JP4369841B2 - Heat medium piping system - Google Patents

Heat medium piping system Download PDF

Info

Publication number
JP4369841B2
JP4369841B2 JP2004276611A JP2004276611A JP4369841B2 JP 4369841 B2 JP4369841 B2 JP 4369841B2 JP 2004276611 A JP2004276611 A JP 2004276611A JP 2004276611 A JP2004276611 A JP 2004276611A JP 4369841 B2 JP4369841 B2 JP 4369841B2
Authority
JP
Japan
Prior art keywords
heat medium
heat
air conditioner
loop
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004276611A
Other languages
Japanese (ja)
Other versions
JP2006090620A (en
Inventor
彰夫 山下
植也 山下
浩一 新村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2004276611A priority Critical patent/JP4369841B2/en
Publication of JP2006090620A publication Critical patent/JP2006090620A/en
Application granted granted Critical
Publication of JP4369841B2 publication Critical patent/JP4369841B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はビル、工場等の空気調和設備における冷水、温水等の熱媒体を送給するための熱媒体配管システムに関するものである。   The present invention relates to a heat medium piping system for supplying a heat medium such as cold water or hot water in an air conditioning facility such as a building or a factory.

複数の店舗及び事務所等が入居するオフィスビル等の建造物には、複数の空調機が設けられ、各空調機には、熱源機からポンプにより冷水又は温水等の熱媒体が各空調機の熱負荷に対応した流量で供給され、冷房や暖房が行なわれる。而して、斯かる空調機を備えた熱媒体配管システムの従来の一例は図6に示されている。   A plurality of air conditioners are provided in a building such as an office building where a plurality of stores and offices occupy, and a heat medium such as cold water or hot water is supplied to each air conditioner by a pump from a heat source unit. It is supplied at a flow rate corresponding to the heat load, and cooling and heating are performed. Thus, a conventional example of a heat medium piping system provided with such an air conditioner is shown in FIG.

図6中、1は冷凍機又はボイラのような熱源機、2は熱源機1の出口側に接続されて冷水又は温水等の熱媒体が送給される熱媒体往主管路、3は熱媒体往主管路2から分岐した複数の熱媒体往管路、4は入口側が各熱媒体往管路3に接続されて互いに並列配置されたAHU等の空調機、5は各空調機4の出口側に接続された熱媒体還管路、6は各熱媒体還管路5が合流するよう接続されると共に、熱源機1の入口側に接続された熱媒体還主管路、7は熱媒体往主管路2側においては、最も熱源機1側の空調機4よりも熱媒体流れ方向上流側において熱媒体往主管路2に接続され、熱媒体還主管路6側においては、最も熱源機1側の空調機4よりも熱媒体流れ方向下流側において熱媒体還主管路6に接続されたバイパス管路である。   In FIG. 6, 1 is a heat source device such as a refrigerator or a boiler, 2 is a heat medium forward main line connected to the outlet side of the heat source device 1 and supplied with a heat medium such as cold water or hot water, 3 is a heat medium A plurality of heat medium outgoing pipes 4 branching from the outgoing main pipe 2 are connected to the respective heat medium outgoing pipes 3 on the inlet side, and are arranged in parallel with each other, and 5 is an outlet side of each air conditioner 4 The heat medium return pipes 6 connected to each other are connected so that the respective heat medium return pipes 5 merge, the heat medium return main pipe connected to the inlet side of the heat source unit 1, and 7 the heat medium forward main pipe On the path 2 side, it is connected to the heat medium forward main line 2 on the upstream side in the heat medium flow direction from the air conditioner 4 on the most heat source apparatus 1 side, and on the heat medium return main line 6 side on the most heat source apparatus 1 side. It is a bypass line connected to the heat medium return main line 6 on the downstream side in the heat medium flow direction from the air conditioner 4.

熱媒体往主管路2には、バイパス管路7の熱媒体往主管路2接続位置よりも熱源機1側において熱源ポンプ8が接続されると共に、熱媒体流れ方向最上流側における熱媒体往管路3の接続位置よりもバイパス管路7側において熱媒体ポンプ9が接続され、各熱媒体還管路5には流量制御弁10が設けられている。   A heat source pump 8 is connected to the heat medium forward main line 2 on the heat source unit 1 side of the bypass line 7 relative to the connection position of the heat medium forward main line 2, and the heat medium forward pipe on the most upstream side in the heat medium flow direction. A heat medium pump 9 is connected on the bypass line 7 side of the connection position of the line 3, and each heat medium return line 5 is provided with a flow rate control valve 10.

図6に示すシステムでは、冷却若しくは加熱されて熱源機1から送出された熱媒体は、熱源ポンプ8により熱媒体往主管路2を送給され、一部の熱媒体はバイパス管路7を通って熱媒体還主管路6へ流入する。   In the system shown in FIG. 6, the heat medium cooled or heated and sent from the heat source unit 1 is sent to the heat medium forward main line 2 by the heat source pump 8, and a part of the heat medium passes through the bypass line 7. And flows into the heat medium return main pipe 6.

又、残りの熱媒体は熱媒体ポンプ9により更に熱媒体往主管路2を送給され、熱媒体往管路3から空調機4へ導入されて冷熱若しくは温熱を消費し、熱媒体還管路5を通って熱媒体還主管路6へ流入し、バイパス管路7からの熱媒体と共に、熱源機1へ戻る。この際、空調機4を通る熱媒体は、空調機4を経て対象空間に送給される空気により対象空間が所定の温度になるよう、流量制御弁10により流量制御される。   Further, the remaining heat medium is further fed through the heat medium forward main line 2 by the heat medium pump 9 and is introduced from the heat medium forward line 3 to the air conditioner 4 to consume cold or hot heat, and the heat medium return line. 5 flows into the heat medium return main line 6 and returns to the heat source unit 1 together with the heat medium from the bypass line 7. At this time, the flow rate of the heat medium passing through the air conditioner 4 is controlled by the flow control valve 10 so that the target space has a predetermined temperature by the air supplied to the target space through the air conditioner 4.

空調機を備えた熱媒体配管システムの従来の他の例は特許文献1に示すものがあり、図7に示されている。図7の例では、熱媒体往主管路2には図6に示す熱源ポンプ8や熱媒体ポンプ9は設けず、且つバイパス管路7も設けず、各熱媒体往管路3に、インバータ制御による回転数制御を行い得るようにした熱媒体ポンプ11を設けている。図7中、図6に示すものと同一のものには同一の符号が付してある。   Another conventional example of a heat medium piping system provided with an air conditioner is shown in Patent Document 1 and is shown in FIG. In the example of FIG. 7, the heat medium forward main line 2 is not provided with the heat source pump 8 or the heat medium pump 9 shown in FIG. 6, and the bypass line 7 is not provided. There is provided a heat medium pump 11 capable of controlling the number of revolutions. In FIG. 7, the same components as those shown in FIG. 6 are denoted by the same reference numerals.

図7の場合は、熱源機1からの熱媒体は熱媒体往主管路2及び熱媒体往管路3を経て熱媒体ポンプ11へ導入され、熱媒体ポンプ11から熱媒体往管路3を経て空調機4へ送給され、冷熱若しくは温熱を消費して熱媒体還管路5を通り熱媒体還主管路6へ送給され、熱媒体還主管路6を経て熱源機1へ戻る。この際、空調機4を通る熱媒体は、空調機4を経て対象空間に送給される空気により対象空間が所定の温度になるよう、熱媒体ポンプ11の回転数がインバータ制御されることにより流量制御される。
特許第3490986号公報
In the case of FIG. 7, the heat medium from the heat source device 1 is introduced to the heat medium pump 11 via the heat medium forward main line 2 and the heat medium forward line 3, and from the heat medium pump 11 via the heat medium forward line 3. It is fed to the air conditioner 4, consumes cold or heat, passes through the heat medium return pipe 5, is fed to the heat medium return main pipe 6, and returns to the heat source machine 1 through the heat medium return main pipe 6. At this time, the heat medium passing through the air conditioner 4 is subjected to inverter control of the rotation speed of the heat medium pump 11 so that the target space has a predetermined temperature by the air supplied to the target space through the air conditioner 4. The flow rate is controlled.
Japanese Patent No. 3490986

図6に示す熱媒体配管システムにおいては、熱媒体の流量制御は流量制御弁10の開度調整により行なわれるため、流量制御弁10を通る熱媒体の流れに常に流動抵抗による圧力損失が生じ、その結果、熱媒体ポンプ9の消費動力が大きくなるうえ、空調機4へ送給しない熱媒体はバイパス管路7をバイパスさせるために熱源ポンプ8も必要となる。その結果、図6に示すシステムでは、熱媒体の搬送動力が大きくなり、省エネルギ上不利である。   In the heat medium piping system shown in FIG. 6, since the flow control of the heat medium is performed by adjusting the opening degree of the flow control valve 10, a pressure loss due to the flow resistance always occurs in the flow of the heat medium passing through the flow control valve 10, As a result, the power consumption of the heat medium pump 9 is increased, and the heat source pump 8 is also required for bypassing the bypass pipe 7 for the heat medium not supplied to the air conditioner 4. As a result, the system shown in FIG. 6 is disadvantageous in terms of energy saving because the conveyance power of the heat medium increases.

図7に示す特許文献1の熱媒体配管システムでは、熱媒体の流量制御は、各空調機4で要求される熱媒体の流量を基に熱媒体ポンプの回転数制御により行なっているため、図6の場合よりも熱媒体の搬送動力を削減することができる。しかしながら、熱媒体は熱媒体ポンプ11のみで搬送しているため、例えば、空調機4側の要求熱媒体流量がほとんどなくなったとしても、熱源機1の凍結等の不具合を避けるための最低流量は確保せざるを得ず、その場合、空調機1を通して熱媒体の流量を確保するため、空調機4の熱交換器の圧力損失や空調機4までの配管抵抗を加えた搬送となり、熱媒体の搬送動力の削減を充分に行なうことが困難であるという問題がある。   In the heat medium piping system of Patent Document 1 shown in FIG. 7, the flow control of the heat medium is performed by controlling the number of rotations of the heat medium pump based on the flow rate of the heat medium required by each air conditioner 4. As compared with the case of 6, the conveyance power of the heat medium can be reduced. However, since the heat medium is transported only by the heat medium pump 11, for example, even if the required heat medium flow rate on the air conditioner 4 side almost disappears, the minimum flow rate for avoiding problems such as freezing of the heat source device 1 is In that case, in order to secure the flow rate of the heat medium through the air conditioner 1, the pressure loss of the heat exchanger of the air conditioner 4 and the piping resistance to the air conditioner 4 are added, and the heat medium There is a problem that it is difficult to sufficiently reduce the conveyance power.

本発明は、上述の実情に鑑み、熱媒体の搬送動力の削減を図ることができると共に、熱源機及び空調機を最も効率的に制御し得るようにした熱媒体配管システムを提供することを目的としてなしたものである。   An object of the present invention is to provide a heat medium piping system that can reduce the heat transfer power of the heat medium and that can control the heat source device and the air conditioner most efficiently in view of the above-described circumstances. It was made as.

請求項1の熱媒体配管システムは、
熱源機ループ、及び複数系統の空調機ループ、並びに前記熱源機ループと各空調機ループとを接続する熱搬送ループを備え、
熱源機ループは、
熱源機と、熱源ポンプと、熱搬送ループからの熱媒体を熱源機に送給する第一の熱媒体還管路と、熱源機からの熱媒体を熱搬送ループへ送給する第一の熱媒体往管路とを備え、且つ第一の熱媒体還管路又は第一の熱媒体往管路には前記熱源ポンプが設けられており、
空調機ループは、
空調機と、空調機ポンプと、熱搬送ループからの熱媒体を空調機へ送給する第二の熱媒体往管路と、空調機からの熱媒体を熱搬送ループへ送給する第二の熱媒体還管路とを備え、且つ第二の熱媒体往管路又は第二の熱媒体還管路には前記空調機ポンプが設けられており、
熱搬送ループは、
熱媒体循環ポンプと、熱媒体循環ポンプが設けられて熱媒体が送給される熱媒体循環管路とを備え、
前記複数系統の空調機ループは、前記熱搬送ループの熱媒体循環管路に沿い、熱媒体流れ方向上流側から下流側へ向けて順次配設されると共に、
各空調機ループの第二の熱媒体還管路は、当該空調機ループの第二の熱媒体往管路よりも熱媒体流れ方向下流側となるよう、前記熱搬送ループの熱媒体循環管路に接続され、
所定の空調機ループよりも熱媒体流れ方向下流側の空調機ループの第二の熱媒体往管路は、前記熱媒体流れ方向下流側の空調機ループに対する上流側の空調機ループの第二の熱媒体還管路よりも熱媒体流れ方向下流側に位置するよう、前記搬送ループの熱媒体循環管路に接続されているものである。
The heat medium piping system according to claim 1 is:
A heat source machine loop, a plurality of air conditioner loops, and a heat transfer loop connecting the heat source machine loop and each air conditioner loop,
The heat source machine loop
A heat source device, a heat source pump, a first heat medium return pipe for supplying the heat medium from the heat transfer loop to the heat source device, and a first heat for supplying the heat medium from the heat source device to the heat transfer loop. And the heat source pump is provided in the first heat medium return pipe or the first heat medium forward pipe,
Air conditioner loop
An air conditioner, an air conditioner pump, a second heat medium forward pipe that supplies the heat medium from the heat transfer loop to the air conditioner, and a second heat medium that supplies the heat medium from the air conditioner to the heat transfer loop. A heat medium return pipe, and the air conditioner pump is provided in the second heat medium forward pipe or the second heat medium return pipe,
The heat transfer loop
A heat medium circulation pump, and a heat medium circulation pipe provided with the heat medium circulation pump to which the heat medium is supplied,
The plurality of air conditioner loops are sequentially disposed from the upstream side to the downstream side in the heat medium flow direction along the heat medium circulation pipe of the heat transfer loop,
The heat medium circulation pipe of the heat transfer loop is such that the second heat medium return pipe of each air conditioner loop is downstream of the second heat medium forward pipe of the air conditioner loop in the heat medium flow direction. Connected to
The second heat medium forward pipe of the air conditioner loop downstream of the predetermined air conditioner loop in the heat medium flow direction is a second air medium loop upstream of the air conditioner loop downstream of the heat medium flow direction. so as to be positioned to the heat medium flow direction downstream side of the heat medium Kaekanro, those which are connected to the heat medium circulation conduit of the heat transport loop.

請求項2の熱媒体配管システムにおいては、熱源機ループは複数系統設置され、所定の熱源機ループにおいて熱搬送ループからの熱媒体を熱源機へ送給する第一の熱媒体還管路及び、熱源機からの熱媒体を熱搬送ループに送給する第一の熱媒体往管路を、熱搬送ループにおける熱媒体循環管路の空調機ループ接続部間に接続したものである。 In the heat medium piping system according to claim 2, a plurality of heat source machine loops are installed, and a first heat medium return pipe for supplying the heat medium from the heat transfer loop to the heat source machine in a predetermined heat source machine loop; and The first heat medium forward pipe for supplying the heat medium from the heat source device to the heat transfer loop is connected between the air conditioner loop connection portions of the heat medium circulation pipe in the heat transfer loop.

請求項3の熱媒体配管システムにおいては
熱媒体流れ方向最下流側に位置する空調機ループ以外の空調機ループは夫々バイパス管路を備え、
該バイパス管路は、
一端を、熱媒体流れ方向最下流側に位置する空調機ループ以外の空調機ループにおける第二の熱媒体還管路に接続されていると共に、
他端を、熱媒体流れ方向最下流側に位置する空調機ループの第二の熱媒体還管路接続部よりも下流側において熱搬送ループの熱媒体循環管路に接続され、
空調機ループにおける第二の熱媒体還管路には、該第二の熱媒体還管路のバイパス管路接続位置よりも熱媒体流れ方向下流側に位置するよう第一の弁手段が設けられ、
バイパス管路には第二の弁手段が設けられているものである
In the heat medium piping system of claim 3,
Each of the air conditioner loops other than the air conditioner loop located on the most downstream side in the heat medium flow direction has a bypass pipe line,
The bypass line is
One end is connected to the second heat medium return pipe in the air conditioner loop other than the air conditioner loop located on the most downstream side in the heat medium flow direction,
The other end is connected to the heat medium circulation line of the heat transfer loop on the downstream side of the second heat medium return line connection part of the air conditioner loop located on the most downstream side in the heat medium flow direction,
The second heat medium return pipe in the air conditioner loop is provided with a first valve means so as to be located on the downstream side in the heat medium flow direction from the bypass pipe connection position of the second heat medium return pipe. ,
The bypass line in which the second valve means is provided.

請求項4の熱媒体配管システムは、
熱負荷が所定の値よりも低い場合は、第一の弁手段を開き、且つ、第二の弁手段を閉止し、
熱負荷が所定の値以上の場合は、第一の弁手段を閉止し、且つ、第二の弁手段を開くよう構成したものである。
The heat medium piping system according to claim 4 is:
If the heat load is lower than a predetermined value, opening a first valve means, and, closing the second valve means,
When the heat load is a predetermined value or more, the first valve means is closed and the second valve means is opened.

請求項5の熱媒体配管システムにおいては、熱源ポンプ及び空調機ポンプ並びに熱媒体循環ポンプは回転数制御可能に構成されている。   In the heat medium piping system according to the fifth aspect, the heat source pump, the air conditioner pump, and the heat medium circulation pump are configured to be capable of controlling the rotational speed.

本発明の請求項1〜5記載の熱媒体配管システムによれば、熱源機ループ及び各空調機ループ並びに熱搬送ループ間では、夫々互いに干渉を受けることなく、各ループ間において各機器を夫々効率良く運転することが可能となり、又、各機器においての必要熱媒体流量を確保するために、高低差のない位置にある専用化された各種ポンプが熱媒体の流量を確保するので、揚程に無駄がなく、従って、熱媒体の搬送動力の削減が可能となると共に、熱源機及び空調機を最も効率的に制御することが可能となり、又、請求項2においては、熱源機ループを熱媒体循環管路の空調機ループ間に接続しているため、当該接続部よりも下流側の空調機ループにおける空調機入口の熱媒体の温度を低くすることが可能となり、更に、請求項3の熱媒体配管システムでは、空調機ループに導入される熱媒体の温度変化を回避することができる、等種々の優れた効果を奏し得る。   According to the heat medium piping system according to the first to fifth aspects of the present invention, each device is made efficient between each heat source loop, each air conditioner loop, and each heat transfer loop without being interfered with each other. It is possible to operate well, and in order to ensure the necessary heat medium flow rate in each device, various dedicated pumps located at the same level of height ensure the heat medium flow rate, which is wasteful in the head. Therefore, it is possible to reduce the heat transfer power of the heat medium, and to control the heat source unit and the air conditioner most efficiently. Since it connects between the air conditioner loops of a pipe line, it becomes possible to make low the temperature of the heat medium of the air conditioner inlet in the air conditioner loop downstream from the said connection part, and also the heat medium of Claim 3 Piping The stem can be avoided the temperature change of the heat medium introduced into the air conditioner loop can achieve equal various excellent effects.

以下、本発明の実施の形態を図示例と共に説明する。
図1は本発明の熱媒体配管システムの実施の形態の一例である。而して、本図示例では、熱媒体配管システムは、熱源機ループA及び空調機ループB並びに熱搬送ループCに分けられていると共に、空調機ループBは複数系統設けられ、熱源機ループA及び空調機ループBは熱搬送ループCにより接続されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an example of an embodiment of a heat medium piping system of the present invention. Thus, in the illustrated example, the heat medium piping system is divided into a heat source machine loop A, an air conditioner loop B, and a heat transfer loop C, and a plurality of air conditioner loops B are provided. The air conditioner loop B is connected by a heat transfer loop C.

すなわち、熱源機ループAは、熱源機1と熱源ポンプ12と熱媒体往管路13aと熱媒体還管路13bとを備え、且つ熱媒体還管路13bには熱源ポンプ12が設けられている。空調機ループBは、空調機4と空調機ポンプ14と熱媒体往管路15aと熱媒体還管路15bとを備え、且つ熱媒体往管路15aには空調機ポンプ14が設けられている。熱搬送ループCは、熱媒体循環ポンプ16と熱媒体循環ポンプ16が設けられた無端状の熱媒体循環管路17とを備えている。   That is, the heat source unit loop A includes the heat source unit 1, the heat source pump 12, the heat medium forward pipe 13a, and the heat medium return pipe 13b, and the heat source pump 12 is provided in the heat medium return pipe 13b. . The air conditioner loop B includes an air conditioner 4, an air conditioner pump 14, a heat medium forward duct 15a, and a heat medium return duct 15b, and the heat medium forward duct 15a is provided with the air conditioner pump 14. . The heat transfer loop C includes a heat medium circulation pump 16 and an endless heat medium circulation pipe 17 provided with the heat medium circulation pump 16.

而して、一端を熱源機ループAの熱源機1出口側に接続された熱媒体往管路13aの他端は、熱搬送ループCにおける熱媒体循環管路17の熱媒体循環ポンプ16接続位置よりも熱媒体流れ方向上流側に接続され、一端を熱源機ループAの熱源機1入口側に接続された熱媒体還管路13bの他端は、熱搬送ループCにおける熱媒体循環管路17の熱媒体往管路13a接続位置よりも熱媒体流れ方向上流側に接続されている。   Thus, the other end of the heat medium forward pipe line 13a having one end connected to the heat source machine loop A outlet side of the heat source machine loop A is connected to the heat medium circulation pump 16 in the heat transfer loop C. The other end of the heat medium return pipe 13b connected to the upstream side of the heat medium flow direction and connected to the heat source machine 1 inlet side of the heat source machine loop A is the heat medium circulation pipe 17 in the heat transfer loop C. It is connected to the upstream side in the heat medium flow direction from the connection position of the heat medium forward pipe 13a.

複数の空調機ループBは、熱媒体循環管路17の熱媒体循環ポンプ16接続位置よりも熱媒体流れ方向下流側において、熱媒体循環管路17に対し、熱媒体流れ方向上流側から下流側へ向けて順次接続されている。すなわち、一端を空調機ループBの空調機4入口側に接続された熱媒体往管路15aの他端は熱媒体循環管路17に接続され、一端を空調機ループBの空調機4出口側に接続された熱媒体還管路15bの他端は、熱媒体往管路15a接続部よりも熱媒体流れ方向下流側において熱媒体循環管路17に接続されている。而して、熱媒体流れ方向最上流側における熱媒体往管路15aの熱媒体循環管路17に対する接続位置は、熱媒体循環ポンプ16よりも熱媒体流れ方向下流側に位置している。   The plurality of air conditioner loops B are located downstream from the upstream side in the heat medium flow direction 17 with respect to the heat medium circulation line 17 on the downstream side in the heat medium flow direction from the connection position of the heat medium circulation pump 16 in the heat medium circulation line 17 It is connected sequentially toward. That is, the other end of the heat medium forward line 15a, one end of which is connected to the air conditioner 4 inlet side of the air conditioner loop B, is connected to the heat medium circulation line 17, and the other end is the air conditioner 4 outlet side of the air conditioner loop B. The other end of the heat medium return pipe 15b connected to is connected to the heat medium circulation pipe 17 on the downstream side in the heat medium flow direction with respect to the heat medium forward pipe 15a connection portion. Thus, the connection position of the heat medium forward line 15 a on the most upstream side in the heat medium flow direction with respect to the heat medium circulation line 17 is located downstream of the heat medium circulation pump 16 in the heat medium flow direction.

熱源ポンプ12及び空調機ポンプ14並びに熱媒体循環ポンプ16は何れもインバータ制御によりポンプ回転数制御を行い得るようになっている。   All of the heat source pump 12, the air conditioner pump 14, and the heat medium circulation pump 16 can perform pump rotation speed control by inverter control.

次に、上記図示例の作動を説明する。
熱搬送ループCの熱媒体循環管路17を循環して熱源機ループAの熱媒体還管路13bから熱源ポンプ12により熱源機1へ送給された熱媒体は、熱源機1において冷却若しくは加熱され、冷却若しくは加熱された熱媒体は、熱媒体往管路13aを流通して熱媒体循環管路17へ送給され、熱媒体循環管路17を熱媒体往管路13a接続部よりも上流側から循環し送給されてきた熱媒体と合流し、熱媒体循環管路17を下流側へ送給され、熱媒体循環ポンプ16により加圧されて熱媒体循環管路17を更に下流側へ送給される。
Next, the operation of the illustrated example will be described.
The heat medium circulated through the heat medium circulation pipe 17 of the heat transfer loop C and fed from the heat medium return pipe 13b of the heat source machine loop A to the heat source machine 1 by the heat source pump 12 is cooled or heated in the heat source machine 1. The cooled or heated heat medium flows through the heat medium forward line 13a and is supplied to the heat medium circulation line 17, and the heat medium circulation line 17 is upstream of the connecting portion of the heat medium forward line 13a. The heat medium circulated and fed from the side joins, is fed to the downstream side through the heat medium circulation pipe 17, and is pressurized by the heat medium circulation pump 16 to further move the heat medium circulation pipe 17 further downstream. Be sent.

而して、熱媒体の一部は空調機ループBの熱媒体往管路15aへ流入して熱媒体往管路15aを送給され、空調機ポンプ14から空調機4へ送給され、空調機4において冷熱若しくは温熱を消費して仕事をし、温度が上昇若しくは下降した熱媒体は熱媒体還管路15bを送給されて熱媒体循環管路17へ流入し、順次下流側へ送給されて他の空調機ループBからの熱媒体と合流し、熱媒体循環管路17を流通して熱源機ループA側へ送給され、一部の熱媒体は熱源機ループAの熱媒体還管路13bへ流入し、残りの熱媒体は熱媒体循環管路17において熱媒体往管路13aからの熱媒体と合流して前述の経路を通り循環する。   Thus, a part of the heat medium flows into the heat medium forward line 15a of the air conditioner loop B and is fed through the heat medium forward line 15a, and is fed from the air conditioner pump 14 to the air conditioner 4 for air conditioning. In the machine 4, work is done by consuming cold or hot heat, and the heat medium whose temperature has risen or lowered is fed to the heat medium return pipe 15b and flows into the heat medium circulation pipe 17 and is sequentially fed downstream. Then, it merges with the heat medium from the other air conditioner loop B, flows through the heat medium circulation pipe 17 and is fed to the heat source apparatus loop A side, and a part of the heat medium is returned to the heat medium of the heat source apparatus loop A. The remaining heat medium flows into the pipe line 13b, joins with the heat medium from the heat medium forward pipe line 13a in the heat medium circulation pipe line 17, and circulates through the aforementioned path.

本図示例においては、熱源機ループA、及び複数の空調機ループB、並びに熱源機ループAと各空調機ループBとを接続する熱搬送ループCを夫々独立して設け、熱源機ループAに熱源ポンプ12を、又、各空調機ループBに空調機ポンプ14を、更に、熱搬送ループCに熱媒体循環ポンプ16を設け、熱源ポンプ12及び空調機ポンプ14並びに熱媒体循環ポンプ16は回転数制御可能に構成されている。   In the illustrated example, the heat source machine loop A, the plurality of air conditioner loops B, and the heat transfer loop C connecting the heat source machine loop A and each air conditioner loop B are provided independently, and the heat source machine loop A is provided in the heat source machine loop A. A heat source pump 12, an air conditioner pump 14 is provided in each air conditioner loop B, and a heat medium circulation pump 16 is provided in the heat transfer loop C. The heat source pump 12, the air conditioner pump 14, and the heat medium circulation pump 16 rotate. It is configured to be able to control the number.

このため、空調機ループBにおける空調機ポンプ14の流量が最低流量となって、空調機4の入口と出口の熱媒体の温度差が小さくなった場合でも、複数の空調機ループBにおいては、熱媒体循環管路17に対し、順次、熱媒体往管路15aの接続部下流側において熱媒体還管路15bを接続していること、及び熱搬送ループCにおける熱媒体循環ポンプ16の流量を制御することで、熱媒体循環管路17に対する熱媒体往管路15a接続部の最も下流側の点と、熱媒体循環管路17に対する熱媒体還管路15bの最も下流側の点との間の熱媒体の温度差を大きくとることが可能となり、熱源機1での熱媒体の温度差を確保することが可能となる。   For this reason, even if the flow rate of the air conditioner pump 14 in the air conditioner loop B becomes the minimum flow rate and the temperature difference between the heat medium at the inlet and outlet of the air conditioner 4 becomes small, in the plurality of air conditioner loops B, The heat medium return pipe 15b is sequentially connected to the heat medium circulation pipe 17 on the downstream side of the connecting portion of the heat medium forward pipe 15a, and the flow rate of the heat medium circulation pump 16 in the heat transfer loop C is changed. By controlling, it is between the most downstream point of the connection part of the heat medium forward line 15a with respect to the heat medium circulation line 17 and the most downstream point of the heat medium return line 15b with respect to the heat medium circulation line 17. It is possible to increase the temperature difference of the heat medium, and to ensure the temperature difference of the heat medium in the heat source unit 1.

従って、熱源機ループA及び各空調機ループB並びに熱搬送ループC間では、夫々互いに干渉を受けることなく、各ループA,B,C間において各機器を夫々効率良く運転することが可能となり、熱媒体の搬送動力の削減が可能となると共に、熱源機1及び空調機4を最も効率的に制御することが可能となる。   Therefore, between the heat source loop A, each air conditioner loop B, and the heat transfer loop C, it is possible to operate each device efficiently between the loops A, B, C without receiving interference with each other. It becomes possible to reduce the conveyance power of the heat medium and to control the heat source unit 1 and the air conditioner 4 most efficiently.

次に、本図示例の熱媒体配管システムと、図7に示す特許文献1の熱媒体配管システムにおける低熱負荷時の熱源機1や空調機4の出口及び入口間の温度差の確保等について、図2(A)、(B)を基に冷房の場合について説明する。すなわち、空調機4の低熱負荷時に、ポンプが最低流量に達した場合、空調機4における入口と出口の温度差は小さくなる。図2(A)、(B)では、空調機4の入口と出口の温度差Δt2=3℃、各空調機4の熱負荷合計ΣQ=1200Kcal/min(1系統の空調機4当りの熱負荷Q=300Kcal/min)と同一条件にして比較した。   Next, for securing the temperature difference between the outlet and the inlet of the heat source unit 1 and the air conditioner 4 at the time of a low heat load in the heat medium piping system of the illustrated example and the heat medium piping system of Patent Document 1 shown in FIG. The case of cooling will be described based on FIGS. 2 (A) and 2 (B). That is, when the pump reaches the minimum flow rate during the low heat load of the air conditioner 4, the temperature difference between the inlet and the outlet of the air conditioner 4 becomes small. 2A and 2B, the temperature difference Δt2 = 3 ° C. between the inlet and outlet of the air conditioner 4 and the total heat load of each air conditioner 4 ΣQ = 1200 Kcal / min (heat load per one air conditioner 4) Q = 300 Kcal / min) and the comparison was made under the same conditions.

図7の熱媒体配管システムの場合、メインのラインである熱媒体往主管路2の流量はF1=400L/minであるのに対し、本図示例の場合、メインのラインである熱媒体循環管路17の流量はF1=240L/minと少なくて良い。又、熱源機1の入口と出口の熱媒体の温度差は従来がΔt1=3℃と小さいのに対し、本図示例では、Δt1=5℃となり、一般に高効率とされる温度差を確保することができる。これらの点から本図示例の方が、図7に示すシステムよりも熱媒体搬送動力や熱源動力を低減でき、省エネルギー効果が高い。   In the case of the heat medium piping system of FIG. 7, the flow rate of the heat medium main pipe 2 which is the main line is F1 = 400 L / min, whereas in the case of this illustrated example, the heat medium circulation pipe which is the main line. The flow rate of the path 17 may be as small as F1 = 240 L / min. In addition, the temperature difference between the heat medium at the inlet and the outlet of the heat source unit 1 is as small as Δt1 = 3 ° C. in the prior art, but in the example shown in the figure, Δt1 = 5 ° C. be able to. In view of these points, the illustrated example can reduce the heat transfer power and heat source power and has a higher energy saving effect than the system shown in FIG.

なお、図2(A)、(B)において各空調機4を通る熱媒体の流量はF2=100L/min、図2(B)において熱源機1を循環する熱媒体の流量はF=240L/minである。   2A and 2B, the flow rate of the heat medium passing through each air conditioner 4 is F2 = 100 L / min, and in FIG. 2B, the flow rate of the heat medium circulating through the heat source unit 1 is F = 240 L / min. min.

又、図2(A)における各空調機4の部分に記載してある数値は、各空調機4の入口及び出口の熱媒体温度で、入口では7℃、出口では10℃であり、図2(B)における各空調機ループの空調機4の部分に記載してある数値は、各空調機4の入口及び出口の熱媒体温度で、熱源機1側から見て第1番目の空調機ループにおいては、入口では7℃、出口では10℃、第2番目の空調機ループにおいては、入口では8.25℃、出口では11.25℃、第3番目の空調機ループにおいては、入口では9.5℃、出口では12.5℃、第4番目の空調機ループにおいては、入口では10.75℃、出口では13.75℃である。なお、ここでは、熱交換対象の空調空気側の温度場は充分高温側であることと、空調機4における熱交換器は、温度場が違うところで同じ温度差が取れるように必要能力を備えている。   Also, the numerical values described in each air conditioner 4 part in FIG. 2A are the heat medium temperatures at the inlet and outlet of each air conditioner 4, 7 ° C. at the inlet, and 10 ° C. at the outlet. The numerical value described in the air conditioner 4 portion of each air conditioner loop in (B) is the heat medium temperature at the inlet and outlet of each air conditioner 4 and is the first air conditioner loop as seen from the heat source unit 1 side. In, the inlet is 7 ° C., the outlet is 10 ° C., the second air conditioner loop is 8.25 ° C. at the inlet, the outlet is 11.25 ° C., and the third air conditioner loop is 9 ° at the inlet. .5 ° C, 12.5 ° C at the outlet, 10.75 ° C at the inlet and 13.75 ° C at the outlet in the fourth air conditioner loop. Here, the temperature field on the side of the conditioned air to be heat exchange is sufficiently high, and the heat exchanger in the air conditioner 4 has the necessary capacity so that the same temperature difference can be taken where the temperature field is different. Yes.

更に、図2(B)における熱媒体循環管路17においては、熱源機1側から見て第1番目の空調機ループの熱媒体還管路15bからの熱媒体が流入することにより、第1番目の空調機ループから出た直後の熱媒体循環管路17における熱媒体の温度は、8.25℃となり、第2番目の空調機ループから出た直後の熱媒体循環管路17における熱媒体の温度は9.5℃となり、第3番目の空調機ループから出た直後の熱媒体循環管路17における熱媒体の温度は10.75℃となり、第4番目の空調機ループから出た直後の熱媒体循環管路17における熱媒体の温度は12℃となる。   Further, in the heat medium circulation pipe 17 in FIG. 2B, the heat medium flows from the heat medium return pipe 15b of the first air conditioner loop as viewed from the heat source unit 1 side, so that the first The temperature of the heat medium in the heat medium circulation line 17 immediately after exiting from the second air conditioner loop is 8.25 ° C., and the heat medium in the heat medium circulation line 17 immediately after exiting from the second air conditioner loop. The temperature of the heat medium in the heat medium circulation line 17 immediately after exiting from the third air conditioner loop is 10.75 ° C., and immediately after exiting from the fourth air conditioner loop. The temperature of the heat medium in the heat medium circulation pipe 17 is 12 ° C.

続いて、本図示例の熱媒体配管システムと図7に示す熱媒体配管システムの高温度差設定時における熱源機1や空調機4の出口及び入口間の温度差の確保等について、図3(A)、(B)を基に冷房の場合について説明する。すなわち、一般にポンプの搬送動力を低減させるためには、ポンプの流量を減少させて空調機4の入口及び出口における熱媒体の温度差を大きくした方が良い。而して、図3(A)、(B)では、空調機4の入口と出口の熱媒体の温度差Δt2=7℃、各空調機4の熱負荷合計ΣQ=2800Kcal/min(1系統当りの空調機4の熱負荷Q=700Kcal/min)と同一条件にして比較した。   Subsequently, for securing the temperature difference between the outlet and the inlet of the heat source unit 1 and the air conditioner 4 at the time of setting the high temperature difference between the heat medium piping system of the illustrated example and the heat medium piping system shown in FIG. The case of cooling will be described based on A) and (B). That is, in general, in order to reduce the conveyance power of the pump, it is better to decrease the flow rate of the pump and increase the temperature difference of the heat medium at the inlet and outlet of the air conditioner 4. 3A and 3B, the temperature difference Δt2 = 7 ° C. between the inlet and outlet heat medium of the air conditioner 4 and the total heat load ΣQ = 2800 Kcal / min (per system) The heat load Q of the air conditioner 4 was compared under the same condition as Q = 700 Kcal / min).

熱源機1の入口と出口における熱媒体の温度差は、従来の熱媒体配管システムの場合、熱源機1の入口と出口の熱媒体の温度差Δt1=7℃と大きいのに対し、本図示例の熱媒体配管システムにおいては、Δt1=5℃と一般的に高効率とされる温度差を確保することができる。これにより、本図示例の場合は熱源動力を低減することができる。又、熱媒体循環ポンプ16や熱源ポンプ12の搬送動力の増加分より、Δt1の2℃分の温度差減少分による熱源動力の削減分の方がはるかに動力が大きくなる。これらの点から本図示例の方が、図7に示すシステムよりも熱媒体搬送動力や熱源動力を低減でき、省エネルギー効果が高い。   In the case of the conventional heat medium piping system, the temperature difference between the heat medium at the inlet and the outlet of the heat source unit 1 is large as Δt1 = 7 ° C. In this heat medium piping system, Δt1 = 5 ° C. and a temperature difference that is generally considered to be highly efficient can be secured. Thereby, in the case of this example of illustration, heat source power can be reduced. Further, the power of the heat source power reduced by the amount of decrease in the temperature difference of Δt1 by 2 ° C. is much larger than the increase of the conveyance power of the heat medium circulation pump 16 and the heat source pump 12. In view of these points, the illustrated example can reduce the heat transfer power and heat source power and has a higher energy saving effect than the system shown in FIG.

なお、図3(A)においてメインのラインである熱媒体往主管路2、熱媒体還主管路6を循環する熱媒体の流量はF1=400L/min、図3(B)において熱源機1を循環する熱媒体の流量はF=560L/min、メインのラインである熱媒体循環管路17を循環する熱媒体の流量はF1=560L/min、図3(A)、(B)における各空調機4を通る熱媒体の流量はF2=100L/minである。   In FIG. 3A, the flow rate of the heat medium circulating through the heat medium forward main line 2 and the heat medium return main line 6 which are the main lines in FIG. 3A is F1 = 400 L / min, and in FIG. The flow rate of the circulating heat medium is F = 560 L / min, the flow rate of the heat medium circulating through the heat medium circulation pipe 17 which is the main line is F1 = 560 L / min, and each air conditioning in FIGS. 3 (A) and 3 (B). The flow rate of the heat medium passing through the machine 4 is F2 = 100 L / min.

又、図3(A)における各空調機4の部分に記載してある数値は、各空調機4の入口及び出口の熱媒体温度で、入口では7℃、出口では14℃であり、図3(B)における各空調機4の部分に記載してある数値は、各空調機4の入口及び出口の熱媒体の温度で、熱源機1側から見て第1番目の空調機ループにおいては、入口では7℃、出口では14℃、第2番目の空調機ループにおいては、入口では8.25℃、出口では15.25℃、第3番目の空調機ループにおいては、入口では9.5℃、出口では16.5℃、第4番目の空調機ループにおいては、入口では10.75℃、出口では17.75℃である。   3A is the heat medium temperature at the inlet and outlet of each air conditioner 4, which is 7 ° C. at the inlet and 14 ° C. at the outlet. The numerical value described in the part of each air conditioner 4 in (B) is the temperature of the heat medium at the inlet and outlet of each air conditioner 4, and in the first air conditioner loop as seen from the heat source unit 1 side, 7 ° C at the inlet, 14 ° C at the outlet, 8.25 ° C at the inlet in the second air conditioner loop, 15.25 ° C at the outlet, 9.5 ° C at the inlet in the third air conditioner loop 16.5 ° C at the outlet, 10.75 ° C at the inlet and 17.75 ° C at the outlet in the fourth air conditioner loop.

更に、図3(B)における熱媒体循環管路17においては、熱源機1側から見て第1番目の空調機ループの熱媒体還管路15bからの熱媒体が流入することにより、第1番目の空調機ループから出た直後の熱媒体循環管路17における熱媒体の温度は、8.25℃となり、第2番目の空調機ループから出た直後の熱媒体循環管路17における熱媒体の温度は9.5℃となり、第3番目の空調機ループから出た直後の熱媒体循環管路17における熱媒体の温度は10.75℃となり、第4番目の空調機ループから出た直後の熱媒体循環管路17における熱媒体の温度は12℃となる。   Further, in the heat medium circulation pipe 17 in FIG. 3 (B), the heat medium from the heat medium return pipe 15b of the first air conditioner loop as seen from the heat source machine 1 side flows into the first. The temperature of the heat medium in the heat medium circulation line 17 immediately after exiting from the second air conditioner loop is 8.25 ° C., and the heat medium in the heat medium circulation line 17 immediately after exiting from the second air conditioner loop. The temperature of the heat medium in the heat medium circulation line 17 immediately after exiting from the third air conditioner loop is 10.75 ° C., and immediately after exiting from the fourth air conditioner loop. The temperature of the heat medium in the heat medium circulation pipe 17 is 12 ° C.

続いて、搬送機器の容量低減について説明する。
すなわち、通常、ポンプの選定は、必要流量と必要揚程からポンプの性能曲線を用いて行なわれる。例えば、図7の場合のポンプ選定は各空調機4の最大流量と全揚程(図7の熱源機1→熱媒体往主管路2→熱媒体ポンプ11→熱媒体往管路3→空調機4→熱媒体還管路5→熱媒体還主管路6→熱源機1で示されるラインの全抵抗)から選定する。
Next, the capacity reduction of the transport device will be described.
In other words, the pump is usually selected using the performance curve of the pump from the required flow rate and the required head. For example, the pump selection in the case of FIG. 7 is the maximum flow rate and the total head of each air conditioner 4 (heat source machine 1 → heat medium forward main line 2 → heat medium pump 11 → heat medium forward line 3 → air conditioner 4 in FIG. → Heat medium return pipe 5 → Heat medium return main pipe 6 → Total resistance of the line indicated by the heat source unit 1).

一方、本図示例の場合は、空調機ポンプ14の揚程は、図1の空調機ループBの揚程(熱媒体往管路15a→空調機ポンプ14→空調機4→熱媒体還管路15bで示されるラインの抵抗)で良いため、最大流量が図7の熱媒体ポンプ11と同じであっても、必要揚程が小さくなるので、空調機ポンプ14の容量は小さくなる。同時に、ポンプ回転数制御手段の容量も小さくてすむ。又、空調機ポンプ14は容量が小さいため低負荷時の制御性が良好である。更に又、超高層ビルのように建物規模が大きくなるに従い、図7のラインの全揚程は大きくなるため、ポンプ容量の観点から見て本図示例の方が有利である。又、一般的にポンプは低揚程のポンプの方が高揚程のポンプよりも効率が良くなるので有利である。   On the other hand, in the example shown in the figure, the head of the air conditioner pump 14 is lifted by the head of the air conditioner loop B in FIG. 1 (heat medium forward line 15a → air conditioner pump 14 → air conditioner 4 → heat medium return line 15b. Therefore, even if the maximum flow rate is the same as that of the heat medium pump 11 in FIG. 7, the required head is reduced, so that the capacity of the air conditioner pump 14 is reduced. At the same time, the capacity of the pump rotation speed control means can be reduced. Moreover, since the capacity | capacitance pump 14 has a small capacity | capacitance, the controllability at the time of low load is favorable. Furthermore, since the total lift of the line in FIG. 7 increases as the building scale increases as in a skyscraper, the illustrated example is more advantageous from the viewpoint of pump capacity. Also, in general, a pump with a low head is advantageous because it is more efficient than a pump with a high head.

図4は本発明の実施の形態の他の例である。而して、本図示例では、熱源機1を備えた熱源機ループAを複数系統設け、所定の熱源機ループAにおいては、熱媒体往管路13a及び熱媒体還管路13bを所定の空調機ループB,B間において、熱搬送ループCの熱媒体循環管路17に接続するようにしている。   FIG. 4 shows another example of the embodiment of the present invention. Thus, in the illustrated example, a plurality of heat source machine loops A including the heat source machine 1 are provided, and in the predetermined heat source machine loop A, the heat medium forward pipe 13a and the heat medium return pipe 13b are provided with predetermined air conditioning. Between the machine loops B and B, the heat transfer loop C is connected to the heat medium circulation pipe 17.

図1の熱媒体配管システムにおける各空調機ループBにおいては、冷房の場合、図2(B)、図3(B)に示すように、熱媒体が空調機ループの熱媒体還管路15bから熱媒体循環管路17に流入することにより、熱媒体循環管路17内の熱媒体の温度は、下流側へ行くにつれて徐々に高くなる。しかるに、図4の図示例のように、所定の熱源機ループAの熱媒体往管路15a及び熱媒体還管路15bを空調機ループB,B間において熱搬送ループCの熱媒体循環管路17に接続することにより、この接続部よりも下流側における空調機ループBの空調機4の入口における熱媒体の温度を低くすることが可能となる。   In each air conditioner loop B in the heat medium piping system of FIG. 1, in the case of cooling, as shown in FIGS. 2 (B) and 3 (B), the heat medium is sent from the heat medium return pipe 15b of the air conditioner loop. By flowing into the heat medium circulation pipe 17, the temperature of the heat medium in the heat medium circulation pipe 17 gradually increases as it goes downstream. However, as shown in the example of FIG. 4, the heat medium forward line 15 a and the heat medium return line 15 b of the predetermined heat source unit loop A are connected between the air conditioner loops B and B and the heat medium circulation line of the heat transfer loop C. By connecting to 17, it is possible to lower the temperature of the heat medium at the inlet of the air conditioner 4 of the air conditioner loop B on the downstream side of this connecting portion.

図5は本発明の実施の形態の更に他の例であり、冷凍機或はボイラの能力すなわち熱源機能力、及び熱負荷を考慮した熱媒体配管システムの例である。図中、18は複数のバイパス管路である。これらのバイパス管路18は、一端を、熱媒体循環ポンプ16を基準として熱媒体流れ方向最下流側に位置する空調機ループB以外の空調機ループBにおける熱媒体還管路15bに接続されていると共に、他端を、熱媒体循環ポンプ16を基準として熱媒体流れ方向最下流側に位置する空調機ループBの熱媒体還管路15b接続部よりも下流側において熱搬送ループCの熱媒体循環管路17に接続されている。   FIG. 5 shows still another example of the embodiment of the present invention, which is an example of a heat medium piping system in consideration of the capacity of the refrigerator or boiler, that is, the heat source functioning force and the heat load. In the figure, 18 is a plurality of bypass pipes. One end of each of these bypass pipes 18 is connected to the heat medium return pipe 15b in the air conditioner loop B other than the air conditioner loop B located on the most downstream side in the heat medium flow direction with respect to the heat medium circulation pump 16. In addition, the other end of the heat transfer medium in the heat transfer loop C is located downstream of the connecting portion of the heat medium return pipe 15b of the air conditioner loop B located on the most downstream side in the heat medium flow direction with respect to the heat medium circulation pump 16. It is connected to the circulation line 17.

各空調機ループBにおける熱媒体還管路15bのバイパス管路18接続位置よりも熱媒体流れ方向下流側には、切替弁19が接続され、バイパス管路18には、切替弁20が接続されている。   In each air conditioner loop B, the switching valve 19 is connected to the downstream side in the heat medium flow direction from the bypass pipe 18 connection position of the heat medium return pipe 15 b, and the switching valve 20 is connected to the bypass pipe 18. ing.

熱媒体循環管路17の熱媒体往管路13a接続部と熱媒体循環ポンプ16接続部との間には、流量検出器21が接続され、熱媒体循環管路17の熱媒体循環ポンプ16接続部と熱媒体流れ方向最上流側の熱媒体往管路15a接続部との間には温度検出器22が接続され、熱媒体循環管路17の熱媒体流れ方向最下流側におけるバイパス管路18接続部よりも熱媒体還管路13b側には、温度検出器23が接続されている。   A flow rate detector 21 is connected between the heat medium outlet line 13 a connection part of the heat medium circulation line 17 and the heat medium circulation pump 16 connection part, and the heat medium circulation pump 16 connection of the heat medium circulation line 17 is connected. The temperature detector 22 is connected between the heat transfer portion 15a and the heat medium flow pipe 15a connecting portion on the most upstream side in the heat medium flow direction, and the bypass line 18 on the most downstream side in the heat medium flow direction of the heat medium circulation line 17 is connected. A temperature detector 23 is connected to the heat medium return pipe 13b side of the connection portion.

温度検出器22で検出した循環ポンプ出口温度T1及び温度検出器23で検出した熱媒体還温度T2並びに流量検出器22で検出した熱媒体の循環ポンプ流量Fcは図示してないコントローラに与えられて熱負荷QcがQc=Fc×(T2−T1)により求められると共に、求められた熱負荷Qcは、熱源機能力×係数αと比較され、熱負荷Qc≦熱源機能力×係数αの場合は切替弁19に開指令を与え、切替弁20に閉指令を与え、又、熱負荷Qc>熱源機能力×係数αの場合は、切替弁20に開指令を与え、切替弁19に閉指令を与えるようになっている。なお、熱源機能力は冷凍機或はボイラの設計時定格能力であり、係数αは建物の用途、規模により決定される係数で、一般的には0.9〜1.0である。   The circulation pump outlet temperature T1 detected by the temperature detector 22, the heat medium return temperature T2 detected by the temperature detector 23, and the circulation pump flow rate Fc of the heat medium detected by the flow rate detector 22 are given to a controller (not shown). The thermal load Qc is obtained by Qc = Fc × (T2−T1), and the obtained thermal load Qc is compared with the heat source functional force × the coefficient α, and switching is performed when the thermal load Qc ≦ the heat source functional force × the coefficient α. An opening command is given to the valve 19, a closing command is given to the switching valve 20, and if thermal load Qc> heat source functional force × coefficient α, an opening command is given to the switching valve 20, and a closing command is given to the switching valve 19 It is like that. The heat source functional power is the rated capacity of the refrigerator or boiler when it is designed, and the coefficient α is a coefficient determined by the use and scale of the building, and is generally 0.9 to 1.0.

本図示例においては、熱負荷Qc<熱源機能力×係数αの場合は、切替弁19が開き、切替弁20は閉止しているため、熱媒体の流れは図1の場合と同様である。しかし、熱負荷Qc≧熱源機能力×係数αの場合は、切替弁19は閉止し、切替弁20が開く。   In the illustrated example, when the thermal load Qc <heat source functional force × coefficient α, the switching valve 19 is open and the switching valve 20 is closed, so that the flow of the heat medium is the same as in FIG. However, when thermal load Qc ≧ heat source functional force × coefficient α, the switching valve 19 is closed and the switching valve 20 is opened.

このため、空調機ループBの空調機4で仕事をした熱媒体は熱媒体還管路15bからバイパス管路18を経て熱媒体循環管路17における熱媒体流れ方向最下流側の熱媒体還管路15b接続部よりも下流側の部分に送出され、その結果、空調機ループBの熱媒体還管路15bから送出された熱媒体が熱媒体流れ方向下流側における空調機ループBに導入されることはない。   Therefore, the heat medium that has worked in the air conditioner 4 of the air conditioner loop B passes through the bypass line 18 from the heat medium return pipe 15b and the heat medium return pipe on the most downstream side in the heat medium flow direction in the heat medium circulation pipe 17. As a result, the heat medium sent from the heat medium return pipe 15b of the air conditioner loop B is introduced into the air conditioner loop B on the downstream side in the heat medium flow direction. There is nothing.

従って、各空調機ループBの空調機4へは、熱源機ループAの熱源機1で所定の温度に冷却若しくは加熱された熱媒体が導入されるため、熱媒体流れ方向下流側における空調機4へ導入される熱媒体の温度上昇、或は温度低下を防止することができる。   Therefore, since the heat medium cooled or heated to a predetermined temperature by the heat source apparatus 1 of the heat source apparatus loop A is introduced to the air conditioner 4 of each air conditioner loop B, the air conditioner 4 on the downstream side in the heat medium flow direction. It is possible to prevent a temperature rise or a temperature drop of the heat medium introduced into the.

このようにするのは、年間の最大冷房負荷或は最大暖房負荷が冷凍機やボイラの設計時定格能力よりも低い場合には、図1に示す熱媒体配管システムで良いが、熱負荷Qが冷凍機やボイラの設計時定格能力と略等しくなった場合には、図1に示す熱媒体配管システムでは、熱媒体循環ポンプ16を基準として熱媒体流れ方向下流側の空調機ループBほど、空調機4へ送給される熱媒体の温度が上昇若しくは下降することになり、熱負荷処理ができなくなる虞があるため、熱負荷Qcが熱源機1の設計時定格能力と略等しくなった場合には、上流側の空調機ループBから送出された熱媒体を下流側の空調機ループBへ導入しないようにして、熱媒体の温度上昇或は温度低下を回避するためである。   If the annual maximum cooling load or maximum heating load is lower than the design rated capacity of the refrigerator or boiler, the heat medium piping system shown in FIG. 1 may be used. When the rated capacity at the time of design of the refrigerator or boiler is substantially equal, in the heat medium piping system shown in FIG. 1, the air conditioner loop B on the downstream side in the heat medium flow direction with respect to the heat medium circulation pump 16 is air-conditioned. When the heat load Qc becomes substantially equal to the rated capacity at the time of design of the heat source machine 1 because the temperature of the heat medium supplied to the machine 4 may rise or fall and the heat load process may not be possible. This is to prevent the heat medium sent from the upstream air conditioner loop B from being introduced into the air conditioner loop B on the downstream side to avoid the temperature increase or temperature decrease of the heat medium.

なお、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, this invention is not limited to the above-mentioned embodiment, Of course, a various change can be added in the range which does not deviate from the summary of this invention.

本発明の熱媒体配管システムの実施の形態の一例を示す管路図である。It is a pipe line figure showing an example of an embodiment of a heat carrier piping system of the present invention. 図1の熱媒体配管システムと図7の熱媒体配管システムの低負荷時における、熱源機や空調機の入口及び出口間の温度差の確保等について説明するための管路図で、図2(A)は特許文献1のものを、又、図2(B)は本発明のものを示す。FIG. 2 is a pipe diagram for explaining the securing of the temperature difference between the inlet and outlet of the heat source unit and the air conditioner when the heat medium piping system of FIG. 1 and the heat medium piping system of FIG. A) shows the thing of patent document 1, FIG.2 (B) shows the thing of this invention. 図1の熱媒体配管システムと図7の熱媒体配管システムの高温度差設定時における、熱源機や空調機の入口及び出口間の温度差の確保等について説明するための管路図で、図3(A)は特許文献1のものを、又、図3(B)は本発明のものを示す。1 is a pipeline diagram for explaining the securing of a temperature difference between the inlet and outlet of a heat source unit or an air conditioner when setting a high temperature difference between the heat medium piping system of FIG. 1 and the heat medium piping system of FIG. 3 (A) shows that of Patent Document 1, and FIG. 3 (B) shows that of the present invention. 本発明の熱媒体配管システムの実施の形態の他の例を示す管路図である。It is a pipe line figure showing other examples of an embodiment of a heat carrier piping system of the present invention. 本発明の熱媒体配管システムの実施の形態の更に他の例を示す管路図である。It is a pipe line figure showing other examples of an embodiment of a heat carrier piping system of the present invention. 従来の熱媒体配管システムの一例を示す管路図である。It is a pipe line figure showing an example of the conventional heat carrier piping system. 特許文献1に示す従来の熱媒体配管システムの他の例を示す管路図である。It is a pipe line figure showing other examples of the conventional heat carrier piping system shown in patent documents 1.

符号の説明Explanation of symbols

1 熱源機
4 空調機
12 熱源ポンプ
13a 熱媒体往管路(第一の熱媒体往管路)
13b 熱媒体還管路(第一の熱媒体還管路)
14 空調機ポンプ
15a 熱媒体往管路(第二の熱媒体往管路)
15b 熱媒体還管路(第二の熱媒体還管路)
16 熱媒体循環ポンプ
17 熱媒体循環管路
18 バイパス管路
19 切替弁(弁手段)
20 切替弁(弁手段)
A 熱源機ループ
B 空調機ループ
C 熱搬送ループ
DESCRIPTION OF SYMBOLS 1 Heat source machine 4 Air conditioner 12 Heat source pump 13a Heat-medium outbound pipe (1st heat-medium outbound pipe)
13b Heat medium return pipe (first heat medium return pipe)
14 Air conditioner pump 15a Heat medium forward duct (second heat medium forward duct)
15b Heat medium return pipe (second heat medium return pipe)
16 Heat medium circulation pump 17 Heat medium circulation line 18 Bypass line 19 Switching valve (valve means)
20 Switching valve (valve means)
A Heat source machine loop B Air conditioner loop C Heat transfer loop

Claims (5)

熱源機ループ、及び複数系統の空調機ループ、並びに前記熱源機ループと各空調機ループとを接続する熱搬送ループを備え、
熱源機ループは、
熱源機と、熱源ポンプと、熱搬送ループからの熱媒体を熱源機に送給する第一の熱媒体還管路と、熱源機からの熱媒体を熱搬送ループへ送給する第一の熱媒体往管路とを備え、且つ第一の熱媒体還管路又は第一の熱媒体往管路には前記熱源ポンプが設けられており、
空調機ループは、
空調機と、空調機ポンプと、熱搬送ループからの熱媒体を空調機へ送給する第二の熱媒体往管路と、空調機からの熱媒体を熱搬送ループへ送給する第二の熱媒体還管路とを備え、且つ第二の熱媒体往管路又は第二の熱媒体還管路には前記空調機ポンプが設けられており、
熱搬送ループは、
熱媒体循環ポンプと、熱媒体循環ポンプが設けられて熱媒体が送給される熱媒体循環管路とを備え、
前記複数系統の空調機ループは、前記熱搬送ループの熱媒体循環管路に沿い、熱媒体流れ方向上流側から下流側へ向けて順次配設されると共に、
各空調機ループの第二の熱媒体還管路は、当該空調機ループの第二の熱媒体往管路よりも熱媒体流れ方向下流側となるよう、前記熱搬送ループの熱媒体循環管路に接続され、
所定の空調機ループよりも熱媒体流れ方向下流側の空調機ループの第二の熱媒体往管路は、前記熱媒体流れ方向下流側の空調機ループに対する上流側の空調機ループの第二の熱媒体還管路よりも熱媒体流れ方向下流側に位置するよう、前記搬送ループの熱媒体循環管路に接続されている
ことを特徴とする熱媒体配管システム。
A heat source machine loop, a plurality of air conditioner loops, and a heat transfer loop connecting the heat source machine loop and each air conditioner loop,
The heat source machine loop
A heat source device, a heat source pump, a first heat medium return pipe for supplying the heat medium from the heat transfer loop to the heat source device, and a first heat for supplying the heat medium from the heat source device to the heat transfer loop. And the heat source pump is provided in the first heat medium return pipe or the first heat medium forward pipe,
Air conditioner loop
An air conditioner, an air conditioner pump, a second heat medium forward pipe that supplies the heat medium from the heat transfer loop to the air conditioner, and a second heat medium that supplies the heat medium from the air conditioner to the heat transfer loop. A heat medium return pipe, and the air conditioner pump is provided in the second heat medium forward pipe or the second heat medium return pipe,
The heat transfer loop
A heat medium circulation pump, and a heat medium circulation pipe provided with the heat medium circulation pump to which the heat medium is supplied,
The plurality of air conditioner loops are sequentially disposed from the upstream side to the downstream side in the heat medium flow direction along the heat medium circulation pipe of the heat transfer loop,
The heat medium circulation pipe of the heat transfer loop is such that the second heat medium return pipe of each air conditioner loop is downstream of the second heat medium forward pipe of the air conditioner loop in the heat medium flow direction. Connected to
The second heat medium forward pipe of the air conditioner loop downstream of the predetermined air conditioner loop in the heat medium flow direction is a second air medium loop upstream of the air conditioner loop downstream of the heat medium flow direction. so as to be positioned to the heat medium flow direction downstream side of the heat medium Kaekanro, heat medium pipe system characterized in that it is connected to a heat medium circulation line of the heat transport loop.
熱源機ループは複数系統設置され、所定の熱源機ループにおいて熱搬送ループからの熱媒体を熱源機へ送給する第一の熱媒体還管路及び、熱源機からの熱媒体を熱搬送ループに送給する第一の熱媒体往管路を、熱搬送ループにおける熱媒体循環管路の空調機ループ接続部間に接続した請求項1記載の熱媒体配管システム。   A plurality of heat source machine loops are installed, and in a predetermined heat source machine loop, the first heat medium return pipe for supplying the heat medium from the heat transfer loop to the heat source machine, and the heat medium from the heat source machine to the heat transfer loop The heat medium piping system according to claim 1, wherein the first heat medium forward pipe to be fed is connected between the air conditioner loop connecting portions of the heat medium circulation pipe in the heat transfer loop. 熱媒体流れ方向最下流側に位置する空調機ループ以外の空調機ループは夫々バイパス管路を備え、
該バイパス管路は、
一端を、熱媒体流れ方向最下流側に位置する空調機ループ以外の空調機ループにおける第二の熱媒体還管路に接続されていると共に、
他端を、熱媒体流れ方向最下流側に位置する空調機ループの第二の熱媒体還管路接続部よりも下流側において熱搬送ループの熱媒体循環管路に接続され、
空調機ループにおける第二の熱媒体還管路には、該第二の熱媒体還管路のバイパス管路接続位置よりも熱媒体流れ方向下流側に位置するよう第一の弁手段が設けられ、
バイパス管路には第二の弁手段が設けられている請求項1又は2に記載の熱媒体配管システム。
Each of the air conditioner loops other than the air conditioner loop located on the most downstream side in the heat medium flow direction has a bypass pipe line,
The bypass line is
One end is connected to the second heat medium return pipe in the air conditioner loop other than the air conditioner loop located on the most downstream side in the heat medium flow direction,
The other end is connected to the heat medium circulation line of the heat transfer loop on the downstream side of the second heat medium return line connection part of the air conditioner loop located on the most downstream side in the heat medium flow direction,
The second heat medium return pipe in the air conditioner loop is provided with a first valve means so as to be located on the downstream side in the heat medium flow direction from the bypass pipe connection position of the second heat medium return pipe. ,
The heat medium piping system according to claim 1 or 2, wherein the bypass pipe is provided with second valve means.
熱負荷が所定の値よりも低い場合は、第一の弁手段を開き、且つ、第二の弁手段を閉止し、
熱負荷が所定の値以上の場合は、第一の弁手段を閉止し、且つ、第二の弁手段を開くよう構成した請求項3に記載の熱媒体配管システム。
If the thermal load is lower than a predetermined value, open the first valve means and close the second valve means,
The heat medium piping system according to claim 3, wherein when the thermal load is equal to or greater than a predetermined value, the first valve means is closed and the second valve means is opened.
熱源ポンプ及び空調機ポンプ並びに熱媒体循環ポンプは、回転数制御可能に構成されている請求項1乃至4の何れかに記載の熱媒体配管システム。   The heat medium piping system according to any one of claims 1 to 4, wherein the heat source pump, the air conditioner pump, and the heat medium circulation pump are configured to be capable of controlling the rotation speed.
JP2004276611A 2004-09-24 2004-09-24 Heat medium piping system Active JP4369841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004276611A JP4369841B2 (en) 2004-09-24 2004-09-24 Heat medium piping system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004276611A JP4369841B2 (en) 2004-09-24 2004-09-24 Heat medium piping system

Publications (2)

Publication Number Publication Date
JP2006090620A JP2006090620A (en) 2006-04-06
JP4369841B2 true JP4369841B2 (en) 2009-11-25

Family

ID=36231775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004276611A Active JP4369841B2 (en) 2004-09-24 2004-09-24 Heat medium piping system

Country Status (1)

Country Link
JP (1) JP4369841B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5014922B2 (en) * 2007-08-21 2012-08-29 高砂熱学工業株式会社 Heat medium circulation facility and heat medium circulation method
JP5063486B2 (en) * 2008-05-30 2012-10-31 三菱電機株式会社 Heat pump hot water heating system
JP5350166B2 (en) * 2008-10-09 2013-11-27 三機工業株式会社 Heat medium piping system
JP5062197B2 (en) * 2009-02-17 2012-10-31 日立電線株式会社 Cold water circulation system
JP2010266191A (en) * 2009-04-16 2010-11-25 Chubu Electric Power Co Inc Medium temperature regulating system
CN105509120B (en) * 2016-01-12 2018-04-20 浙江大学 The heating unit and control method in multi partition greenhouse

Also Published As

Publication number Publication date
JP2006090620A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
EP2159495B1 (en) Heating system
JP5350166B2 (en) Heat medium piping system
KR101568847B1 (en) Regenerative heat pump system comprising geothermal exchanger
JP4923812B2 (en) Brine heat dissipation heating system
JP4934009B2 (en) Heat source water supply system
JP2013204833A (en) Heating medium piping system
JP4369841B2 (en) Heat medium piping system
JP4139827B2 (en) Hybrid hot water supply system
JP5256462B2 (en) Thermal insulation device for open type hot water storage tank
JP4864587B2 (en) Heat medium piping system
JP5508668B2 (en) Heat medium supply system
JP3957309B2 (en) Operation control method for two-pump heat source equipment
JP3733371B2 (en) Temperature control system
JP2008224155A (en) Ice heat storage type heat source machine device and its control method
JP2001182971A (en) Air conditioning system and its control method
JP5096803B2 (en) Air conditioning system
JP5595975B2 (en) Air conditioning piping system
JP3708660B2 (en) Liquid piping equipment for heat utilization
KR101078162B1 (en) Hot and cool water, heating and cooling heat-pump system
WO2019026234A1 (en) Refrigeration cycle device
JP6002444B2 (en) Water-cooled air conditioning system
JP5584052B2 (en) High efficiency heat transfer device in air conditioning system
JP4631365B2 (en) Heat pump heating device
JP5264408B2 (en) Heat pump water heater
US20210215406A1 (en) Auxiliary heat source, air conditioning system with auxiliary heat source, and method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090828

R150 Certificate of patent or registration of utility model

Ref document number: 4369841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250