JP2008224155A - Ice heat storage type heat source machine device and its control method - Google Patents

Ice heat storage type heat source machine device and its control method Download PDF

Info

Publication number
JP2008224155A
JP2008224155A JP2007065169A JP2007065169A JP2008224155A JP 2008224155 A JP2008224155 A JP 2008224155A JP 2007065169 A JP2007065169 A JP 2007065169A JP 2007065169 A JP2007065169 A JP 2007065169A JP 2008224155 A JP2008224155 A JP 2008224155A
Authority
JP
Japan
Prior art keywords
brine
heat source
ice
heat
ice making
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007065169A
Other languages
Japanese (ja)
Inventor
Yasushi Ogoshi
靖 大越
Takuya Ito
拓也 伊藤
Osamu Otsuka
修 大塚
Yoshihiro Sumida
嘉裕 隅田
Mitsunori Kurachi
光教 倉地
Fumitake Unezaki
史武 畝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007065169A priority Critical patent/JP2008224155A/en
Publication of JP2008224155A publication Critical patent/JP2008224155A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ice heat storage type heat source machine device preventing freezing and a decrease in the ice making amount when coping with air-conditioning load during heat storage operation. <P>SOLUTION: The ice heat storage type heat source machine device and its control method comprise a heat source machine for cooling brine; an ice making heat exchanger cooling brine at night to make ice; a heat storage tank including the heat exchanger; a means provided with a control means for controlling the temperature and flow of brine cooled by the heat storage tank and the heat source machine, and a brine-water heat exchanger, and controlling the temperature and flow of brine to the brine-water heat exchanger during ice making operation at the brine-water heat exchanger in ice making operation to prevent freezing of cold water; and a means comprising a brine pump for leading brine to the brine-water heat exchanger, and controlling to the heat capacity required to cope with the increase of load or the like in operation of coping with the air-conditioning load during ice making operation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、氷蓄熱式熱源機装置(以下、本装置という)、特に、蓄熱運転中において空調負荷対応時の凍結防止及び製氷量減少を防止する本装置に関する。   The present invention relates to an ice heat storage type heat source apparatus (hereinafter referred to as “this apparatus”), and more particularly, to this apparatus for preventing freezing and preventing a decrease in the amount of ice making during a heat storage operation.

従来、氷蓄熱式熱源装置の製氷運転中においてブライン−水熱交換器への冷媒温度低下を検知し、ユニットを停止させることによるブライン−水熱交換器の凍結を防止する方法が提案されている(例えば、特許文献1参照)。
また、バイパス配管の設置による氷蓄熱式熱源装置の製氷運転中の空調負荷対応時の蓄熱槽へのブライン温度上昇を防止する方法が提案されている(例えば、特許文献2参照)。
Conventionally, there has been proposed a method for preventing the brine-water heat exchanger from freezing by detecting the refrigerant temperature drop to the brine-water heat exchanger during ice making operation of the ice heat storage heat source device and stopping the unit. (For example, refer to Patent Document 1).
Moreover, the method of preventing the brine temperature rise to the thermal storage tank at the time of the air-conditioning load response | compatibility during the ice making operation of the ice thermal storage heat source apparatus by installation of bypass piping is proposed (for example, refer patent document 2).

実開平05−8328号公報Japanese Utility Model Publication No. 05-8328 特開平10−38326号公報Japanese Patent Laid-Open No. 10-38326

上記特許文献1では、氷蓄熱式熱源装置の製氷運転中の凍結防止方法が提案されているが、製氷運転中の空調負荷対応については考慮されていない問題点があった。
また、上記特許文献2では、氷蓄熱式熱源装置の製氷運転中における空調負荷対応時の蓄熱槽へのブライン温度上昇を防止する方法が提案されているが、空調負荷対応による負荷増大による熱源機冷却能力不足分の蓄熱量減少が発生するという問題点があった。
また、0℃以下の冷媒がブライン−水熱交換器へそのまま流入するため、運転状態によっては製氷運転中にブライン−水熱交換器にて冷水が凍結する可能性があった。
In Patent Document 1, a method for preventing freezing during an ice making operation of an ice heat storage heat source device has been proposed, but there has been a problem that the air conditioning load correspondence during the ice making operation is not considered.
Moreover, in the said patent document 2, although the method of preventing the brine temperature rise to the thermal storage tank at the time of air-conditioning load response | compatibility during the ice making operation of an ice heat storage type heat source device is proposed, the heat source machine by load increase by air-conditioning load response | compatibility is proposed. There was a problem that the amount of stored heat decreased due to insufficient cooling capacity.
In addition, since the refrigerant of 0 ° C. or lower flows directly into the brine-water heat exchanger, there is a possibility that the cold water is frozen in the brine-water heat exchanger during the ice making operation depending on the operation state.

本発明の目的は、第1に本装置の製氷運転中において空調負荷対応運転を行った場合にブライン−水熱交換器での凍結発生の防止を図る手段を提供するところにあり、また第2に本装置の製氷運転中において空調負荷対応運転を行った湯合に製氷量の減少発生の防止を図る手段を提供するところにある。   An object of the present invention is to provide a means for preventing the occurrence of freezing in a brine-water heat exchanger when an operation corresponding to an air conditioning load is performed during an ice making operation of the present apparatus. In addition, the present invention provides a means for preventing a decrease in the amount of ice making in a hot water bath that has been operated in response to an air conditioning load during the ice making operation of this apparatus.

本発明に係る本装置は、
1)ブラインを冷却する熱源機と前記熱源機により夜間にブラインを冷却し製氷を行う製氷用熱交換器と、この熱交換器を内蔵する蓄熱槽と、蓄熱槽及び熱源機により冷却されたブライン温度及び流量を制御する制御手段及びブライン−水熱交換器を具備し、製氷運転中においてブライン−水熱交換器での冷水凍結を防止する手段を備えたものであり、
2)上述の1)において、前記冷水凍結を防止する手段を、製氷運転中においてブライン−水熱交換器へのブライン温度及び流量を制御する手段を備えたものとし、
3)上述の1)において、製氷運転中に空調負荷対応運転を行うために、ブライン−水熱交換器ヘブラインを導くためのブラインポンプを備えたものであり、
4)上述の1)において、製氷運転中に空調負荷対応運転時に負荷増加等に対応するために必要な熱源機容量に制御する手段を備えたものである。
This device according to the present invention
1) A heat source machine for cooling brine, an ice making heat exchanger for cooling the brine at night by the heat source machine to make ice, a heat storage tank incorporating the heat exchanger, a brine cooled by the heat storage tank and the heat source machine A control means for controlling temperature and flow rate and a brine-water heat exchanger are provided, and a means for preventing cold water freezing in the brine-water heat exchanger during ice making operation is provided.
2) In the above 1), the means for preventing the cold water freezing comprises means for controlling the brine temperature and flow rate to the brine-water heat exchanger during the ice making operation,
3) In the above 1), in order to perform the operation corresponding to the air conditioning load during the ice making operation, a brine pump for guiding the brine-water heat exchanger hebrine is provided.
4) In the above 1), there is provided means for controlling the heat source capacity required to cope with the load increase or the like during the air conditioning load corresponding operation during the ice making operation.

また、本発明に係る本装置は、
5)上述の1)〜4)の熱源機を複数台組み合わせた氷蓄熱式熱源機装置であって、空調負荷の変動に応じて熱源機の運転台数及びブラインポンプの運転台数を切り換える手段を有するものであり、
6)上述の5)において、空調負荷の変動に応じて熱源機の各圧縮機の能力制御をするインバータを備えたものであり、
7)上述の5)において、空調負荷の変動に応じて熱源機の各圧縮機の能力制御をするインバータと、またブラインポンプの流量制御をするインバータとを備え、且つ、各熱源機の空気側熱交換器に散水装置を設けたものである。
In addition, the present apparatus according to the present invention is
5) An ice heat storage heat source apparatus in which a plurality of the heat source apparatuses 1) to 4) described above are combined, and has means for switching the number of operating heat source apparatuses and the number of brine pumps in accordance with fluctuations in the air conditioning load. Is,
6) In the above 5), an inverter for controlling the capacity of each compressor of the heat source unit according to the fluctuation of the air conditioning load is provided.
7) In the above-mentioned 5), an inverter that controls the capacity of each compressor of the heat source unit according to a change in the air conditioning load, and an inverter that controls the flow rate of the brine pump, and the air side of each heat source unit A water exchanger is provided in the heat exchanger.

さらに本発明に係る本装置の制御方法は、
8)上述1)〜4)に記載の本装置において、製氷運転中に空調負荷対応運転を行う場合、熱源機、ブラインポンプを運転することによりブラインを冷却し、制御弁(10、15)を開、制御弁(11)を閉とし、温度センサ(12)により検知した温度により制御弁(8、9)を制御する運転を行い、このとき、温度センサ(12)の検知温度が、一定温度とならないように制御弁(8、9)を開閉制御することにより、ブライン−水熱交換器へ流入するブライン温度の低下による冷水の凍結防止し、且つ、製氷運転中に空調負荷対応運転を行う場合、温度センサ(14)の検知温度が通常の製氷運転時と同等となるように、熱源機の冷却能力を増加させ、製氷量減少の発生を防止する制御方法である。
Furthermore, the control method of the apparatus according to the present invention is as follows:
8) In the present apparatus described in the above 1) to 4), when the air conditioning load corresponding operation is performed during the ice making operation, the brine is cooled by operating the heat source unit and the brine pump, and the control valves (10, 15) are operated. The control valve (11) is closed and the control valve (8, 9) is controlled by the temperature detected by the temperature sensor (12). At this time, the temperature detected by the temperature sensor (12) is a constant temperature. By controlling the opening and closing of the control valves (8, 9) so as not to occur, the freezing of the cold water due to the decrease in the temperature of the brine flowing into the brine-water heat exchanger is prevented, and the operation corresponding to the air conditioning load is performed during the ice making operation. In this case, it is a control method for increasing the cooling capacity of the heat source machine and preventing the ice making amount from decreasing, so that the temperature detected by the temperature sensor (14) is equivalent to that during normal ice making operation.

すなわち、本発明に係る本装置は、ブライン−水熱交換器へのブライン流入部およびバイパス配管に制御弁を設置し、また、ブライン−水熱交換器へのブライン流入部へ温度センサを設置することにより、ブライン−水熱交換器へ流入するブライン温度の制御を行うものである。
また、製氷運転時の空調負荷対応時にブライン−水熱交換器ヘブラインを流すためのポンプを設置するものであり、また、氷蓄熱式熱源装置の熱源機の運転能力を制御することにより、製氷運転時の氷蓄熱式熱源装置の冷却能力の制御を行うものである。
That is, this apparatus according to the present invention installs a control valve in the brine inflow part to the brine-water heat exchanger and the bypass pipe, and installs a temperature sensor in the brine inflow part to the brine-water heat exchanger. Thus, the brine temperature flowing into the brine-water heat exchanger is controlled.
In addition, a pump is installed to flow the brine-water heat exchanger hebrine in response to the air conditioning load during ice making operation, and the ice making operation is controlled by controlling the operating capacity of the heat source unit of the ice heat storage heat source device. It controls the cooling capacity of the ice storage heat source device at the time.

製氷運転中に空調負荷対応を行う場合、ブライン−水熱交換器への流入温度を一定温度以上に制御することにより、製氷運転中において空調負荷対応運転時の冷水の凍結防止が図れる。
また、製氷運転中に空調負荷対応を行う場合、空調負荷に応じて熱源機の運転能力を制御することにより、蓄熱量の確保が可能になるという効果を奏する。
When air conditioning load handling is performed during the ice making operation, it is possible to prevent freezing of cold water during the air conditioning load handling operation during the ice making operation by controlling the inflow temperature to the brine-water heat exchanger to a certain temperature or higher.
Moreover, when air-conditioning load correspondence is performed during ice making operation, there exists an effect that the amount of heat storage becomes possible by controlling the operation capability of a heat source machine according to air-conditioning load.

[実施の形態1]
図1は、本装置を利用した実施の形態1の概略構成図である。
図1に示すように、熱源機1、ブライン−水熱交換器2、氷蓄熱槽3、製氷用熱交換器4、ブラインポンプ5、ブラインポンプ6、制御7、制御弁8、制御弁9、制御弁10、温度センサ12、温度センサ13、温度センサ14及び制御装置Aから構成されている。
制御弁8、9及び制御弁10、11は3方弁により構成されてもよい。
温度センサ12及びブラインポンプ6は、ブライン−水熱交換器の上流側に設置され、温度センサ12の上流側に制御弁8および制御弁9が設置されている。
また、温度センサ14は、熱源機1の下流側に設置されている。
さらに、制御装置Aは、図示の信号線で示すように、制御弁8、9及び温度センサ12、13、14、熱源機1、及びブラインポンプ5、6と接続されている。
[Embodiment 1]
FIG. 1 is a schematic configuration diagram of Embodiment 1 using this apparatus.
As shown in FIG. 1, a heat source unit 1, a brine-water heat exchanger 2, an ice heat storage tank 3, an ice making heat exchanger 4, a brine pump 5, a brine pump 6, a control 7, a control valve 8, a control valve 9, The control valve 10, the temperature sensor 12, the temperature sensor 13, the temperature sensor 14, and the control device A are configured.
The control valves 8 and 9 and the control valves 10 and 11 may be configured by three-way valves.
The temperature sensor 12 and the brine pump 6 are installed on the upstream side of the brine-water heat exchanger, and the control valve 8 and the control valve 9 are installed on the upstream side of the temperature sensor 12.
The temperature sensor 14 is installed on the downstream side of the heat source device 1.
Further, the control device A is connected to the control valves 8 and 9 and the temperature sensors 12, 13 and 14, the heat source unit 1, and the brine pumps 5 and 6, as indicated by the illustrated signal lines.

次に本装置の動作について説明する。
通常の空調運転時は、ブラインポンプ5を運転し、制御弁14、15を閉、制御弁9を開、制御弁10、11を制御し、温度センサ13の温度制御を行い空調負荷に対応する運転を行う。
また、空調負荷が増加し、温度センサ13の温度が上昇した場合には、熱源機1を運転することによりブラインの冷却を行い、温度センサ13の温度が目標温度となるように運転される。
Next, the operation of this apparatus will be described.
During normal air conditioning operation, the brine pump 5 is operated, the control valves 14 and 15 are closed, the control valve 9 is opened, the control valves 10 and 11 are controlled, and the temperature sensor 13 is controlled to cope with the air conditioning load. Do the driving.
In addition, when the air conditioning load increases and the temperature of the temperature sensor 13 increases, the brine is cooled by operating the heat source unit 1 so that the temperature of the temperature sensor 13 becomes the target temperature.

通常の製氷運転時には、熱源機1、ブラインポンプ5を運転することによりブラインを冷却し、制御弁10、15を開、制御弁9、11を閉とし、冷却されたブラインが全量製氷用熱交換器4を通過するような回路にて運転を行い、蓄熱槽3内の水と熱交換を行うことにより蓄熱槽3内の水は凍結し氷として蓄熱される。
また、熱源機1、ブラインポンプ5は、制御装置Aにより熱源機冷却能力及びブライン流量が制御された運転を行う。
During normal ice making operation, the brine is cooled by operating the heat source unit 1 and the brine pump 5, the control valves 10 and 15 are opened, the control valves 9 and 11 are closed, and the entire amount of the cooled brine is heat exchange for ice making. By operating in a circuit that passes through the vessel 4 and exchanging heat with the water in the heat storage tank 3, the water in the heat storage tank 3 is frozen and stored as ice.
Further, the heat source unit 1 and the brine pump 5 perform an operation in which the heat source unit cooling capacity and the brine flow rate are controlled by the control device A.

製氷運転中に空調負荷対応運転を行う場合には、熱源機1、ブラインポンプ5、6を運転することによりブラインを冷却し、制御弁10、15を開、制御弁11を閉とし、温度センサ12により検知した温度により制御弁8、9を制御する運転を行う。
このとき、温度センサ12の検知温度が、一定温度(例えば0℃以下)とならないように制御弁8、9を開閉制御することにより、ブライン−水熱交換器へ流入するブライン温度の低下による冷水の凍結防止を行う。
また、温度センサ13の検知温度が設定された目標温度になるように、ブラインポンプ6にてブライン流量及び制御弁8、9の開閉制御を行う。
When performing an operation corresponding to an air conditioning load during the ice making operation, the brine is cooled by operating the heat source unit 1 and the brine pumps 5 and 6, the control valves 10 and 15 are opened, the control valve 11 is closed, and the temperature sensor An operation for controlling the control valves 8 and 9 based on the temperature detected at 12 is performed.
At this time, by controlling the control valves 8 and 9 so that the detected temperature of the temperature sensor 12 does not become a constant temperature (for example, 0 ° C. or lower), cold water due to a decrease in the brine temperature flowing into the brine-water heat exchanger To prevent freezing.
Further, the brine flow rate and the opening / closing control of the control valves 8 and 9 are performed by the brine pump 6 so that the temperature detected by the temperature sensor 13 becomes the set target temperature.

また、製氷運転中に空調負荷対応運転を行う場合には、温度センサ14の検知温度が通常の製氷運転時と同等となるように、熱源機1の冷却能力を増加させ、製氷量減少の発生を防止する。
冷却能力の増加は、インバータ等で圧縮機の回転数を増加させることにより行う。
In addition, when the air conditioning load corresponding operation is performed during the ice making operation, the cooling capacity of the heat source unit 1 is increased so that the temperature detected by the temperature sensor 14 is equivalent to that during the normal ice making operation, and the ice making amount is reduced. To prevent.
The cooling capacity is increased by increasing the rotational speed of the compressor with an inverter or the like.

[実施の形態2]
図2は、本装置を利用した場合の実施の形態2の概略構成図である。
図2に示すように、110、210、310は熱源機を示し、例えば40馬力相当の熱源機を3台組み合わせることで120馬力相当の氷蓄熱ユニットとして構成する。
また、システムは、ブラインポンプ120、220、320、氷蓄熱槽130、230、330、ブライン−水熱交換器140、240、340、制御弁150、250、350、160、260、360、170、270、370、180、280、380及び図示されていない制御装置から構成されている。
[Embodiment 2]
FIG. 2 is a schematic configuration diagram of the second embodiment when the present apparatus is used.
As shown in FIG. 2, reference numerals 110, 210, and 310 denote heat source units, which are configured as an ice heat storage unit equivalent to 120 horsepower by combining, for example, three heat source devices equivalent to 40 horsepower.
In addition, the system includes brine pumps 120, 220, 320, ice storage tanks 130, 230, 330, brine-water heat exchangers 140, 240, 340, control valves 150, 250, 350, 160, 260, 360, 170, 270, 370, 180, 280, 380 and a control device (not shown).

本実施の形態2のように、熱源機を複数台(図2では3台)組み合わせることにより、空調負荷の変動に応じて熱源機の運転台数およびブラインポンプの運転台数を切り変えることにより、負荷の変動にあわせて熱源機のCOPが最も高くなるような運転を行うことが可能となる。
また、夜間製氷運転中に空調負荷対応を行う場合には、例えば、熱源機2台で製氷運転をし、熱源機1台で空調負荷対応運転を行うことも可能となる。
本実施の形態2により夜間製氷運転中に空調負荷対応を行う場合には、凍結防止のための配管回路及びブラインポンプが不要となり、容易な配管回路及び制御にて夜間空調負荷に対応することが可能となる。
As in the second embodiment, by combining a plurality of heat source units (three in FIG. 2), the number of operating heat source units and the number of operating brine pumps are switched according to the fluctuation of the air conditioning load. It is possible to perform an operation such that the COP of the heat source machine becomes the highest in accordance with the fluctuation of the temperature.
Further, when air conditioning load handling is performed during the ice making operation at night, for example, it is possible to perform ice making operation with two heat source machines and perform air conditioning load handling operation with one heat source machine.
When the air conditioning load is dealt with during the ice making operation at night according to the second embodiment, the piping circuit and the brine pump for preventing freezing are unnecessary, and it is possible to cope with the night air conditioning load with easy piping circuit and control. It becomes possible.

[実施の形態3]
図3は、本装置を利用した場合の実施の形態3の概略構成図である。
図3に示すように、110、210、310は各熱源機を示し、例えば40馬力相当の熱源機を3台組み合わせることで120馬力相当の氷蓄熱ユニットとして構成する。
また、101a、202a、303aは、インバータにより能力を制御する圧縮機を示し、120a、220a、320aは、インバータにより流量を制御するブラインポンプを示す。
他の機器は、実施の形態2と同様な構成である。
[Embodiment 3]
FIG. 3 is a schematic configuration diagram of Embodiment 3 when the present apparatus is used.
As shown in FIG. 3, reference numerals 110, 210, and 310 denote each heat source unit. For example, three heat source units corresponding to 40 horsepower are combined to constitute an ice heat storage unit corresponding to 120 horsepower.
Reference numerals 101a, 202a and 303a denote compressors whose capacity is controlled by an inverter, and 120a, 220a and 320a denote brine pumps which control the flow rate by an inverter.
Other devices have the same configuration as in the second embodiment.

本実施の形態3においては、空調負荷に合わせて、熱源機110、210、310の各圧縮機101a、202a、303aをインバータにより能力制御を行なうとともに、ブラインポンプ120a、220a、320aをインバータにより制御して、ブラインの流量制御を行う。
本実施の形態3において、空調負荷が減少した場合には、熱源椴のブライン出口温度を設定された目標温度になるようにするために、熱源機の運転台数及び熱源機の圧縮機容量をインバータにより減少させるように制御することにより、熱源機のCOPが最も高くなるような運転を行うことが可能となる。
また、負荷の減少時に熱源機の出入口温度差が一定となるようにブラインポンプ120a、220a、320aのインバータ制御によりブライン流量を制御することにより、ブラインポンプ120a、220a、320aの入力の低減を図るとともに、熱源機110、210、310のブライン入口温度を低下させないことにより、熱源機のCOP低下を防止し、システムとして最もCOPが高くなるような運転を行うことが可能となる。
In the third embodiment, the compressors 101a, 202a, and 303a of the heat source devices 110, 210, and 310 are controlled by inverters according to the air conditioning load, and the brine pumps 120a, 220a, and 320a are controlled by inverters. Then, the flow rate of brine is controlled.
In the third embodiment, when the air conditioning load decreases, in order to set the brine outlet temperature of the heat source tank to the set target temperature, the number of operating heat source units and the compressor capacity of the heat source unit are inverted. By controlling so as to decrease by this, it is possible to perform an operation in which the COP of the heat source machine becomes the highest.
In addition, the brine flow rate is controlled by inverter control of the brine pumps 120a, 220a, and 320a so that the temperature difference between the inlet and outlet of the heat source unit becomes constant when the load is reduced, thereby reducing the input of the brine pumps 120a, 220a, and 320a. At the same time, by not lowering the brine inlet temperature of the heat source devices 110, 210, 310, it is possible to prevent the COP of the heat source device from being lowered and to operate the system so that the COP becomes the highest.

[実施の形態4]
図4は、本装置を利用した場合の実施の形態4の概略構成図である。
図4に示すように、110、210、310は各熱源機を示し、例えば40馬力相当の熱源機を3台組み合わせることで120馬力相当の氷蓄熱ユニットとして構成する。
また、101b、202b、303bは、熱源機の空気側熱交換器に水を散布する装置(散水装置)を示す。
他の機器は、実施の形態2と同様な構成である。
[Embodiment 4]
FIG. 4 is a schematic configuration diagram of Embodiment 4 when the present apparatus is used.
As shown in FIG. 4, reference numerals 110, 210, and 310 denote each heat source unit. For example, three heat source units equivalent to 40 horsepower are combined to constitute an ice heat storage unit equivalent to 120 horsepower.
Reference numerals 101b, 202b, and 303b denote apparatuses (sprinklers) that spray water on the air-side heat exchanger of the heat source machine.
Other devices have the same configuration as in the second embodiment.

本実施の形態4においては、空調負荷に合わせて、熱源機の圧縮機101a、202a、303aをインバータにより能力制御を行ない、ブラインポンプ120a、220a、320aをインバータにより制御しブラインの流量制御を行うと共に、外気温度上昇時に空気側熱交換器に水を散布することにより、凝縮温度を低下させて圧縮機入力の低減を図るような運転を行うことができる。
本運転を行うことによって、夏季のピーク電力(長大発生電力)を低減することが可能となり、水を散布しない場合と比較し機器の運転に必要な電気設備の低減および電気料金の削減が可能となる。
In the fourth embodiment, in accordance with the air conditioning load, the compressors 101a, 202a, and 303a of the heat source device are controlled by the inverter, and the brine pumps 120a, 220a, and 320a are controlled by the inverter to control the flow rate of the brine. At the same time, by spraying water on the air-side heat exchanger when the outside air temperature rises, it is possible to perform an operation for reducing the compressor input by lowering the condensation temperature.
By performing this operation, it becomes possible to reduce the peak power (long-time generated power) in the summer, and it is possible to reduce the electrical equipment required for operating the equipment and reduce the electricity bill compared to the case where water is not sprayed. Become.

本発明の実施の形態1における本装置を示す概略構成図である。It is a schematic block diagram which shows this apparatus in Embodiment 1 of this invention. 本発明の実施の形態2における本装置を示す概略構成図である。It is a schematic block diagram which shows this apparatus in Embodiment 2 of this invention. 本発明の実施の形態3における本装置を示す概略構成図である。It is a schematic block diagram which shows this apparatus in Embodiment 3 of this invention. 本発明の実施の形態4における本装置を示す概略構成図である。It is a schematic block diagram which shows this apparatus in Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 圧縮機、2 ブライン−水熱交換器、3 蓄熱槽、4 製氷用熱交換器、5 ブラインポンプ、6 ブラインポンプ、7、8、9、10、11 制御弁、12、13、14 温度センサ、A 制御装置、110、210、310 サイドフロー方式熱源機、120a、220a、320a ブラインポンプ、130、230、330 蓄熱槽、140、240、340 製氷用熱交換器、150、250、350、160、260、360、170、270、370、180、280、380 制御弁、101a、202a、303a インバータ能力制御圧縮機、101b、202b、303b 散水装置。
DESCRIPTION OF SYMBOLS 1 Compressor, 2 Brine-water heat exchanger, 3 Heat storage tank, 4 Ice-making heat exchanger, 5 Brine pump, 6 Brine pump, 7, 8, 9, 10, 11 Control valve, 12, 13, 14 Temperature sensor , A Control device, 110, 210, 310 Side flow type heat source machine, 120a, 220a, 320a Brine pump, 130, 230, 330 Heat storage tank, 140, 240, 340 Ice exchanger, 150, 250, 350, 160 260, 360, 170, 270, 370, 180, 280, 380 Control valve, 101a, 202a, 303a Inverter capacity control compressor, 101b, 202b, 303b Watering device.

Claims (8)

ブラインを冷却する熱源機と、前記熱源機により冷却されたブラインにより製氷を行う製氷用熱交換器と、この熱交換器を内蔵する蓄熱槽と、前記ブラインと水との熱交換を行うブライン−水熱交換器と、前記ブラインの温度および流量を制御する制御手段とを有し、製氷運転中においてブライン−水熱交換器での冷水凍結を防止する手段を備えたことを特徴とする氷蓄熱式熱源機装置。   A heat source for cooling the brine, an ice making heat exchanger for making ice with the brine cooled by the heat source, a heat storage tank containing the heat exchanger, and a brine for exchanging heat between the brine and water An ice heat storage comprising a water heat exchanger and control means for controlling the temperature and flow rate of the brine, and means for preventing cold water freezing in the brine-water heat exchanger during ice making operation Type heat source equipment. 前記冷水凍結を防止する手段は、製氷運転中においてブライン−水熱交換器へのブラインの温度及び流量を制御する手段であることを特徴とする請求項1に記載の氷蓄熱式熱源機装置。   The ice regenerative heat source apparatus according to claim 1, wherein the means for preventing cold water freezing is means for controlling the temperature and flow rate of the brine to the brine-water heat exchanger during the ice making operation. 製氷運転中に空調負荷対応運転を行うために、ブライン−水熱交換器ヘブラインを導くためのブラインポンプを備えていることを特徴とする請求項1に記載の氷蓄熱式熱源機装置。   The ice regenerative heat source apparatus according to claim 1, further comprising a brine pump for guiding a brine-water heat exchanger hebrine in order to perform an operation corresponding to an air conditioning load during an ice making operation. 製氷運転中に空調負荷対応運転時に負荷増加等に対応するために必要な熱源機容量に制御する手段を備えたことを特徴とする請求項1に記載の氷蓄熱式熱源機装置。   2. The ice heat storage type heat source device according to claim 1, further comprising means for controlling a heat source device capacity necessary to cope with an increase in load or the like during an air conditioning load operation during ice making operation. 熱源機を複数台組み合わせた氷蓄熱式熱源機装置であって、空調負荷の変動に応じて熱源機の運転台数及びブラインポンプの運転台数を切り換える手段を有することを特徴とする請求項1〜4のいずれか1項に記載の氷蓄熱式熱源機装置。   5. An ice heat storage type heat source device device combining a plurality of heat source devices, comprising means for switching the number of operating heat source devices and the number of operating brine pumps in accordance with fluctuations in the air conditioning load. The ice storage type heat source device according to any one of the above. 熱源機を複数台組み合わせた氷蓄熱式熱源機装置であって、空調負荷の変動に応じて熱源機の各圧縮機の能力制御をするインバータを備えたことを特徴とする請求項5に記載の氷蓄熱式熱源機装置。   The ice heat storage type heat source apparatus in which a plurality of heat source apparatuses are combined, and includes an inverter that controls the capacity of each compressor of the heat source apparatus in accordance with a change in air conditioning load. Ice heat storage heat source equipment. 熱源機を複数台組み合わせた氷蓄熱式熱源機装置であって、空調負荷の変動に応じて熱源機の各圧縮機の能力制御をするインバータと、またブラインポンプの流量制御をするインバータとを備え、且つ、各熱源機の空気側熱交換器に散水装置を設けたことを特徴とする請求項5に記載の氷蓄熱式熱源機装置。   An ice heat storage type heat source device combining a plurality of heat source devices, comprising an inverter that controls the capacity of each compressor of the heat source device according to fluctuations in the air conditioning load, and an inverter that controls the flow rate of the brine pump The ice heat storage type heat source apparatus according to claim 5, wherein a water sprinkler is provided in the air-side heat exchanger of each heat source apparatus. 前記請求項1乃至4に記載の氷蓄熱式熱源機装置における制御方法であって、製氷運転中に空調負荷対応運転を行う場合、熱源機、ブラインポンプを運転することによりブラインを冷却し、制御弁(10、15)を開、制御弁(11)を閉とし、温度センサ(12)により検知した温度により制御弁(8、9)を制御する運転を行い、このとき、温度センサ(12)の検知温度が、一定温度とならないように制御弁(8、9)を開閉制御することにより、ブライン−水熱交換器へ流入するブライン温度の低下による冷水の凍結防止し、且つ、製氷運転中に空調負荷対応運転を行う場合、温度センサ(14)の検知温度が通常の製氷運転時と同等となるように、熱源機の冷却能力を増加させ、製氷量減少の発生を防止することを特徴とする氷蓄熱式熱源機装置の制御方法。   The control method in the ice heat storage type heat source apparatus according to any one of claims 1 to 4, wherein when the operation corresponding to the air conditioning load is performed during the ice making operation, the brine is cooled by operating the heat source apparatus and the brine pump. The valve (10, 15) is opened, the control valve (11) is closed, and the control valve (8, 9) is controlled by the temperature detected by the temperature sensor (12). At this time, the temperature sensor (12) Control of the control valves (8, 9) so that the detected temperature does not become a constant temperature prevents the cold water from freezing due to the decrease in the temperature of the brine flowing into the brine-water heat exchanger, and during the ice making operation When performing an air-conditioning load compatible operation, the cooling capacity of the heat source device is increased so that the temperature detected by the temperature sensor (14) is equivalent to that during normal ice making operation, thereby preventing a decrease in ice making. Ice storage The method of the formula heat source equipment unit.
JP2007065169A 2007-03-14 2007-03-14 Ice heat storage type heat source machine device and its control method Pending JP2008224155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007065169A JP2008224155A (en) 2007-03-14 2007-03-14 Ice heat storage type heat source machine device and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007065169A JP2008224155A (en) 2007-03-14 2007-03-14 Ice heat storage type heat source machine device and its control method

Publications (1)

Publication Number Publication Date
JP2008224155A true JP2008224155A (en) 2008-09-25

Family

ID=39842988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007065169A Pending JP2008224155A (en) 2007-03-14 2007-03-14 Ice heat storage type heat source machine device and its control method

Country Status (1)

Country Link
JP (1) JP2008224155A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052897A (en) * 2009-09-02 2011-03-17 Mitsubishi Electric Corp Heat storage control method of ice thermal storage unit
CN103884141A (en) * 2014-03-31 2014-06-25 广州冰泉制冷设备有限责任公司 Bag ice machine and application method thereof
JP2014173821A (en) * 2013-03-12 2014-09-22 Suntory Holdings Ltd Heat pump operation method and heat supply system using heat pump operation method
CN108361885A (en) * 2018-01-30 2018-08-03 深圳市奥宇节能技术股份有限公司 A kind of ice-chilling air conditioning system dynamic programming method
CN114485002A (en) * 2022-03-17 2022-05-13 骊阳(广东)节能科技股份有限公司 Dual-working-condition ice storage integrated unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190422A (en) * 1993-12-28 1995-07-28 Ebara Corp Ice heat accumulation type refrigerator and operation method
JPH11311438A (en) * 1998-04-27 1999-11-09 Tomoko Iida Air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190422A (en) * 1993-12-28 1995-07-28 Ebara Corp Ice heat accumulation type refrigerator and operation method
JPH11311438A (en) * 1998-04-27 1999-11-09 Tomoko Iida Air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052897A (en) * 2009-09-02 2011-03-17 Mitsubishi Electric Corp Heat storage control method of ice thermal storage unit
JP2014173821A (en) * 2013-03-12 2014-09-22 Suntory Holdings Ltd Heat pump operation method and heat supply system using heat pump operation method
CN103884141A (en) * 2014-03-31 2014-06-25 广州冰泉制冷设备有限责任公司 Bag ice machine and application method thereof
CN108361885A (en) * 2018-01-30 2018-08-03 深圳市奥宇节能技术股份有限公司 A kind of ice-chilling air conditioning system dynamic programming method
CN114485002A (en) * 2022-03-17 2022-05-13 骊阳(广东)节能科技股份有限公司 Dual-working-condition ice storage integrated unit

Similar Documents

Publication Publication Date Title
US10215427B2 (en) Air conditioning system and method for controlling air conditioning system
JP5639984B2 (en) Air conditioner
CN201652653U (en) Circulating air-conditioning system of liquid pump
JP5677188B2 (en) Air conditioning equipment
JP2013119954A (en) Heat pump hot water heater
JP2006292329A (en) Heat source system, and control device and control method thereof
JP2008224155A (en) Ice heat storage type heat source machine device and its control method
JP5875925B2 (en) Thermal storage system and thermal storage method for thermal storage system
JP4864587B2 (en) Heat medium piping system
JP2013019591A (en) Packaged outdoor unit and outdoor unit system
JP6906865B2 (en) Air conditioning system
CN107621058B (en) Indoor unit refrigerant control device and control method thereof, indoor unit and air conditioning system
JP5362311B2 (en) Heat source system
JP5508668B2 (en) Heat medium supply system
JP2011226680A (en) Cooling water producing facility
JP5455338B2 (en) Cooling tower and heat source system
JP2009216265A (en) Heat insulating device for open type hot water storage tank
JP2014077560A (en) Air conditioner
CN107228464A (en) A kind of marine air-conditioning system and its control method
JP4369841B2 (en) Heat medium piping system
WO2017050072A1 (en) Water chiller-heater unit of air cooled heat pump and defrosting control method therefor
KR20150047657A (en) Sea water heat pump system using control of intaking sea water volume
JP2014081167A (en) Water-cooling type air conditioning system and its operation control method
CN207795745U (en) A kind of crusher hydraulic oil cooling system
JP2004150664A (en) Cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228