時には、図3(b)に示すように、インバータ付き分散ポンプ22の回転数が焼損防止最小回転数になってさらに制御出力が小さくなった際に、空調機入口温度制御に移行して空調機24の入口温度は下降する。つまり、熱媒体往き主管路16を流れる熱媒体の温度は一定だが、インバータ付き分散ポンプ22のモータ焼損防止の最小回転運転まで温度制御配管系主管20aを流れる量が減少し、さらに三方弁21による熱媒体混合パターンの運転で、空調機24で熱交換されて温度が低くなった熱媒体が三方弁21の弁21cから流入して混合し、空調機24の入口に導入されるので、空調機24の入口熱媒体温度が低下する。従って、インバータ付き分散ポンプ22のモータ焼損を防止しつつ、ゾーン負荷に適切に対応できる熱媒体供給が可能となる。
ところで、熱源装置が圧縮式冷凍機の場合、蒸発器で冷凍する冷水の出口温度設定を高くすると、蒸発温度が高く、つまり蒸発器の冷媒圧力は高くて良くなり、圧縮機の圧縮仕事を減らすことができて、同じ冷却能力を発生するのに圧縮機運転エネルギが少なくて済む。つまり、成績係数COPが向上する。これは、吸収式冷凍機においても、冷水出口温度を上げれば再生器で熱交換する駆動エネルギが小さくなることで、成績係数COPが同様に向上する。
Conversely, for example, during heating, as shown in FIG. 3B, when the rotational speed of the inverter-equipped dispersion pump 22 becomes the minimum rotational speed for preventing burnout and the control output is further reduced, the air conditioner inlet temperature control is performed. The inlet temperature of the air conditioner 24 is lowered. That is, the temperature of the heat medium flowing through the heat medium going main pipe 16 is constant, but the amount flowing through the temperature control piping main pipe 20a is reduced to the minimum rotation operation for preventing motor burnout of the dispersion pump 22 with the inverter. In the operation of the heat medium mixing pattern, the heat medium whose temperature has been lowered by heat exchange in the air conditioner 24 flows from the valve 21c of the three-way valve 21 and mixes and is introduced into the inlet of the air conditioner 24. 24 inlet heat medium temperature falls. Accordingly, it is possible to supply the heat medium that can appropriately cope with the zone load while preventing the motor of the inverter distributed pump 22 from being burned out.
By the way, when the heat source device is a compression type refrigerator, if the outlet temperature setting of the cold water refrigerated by the evaporator is increased, the evaporation temperature is increased, that is, the refrigerant pressure of the evaporator is increased, and the compression work of the compressor is reduced. And less compressor operating energy to produce the same cooling capacity. That is, the coefficient of performance COP is improved. In the absorption refrigerator as well, the coefficient of performance COP is improved in the same manner because the driving energy for heat exchange in the regenerator decreases as the cold water outlet temperature is raised.

上記において、図3に示す制御出力、つまりゾーン負荷が小さくなってきて空調機入口温度制御に移行し、空調機24の入口温度を冷房時にバイパスして高くする運転を説明したが、各ゾーン負荷とも同様に小さくなり、各温度制御配管系20のほぼ全てが空調機24の入口温度を高くする運転に移行するならば、熱媒体往き主管路16を流れる熱媒体の温度自体を高くできることとなり、つまり冷凍機からの冷水出口温度設定を高くできる。これによって、非常にエネルギを消費する冷凍機運転エネルギを削減できる。   In the above description, the control output shown in FIG. 3, that is, the zone load is reduced, the operation is shifted to the air conditioner inlet temperature control, and the operation of bypassing and increasing the inlet temperature of the air conditioner 24 during cooling is described. Similarly, if almost all of the temperature control piping system 20 shifts to an operation for increasing the inlet temperature of the air conditioner 24, the temperature of the heat medium flowing through the heat medium forward main pipe 16 can be increased. That is, the cold water outlet temperature setting from the refrigerator can be increased. As a result, the operating energy of the refrigerator that consumes very much energy can be reduced.

そして、インバータ付き分散ポンプ22をモータ焼損防止の最小回転運転する温度制御配管系20が多くなってくると、インバータ付き分散ポンプ22の熱媒体搬送流量が減少し、さらにゾーン負荷が小さくなると空調機入口温度制御に移行し、三方弁21の弁21aを流れる熱媒体が絞られて熱媒体往き主管路16を流れる熱媒体量が減少することで、熱源機11の最小流量の確保が困難になる。その熱源機11の最小流量を確保するために、図1及び図7に示すように、流量調節器35からの指令に基づきインバータ付き流量補償用ポンプ15を始動及び流量制御する。
このインバータ付き流量補償用ポンプ15の制御は、複数のインバータ付き分散ポンプ22のインバータ周波数出力信号を図示しない演算器に入れて演算し熱媒体往き主管路16の流量を想定したり、熱媒体還り主管路17に設置されている流量計37で熱媒体流量を計測したりして得られた信号を流量調整器35に入力し、さらに、熱源機11が複数ある場合、その運転信号を熱源機11機側盤から得て運転台数を図示しない演算器で演算し、その信号も流量調節器35の条件信号として入力し、始動及び流量制御する。
And if the temperature control piping system 20 which carries out the minimum rotation driving | running | working of the dispersion pump 22 with an inverter at the minimum rotation prevention of a motor burning increases, the heat carrier conveyance flow rate of the dispersion pump 22 with an inverter will decrease, and if a zone load becomes small, an air conditioner Shifting to the inlet temperature control, the heat medium flowing through the valve 21a of the three-way valve 21 is throttled and the amount of the heat medium flowing through the heat medium forward main pipe 16 is reduced, so that it is difficult to ensure the minimum flow rate of the heat source unit 11. . In order to secure the minimum flow rate of the heat source unit 11, as shown in FIGS. 1 and 7, the inverter-equipped flow compensation pump 15 is started and the flow rate is controlled based on a command from the flow rate regulator 35.
The control of the flow compensation pump 15 with inverter is controlled by putting the inverter frequency output signals of the plurality of dispersion pumps 22 with inverters into a computing unit (not shown) to assume the flow rate of the main flow path 16 going back to the heat medium or returning the heat medium. A signal obtained by measuring the flow rate of the heat medium with a flow meter 37 installed in the main pipe line 17 is input to the flow rate regulator 35. Further, when there are a plurality of heat source units 11, the operation signal is sent to the heat source unit. The number of operating units obtained from the 11 machine side panel is calculated by a calculator (not shown), and the signal is also input as a condition signal for the flow rate regulator 35 to start and control the flow rate.

次に、複数の温度制御配管系20の全てがゾーン負荷が小さくなり、空調機入口温度制御に移行し三方弁21の弁21aを流れる熱媒体が絞られバイパス管25からの戻り熱媒体と混合されることで、例えば、冷房時では熱媒体の温度が上昇して空調機24の入口温度が高くなる。つまり、上記のように各温度制御配管系20のほぼ全てが空調機24の入口温度を高くする運転に移行するならば、熱媒体往き主管路16を流れる熱媒体の温度自体を高くでき、つまり冷凍機からの冷水出口温度設定を高くできる。
この冷水出口温度設定を高くする(たとえて言うと、空調機二次側の変風量単一ダクト方式における給気温度制御のロードリセット制御:換気上必要な給気量を確保するため負荷が減少しても送風量を絞らず給気温度を上げる制御、の水版)には、冷水出口温度設定を上げて良いかどうか、どのぐらい上げるのかの判断及び制御が必要となるが、その制御に用いる計測信号として、各温度制御配管系20の空調機入口温度を計測する温度計23の温度計測値を用いる。
Next, all of the plurality of temperature control piping systems 20 have a reduced zone load, the control is shifted to the air conditioner inlet temperature control, and the heat medium flowing through the valve 21a of the three-way valve 21 is throttled and mixed with the return heat medium from the bypass pipe 25. Thus, for example, during cooling, the temperature of the heat medium increases and the inlet temperature of the air conditioner 24 increases. That is, if almost all of the temperature control piping systems 20 shift to the operation of increasing the inlet temperature of the air conditioner 24 as described above, the temperature of the heat medium flowing through the heat medium forward main pipe 16 can be increased, that is, The cold water outlet temperature setting from the refrigerator can be increased.
Increase the chilled water outlet temperature setting (for example, load reset control of air supply temperature control in the single air duct system on the secondary side of the air conditioner: the load decreases to secure the air supply required for ventilation However, it is necessary to judge and control whether or not the chilled water outlet temperature setting can be raised, and control the raising of the supply air temperature without reducing the air flow. As a measurement signal to be used, a temperature measurement value of a thermometer 23 that measures an air conditioner inlet temperature of each temperature control piping system 20 is used.

各ゾーン負荷が小さくなり、各温度制御配管系20で空調機入口温度制御に移行すると、空調機24からの給気でゾーン負荷が処理できるように図3に示すように制御するので、空調機24が内蔵する冷水コイルや温水コイルが熱交換性能上要求する熱媒体温度を把握しなくても、三方弁21でバイパス管25からの戻り熱媒体との混合で自動的に適切な空調機24入口温度の熱媒体に調整される。つまり、この空調機24の入口熱媒体温度を計測すれば、空調機24が内蔵する冷水コイルや温水コイルが要求する熱媒体温度が判る。
逆に、一旦熱媒体往き主管路16の温度を変化させて、冷房時高くして運転を継続し、各ゾーン負荷が増加してきた場合には、図3に示すポンプ回転数が100%になった温度制御配管系20が一つでもあれば、冷水出口温度設定を元に戻す制御をすればよい。
When each zone load becomes small and the temperature control piping system 20 shifts to the air conditioner inlet temperature control, control is performed as shown in FIG. 3 so that the zone load can be processed by the supply air from the air conditioner 24. The air conditioner 24 is automatically mixed with the return heat medium from the bypass pipe 25 by the three-way valve 21 without grasping the heat medium temperature required for the heat exchange performance of the cold water coil or the hot water coil incorporated in the heat pump 24. The heating medium is adjusted to the inlet temperature. That is, if the inlet heat medium temperature of the air conditioner 24 is measured, the heat medium temperature required by the cold water coil or the hot water coil built in the air conditioner 24 can be determined.
Conversely, once the temperature of the heat medium going main pipeline 16 is changed and increased during cooling to continue operation, and each zone load increases, the pump speed shown in FIG. 3 becomes 100%. If there is only one temperature control piping system 20, the cold water outlet temperature setting may be returned to the original setting.

冷水出口温度設定変更制御は、具体的に図6に示すステップで行われるのが望ましい。図5に示すように、各温度制御配管系主管20aの熱媒体の空調機24の入口温度t1〜tnは、各温度計23によって計測される。
冷房時には、図6に示すように、往き温度可変制御回路32を介して温度調節器34において、ステップS1で、各温度計23から送られてくる空調機24の入口温度t1〜tnのうちから最低温度を求める。
次に、ステップS2で、求められた最低値tminから、例えば、0.5℃を差し引いた値をインバータ付き熱源機(冷凍機)11の出口温度に設定する。
It is desirable that the cold water outlet temperature setting change control is specifically performed in steps shown in FIG. As shown in FIG. 5, the inlet temperatures t <b> 1 to tn of the air conditioner 24 of the heat medium of each temperature control piping system main pipe 20 a are measured by each thermometer 23.
At the time of cooling, as shown in FIG. 6, in the temperature controller 34 via the forward temperature variable control circuit 32, in step S1, from among the inlet temperatures t1 to tn of the air conditioners 24 sent from each thermometer 23. Find the minimum temperature.
Next, in step S2, a value obtained by subtracting, for example, 0.5 ° C. from the determined minimum value tmin is set as the outlet temperature of the heat source unit with refrigerator (refrigerator) 11.

次に、ステップS3で、この求められた熱源機11の出口温度=tmin−0.5℃を30分間保持させる。
以上の最低値の設定を求めて、熱源機11の出口温度を変更させるフローを1時間に1回行わせる。
暖房時には、図6における最低値tminを最高値tmaxと置き換え、熱源機11の出口温度=tmax+0.5℃とする。
即ち、各温度計23に往き温度伝送計装線32及びセレクタ33を介して接続される温度調節器34において、最大温度tmaxが、例えば、30分に1回設定される。そして熱源機11の出口温度を選択された最大温度に0.5℃を加算した値に設定する。
逆に、一旦熱源機11の出口温度を変化させて、冷房時高くして運転を継続し、各ゾーン負荷が増加してきた場合には、図3に示すポンプ回転数が100%になった温度制御配管系20が一つでもあれば、冷水出口温度設定を元に戻す制御を同様に行えばよい。
Next, in step S3, the obtained outlet temperature of the heat source unit 11 = tmin−0.5 ° C. is held for 30 minutes.
The flow for changing the outlet temperature of the heat source unit 11 is obtained once every hour by obtaining the above minimum value setting.
During heating, the minimum value tmin in FIG. 6 is replaced with the maximum value tmax, and the outlet temperature of the heat source unit 11 is set to tmax + 0.5 ° C.
That is, in the temperature controller 34 connected to each thermometer 23 via the temperature transmission instrumentation line 32 and the selector 33, the maximum temperature tmax is set once every 30 minutes, for example. Then, the outlet temperature of the heat source unit 11 is set to a value obtained by adding 0.5 ° C. to the selected maximum temperature.
Conversely, once the temperature of the outlet of the heat source unit 11 is changed and increased during cooling to continue operation, and each zone load increases, the temperature at which the pump rotation speed shown in FIG. If there is only one control piping system 20, the control for returning the cold water outlet temperature setting to the original state may be performed in the same manner.

以上のように、本実施形態によれば、インバータ付き分散ポンプ22による全揚程受持ち方式を構成し、インバータ付き流量補償用ポンプ15は、往きヘッダ13・還りヘッダ14及び熱源機11間の一次側だけの揚程で最小流量を確保できることから、空調機24側のゾーン負荷に応じて必要流量の熱媒体をインバータ付き分散ポンプ22で供給できるため、インバータ付き分散ポンプ22の動力の省エネが可能となる。
また、分散ポンプ系それぞれに、三方弁21とバイパス管25とで構成するバイパスを設けているので、ゾーン負荷から演算された熱媒体流量が、インバータ付き分散ポンプ22のインバータの最小周波数から規定される焼損防止最小流量以下の流量となる場合は、インバータ付き分散ポンプ22の流量を焼損防止最小流量一定にし、かつ余分な流量をバイパス循環で戻して熱量を減少させて、熱媒体の必要熱量のみを確保する、三方弁によるブリードイン式の負荷対応ができる。
As described above, according to the present embodiment, the total head-holding system using the dispersion pump 22 with the inverter is configured, and the flow compensation pump 15 with the inverter is the primary side between the forward header 13 and the return header 14 and the heat source unit 11. Since the minimum flow rate can be ensured with only the head, the heat medium of the required flow rate can be supplied by the dispersion pump 22 with the inverter according to the zone load on the air conditioner 24 side, so that the energy of the power of the dispersion pump 22 with the inverter can be saved. .
In addition, since each dispersion pump system is provided with a bypass constituted by the three-way valve 21 and the bypass pipe 25, the heat medium flow rate calculated from the zone load is defined from the minimum frequency of the inverter of the dispersion pump 22 with the inverter. If the flow rate is less than the minimum burnout prevention flow rate, the flow rate of the dispersion pump 22 with the inverter is kept constant at the minimum burnout prevention flow rate, and the excess flow rate is returned by bypass circulation to reduce the amount of heat, and only the necessary heat amount of the heat medium A bleed-in type load can be accommodated by a three-way valve.

また、各分散ポンプ系である各温度制御配管系20で温度計23によって熱媒体温度を計測し、三方弁21とバイパス管25とで構成するバイパスと熱媒体往き主管路との熱媒体混合による負荷への往き温度が冷房時最低値を上回った際、又は暖房時最高値を下回った際には、中央の冷凍機等の熱源装置出口熱媒体温度設定値を可変とする制御を行うようにしたので、熱源機11である冷凍機のCOP向上が期待できる。例えば、熱源機11における蒸発器での熱媒体と熱交換する際の冷水出口設定温度を、夏季には7℃としたものを、秋期、冬期には8℃や9℃に上昇することが可能となる。   Further, the temperature of the heat medium is measured by the thermometer 23 in each temperature control piping system 20 that is each dispersion pump system, and the heat medium mixing between the bypass constituted by the three-way valve 21 and the bypass pipe 25 and the heat medium forward main pipe is performed. When the temperature going to the load exceeds the minimum value during cooling or below the maximum value during heating, control is performed to change the heat medium temperature setting value at the outlet of the heat source device such as a central refrigerator. Therefore, COP improvement of the refrigerator which is the heat source device 11 can be expected. For example, the temperature of the cold water outlet when heat is exchanged with the heat medium in the evaporator in the heat source unit 11 can be increased to 8 ° C. or 9 ° C. in the fall and winter, while the temperature set at 7 ° C. in the summer It becomes.

(第二実施形態)
図9は、本発明の第二実施形態に係る空調配管システム2を示す。
第二実施形態に係る空調配管システム2は、一次ポンプ方式に分散ポンプ系を適用した例を示す。
第二実施形態に係る空調配管システム2は、熱源機11と往きヘッダ13及び還りヘッダ14、及び往きヘッダ13と還りヘッダ14とをヘッダ間流量調整弁43を介して繋ぐヘッダ間バイパス管42で構成される一次側に、インバータ付き一次ポンプ41を備え、インバータ付き分散ポンプ22は、受け持つ揚程を、往きヘッダ13より下流の熱媒体往き主管路16と還りヘッダ14より上流の熱媒体還り主管路17と温度制御配管系20との圧力損失分としており、インバータ付き一次ポンプ41は、熱源機11から往きヘッダ13までの熱媒体往き主管路、還りヘッダ14までの熱媒体還り主管路、及び熱源機11の熱媒体搬送圧力損失分の揚程を有して熱媒体を搬送すると共に、インバータ付き流量補償ポンプの代わりに熱源機11の最小流量を確保する働きを有する点で、第一実施形態に係る空調配管システム1とは相違する。
(Second embodiment)
FIG. 9 shows an air conditioning piping system 2 according to the second embodiment of the present invention.
The air conditioning piping system 2 according to the second embodiment shows an example in which a distributed pump system is applied to the primary pump system.
The air-conditioning piping system 2 according to the second embodiment is a bypass pipe 42 between headers that connects the heat source device 11, the forward header 13 and the return header 14, and the forward header 13 and the return header 14 via the inter-header flow rate adjustment valve 43. A primary pump 41 with an inverter is provided on the constructed primary side, and the dispersion pump 22 with an inverter has a lifting head with a heat medium return main pipe 16 downstream of the forward header 13 and a heat medium return main pipe upstream of the return header 14. 17 and the temperature control piping system 20, the primary pump 41 with an inverter includes a heat medium forward main line from the heat source unit 11 to the forward header 13, a heat medium return main line to the return header 14, and a heat source. It has a head for the heat medium conveyance pressure loss of the machine 11 and conveys the heat medium. In that we have the function to ensure the minimum flow rate, the air-conditioning piping system 1 according to the first embodiment differs.

本実施形態では、ゾーン負荷が小さくなり、一定数以上の温度制御配管系20の各インバータ付き分散ポンプ22の回転数が焼損防止最小回転数になる際には、熱源機11の最小流量を確保するために、流量調節器35からの指令に基づいて、インバータ付き一次ポンプ制御回路36aを介してインバータ付き一次ポンプ41の流量、及びヘッダ間流量調整弁43の開度を制御する。
そして、各ゾーン負荷が小さくなり、温度制御配管系20で空調機入口温度制御に移行すると、空調機24からの給気でゾーン負荷が処理できるように図3に示すように制御するので、空調機24が内蔵する冷水コイルや温水コイルが熱交換性能上要求する熱媒体温度を把握しなくても、三方弁21でバイパス管25からの戻り熱媒体との混合で自動的に適切な空調機24入口温度の熱媒体に調整される。つまり、この空調機24の入口熱媒体温度を計測すれば、空調機24が内蔵する冷水コイルや温水コイルが要求する熱媒体温度が判る。
In this embodiment, when the zone load becomes small and the rotation speed of each inverter-equipped dispersion pump 22 in the temperature control piping system 20 of a certain number or more becomes the minimum rotation speed to prevent burning, the minimum flow rate of the heat source unit 11 is secured. Therefore, the flow rate of the primary pump 41 with an inverter and the opening degree of the inter-header flow rate adjustment valve 43 are controlled via the primary pump control circuit 36a with an inverter based on a command from the flow rate regulator 35.
When each zone load becomes small and the temperature control piping system 20 shifts to the air conditioner inlet temperature control, control is performed as shown in FIG. 3 so that the zone load can be processed by the air supply from the air conditioner 24. The air conditioner automatically mixes with the return heat medium from the bypass pipe 25 by the three-way valve 21 without grasping the heat medium temperature required for the heat exchange performance of the cold water coil or the hot water coil incorporated in the machine 24. It is adjusted to a heat medium with a 24 inlet temperature. That is, if the inlet heat medium temperature of the air conditioner 24 is measured, the heat medium temperature required by the cold water coil or the hot water coil built in the air conditioner 24 can be determined.

複数の温度制御配管系20の全てがゾーン負荷が小さくなり、空調機入口温度制御に移行し三方弁21の弁21aを流れる熱媒体が絞られバイパス管25からの戻り熱媒体と混合されることで、例えば、冷房時では熱媒体の温度が上昇して空調機24の入口温度が高くなる。つまり、上記のように各温度制御配管系20のほぼ全てが空調機24の入口温度を高くする運転に移行するならば、熱媒体往き主管路16を流れる熱媒体の温度自体を高くできることとなり、つまり冷凍機からの冷水出口温度設定を高くできる。
逆に、一旦熱媒体往き主管路16の温度を変化させて、冷房時高くして運転を継続し、各ゾーン負荷が増加してきた場合には、図3に示すポンプ回転数が100%になった温度制御配管系20が一つでもあれば、冷水出口温度設定を元に戻す制御をすればよい。
All of the plurality of temperature control piping systems 20 have a reduced zone load, shift to air conditioner inlet temperature control, and the heat medium flowing through the valve 21a of the three-way valve 21 is throttled and mixed with the return heat medium from the bypass pipe 25. For example, during cooling, the temperature of the heat medium rises and the inlet temperature of the air conditioner 24 increases. That is, if almost all of the temperature control piping systems 20 shift to the operation of increasing the inlet temperature of the air conditioner 24 as described above, the temperature of the heat medium flowing through the heat medium forward main pipeline 16 can be increased. That is, the cold water outlet temperature setting from the refrigerator can be increased.
Conversely, once the temperature of the heat medium going main pipeline 16 is changed and increased during cooling to continue operation, and each zone load increases, the pump speed shown in FIG. 3 becomes 100%. If there is only one temperature control piping system 20, the cold water outlet temperature setting may be returned to the original setting.

本実施形態によれば、インバータ付き分散ポンプ22による二次側揚程受持ちの一次ポンプ方式を構成し、インバータ付き一次ポンプ41は、往きヘッダ13・還りヘッダ14及び熱源機11の間の一次側だけの揚程で熱源機の最小流量を確保できることから、空調機24側のゾーン負荷に応じて空調機24に熱媒体をインバータ付き分散ポンプ22で必要量だけ供給できるため、インバータ付き分散ポンプ22の動力の省エネが可能となる。
また、分散ポンプ系である各温度制御配管系20に、三方弁21とバイパス管25とで構成するバイパスを設けているので、ゾーン負荷から演算された熱媒体流量が、インバータ付き分散ポンプ22のインバータの最小周波数から規定される焼損防止最小流量以下の流量となる場合は、インバータ付き分散ポンプ22の流量を焼損防止最小流量一定にし、かつ余分な流量をバイパス循環で戻して熱量を減少させて、熱媒体の必要熱量のみを確保する、三方弁によるブリードイン式の負荷対応ができる。
According to the present embodiment, the primary pump system with the secondary head lift by the dispersion pump 22 with the inverter is configured, and the primary pump 41 with the inverter is only on the primary side between the forward header 13 and the return header 14 and the heat source unit 11. Since the minimum flow rate of the heat source unit can be secured by the head of the air flow, only the necessary amount of heat medium can be supplied to the air conditioner 24 by the dispersion pump 22 with inverter according to the zone load on the air conditioner 24 side. Energy saving.
In addition, since each temperature control piping system 20 that is a dispersion pump system is provided with a bypass constituted by a three-way valve 21 and a bypass pipe 25, the heat medium flow rate calculated from the zone load is such that the dispersion pump 22 with an inverter If the flow rate is less than the minimum flow rate to prevent burnout specified by the minimum frequency of the inverter, the flow rate of the dispersion pump 22 with the inverter is kept constant at the minimum flow rate to prevent burnout, and the excess flow rate is returned by bypass circulation to reduce the amount of heat. A bleed-in type load can be accommodated by a three-way valve that ensures only the necessary heat quantity of the heat medium.

また、各分散ポンプ系である各温度制御配管系20で温度計23によって熱媒体温度を計測し、三方弁21とバイパス管25とで構成するバイパスと熱媒体往き主管路との熱媒体混合による負荷への往き温度が冷房時最低値を上回った際、又は暖房時最高値を下回った際には、中央の冷凍機等の熱源装置出口熱媒体温度設定値を可変とする制御を行うようにしたので、熱源機11である冷凍機のCOP向上が期待できる。例えば、熱源機11における蒸発器での熱媒体と熱交換する際の冷水出口設定温度を、夏季には7℃としたものを、秋期、冬期には8℃や9℃に上昇することが可能となる。   Further, the temperature of the heat medium is measured by the thermometer 23 in each temperature control piping system 20 that is each dispersion pump system, and the heat medium mixing between the bypass constituted by the three-way valve 21 and the bypass pipe 25 and the heat medium forward main pipe is performed. When the temperature going to the load exceeds the minimum value during cooling or below the maximum value during heating, control is performed to change the heat medium temperature setting value at the outlet of the heat source device such as a central refrigerator. Therefore, COP improvement of the refrigerator which is the heat source device 11 can be expected. For example, the temperature of the cold water outlet when heat is exchanged with the heat medium in the evaporator in the heat source unit 11 can be increased to 8 ° C. or 9 ° C. in the fall and winter, while the temperature set at 7 ° C. in the summer It becomes.

(第三実施形態)
図10は、本発明の第三実施形態に係る空調配管システム3を示す。
第三実施形態に係る空調配管システム3は、一次ポンプ二次ポンプ方式に分散ポンプ系を適用した例を示す。
第三実施形態に係る空調配管システム3は、熱源機11と往きヘッダ13及び還りヘッダ14、及び往きヘッダ13と還りヘッダ14とをヘッダ間流量調整弁43を介して繋ぐヘッダ間バイパス管42で構成される一次側に、インバータ付き一次ポンプを備え、インバータ付き分散ポンプ22は、受け持つ揚程を温度制御配管系20の圧力損失分としており、往きヘッダ13を二つの往きヘッダ13a、13bとすると共に、往きヘッダ13a、13b間に二つのインバータ付き二次ポンプ44と圧力調整弁45とを配置し、往きヘッダ13a,13b間の圧力差を測定する圧力計46と圧力調節器47とを備える二次ポンプ吐出圧力制御回路48を備え、インバータ付き一次ポンプ41は、熱源機11から往きヘッダ13までの熱媒体往き主管路、還りヘッダ14までの熱媒体還り主管路、及び熱源機11の熱媒体搬送圧力損失分の揚程を有して熱媒体を搬送すると共に、インバータ付き流量補償ポンプの代わりに熱源機11の最小流量を確保する働きを有する点で、第一実施形態に係る空調配管システム1とは相違する。
(Third embodiment)
FIG. 10 shows an air conditioning piping system 3 according to the third embodiment of the present invention.
The air conditioning piping system 3 according to the third embodiment shows an example in which a distributed pump system is applied to a primary pump secondary pump system.
The air conditioning piping system 3 according to the third embodiment is a bypass pipe 42 between headers that connects the heat source device 11, the forward header 13 and the return header 14, and the forward header 13 and the return header 14 via the inter-header flow rate adjustment valve 43. A primary pump with an inverter is provided on the constructed primary side, and the dispersion pump 22 with an inverter has a lifting head as a pressure loss of the temperature control piping system 20, and the forward header 13 is made into two forward headers 13 a and 13 b. Two secondary pumps 44 with an inverter and a pressure regulating valve 45 are arranged between the outgoing headers 13a and 13b, and a pressure gauge 46 and a pressure regulator 47 for measuring a pressure difference between the outgoing headers 13a and 13b are provided. A primary pump discharge pressure control circuit 48 is provided, and the primary pump 41 with an inverter is a heat medium going from the heat source unit 11 to the going header 13. It has a head for the heat medium return main line up to the pipe line, the return header 14, and the heat medium transport pressure loss of the heat source unit 11, and transports the heat medium, and instead of the flow rate compensation pump with the inverter, the heat source unit 11 It differs from the air-conditioning piping system 1 which concerns on 1st embodiment by the point which has the function which ensures the minimum flow volume.

二次ポンプを有する吐出圧力制御の変流量方式制御方法においては、従来方式で温度制御配管系に相当する部分には空調機と二方弁が備わり、ゾーン負荷の変動により二方弁が開閉することとなり熱媒体の流量変動の影響による熱媒体往き主管路16内の圧力が大きく変わるところを、二次ポンプ入口出口各々に備わる2つの往きヘッダ間にバイパス弁として設置される圧力調整弁45の開閉によって、熱媒体往き主管路16の熱媒体圧力を応答良く一定に保つ制御が行われる。特に、複数台の二次ポンプを備える場合に送水圧力を一定にして温度制御配管系の制御性を良くする。
本例においても、インバータ付き二次ポンプ44による熱媒体往き主管路16への押し込み搬送と、各温度制御配管系20における流量調整及び搬送を受け持つインバータ付き分散ポンプ22の揚程ミスマッチにより、熱媒体往き主管路16内の圧力変動が生じやすいところ、2つの往きヘッダ13a,13b間にバイパス弁として設置される圧力調整弁45の開閉制御は、往きヘッダ13a、13bの圧力差分を計測する差圧計46からの信号に基づいて圧力調整弁45を制御する圧力調整器47によって行われる構成となっている。これによって、熱媒体往き主管16の送水圧力が安定するよう制御される。
In the variable flow rate control method of the discharge pressure control having a secondary pump, the conventional method is equipped with an air conditioner and a two-way valve in the portion corresponding to the temperature control piping system, and the two-way valve opens and closes due to fluctuations in zone load. In other words, the pressure of the pressure adjusting valve 45 installed as a bypass valve between the two forward headers at each of the secondary pump inlet / outlet is largely changed where the pressure in the heat medium forward main pipe 16 greatly changes due to the influence of the flow rate variation of the heat medium. By opening and closing, control is performed to keep the heat medium pressure in the heat medium forward main line 16 constant with good response. In particular, when a plurality of secondary pumps are provided, the water supply pressure is kept constant to improve the controllability of the temperature control piping system.
Also in this example, the heat medium travels due to the push transport of the secondary pump 44 with the inverter to the heat medium transport main pipe 16 and the head mismatch of the dispersion pump 22 with the inverter that controls the flow rate and transport in each temperature control piping system 20. Where the pressure fluctuation in the main pipe line 16 is likely to occur, the open / close control of the pressure regulating valve 45 installed as a bypass valve between the two forward headers 13a, 13b is a differential pressure gauge 46 for measuring the pressure difference between the forward headers 13a, 13b. This is performed by a pressure regulator 47 that controls the pressure regulating valve 45 based on the signal from. As a result, the water supply pressure of the heat medium forward main pipe 16 is controlled to be stable.

本実施形態によれば、分散ポンプ系である各温度制御配管系20に、三方弁21の弁21cにバイパス管25を接続し、空調機24の出口熱媒体の一部を返して混合することで、インバータ付き分散ポンプ22のモータ焼損防止の最小回転運転をこのバイパス循環で維持しながら、三方弁の機構上の特性(流路を片側開き勝手になれば片側は締まり勝手になる特性)による外部からの熱媒体圧力変動起因のバイパス循環変動が小さいことを利用して、主流のインバータ付き二次ポンプ44の長い延長の熱媒体往き主管路16及び熱媒体還り主管路17の圧力損失受け持ちの大揚程に起因する、往きヘッダ13a,13bや還りヘッダ14に近い温度制御配管系20への押込み圧からの熱媒体のスルーを排除して、インバータ付き二次ポンプ44の動力の無駄を無くすことが可能となる。   According to this embodiment, the bypass pipe 25 is connected to the valve 21c of the three-way valve 21 to each temperature control piping system 20 which is a dispersion pump system, and a part of the outlet heat medium of the air conditioner 24 is returned and mixed. Thus, while maintaining the minimum rotational operation of the inverter-equipped dispersion pump 22 to prevent motor burnout by this bypass circulation, it depends on the characteristic of the mechanism of the three-way valve (the characteristic that the one side becomes tighter if the flow path opens on one side) Utilizing the fact that the bypass circulation fluctuation due to the heat medium pressure fluctuation from the outside is small, it is responsible for the pressure loss of the long extension heat medium forward main line 16 and the heat medium return main line 17 of the secondary pump 44 with the mainstream inverter. The secondary pump 4 with an inverter is eliminated by eliminating the through of the heat medium from the pushing pressure to the temperature control piping system 20 close to the forward headers 13a and 13b and the return header 14 due to the large head. It is possible to eliminate the waste of power.

また、三方弁21とバイパス管25とでバイパスのみで循環する際、つまり、図2(c)に示すように、インバータ付き分散ポンプ22が停止する際に、弁21aを閉止し、弁21b、21cを開いた状態にする熱媒体停止パターンで運転される温度制御配管系20が存在する場合、三方弁21の弁21aが全閉されているので、インバータ付き二次ポンプ44の押し込み圧が掛かっても、間接的にインバータ付き一次ポンプ41の背圧が掛かったとしても、他の温度制御配管系20が備えるインバータ付き分散ポンプ22の吐出圧が空調機出口側に掛かったとしても、熱媒体は弁21aを通過して熱媒体往き主管路16から熱媒体還り主管路17へスルーして流れることはない。従って、逆流を防止するための特別な機器を必要としない。
そして、複数の温度制御配管系20毎に、インバータ付き分散ポンプ22と三方弁21とバイパス管25とを備えていることで、ある温度制御配管系20が停止した後にゾーン負荷が増加し空調機24が再度稼働する際にも、予め、三方弁21の弁21aを閉じてバイパス管25側を循環させてから、徐々に弁21aを開け、弁21cを閉めることで、熱媒体往き主管路16の流量変動を穏やかにさせて、インバータ付き一次ポンプ41やインバータ付き二次ポンプ44の、オーバーシュートを伴う流量変動などを防止することも可能である。
Further, when the three-way valve 21 and the bypass pipe 25 circulate only by bypass, that is, as shown in FIG. 2 (c), when the inverter-equipped dispersion pump 22 stops, the valve 21a is closed and the valve 21b, When there is a temperature control piping system 20 that is operated in a heat medium stop pattern that opens the 21c, the valve 21a of the three-way valve 21 is fully closed, so that the pushing pressure of the secondary pump 44 with an inverter is applied. However, even if the back pressure of the primary pump 41 with the inverter is indirectly applied, even if the discharge pressure of the dispersion pump 22 with the inverter included in the other temperature control piping system 20 is applied to the outlet side of the air conditioner, Does not pass through the valve 21a and flow from the heat medium return main pipe line 16 to the heat medium return main pipe line 17. Therefore, special equipment for preventing backflow is not required.
And by providing the dispersion pump 22 with an inverter, the three-way valve 21 and the bypass pipe 25 for each of the plurality of temperature control piping systems 20, the zone load increases after a certain temperature control piping system 20 stops, and the air conditioner Even when the operation of the valve 24 is resumed, the heat medium forward main line 16 is closed by closing the valve 21a of the three-way valve 21 and circulating the bypass pipe 25 in advance, then gradually opening the valve 21a and closing the valve 21c. It is also possible to moderate the flow rate fluctuations of the above and prevent the flow rate fluctuations with overshoots of the primary pump 41 with the inverter and the secondary pump 44 with the inverter.

また、各分散ポンプ系である各温度制御配管系20で温度計23によって熱媒体温度を計測し、三方弁21とバイパス管25とで構成するバイパスと熱媒体往き主管路16との熱媒体混合による負荷への往き温度が冷房時最低値を上回った際、又は暖房時最高値を下回った際には、中央の冷凍機等の熱源装置出口熱媒体温度設定値を可変とする制御を行うようにしたので、熱源機11である冷凍機のCOP向上が期待できる。例えば、熱源機11における蒸発器での熱媒体と熱交換する際の冷水出口設定温度を、夏季には7℃としたものを、秋期、冬期には8℃や9℃に上昇することが可能となる。
なお、本実施形態においても、ゾーン負荷が小さくなり、一定数以上の温度制御配管系20の各インバータ付き分散ポンプ22の回転数が焼損防止最小回転数になる際には、熱源機11の最小流量を確保するために、流量調節器35からの指令に基づいて、インバータ付き一次ポンプ制御回路36aを介してインバータ付き一次ポンプ41の流量、及びヘッダ間流量調整弁43の開度を制御する。
Further, the heat medium temperature is measured by the thermometer 23 in each temperature control piping system 20 which is each dispersion pump system, and the heat medium mixing between the bypass constituted by the three-way valve 21 and the bypass pipe 25 and the heat medium forward main pipeline 16 is performed. When the temperature going to the load due to the air temperature exceeds the minimum value during cooling or below the maximum value during heating, control is performed to change the heat source device outlet heat medium temperature setting value such as the central refrigerator. Therefore, the COP improvement of the refrigerator that is the heat source unit 11 can be expected. For example, the temperature of the cold water outlet when heat is exchanged with the heat medium in the evaporator in the heat source unit 11 can be increased to 8 ° C. or 9 ° C. in the fall and winter, while the temperature set at 7 ° C. in the summer It becomes.
Also in the present embodiment, when the zone load is reduced and the rotation speed of each inverter-equipped dispersion pump 22 of the temperature control piping system 20 of a certain number or more becomes the minimum rotation speed to prevent burning, the minimum of the heat source unit 11 is used. In order to ensure the flow rate, the flow rate of the primary pump 41 with the inverter and the opening degree of the inter-header flow rate adjustment valve 43 are controlled via the primary pump control circuit 36a with the inverter based on a command from the flow rate regulator 35.

なお、上記各実施形態では、熱源装置(熱源機11)として、圧縮式冷凍機を例に説明したが、吸収式冷凍機でも、冷温水発生機でも、温水ボイラでも、熱媒体を水とする各種熱源機11を用いても良い。
また、本発明の係る空調配管システムを第一実施形態、第二実施形態、第三実施形態に基づいて説明したが、本発明はこれに限らず、例えば、図11に示す従来の一次ポンプ方式及び図12に示す従来の一次ポンプ二次ポンプ方式における温度制御配管系を、上記各実施形態において説明した温度制御配管系20とすることによって、上記各実施形態と同様の作用効果を奏することが可能となる。
In each of the above-described embodiments, the compression type refrigerator is described as an example of the heat source device (heat source unit 11). However, the heat medium is water regardless of whether it is an absorption type refrigerator, a cold / hot water generator, or a hot water boiler. Various heat source machines 11 may be used.
Moreover, although the air-conditioning piping system which concerns on this invention was demonstrated based on 1st embodiment, 2nd embodiment, 3rd embodiment, this invention is not limited to this, For example, the conventional primary pump system shown in FIG. And the temperature control piping system in the conventional primary pump secondary pump system shown in FIG. 12 is the temperature control piping system 20 described in each of the above embodiments, so that the same operational effects as those of the above embodiments can be obtained. It becomes possible.

1,2,3 空調配管システム
11 熱源機
12 流量調整弁
13 往きヘッダ
14 還りヘッダ
15 インバータ付き流量補償用ポンプ
15a 一次バイパス管
16 熱媒体往き主管路
17 熱媒体還り主管路
18 熱媒体往き管路
19 熱媒体還り管路
20 温度制御配管系
20a 温度制御配管系主管
21 三方弁
22 インバータ付き分散ポンプ
23 温度計
24 空調機
25 バイパス管
26 空調ゾーン
32 往き温度伝送計装線
33 セレクタ
34 温度調節器
35 流量調節器
36 インバータ付き流量補償用ポンプ制御回路
36a インバータ付き一次ポンプ制御回路
37 流量計
40 熱量計
41 インバータ付き一次ポンプ
44 インバータ付き二次ポンプ
47 圧力調節器
1, 2, 3 Air-conditioning piping system 11 Heat source machine 12 Flow rate adjusting valve 13 Outgoing header 14 Return header 15 Flow compensation pump 15a with inverter Primary bypass pipe 16 Heat medium return main line 17 Heat medium return main line 18 Heat medium return line 18 19 Heat medium return pipe 20 Temperature control piping system 20a Temperature control piping system main pipe 21 Three-way valve 22 Dispersion pump 23 with inverter 23 Thermometer 24 Air conditioner 25 Bypass pipe 26 Air conditioning zone 32 Outward temperature transmission instrumentation line 33 Selector 34 Temperature controller 35 Flow controller 36 Flow compensation pump control circuit with inverter 36a Primary pump control circuit with inverter 37 Flow meter 40 Calorimeter 41 Primary pump with inverter 44 Secondary pump with inverter 47 Pressure controller

Claims (4)

入口側から出口側に向かって、熱媒体往き管路に三方弁、インバータ付き分散ポンプ、温度計及び空調機を備え、前記空調機の出口側に熱媒体還り管路を備えると共に、前記三方弁と前記熱媒体還り管路とを繋ぐバイパス管を備えて、複数のゾーンをそれぞれ独立して前記空調機により熱媒体と空気とを熱交換して空調するための複数の温度制御配管系と、
前記複数の温度制御配管系に温度調整した熱媒体をインバータ付き分散ポンプの搬送力により供給する熱源装置と、
前記熱源装置の出口側に繋がると共に前記複数の温度制御配管系の入口側に繋がる熱媒体往き主管路と、
前記熱源装置の入口側に繋がると共に前記複数の温度制御配管系の出口側に繋がる熱媒体還り主管路と、
前記複数の温度制御配管系の往き側に前記熱媒体往き主管路を介して途中で繋がる往きヘッダと、
前記複数の温度制御配管系の還り側に前記熱媒体還り主管路を介して途中で繋がる還りヘッダと、
前記往きヘッダと前記還りヘッダとを繋ぐ、前記熱源装置の最小流量を確保するためのインバータ付き流量補償用ポンプを備えた一次バイパス管と、
前記各温度計からの前記熱媒体の温度を入力し、最低温度又は最高温度を選択するセレクタ及びセレクタ出力信号を基に演算し前記熱源装置の熱媒体設定温度を決定する信号を発する温度指示調節計を有し、かつ前記インバータ付き流量補償用ポンプの回転制御を行う一次側制御装置と、
前記ゾーンの負荷に応じて前記インバータ付き分散ポンプの回転制御、前記三方弁の切換制御を行う二次側制御装置と
を備え、
前記二次側制御装置は、前記空調機の定格運転時には、前記バイパス管を閉じ勝手となるように前記三方弁を制御すると共に、前記インバータ付き分散ポンプを稼働させ、前記空調機の部分負荷運転時には、前記ゾーンの負荷に応じて前記インバータ付き分散ポンプの流量を制御し、前記空調機の停止時には、前記インバータ付き分散ポンプを停止して、前記三方弁の前記熱媒体往き主管路側を閉とするように制御し、前記熱媒体往き主管路からの前記熱媒体の流入を止めると共に前記バイパス管を開くように前記三方弁を制御し、かつ前記一次側制御装置は、前記複数の温度制御配管系の一定数が前記インバータ付き分散ポンプを停止した状態では、前記インバータ付き流量補償用ポンプを駆動させて前記熱源装置の最小流量を確保し、前記複数の温度制御配管系の全てが前記三方弁の熱媒体往き管路上流側と接続される弁体を絞られている状態では、前記熱源装置の出口熱媒体設定温度を、前記複数の温度制御配管系の前記温度計計測値からセレクタが選択した前記最低温度又は前記最高温度を元に、可変制御を行う
ことを特徴とする空調配管システム。
From the inlet side to the outlet side, the heat medium outlet line is provided with a three-way valve, a dispersion pump with an inverter, a thermometer and an air conditioner, and the heat medium return line is provided on the outlet side of the air conditioner, and the three-way valve And a plurality of temperature control piping systems for air-conditioning the plurality of zones independently by heat exchange between the heat medium and air by the air conditioner, respectively, and a bypass pipe connecting the heat medium return pipe line,
A heat source device for supplying a heat medium adjusted in temperature to the plurality of temperature control piping systems by a conveying force of a dispersion pump with an inverter;
A heat medium forward main line connected to an outlet side of the heat source device and connected to an inlet side of the plurality of temperature control piping systems;
A heat medium return main conduit connected to the inlet side of the heat source device and connected to the outlet side of the plurality of temperature control piping systems;
A forward header connected to the forward side of the plurality of temperature control piping systems on the way through the heat medium forward main line;
A return header connected to the return side of the plurality of temperature control piping systems through the heat medium return main pipeline,
A primary bypass pipe having a flow rate compensation pump with an inverter for securing a minimum flow rate of the heat source device, connecting the forward header and the return header;
Temperature indication adjustment for inputting a temperature of the heat medium from each thermometer, calculating a minimum temperature or a maximum temperature, and calculating a heat medium set temperature of the heat source device by calculating based on a selector and a selector output signal A primary-side control device that has a meter and performs rotation control of the inverter-compensated flow compensation pump;
A secondary side control device that performs rotation control of the dispersion pump with the inverter according to the load of the zone, and switching control of the three-way valve ,
The secondary-side control device controls the three-way valve so that the bypass pipe is closed during the rated operation of the air conditioner, operates the distributed pump with the inverter, and performs partial load operation of the air conditioner. Sometimes, the flow rate of the inverter-equipped dispersion pump is controlled according to the load of the zone, and when the air conditioner is stopped, the inverter-equipped dispersion pump is stopped, and the heat medium going main line side of the three-way valve is closed. The three-way valve is controlled to stop the inflow of the heat medium from the heat medium outgoing main pipe line and to open the bypass pipe, and the primary side control device is configured to control the plurality of temperature control pipes. in a state in which a certain number stops the inverter with the dispersion pump systems to ensure minimum flow rate of the heat source device by driving the inverter with flow compensation pump, before In a state where all of the plurality of temperature control piping systems have throttled the valve body connected to the upstream side of the three-way valve, the plurality of temperature controls are set to the outlet heat medium set temperature of the heat source device. An air conditioning piping system that performs variable control based on the minimum temperature or the maximum temperature selected by a selector from the thermometer measurement values of the piping system.
請求項1に記載の空調配管システムにおいて、
前記一次側制御装置は、前記複数の温度制御配管系の一定数が前記インバータ付き分散ポンプを停止した状態を、前記熱媒体還り主管路に設けた流量計の計測値に基づいて判断し、前記インバータ付き流量補償用ポンプの駆動及び回転数を制御する
ことを特徴とする空調配管システム。
In the air-conditioning piping system according to claim 1,
The primary side control device determines a state in which a constant number of the plurality of temperature control piping systems has stopped the dispersion pump with the inverter based on a measurement value of a flow meter provided in the heat medium return main pipeline, An air conditioning piping system characterized by controlling the drive and rotation speed of a flow compensation pump with an inverter .
入口側から出口側に向かって、熱媒体往き管路に三方弁、インバータ付き分散ポンプ、温度計及び空調機を備え、前記空調機の出口側に熱媒体還り管路を備えると共に、前記三方弁と前記熱媒体還り管路とを繋ぐバイパス管を備えて、複数のゾーンをそれぞれ独立して前記空調機により熱媒体と空気とを熱交換して空調するための複数の温度制御配管系と、
前記複数の温度制御配管系に供給される前記熱媒体を温度調整する熱源装置と、
前記熱源装置の出口側に繋がると共に前記複数の温度制御配管系の入口側に繋がる熱媒体往き主管路と、
前記熱源装置の入口側に繋がると共に前記複数の温度制御配管系の出口側に繋がる熱媒体還り主管路と、
前記複数の温度制御配管系の往き側に前記熱媒体往き主管路を介して途中で繋がる往きヘッダと、
前記複数の温度制御配管系の還り側に前記熱媒体還り主管路を介して途中で繋がる還りヘッダと、
前記往きヘッダと前記還りヘッダとをヘッダ間流量調整弁を介して繋ぐヘッダ間バイパス管と、
前記熱媒体還り主管路の前記熱源装置の近傍に位置し、前記熱源装置から前記往きヘッダまでの熱媒体往き主管路、前記還りヘッダまでの熱媒体還り主管路、及び前記熱源装置の熱媒体搬送圧力損失分の揚程を有して前記熱媒体を搬送すると共に、前記熱源装置の最小流量を確保するためのインバータ付き一次ポンプと、
前記各温度計からの前記熱媒体の温度を入力し、最低温度又は最高温度を選択するセレクタ及びセレクタ出力信号を基に演算し前記熱源装置の熱媒体設定温度を決定する信号を発する温度指示調節計を有し、かつ前記インバータ付き一次ポンプの回転制御を行う一次側制御装置と、
前記ゾーンの負荷に応じて前記インバータ付き分散ポンプの回転制御、前記三方弁の切換制御を行う二次側制御装置と
を備え、
前記二次側制御装置は、前記空調機の定格運転時には、前記バイパス管を閉じ勝手となるように前記三方弁を制御すると共に、前記インバータ付き分散ポンプを稼働させ、前記空調機の部分負荷運転時には、前記ゾーンの負荷に応じて前記インバータ付き分散ポンプの流量を制御し、前記空調機の停止時には、前記インバータ付き分散ポンプを停止して、前記三方弁の前記熱媒体往き主管路側を閉とするように制御し、前記熱媒体往き主管路からの前記熱媒体の流入を止めると共に前記バイパス管を開くように前記三方弁を制御し、かつ前記一次側制御装置は、前記複数の温度制御配管系の一定数が前記インバータ付き分散ポンプを停止した状態では、前記インバータ付き一次ポンプの流量を調整しつつ前記ヘッダ間流量調整弁の開度を制御して前記熱源装置の最小流量を確保し、前記複数の温度制御配管系の全てが前記三方弁の熱媒体往き管路上流側と接続される弁体を絞られている状態では、前記熱源装置の出口熱媒体設定温度を、前記複数の温度制御配管系の前記温度計計測値からセレクタが選択した前記最低温度又は前記最高温度を元に、可変制御を行う
ことを特徴とする空調配管システム。
From the inlet side to the outlet side, the heat medium outlet line is provided with a three-way valve, a dispersion pump with an inverter, a thermometer and an air conditioner, and the heat medium return line is provided on the outlet side of the air conditioner, and the three-way valve And a plurality of temperature control piping systems for air-conditioning the plurality of zones independently by heat exchange between the heat medium and air by the air conditioner, respectively, and a bypass pipe connecting the heat medium return pipe line,
A heat source device for adjusting the temperature of the heat medium supplied to the plurality of temperature control piping systems;
A heat medium forward main line connected to an outlet side of the heat source device and connected to an inlet side of the plurality of temperature control piping systems;
A heat medium return main conduit connected to the inlet side of the heat source device and connected to the outlet side of the plurality of temperature control piping systems;
A forward header connected to the forward side of the plurality of temperature control piping systems on the way through the heat medium forward main line;
A return header connected to the return side of the plurality of temperature control piping systems through the heat medium return main pipeline,
An inter-header bypass pipe connecting the forward header and the return header via an inter-header flow control valve;
Heat medium return main pipeline located near the heat source device in the heat medium return main pipeline, the heat medium return main pipeline from the heat source device to the forward header, the heat medium return main pipeline to the return header, and the heat medium conveyance of the heat source device A primary pump with an inverter for conveying the heat medium having a head for a pressure loss and ensuring a minimum flow rate of the heat source device;
Temperature indication adjustment for inputting a temperature of the heat medium from each thermometer, calculating a minimum temperature or a maximum temperature, and calculating a heat medium set temperature of the heat source device by calculating based on a selector and a selector output signal A primary-side control device that has a meter and performs rotation control of the primary pump with the inverter;
A secondary-side control device that performs rotation control of the inverter-equipped distributed pump and switching control of the three-way valve according to the load of the zone;
With
The secondary-side control device controls the three-way valve so that the bypass pipe is closed during the rated operation of the air conditioner, operates the distributed pump with the inverter, and performs partial load operation of the air conditioner. Sometimes, the flow rate of the inverter-equipped dispersion pump is controlled according to the load of the zone, and when the air conditioner is stopped, the inverter-equipped dispersion pump is stopped, and the heat medium going main line side of the three-way valve is closed. The three-way valve is controlled to stop the inflow of the heat medium from the heat medium outgoing main pipe line and to open the bypass pipe, and the primary side control device is configured to control the plurality of temperature control pipes. In a state where a certain number of system stops the dispersion pump with inverter, the opening degree of the flow adjustment valve between headers is controlled while adjusting the flow rate of the primary pump with inverter. In the state where the minimum flow rate of the heat source device is ensured and the valve body connected to the upstream side of the heat medium outlet pipe of the three-way valve is throttled, all of the plurality of temperature control piping systems An air conditioning piping system that performs variable control on the outlet heat medium set temperature based on the lowest temperature or the highest temperature selected by a selector from the thermometer measurement values of the plurality of temperature control piping systems.
入口側から出口側に向かって、熱媒体往き管路に三方弁、インバータ付き分散ポンプ、温度計及び空調機を備え、前記空調機の出口側に熱媒体還り管路を備えると共に、前記三方弁と前記熱媒体還り管路とを繋ぐバイパス管を備えて、複数のゾーンをそれぞれ独立して前記空調機により熱媒体と空気とを熱交換して空調するための複数の温度制御配管系と、
前記複数の温度制御配管系に供給される前記熱媒体を温度調整する熱源装置と、
前記熱源装置の出口側に繋がると共に前記複数の温度制御配管系の入口側に繋がる熱媒体往き主管路と、
前記熱源装置の入口側に繋がると共に前記複数の温度制御配管系の出口側に繋がる熱媒体還り主管路と、
前記複数の温度制御配管系の往き側に前記熱媒体往き主管路を介して途中で繋がる往きヘッダと、
前記複数の温度制御配管系の還り側に前記熱媒体還り主管路を介して途中で繋がる還りヘッダと、
前記複数の温度制御配管系へ前記熱媒体を搬送するための、前記往きヘッダ以降の前記熱媒体往き主管路、及び前記還りヘッダまでの前記熱媒体還り主管路の熱媒体搬送圧力損失分の揚程を有する前記熱媒体往き主管の往きヘッダ後流に位置するインバータ付き二次ポンプと、
前記往きヘッダと前記還りヘッダとをヘッダ間流量調整弁を介して繋ぐヘッダ間バイパス管と、
前記熱媒体還り主管路の前記熱源装置の近傍に位置し、前記熱源装置から前記往きヘッダまでの熱媒体往き主管路、前記還りヘッダまでの熱媒体還り主管路、及び前記熱源装置の熱媒体搬送圧力損失分の揚程を有して前記熱媒体を搬送すると共に、前記熱源装置の最小流量を確保するためのインバータ付き一次ポンプと、
前記各温度計からの前記熱媒体の温度を入力し、最低温度又は最高温度を選択するセレクタ及びセレクタ出力信号を基に演算し前記熱源装置の熱媒体設定温度を決定する信号を発する温度指示調節計を有し、かつ前記インバータ付き一次ポンプの回転制御を行う一次側制御装置と、
前記ゾーンの負荷に応じて前記インバータ付き分散ポンプの回転制御、前記三方弁の切換制御を行う二次側制御装置と
を備え、
前記二次側制御装置は、前記空調機の定格運転時には、前記バイパス管を閉じ勝手となるように前記三方弁を制御すると共に、前記インバータ付き分散ポンプを稼働させ、前記空調機の部分負荷運転時には、前記ゾーンの負荷に応じて前記インバータ付き分散ポンプの流量を制御し、前記空調機の停止時には、前記インバータ付き分散ポンプを停止して、前記三方弁の前記熱媒体往き主管路側を閉とするように制御し、前記熱媒体往き主管路からの前記熱媒体の流入を止めると共に前記バイパス管を開くように前記三方弁を制御し、かつ前記一次側制御装置は、前記複数の温度制御配管系の一定数が前記インバータ付き分散ポンプを停止した状態では、前記インバータ付き一次ポンプの流量を調整しつつ前記ヘッダ間流量調整弁の開度を制御して前記熱源装置の最小流量を確保し、前記複数の温度制御配管系の全てが前記三方弁の熱媒体往き管路上流側と接続される弁体を絞られている状態では、前記熱源装置の出口熱媒体設定温度を、前記複数の温度制御配管系の前記温度計計測値からセレクタが選択した前記最低温度又は前記最高温度を元に、可変制御を行う
ことを特徴とする空調配管システム。
From the inlet side to the outlet side, the heat medium outlet line is provided with a three-way valve, a dispersion pump with an inverter, a thermometer and an air conditioner, and the heat medium return line is provided on the outlet side of the air conditioner, and the three-way valve And a plurality of temperature control piping systems for air-conditioning the plurality of zones independently by heat exchange between the heat medium and air by the air conditioner, respectively, and a bypass pipe connecting the heat medium return pipe line,
A heat source device for adjusting the temperature of the heat medium supplied to the plurality of temperature control piping systems;
A heat medium forward main line connected to an outlet side of the heat source device and connected to an inlet side of the plurality of temperature control piping systems;
A heat medium return main conduit connected to the inlet side of the heat source device and connected to the outlet side of the plurality of temperature control piping systems;
A forward header connected to the forward side of the plurality of temperature control piping systems on the way through the heat medium forward main line;
A return header connected to the return side of the plurality of temperature control piping systems through the heat medium return main pipeline,
The heating medium forward main pipe after the forward header and the lift for the heat medium transport pressure loss of the heat medium return main pipe to the return header for transporting the heat medium to the plurality of temperature control piping systems A secondary pump with an inverter located in the downstream of the forward header of the heat medium forward main pipe,
An inter-header bypass pipe connecting the forward header and the return header via an inter-header flow control valve;
Heat medium return main pipeline located near the heat source device in the heat medium return main pipeline, the heat medium return main pipeline from the heat source device to the forward header, the heat medium return main pipeline to the return header, and the heat medium conveyance of the heat source device A primary pump with an inverter for conveying the heat medium having a head for a pressure loss and ensuring a minimum flow rate of the heat source device;
Temperature indication adjustment for inputting a temperature of the heat medium from each thermometer, calculating a minimum temperature or a maximum temperature, and calculating a heat medium set temperature of the heat source device by calculating based on a selector and a selector output signal A primary-side control device that has a meter and performs rotation control of the primary pump with the inverter;
A secondary side control device that performs rotation control of the dispersion pump with the inverter according to the load of the zone, and switching control of the three-way valve ,
The secondary-side control device controls the three-way valve so that the bypass pipe is closed during the rated operation of the air conditioner, operates the distributed pump with the inverter, and performs partial load operation of the air conditioner. Sometimes, the flow rate of the inverter-equipped dispersion pump is controlled according to the load of the zone, and when the air conditioner is stopped, the inverter-equipped dispersion pump is stopped, and the heat medium going main line side of the three-way valve is closed. The three-way valve is controlled to stop the inflow of the heat medium from the heat medium outgoing main pipe line and to open the bypass pipe, and the primary side control device is configured to control the plurality of temperature control pipes. In a state where a certain number of system stops the dispersion pump with inverter, the opening degree of the flow adjustment valve between headers is controlled while adjusting the flow rate of the primary pump with inverter. Ensuring the minimum flow rate of the heat source apparatus Te, in the state in which all of the plurality of temperature control piping system is turned down the valve element which is connected to the heat medium forward pipe path downstream of said three-way valve, the heat source device An air conditioning piping system that performs variable control on the outlet heat medium set temperature based on the lowest temperature or the highest temperature selected by a selector from the thermometer measurement values of the plurality of temperature control piping systems.
JP2011118424A 2011-05-26 2011-05-26 Air conditioning piping system Active JP5595975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011118424A JP5595975B2 (en) 2011-05-26 2011-05-26 Air conditioning piping system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011118424A JP5595975B2 (en) 2011-05-26 2011-05-26 Air conditioning piping system

Publications (2)

Publication Number Publication Date
JP2012247113A JP2012247113A (en) 2012-12-13
JP5595975B2 true JP5595975B2 (en) 2014-09-24

Family

ID=47467720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011118424A Active JP5595975B2 (en) 2011-05-26 2011-05-26 Air conditioning piping system

Country Status (1)

Country Link
JP (1) JP5595975B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6310315B2 (en) * 2014-04-24 2018-04-11 荏原冷熱システム株式会社 Heat source system
JP6453715B2 (en) * 2015-06-09 2019-01-16 株式会社Nttファシリティーズ Air conditioning system and air conditioning system program
CN108471066B (en) * 2018-02-07 2024-02-27 酷仑冷却技术(上海)有限公司 Closed cooling system for container type converter

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08278044A (en) * 1995-04-04 1996-10-22 Shimizu Corp Central heat source type air conditioner
JP3583536B2 (en) * 1995-12-14 2004-11-04 高砂熱学工業株式会社 Air conditioner, air conditioning system and control method thereof
JP2781539B2 (en) * 1996-01-31 1998-07-30 関西電力株式会社 Air conditioner
JP3708660B2 (en) * 1997-02-20 2005-10-19 高砂熱学工業株式会社 Liquid piping equipment for heat utilization
JP3666167B2 (en) * 1997-02-25 2005-06-29 松下電工株式会社 Air conditioning control device and air conditioning control method using the same
JP2001241735A (en) * 2000-02-24 2001-09-07 Matsushita Electric Works Ltd Air conditioning system and its controlling method
JP3652974B2 (en) * 2000-09-26 2005-05-25 ダイダン株式会社 Primary pump heat source variable flow rate system
JP4600139B2 (en) * 2004-10-06 2010-12-15 パナソニック株式会社 Air conditioner and control method thereof
JP2007263531A (en) * 2006-03-30 2007-10-11 Osaka Gas Co Ltd Heat supply system
JP2008175409A (en) * 2007-01-16 2008-07-31 Mitsubishi Electric Corp Operation control method of air conditioning system, and air conditioning system
JP4829818B2 (en) * 2007-03-15 2011-12-07 新日本空調株式会社 Operation control method for 1 pump heat source equipment
JP5350166B2 (en) * 2008-10-09 2013-11-27 三機工業株式会社 Heat medium piping system
US20110146339A1 (en) * 2008-10-29 2011-06-23 Koji Yamashita Air-conditioning apparatus
JP5476835B2 (en) * 2009-07-24 2014-04-23 横河電機株式会社 Air conditioning system

Also Published As

Publication number Publication date
JP2012247113A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
JP4594276B2 (en) Cold / hot water control method for cold / hot heat source machine and air conditioning system used therefor
TWI641786B (en) Method for improving operational efficiency of a cooling system through retrofitting a building with a master controller
US9562701B2 (en) Temperature control system and air conditioning system
JP5501179B2 (en) Medium temperature source system with free cooling
JP5274222B2 (en) Heat source control system for air conditioning equipment
EP2837898B1 (en) Air-conditioning system
JP5869394B2 (en) Heat medium piping system
JP2005069554A (en) Water heat source air conditioning system
JP2001091087A (en) Method for controlling refrigerator of absorption heater chiller
JP6644559B2 (en) Heat source control system, control method and control device
JP4651551B2 (en) Air conditioning system
JP5595975B2 (en) Air conditioning piping system
JP4440147B2 (en) Operation control method for two-pump heat source equipment
JP2001241735A (en) Air conditioning system and its controlling method
JP5195696B2 (en) Cold water circulation system
JP2007017135A (en) Air conditioning system
JP3733371B2 (en) Temperature control system
JP2003130428A (en) Connection type cold/hot water device
JP4477914B2 (en) Air conditioning system
JP5318446B2 (en) Outside air intake system
JP4369841B2 (en) Heat medium piping system
JP5285925B2 (en) Air conditioning system
WO2016024504A1 (en) Load distribution system
KR102580588B1 (en) Heat source system
JPH09287798A (en) Air conditioning unit and air conditioning system incorporating air conditioning unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140806

R150 Certificate of patent or registration of utility model

Ref document number: 5595975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250