JPH11311438A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH11311438A
JPH11311438A JP10155114A JP15511498A JPH11311438A JP H11311438 A JPH11311438 A JP H11311438A JP 10155114 A JP10155114 A JP 10155114A JP 15511498 A JP15511498 A JP 15511498A JP H11311438 A JPH11311438 A JP H11311438A
Authority
JP
Japan
Prior art keywords
air
temperature
air conditioner
water
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10155114A
Other languages
Japanese (ja)
Inventor
Tomoko Iida
智子 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10155114A priority Critical patent/JPH11311438A/en
Publication of JPH11311438A publication Critical patent/JPH11311438A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance an energy consumption efficiency of an air conditioning facility, by separately treating sensible heat which can be subjected to a cooling treatment with cold water of a high temperature level and latent heat which requires cold water of a temperature level which is far lower than a dew point temperature of indoor air. SOLUTION: A cold water feed main vertical pipe 50 of a high temperature level and a cold water return main vertical pipe 51 are connected to cold water circulation system pipes 53 of a high temperature level of respective floors, which are connected with each other by way of heat exchangers 52 of respective floors. By means of cold water circulation pumps 54 of a high temperature level at respective floors, cold water of a high temperature level is circulated and supplied so that air in air conditioning rooms 47 is circulated and cooled and sensible heat is removed. In the daytime zone, a low temperature cold water circulation pump 19 of a chiller unit 1 is operated so as to supply cold water of a low temperature which is extremely close to an ice point to a main plate fin tube heat exchanger 38 of an outdoor controller 31, and a blower 40 is driven so as to supply air to ceiling spaces 48 of air conditioning rooms 41.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は中規模または大規模建
のオフィスまたは商業用建物の空気調和設備の省エネル
ギー性能の向上と改善をはかることに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improving and improving the energy-saving performance of air-conditioning equipment for medium-sized or large-scale offices or commercial buildings.

【0002】[0002]

【従来の技術】従来の空気調和設備では外気と室内循環
空気を混合して一括で冷却除湿を行うか、外気を予め室
内循環空気とは別に冷却除湿する場合でもその露点温度
のレベルは、それだけで室内の潜熱負荷を除去するには
不十分であるため、室内循環空気についても室内空気の
露点温度以下に冷却除湿して潜熱負荷に対応していた。
2. Description of the Related Art In a conventional air conditioner, the outside air and indoor circulating air are mixed to perform cooling and dehumidification at once, or even when the outside air is cooled and dehumidified separately from the indoor circulating air in advance, the dew point temperature level is only that much. However, since it is not enough to remove the latent heat load in the room, the indoor circulating air has been cooled and dehumidified to a temperature lower than the dew point temperature of the room air to cope with the latent heat load.

【0003】氷蓄熱を利用する方式において外気系統と
室内系統を分けても、異なった温度レベルの冷水を使用
せず、同じ温度レベルの冷水を使用していた。
[0003] In the system utilizing ice heat storage, even if the outside air system and the indoor system are separated, cold water of different temperature levels is not used, but cold water of the same temperature level is used.

【0004】更に、在来の氷蓄熱チラーユニットでは氷
を作るための熱交換器の伝熱面積を大きくする必要性か
ら熱交換器の管内容積が増し、冷媒充填量が多くなるの
を嫌って、氷蓄熱用熱交換器には不凍液を使用し、冷媒
と不凍液との熱交換を経て間接的に冷却をしている。
Further, in the conventional ice heat storage chiller unit, it is necessary to increase the heat transfer area of the heat exchanger for making ice, so that the internal volume of the heat exchanger increases and the amount of refrigerant charged increases. An antifreeze is used for the heat exchanger for ice heat storage, and indirect cooling is performed through heat exchange between the refrigerant and the antifreeze.

【0005】[0005]

【発明が解決しようとする問題点】近年、オフィスのオ
ートメーション化が進み、室内のOA機器が増えて、逆
に在室者数が減る傾向にあり、これに伴って、室内の空
調負荷に占める、顕熱負荷の割合が増して、逆に潜熱負
荷の割合が減っていて、顕熱負荷が圧倒的大部分を占め
ている。
In recent years, office automation has been advanced, and the number of OA devices in the room has increased, and conversely, the number of occupants has tended to decrease. However, the ratio of the sensible heat load has increased, and the ratio of the latent heat load has decreased, and the sensible heat load has the overwhelming majority.

【0006】潜熱負荷を処理するには室内空気の露点温
度、すなわち、乾球温度25℃、相対湿度50%の室内
空気条件では約14℃、より数℃低い温度、すなわち1
1℃〜13℃程度の温度まで空気を冷却除湿する必要が
あるため、11℃〜13℃より低い温度、熱交換器にお
ける有効温度差6℃程度を配慮すれば5℃〜7℃の冷水
または冷媒が必要となるが、顕熱負荷を処理するについ
ては基本的に室温より僅かでも低い温度の空気であれば
冷却の役に立つことになり熱交換器における温度差を配
慮しても、風量をある程度増すなどの工夫を施せば15
℃〜17℃の10℃も高い温度レベルの冷水または冷媒
で充分に冷却することが可能である。
To deal with the latent heat load, the dew point temperature of the room air, that is, about 14 ° C. in a room air condition of a dry bulb temperature of 25 ° C. and a relative humidity of 50%, a temperature lower by several degrees C., ie, 1 ° C.
Since it is necessary to cool and dehumidify the air to a temperature of about 1 ° C. to 13 ° C., if considering a temperature lower than 11 ° C. to 13 ° C. and an effective temperature difference of about 6 ° C. in the heat exchanger, 5 ° C. to 7 ° C. cold water or Refrigerant is required, but for processing the sensible heat load, air with a temperature slightly lower than room temperature will basically be useful for cooling. It is 15 if we take measures such as increase
It can be sufficiently cooled with cold water or a refrigerant at a high temperature level of 10 ° C. to 17 ° C.

【0007】それにも拘わらず、在来の空調設備は潜熱
と顕熱とを別々に処理できる方式になっていないため、
顕熱が圧倒的大部分を占めるに至った近年の空調負荷に
ついても相変わらず5℃〜7℃の低温の冷水を使用して
いるため、冷凍機の蒸発温度を高くすることが出来ず、
エネルギー消費効率の改善が見られない。
[0007] Nevertheless, conventional air-conditioning equipment is not designed to separately process latent heat and sensible heat.
Even in recent air-conditioning loads in which sensible heat occupied an overwhelming majority, since low-temperature cold water of 5 ° C to 7 ° C was still used, the evaporation temperature of the refrigerator could not be increased,
No improvement in energy consumption efficiency.

【0008】更に、ここ数年来、電力の夏季昼間時間の
ピークを緩和するために夜間時間の電力を使用する氷蓄
熱方式が普及しているが、従来の5℃〜7℃の低温の冷
水に加えて、夜間、冷凍機を運転して0℃の氷を作るた
めに蒸発温度は当然氷点以下となり、さらに実際には不
凍液を使用して間接的に氷を作るために在来に比較して
15℃〜20℃も蒸発温度のレベルが下がり、ますます
エネルギー消費効率が低下している。
Further, in recent years, an ice heat storage system using electric power during the night time has been widespread to alleviate the peak of the electric power during the summertime during the summer. In addition, the evaporating temperature is naturally below the freezing point to operate the refrigerator at night to produce 0 ° C ice, and in practice, the ice is indirectly produced by using antifreeze and compared to the conventional one. The level of the evaporating temperature is also lowered at 15 ° C. to 20 ° C., and the energy consumption efficiency is further reduced.

【0009】[0009]

【課題を解決するための手段】本発明では、高い温度レ
ベルの冷水で冷却処理できる顕熱と、室内空気の露点温
度よりさらに低い温度レベルの冷水を必要とする潜熱と
を別々に処理することによって、近年その割合が増して
来た顕熱負荷を、高い温度レベルの冷水で処理するよう
にして、この冷水の循環冷却に使用する冷凍機の蒸発温
度のレベルを上げることによって空気調和設備のエネル
ギー消費効率を高めることを実現する。また、それに伴
って生じる問題をも含めて解決する方法を提供するもの
である。
According to the present invention, sensible heat that can be cooled with high-temperature cold water and latent heat that requires cold water at a temperature lower than the dew point of room air are separately processed. Thus, the sensible heat load, whose ratio has increased in recent years, is treated with cold water at a high temperature level, and the evaporating temperature of a refrigerator used for circulating cooling of the cold water is raised to increase the level of air conditioning equipment. Realize increasing energy consumption efficiency. Another object of the present invention is to provide a method for solving the problem including the problem that arises.

【0010】[0010]

【作用】本発明では、顕熱負荷と潜熱負荷を別々に処理
することを可能とするため、在室者のために導入する外
気を処理する外気調和器系統の給気を低露点とし潜熱負
荷の処理に充て、室内空気を再循環して冷却する再循環
空調系統を専ら顕熱の処理に充てる。勿論、外気調和器
の系統に再循環空気を混合しても支障はない。
According to the present invention, the sensible heat load and the latent heat load can be processed separately, so that the supply of the outside air conditioner system for processing the outside air introduced for the occupants is set to a low dew point and the latent heat load is set to a low dew point. The recirculation air-conditioning system, which recirculates and cools the indoor air, is used exclusively for sensible heat treatment. Of course, there is no problem even if recirculated air is mixed into the outside air conditioner system.

【0011】在室者が対象の快感空気調和では当然、在
室者1人当たりの必要最小限度の所定の取り入れ外気量
があるが、本発明ではこの量の外気を取り入れて除湿し
て室内へ供給するに際して、空気調和を行う室内空気の
絶対湿度と取り入れ外気の除湿後の露点温度における絶
対湿度の差と、取り入れ外気量の積による水蒸気量の差
が、室内の在室者から発生する水蒸気量を打ち消すこと
が出来るような露点温度以下にまで除湿するようにし
た。
In the pleasure air conditioning intended for the occupants, naturally, there is a predetermined minimum required outside air amount per occupant, but in the present invention, this amount of outside air is taken in, dehumidified and supplied to the room. The difference between the absolute humidity of the room air that is air-conditioned and the absolute humidity at the dew point temperature after dehumidification of the intake outside air, and the difference in the amount of water vapor due to the product of the amount of intake outside air, is the amount of water vapor generated by the occupants of the room. Was dehumidified to a temperature below the dew point temperature at which can be canceled.

【0012】これによって、室内の空気を再循環して冷
却する再循環空調系統では全く潜熱を処理する必要が無
くなるため、室内空気の露点温度より高い温度範囲で冷
却を行って室内の顕熱を冷却除去すれば、室内の温度、
湿度ともに所定の値に保つことが出来て、圧倒的大部分
を占める顕熱負荷の処理に、高い温度レベルの冷水を使
用することによって、これに使用する冷凍機の蒸発温度
のレベルを上げて空調装置全体のエネルギー消費効率を
向上することが出来る。
This eliminates the need to treat latent heat at all in a recirculating air-conditioning system that recirculates and cools indoor air, so that cooling is performed in a temperature range higher than the dew point temperature of room air to reduce indoor sensible heat. By cooling and removing, the indoor temperature,
Humidity can be maintained at a predetermined value, and the use of chilled water at a high temperature level for processing the overwhelmingly large part of sensible heat load raises the evaporation temperature of the refrigerator used for this. The energy consumption efficiency of the entire air conditioner can be improved.

【0013】本発明では更に、外気空調系統において冷
却除湿をした給気を再熱するために、外気調和器入口と
出口に熱交換器もうけてこの間に水を循環し、高温の入
り口空気と間接的に熱交換して、逆に外気を予冷し、外
気の冷却負荷の一部を室内負荷に移動することによっ
て、外気の高温部分の冷却を、再熱を介して、エネルギ
ー消費効率の高い室内との再循環空調系統へその負荷を
転じることも出来る。
Further, in the present invention, in order to reheat the supply air which has been cooled and dehumidified in the outside air conditioning system, a heat exchanger is provided at an inlet and an outlet of the outside air conditioner, and water is circulated between the heat exchanger and the high temperature inlet air. Heat exchange, pre-cools the outside air, and transfers a part of the cooling load of the outside air to the indoor load. The load can be transferred to the recirculating air conditioning system.

【0014】外気温度があまり高温ではない場合に前記
の再熱を確保するため、本発明では冷却並びに除湿のた
め作動した冷凍機の冷却水の廃熱を利用して外気調和器
出口に設置した熱交換器によって再熱をすることが出来
るようにもなる。
In order to secure the reheating when the outside air temperature is not very high, in the present invention, the refrigerating machine operated for cooling and dehumidification is installed at the outlet of the outside air conditioner by using the waste heat of the cooling water of the refrigerator. The heat exchanger also allows reheating.

【0015】冬季外気温度が低く、外気の熱で除湿空気
の再熱が出来ない場合は
When the outside air temperature is low in winter and the dehumidified air cannot be reheated by the heat of the outside air

【0013】による水循環は停止するが、前記、外気調
和器の入口と出口に設けた熱交換器より低い位置に開放
水槽を設けて、水の循環を停止した場合、熱交換器内部
の水が重力によって開放水槽に流下して熱交換器の内部
が空になり、外気温度が0℃より低下した場合でも熱交
換器が凍結破損を起こさないように配慮した。
When the circulation of water is stopped by providing an open water tank at a position lower than the heat exchangers provided at the inlet and the outlet of the outside air conditioner, the water inside the heat exchanger stops. Care was taken to prevent freezing damage to the heat exchanger even when the heat exchanger was emptied by flowing down into the open water tank by gravity and the outside air temperature dropped below 0 ° C.

【0016】さらに、室内との再循環空調系統の冷却に
使用した高い温度レベルの冷水をさらに請求項5にのべ
た第3のプレートフィンチューブ熱交換器に使用して外
気の高温部分の予冷却に充てることによって、外気の冷
却負荷の一部を高い温度レベルの冷水に負荷を転じると
同時にさらに冷水の温度レベルを高めて、エネルギー消
費効率の向上に資することも出来る。
Further, the high-temperature cold water used for cooling the recirculation air-conditioning system with the room is further used for the third plate-fin tube heat exchanger described in claim 5 to pre-cool the high-temperature portion of the outside air. , A part of the cooling load of the outside air can be transferred to high-temperature chilled water, and at the same time, the temperature of chilled water can be further increased to contribute to improvement of energy consumption efficiency.

【0017】この予冷却の回路は冬季には外気の予熱に
働き、室内の顕熱負荷を利用して外気による暖房負荷を
打ち消す事も出来る。
This pre-cooling circuit works for pre-heating the outside air in winter, and the heating load by the outside air can be canceled by using the indoor sensible heat load.

【0018】本発明では更に、主熱交換器を直接接触形
の熱交換器として冷水と空気の間で熱伝達に要する温度
差を減らして、必要な冷水の温度レベルを少しでも高く
保つようにし、それと同時に請求項5に述べた室内の顕
熱冷却除去に使用した冷水を利用して外気を予冷または
予熱するプレートフィンチューブ熱交換器をその上流側
に組み合わせて、複数段に分割し空気流に沿って直列に
配列して20℃程度の冷水で冬季の乾燥した外気の加湿
を容易に行えるようにすることも出来る。
In the present invention, the temperature difference required for heat transfer between the chilled water and the air is reduced by using the main heat exchanger as a direct contact heat exchanger so that the required chilled water temperature level is kept at a little higher. At the same time, a plate fin tube heat exchanger for pre-cooling or pre-heating the outside air by using the cold water used for removing the sensible heat in the room as described in claim 5 is combined with the upstream side to divide the air into a plurality of stages to form an air flow. Can be arranged in series along the line to easily humidify the dry outside air in winter with cold water of about 20 ° C.

【0019】本発明では、室内との再循環空調系統にお
いて潜熱負荷の処理をする必要を無くして空調負荷の大
部分を占める顕熱の冷却処理を専門にし、その冷却系統
の冷水温度のレベルを上げることによって、そこに使用
する冷凍機の蒸発温度のレベルを上げエネルギー消費効
率を向上するために、取り入れ外気で室内の潜熱負荷全
部を打ち消す事が出来る低露点まで取り入れ外気を冷却
除湿するために、氷蓄熱によって得た氷を融解した氷点
に極く近い温度の冷水を使用するようにした。
The present invention specializes in the cooling of sensible heat, which accounts for the majority of the air conditioning load, without the necessity of processing the latent heat load in the recirculating air conditioning system with the room, and adjusts the chilled water temperature level of the cooling system. In order to raise the level of the evaporating temperature of the refrigerator used there and raise the energy consumption efficiency, to take in the outside air to a low dew point where the whole latent heat load in the room can be canceled, to cool and dehumidify the outside air Then, cold water having a temperature very close to the freezing point at which the ice obtained by ice heat storage was melted was used.

【0020】本発明では氷蓄熱運転に際して、冷凍機の
蒸発温度が低下してエネルギー消費効率が低下する率を
抑える目的で、在来、使用している不凍液の使用を取り
やめ、氷を作るための熱伝達の段階を1段減らし、また
効率良く氷を作るために伝熱面積を大きく採ることによ
って生じる冷媒の熱交換器の内容積の増大を抑えて圧縮
機とのバランスを良好に保つために、蒸発器の伝熱管と
して極めて多本数のキャピラリーチューブを並列に使用
して在来の蒸発器よりも小さな内容積で大きい伝熱面積
を持てるように改良した。
In the present invention, in order to suppress the rate at which the energy consumption efficiency decreases due to the decrease in the evaporating temperature of the refrigerator during the ice heat storage operation, the use of the antifreeze which has been conventionally used is stopped and the ice for freezing is formed. In order to reduce the number of heat transfer steps by one and to increase the internal volume of the heat exchanger of the refrigerant caused by taking a large heat transfer area to make ice efficiently, and to maintain a good balance with the compressor. An extremely large number of capillary tubes are used in parallel as heat transfer tubes of an evaporator, and the structure is improved so that a larger heat transfer area can be obtained with a smaller internal volume than a conventional evaporator.

【0021】さらに、本発明では実用上、据え付け品質
管理の難しい現場での冷媒配管による品質の低下を防止
するため、冷媒回路を構成する部品の全てを共通架台上
に組立て工場生産を可能にした氷蓄熱チラーを使用する
ようにした。
Further, in the present invention, in order to prevent deterioration in quality due to refrigerant piping at the site where installation quality control is difficult in practice, all parts constituting the refrigerant circuit are assembled on a common frame to enable factory production. Ice storage chillers were used.

【0022】本発明に使用するチラーは空調使用時間帯
においては通常より高い温度レベルの蒸発温度で運転す
るために外気温度が高い時間では空冷式凝縮器では圧縮
機の過負荷を招く虞れがあり、これを防止するため、本
発明では空冷式チラーの凝縮器に散水を掛けてその蒸発
潜熱によって凝縮温度を抑えるようにした。
The chiller used in the present invention is operated at an evaporating temperature at a higher temperature level than usual during the air-conditioning use time period. Therefore, when the outside air temperature is high, the air-cooled condenser may overload the compressor. In order to prevent this, in the present invention, the condenser of the air-cooled chiller is sprinkled with water to suppress the condensation temperature by the latent heat of evaporation.

【0023】本発明の空気調和装置に使用するチラーは
空調非使用時間帯、即ち、夜間時間帯にあっては氷蓄熱
運転を行い、空調使用時間帯、即ち、昼間時間帯にあっ
ては冷媒回路を弁操作で切り替えて氷蓄熱運転用の蒸発
器とは別に設けた空調用蒸発器を使用して、室内との再
循環空調系統での顕熱冷却に使用する温度レベルの高い
冷水を循環冷却する。
The chiller used in the air conditioner of the present invention performs an ice heat storage operation in the air conditioning non-use time zone, that is, in the night time zone, and performs the refrigerant storage operation in the air conditioning usage time zone, in the daytime zone. The circuit is switched by a valve operation to circulate chilled water with a high temperature level used for sensible heat cooling in the recirculating air conditioning system with the room using an air conditioning evaporator provided separately from the evaporator for ice heat storage operation Cooling.

【0024】これによって昼間時間帯の運転では夜間の
氷蓄熱運転時間帯よりその蒸発温度を大幅に上げること
ができるばかりでなく、さらに氷蓄熱によって出来た氷
を融解して得られる氷点に極く近い低温冷水を高い温度
レベルの冷水のファンコイルユニットまたは空調器への
往管部分で混合することによって更に蒸発器での冷媒の
蒸発温度を高くすることが可能で、冷凍機のエネルギー
消費効率を大幅に改善する事が出来る。
Thus, in the daytime operation, not only can the evaporating temperature be greatly increased than in the nighttime ice heat storage operation time period, but it is extremely close to the freezing point obtained by melting the ice formed by ice heat storage. By mixing near low-temperature chilled water at the high temperature level of chilled water in the fan coil unit or the outgoing pipe to the air conditioner, it is possible to further raise the evaporation temperature of the refrigerant in the evaporator, thereby improving the energy consumption efficiency of the refrigerator. It can be greatly improved.

【0025】本発明では、冷凍サイクルの凝縮器を散水
を掛けて蒸発の潜熱を利用して凝縮温度のレベルを低く
抑える様にするが、この凝縮器とは別に直列または並列
に第2の凝縮器を必要に応じて設け、中間期、冬季など
冷房と同時に部分的に暖房が必要な系統に温水をおくる
ことが出来るようにした。
In the present invention, the condenser of the refrigeration cycle is sprinkled with water to use the latent heat of evaporation to suppress the level of the condensation temperature, but separately from this condenser, the second condenser is connected in series or in parallel. A vessel is provided as needed so that hot water can be supplied to the system that requires partial heating at the same time as cooling in the middle and winter seasons.

【0026】本発明では前記高い温度レベルの冷水の回
路に冷凍機の蒸発器に並列または直列または直・並列切
り替え可能に密閉冷却塔を接続して、室内との再循環空
調系統からの還管の冷水温度以下の温度の冷却水が前記
密閉冷却塔で得られる場合は密閉冷却塔を作動させて、
冷凍機の運転を低減するか中止して省エネルギーを図る
様にした。
In the present invention, a closed cooling tower is connected to the high temperature level chilled water circuit so as to be switchable in parallel or in series or in series / parallel with an evaporator of a refrigerator, and a return pipe from a recirculating air-conditioning system to a room is connected. When cooling water at a temperature equal to or lower than the cold water temperature of the closed cooling tower is obtained by operating the closed cooling tower,
The operation of the refrigerator was reduced or stopped to save energy.

【0027】本発明では室内との再循環空調系統に送水
する高い温度レベルの冷水の配管を、空調をする部屋の
天井懐に通すについて、外気を取り入れて外気調和器で
低温の露点まで冷却除湿した給気を前記天井懐をチャン
バーとしてここへ導入した後にファンコイルユニットな
どから吸い込んで室内に供給するようにしたので、前記
天井懐の内部は低露点の空気で満たされていて、前記冷
水の配管に結露を生じる虞れがないので断熱、防露を必
要としない。
According to the present invention, the piping of high-temperature cold water to be supplied to the recirculation air-conditioning system with the room is passed through the ceiling of the room to be air-conditioned. After introducing the supplied air into the chamber as a chamber, the air is sucked from a fan coil unit or the like and supplied to the room, so that the interior of the ceiling air is filled with air having a low dew point, and the cold water is supplied. Since there is no risk of dew condensation on the piping, there is no need for heat insulation and dew prevention.

【0028】本発明による空気調和装置を複数階の建物
に応用し、かつ、各階共通の熱源装置を使用する場合、
室内との再循環空調系統に使用する高い温度レベルの冷
水循環系統の配管を各階の横走り配管と、各階を縦に貫
通して熱源装置に接続する立ち上り主管とを熱交換器を
介して間接的に接続し、立ち上り管内部の圧力が横走り
管に掛からないようにすることも出来る。
When the air conditioner according to the present invention is applied to a multi-storey building and a common heat source device is used for each floor,
A high-temperature chilled water circulation system pipe used for the recirculation air-conditioning system with the room is connected indirectly through a heat exchanger through a horizontal pipe on each floor and a rising main pipe vertically penetrating each floor and connected to a heat source device. It is also possible to prevent the pressure inside the riser tube from being applied to the sideways tube.

【0029】本発明では、前記の様に圧力的に独立した
各階の高い温度レベルの冷水循環系統の配管経路につい
て、それぞれ開放水槽を設け、該開放水槽を弁の切り替
え操作によって循環ポンプの吸込管と吐出管の双方に別
々に接続できるようにしたので、開放水槽を循環ポンプ
の吸込管に接続している間は冷水循環系統の配管内部の
圧力は大気圧より高く、循環ポンプの吐出管に接続して
いる間は冷水循環系統の配管内部の圧力は大気圧より低
く保つ事が出来る。
According to the present invention, an open water tank is provided for each of the piping paths of the chilled water circulation system having a high temperature level on each floor which is pressure independent as described above, and the open water tank is connected to the suction pipe of the circulation pump by switching a valve. The pressure inside the cold water circulation system piping is higher than the atmospheric pressure while the open water tank is connected to the suction pipe of the circulation pump, During the connection, the pressure inside the pipe of the cold water circulation system can be kept lower than the atmospheric pressure.

【0030】本発明による空気調和装置において使用す
る天井設置形のファンコイルユニットは、軸垂直の下面
開放の輻流式回転翼車の下方に接して同じく下面に開放
してドレンパンの無いプレートフィンチューブ熱交換器
を置き、その下面に沿って不織布製のフィルター並びに
吸込口を設けて天井面に露出させ、前記輻流式回転翼車
の上面及び周辺をディフューザー板で囲って、前記吸込
口の周囲に同じく天井面に開口露出した空気吹出口へ連
接するような構造のものを主とした。
The ceiling-mounted fan coil unit used in the air conditioner according to the present invention is a plate fin tube which is in contact with the lower side of a radiation type rotary impeller having an open lower surface perpendicular to the axis and which is also open to the lower surface and has no drain pan. Place the heat exchanger, provide a non-woven filter and suction port along its lower surface and expose it to the ceiling surface, surround the upper surface and the periphery of the radiation type rotary impeller with a diffuser plate, and around the suction port Also, the main structure is such that it is connected to the air outlet that is also exposed on the ceiling surface.

【0031】この構造によればファンコイルユニットの
中央の天井面から空気を吸い込んで、これをフィルター
で濾過、プレートフィンチューブ熱交換器で冷却、輻流
式ファンで加圧し周囲の天井面の吹出口へ達する空気の
流通経路が極めて短く、屈曲が少なく極めて効率的な空
気の循環が可能である。
According to this structure, air is sucked from the central ceiling surface of the fan coil unit, filtered by a filter, cooled by a plate fin tube heat exchanger, pressurized by a radiant fan, and blown from the surrounding ceiling surface. The flow path of the air reaching the outlet is extremely short, and the air can be circulated very efficiently with little bending.

【0032】本発明の空気調和装置で使用する前記ファ
ンコイルユニットはその輻流式回転翼車の回転円盤の中
心付近に複数個の穴を空け、さらに上方のケーシング板
にも輻流式回転翼車の中心に開口部を設けて、輻流式回
転翼車を回転すると、輻流式回転翼車の翼の間にある空
気が遠心力によって外周へ移動するにつれて、回転円盤
の中心付近に空けた前記複数個の穴を介して上方のケー
シングの前記開口部から、該ファンコイルユニットの設
置されている天井懐から、外気調和器から給気ダクトを
経て供給されている外気を吸い込んで、一方、下方の天
井面から空気吸込口、フィルターを経て、プレートフィ
ンチューブ熱交換器で冷却されて吸い込まれて来た室内
からの循環空気と、輻流式回転翼車の翼の間で平均的に
混合して外周からディフューザー、空気吹出口を経て室
内へ給気する。
In the fan coil unit used in the air conditioner of the present invention, a plurality of holes are formed near the center of the rotating disk of the radiating type impeller, and the radiating type rotor is further provided on the casing plate above. When an opening is provided in the center of the car and the radiant impeller rotates, as the air between the wings of the radiant impeller moves to the outer periphery by centrifugal force, it is opened near the center of the rotating disk. From the opening of the upper casing through the plurality of holes, from the ceiling wall where the fan coil unit is installed, sucks in the outside air supplied from the outside air conditioner via the air supply duct, On the average, between the circulating air from the room, which is cooled and sucked by the plate fin tube heat exchanger through the air suction port and filter from the lower ceiling surface, Mix from outside Ifuyuza, to supply air into the room through the air outlet.

【0033】本発明の空気調和装置に使用するファンコ
イルユニットに取り付けられる前記フィルターは正方形
または長方形の平面形状を持つプレートフィンチューブ
熱交換器の下面に接して、ほぼプレートフィンチューブ
熱交換器と同じの不織布製のフィルターメディアを配置
したものとするが、この長さ方向の両端をロールに巻き
付けて両ロールを同一方向に右回転、左回転すると、前
記フィルターメディアが両ロールの間の長さを往復する
ように取り付け、片方のロールに沿ってスリット式また
は多穴式の真空除塵管をフィルターメディアの空気吸込
面にそのスリットまたは穴列を向けて圧接するように設
け、ロールを回転させながら真空除塵管に接続した中央
式真空除塵装置を駆動するとフィルターメディアに付着
した塵埃を吸い取り、フィルターメディアが自動的に逆
洗滌、再生されるようにした。
The filter attached to the fan coil unit used in the air conditioner of the present invention is in contact with the lower surface of the plate fin tube heat exchanger having a square or rectangular planar shape, and is substantially the same as the plate fin tube heat exchanger. It is assumed that the filter media made of non-woven fabric is disposed, but when both ends in the length direction are wound around a roll and both rolls are rotated clockwise and counterclockwise in the same direction, the filter media reduces the length between both rolls. Attached so as to reciprocate, a slit type or multi-hole type vacuum dust removal tube is provided along one roll so that the slits or hole rows are pressed against the air suction surface of the filter media, and vacuum is applied while rotating the roll. Driving the central vacuum cleaner connected to the dust removal tube removes dust adhering to the filter media. , The filter media is automatically reverse washing, it was to be played.

【実施例】【Example】

【0034】次に本発明による空気調和装置の実施例を
図面に沿って説明する。
Next, an embodiment of an air conditioner according to the present invention will be described with reference to the drawings.

【図1】は本発明による空気調和装置の系統図を示す。
図中1はチラーユニットを示し、冷凍サイクルを構成す
る圧縮機2、冷媒の流れ方向を切り替える四方弁3、空
冷式凝縮器4、空冷式凝縮器4と弁5、6、7、8の操
作により切り替え又は並列使用出来るようにした温水用
の第2の凝縮器9、絞り弁10、極めて多本数のキャピ
ラリーチューブを並列接続して構成した氷蓄熱用蒸発器
11、氷蓄熱用蒸発器11と切り替え弁12、13によ
り並列接続されて切り替え使用出来るようにした空調使
用時間帯用蒸発器14、冷媒接続管15などと、氷蓄熱
水槽16、空冷式凝縮器に散水を掛ける散水装置17、
凝縮器用送風機18、低温冷水循環ポンプ19、低温冷
水往管20、低温冷水還管21、高い温度レベルの冷水
循環ポンプ22、高い温度レベルの冷水往管23、高い
温度レベルの冷水還管24、高い温度レベルの冷水と低
温冷水の自動混合弁25、高い温度レベルの往冷水温度
のセンサー26、温水循環ポンプ27、ケーシング28
などで構成し、これら全てを1つの共通架台29の上に
纏めてユニット化し、建物の屋上30に設置する。
FIG. 1 shows a system diagram of an air conditioner according to the present invention.
In the figure, reference numeral 1 denotes a chiller unit, and a compressor 2 constituting a refrigeration cycle, a four-way valve 3 for switching a flow direction of a refrigerant, an air-cooled condenser 4, an operation of an air-cooled condenser 4 and valves 5, 6, 7, and 8. A second condenser 9 for hot water, a throttle valve 10, an evaporator 11 for ice storage, and an evaporator 11 for ice storage configured by connecting an extremely large number of capillary tubes in parallel, which can be switched or used in parallel. An air conditioner use time zone evaporator 14, a refrigerant connection pipe 15, etc., which are connected in parallel by the switching valves 12, 13, and a water connection device 17 for spraying water to the ice heat storage water tank 16, the air-cooled condenser;
Condenser blower 18, low-temperature chilled water circulation pump 19, low-temperature chilled water outgoing pipe 20, low-temperature chilled water return pipe 21, high-temperature chilled water circulation pump 22, high-temperature level chilled water outgoing pipe 23, high-temperature level chilled water return pipe 24, Automatic mixing valve 25 for high-temperature cold water and low-temperature cold water, sensor 26 for high-temperature cold-water temperature, hot water circulation pump 27, casing 28
These are all integrated on one common base 29 to form a unit, and are installed on the rooftop 30 of the building.

【0035】図中31は外気調和器で、空気吸込口3
2、外気フィルター33、第1のプレートフィンチュー
ブ熱交換器34、第2のプレートフィンチューブ熱交換
器35、第3のプレートフィンチューブ熱交換器36、
第4のプレートフィンチューブ熱交換器37、主プレー
トフィンチューブ熱交換器38、加湿器39、送風機4
0、ドレンパン41、第1のプレートフィンチューブ熱
交換器と第2のプレートフィンチューブ熱交換器を連絡
する水循環配管42、水循環ポンプ43、開放水槽4
4、外気調和器ケーシング45などで構成し、建物の屋
上30に設置する。
In the figure, reference numeral 31 denotes an outside air conditioner,
2, an outside air filter 33, a first plate fin tube heat exchanger 34, a second plate fin tube heat exchanger 35, a third plate fin tube heat exchanger 36,
Fourth plate fin tube heat exchanger 37, main plate fin tube heat exchanger 38, humidifier 39, blower 4
0, drain pan 41, water circulation pipe 42 for connecting the first plate fin tube heat exchanger and the second plate fin tube heat exchanger, water circulation pump 43, open water tank 4
4. It is composed of an outside air conditioner casing 45 and the like, and is installed on the rooftop 30 of the building.

【0036】図中46は外気給気ダクトで屋上30の外
気調和器31から下方各階に立ち下がり、各階に分岐し
て各階の空調を行う部屋47の天井懐をチャンバーとし
て気密性を持たせた天井懐スペース48に達して、ここ
で外気調和器31からの7℃の低露点まで冷却除湿、か
つ、ほぼ室温近い温度25℃まで再熱調整された外気を
吹き出す。
In the figure, reference numeral 46 denotes an outside air supply duct, which falls from the outside air conditioner 31 on the rooftop 30 to each floor below, branches off to each floor, and provides airtightness by using the ceiling of a room 47 for air conditioning on each floor as a chamber. Reaching the ceiling space 48, the outside air from the outside air conditioner 31 is cooled and dehumidified to a low dew point of 7 ° C., and the outside air whose reheat is adjusted to a temperature of about 25 ° C. which is almost room temperature is blown out.

【0037】図中49は顕熱冷却専用のファンコイルユ
ニットで、空調を行う部屋47の天井面に54台が設置
され、チラーユニット1の高い温度レベル16℃の冷水
往管23、高い温度レベル21℃の冷水還管24とそれ
ぞれに接続された高い温度レベルの冷水往主縦管50、
高い温度レベルの冷水還主縦管51、各階の熱交換器5
2を介して、連結接続された各階の高い温度レベル、往
温度17℃、還温度22℃の冷水循環系統配管53に接
続され、高い温度レベルの各階冷水循環ポンプ54によ
って高い温度レベルの冷水を循環供給され、空調を行う
部屋47の空気を循環冷却して顕熱の除去を行うと同時
に、外気調和器31で調整、外気給気ダクト46を経て
天井懐スペース48に給気された外気を吸って室内へ供
給する。
In the figure, reference numeral 49 denotes a fan coil unit dedicated to sensible heat cooling, 54 units are installed on the ceiling surface of a room 47 for air conditioning, the chiller unit 1 has a cold water outgoing pipe 23 having a high temperature level of 16 ° C., and a high temperature level. A high temperature level cold water main pipe 50 connected to a 21 ° C. cold water return pipe 24,
Cold water return vertical pipe 51 with high temperature level, heat exchanger 5 on each floor
2 is connected to a chilled water circulating system piping 53 having a high temperature level, a forward temperature of 17 ° C., and a return temperature of 22 ° C. of each floor connected to each other via the chilled water circulating pump 54 at a high temperature level. The air in the room 47 to be circulated and air-conditioned is circulated and cooled to remove sensible heat, and at the same time, the outside air supplied to the ceiling space 48 through the outside air supply duct 46 is adjusted by the outside air conditioner 31. Suck and supply to the room.

【0038】前記各階の高い温度レベルの冷水循環系統
配管53に関連して各階開放水槽55を設けて、これを
高い温度レベルの各階冷水循環ポンプの吸込側と吐出側
に各々設けた弁56,57でいずれか一方に切り替えて
接続可能とした。
An open water tank 55 is provided on each floor in association with the high temperature level cold water circulation system piping 53 on each floor, and valves 56 are provided on the suction side and discharge side of each high temperature level cold water circulation pump, respectively. At 57, it is possible to switch to either one and connect.

【0039】本発明による空気調和装置はチラーユニッ
ト1を空調非使用時間帯、即ち、18時〜翌日8時まで
の14時間の夜間時間帯には氷蓄熱運転を行って氷蓄熱
水槽16に氷を作って蓄える。この場合はチラーユニッ
ト1の氷蓄熱用蒸発器11を冷媒が通過するように、切
り替え弁12、13を操作して、また四方弁を冷房位置
にして圧縮機2を運転し、空冷式凝縮器4に散水装置1
7を作動させて散水を掛け、凝縮器用送風機18で放熱
冷却用外気を通過させて、氷蓄熱水槽16内にある水か
ら氷蓄熱用蒸発器11をへて熱を奪って、散水装置17
によって散水を掛けられ、その蒸発潜熱で温度を低く抑
えられた空冷式凝縮器8から放熱する。
In the air conditioner according to the present invention, the chiller unit 1 performs the ice heat storage operation during the non-air-conditioning time period, that is, the night time period of 14 hours from 18:00 to 8:00 on the following day, and stores the ice in the ice storage water tank 16. Make and store. In this case, the switching valves 12 and 13 are operated so that the refrigerant passes through the ice storage evaporator 11 of the chiller unit 1, and the compressor 2 is operated with the four-way valve in the cooling position to operate the air-cooled condenser. Watering device 1 for 4
7 is sprayed, water is radiated and cooled by the condenser blower 18, heat is taken from the water in the ice heat storage water tank 16 through the ice heat storage evaporator 11, and the water spray device 17 is discharged.
And water is radiated from the air-cooled condenser 8 whose temperature is kept low by the latent heat of evaporation.

【0040】本実施例では氷蓄熱用蒸発器を構成するキ
ャピラリーチューブは内径1.5mm外形2.1mmで
4960mmの直管を中央部で5Rに180°に曲げて
ヘアピン状に整形加工した銅管で、深さ2650mm、
幅1200mm、長さ1250mmのFRP製の氷蓄熱
水槽16の内部に垂直に、曲げ部分を下にして縦横10
mmピッチで7500本を上部両端をそれぞれ直径9m
m、長さ1200mmの60本の冷媒出口ヘッダー、同
じく60本の冷媒入口ヘッダーに接続され、全伝熱面積
は245mを有する反面、その体積は126リットル
未満、氷蓄熱水槽16に2400mmまで水を収納した
有効な容積3600リットルの僅か3.5%に留まる。
また、蒸発器の容積は70リットルとなり上記圧縮機に
よる冷凍サイクル内部の冷媒保有量の限界に照らして適
切であり、冷媒で直接に氷蓄熱水槽の水を冷却すること
を可能にする。
In the present embodiment, a capillary tube constituting an evaporator for ice heat storage is a copper tube formed by bending a straight tube of 1.5 mm in inner diameter and 2.1 mm in outer diameter and 4960 mm to 180 ° to 5R at the center at a central portion to form a hairpin shape. At a depth of 2650 mm,
Vertically, vertically and horizontally, with the bent part down, inside the FRP ice heat storage water tank 16 having a width of 1200 mm and a length of 1250 mm.
7500 pcs with a pitch of 9 mm at both ends
m, 60 mm refrigerant outlet header having a length of 1200 mm, which is also connected to the 60 refrigerant inlet headers, has a total heat transfer area of 245 m 2, but has a volume of less than 126 liters, and is filled with water up to 2400 mm in the ice heat storage water tank 16. Remains at only 3.5% of the available volume containing 3600 liters.
In addition, the volume of the evaporator is 70 liters, which is appropriate in view of the limit of the amount of refrigerant held inside the refrigeration cycle by the compressor, and makes it possible to directly cool the water in the ice storage water tank with the refrigerant.

【0041】在来、商品化されている氷蓄熱水槽の熱交
換器の様に、直径16mmの伝熱管を使用すると、同じ
245mの伝熱面積を得るには、全長4880mを要
し、体積は980リットルにも達して、氷蓄熱水槽の容
積を27%以上狭くしてしまう結果となり、さらに内容
積も750リットルとなって冷媒で直接冷却を行うには
圧縮機2の構造による冷媒量の上限を遥かに超過し、全
く適していない。
If a heat transfer tube having a diameter of 16 mm is used like a heat exchanger of a commercially available ice heat storage tank, a total length of 4880 m is required to obtain the same heat transfer area of 245 m 2 , Reaches 980 liters, resulting in a reduction in the volume of the ice heat storage water tank by 27% or more. Further, the internal volume becomes 750 liters, and the amount of the refrigerant due to the structure of the compressor 2 is required for direct cooling with the refrigerant. It far exceeds the upper limit and is not suitable at all.

【0042】前記の245mの伝熱面積は蒸発温度−
0.5℃でチラーユニット1に組み込まれた冷却能力2
6kw、入力6kwの圧縮機2の運転によってキャピラ
リーチューブ製の氷蓄用蒸発器11の外面に着氷を生じ
ることが出来る。運転時間の経過に伴って、着氷の厚さ
が増し、外径2.1mmのキャピラリーチューブの外周
に円筒状の氷が発達するが、キャピラリーチューブの間
隔は10mmになっているので氷の厚さが4mm未満で
隣同志の氷の円筒は接することになる。
The heat transfer area of 245 m 2 is the evaporation temperature−
Cooling capacity 2 incorporated in chiller unit 1 at 0.5 ° C
By operating the compressor 2 of 6 kw and input of 6 kw, icing can occur on the outer surface of the ice evaporator 11 made of a capillary tube. As the operation time elapses, the thickness of the icing increases, and cylindrical ice develops on the outer periphery of the capillary tube having an outer diameter of 2.1 mm. However, since the interval between the capillary tubes is 10 mm, the thickness of the ice is increased. When the length is less than 4 mm, neighboring ice cylinders are in contact.

【0043】さらに圧縮機2の運転を継続して行くと、
氷の円筒は互いに接して、つぎの段階では相互の隙間を
埋めて行く形となる。氷の体積が氷蓄熱水槽の容積の9
5%に達した時点でも氷の厚さは残った隙間に面する部
分で僅かに4.5mmしかない。この時点での氷の体積
は3410リットルで、この氷の潜熱による蓄熱量は2
90kwh、空調時間帯に使用して氷蓄熱水槽16内の
水の温度が17℃まで上昇することで有効になる水の顕
熱による蓄熱量67kwhを加えて合計357kwhの
蓄熱量となり、これは冷却能力26kwの圧縮機1の1
3.7時間分の運転による冷却能力に当たり、夜間時間
帯の14時間とよく一致している。
When the operation of the compressor 2 is further continued,
The ice cylinders touch each other, filling the gaps in the next stage. The volume of ice is 9 times the volume of the ice storage water tank.
Even at 5%, the ice thickness is only 4.5mm at the portion facing the remaining gap. At this time, the volume of the ice was 3410 liters, and the amount of heat stored by the latent heat of the ice was 2 liters.
A total of 357 kWh of heat is stored by adding 90 kWh of heat stored by sensible heat of the water, which becomes effective when the temperature of the water in the ice heat storage water tank 16 rises to 17 ° C. when used in the air conditioning time zone, and this is cooling. One of the 26 kW compressors 1
This corresponds to a cooling capacity of 3.7 hours of operation, which is in good agreement with 14 hours in the night time zone.

【0044】氷の熱伝導率は鋼の85、銅の400に対
して非常に低く僅か2.2に留まっているので氷蓄熱完
了時点の氷の厚さが氷蓄熱用蒸発器の性能を大きく左右
する。したがって、氷を含めた管内外の熱伝達率は着氷
開始前と蓄熱完了時では異なる値を示し、4.5mmの
氷の厚さでは開始前に較べて28%減に留まり、在来の
不凍液を使用する場合の様に、例えば40mmの氷の厚
さでは80%も減となって、氷と冷媒の温度差が着氷開
始初期に0.5℃の場合で、氷蓄熱完了時では前者で
0.7℃、後者では5倍の2.5℃も必要となる。
Since the thermal conductivity of ice is very low compared to 85 of steel and 400 of copper, and is only 2.2, the thickness of ice at the time of completion of ice storage increases the performance of the evaporator for ice storage. Depends. Therefore, the heat transfer coefficient inside and outside the tube, including ice, shows different values before the start of icing and at the completion of heat storage, and at a thickness of 4.5 mm of ice, it is reduced by 28% as compared to before the start, and the conventional heat transfer rate is smaller. As in the case of using antifreeze, for example, the thickness of ice of 40 mm is reduced by as much as 80%, the temperature difference between ice and the refrigerant is 0.5 ° C. at the beginning of icing, and when ice storage is completed. The former requires 0.7 ° C., and the latter requires five times 2.5 ° C.

【0045】在来、商品化されている不凍液を使用する
氷蓄熱チラーの場合は不凍液自身の温度の変化によって
熱移動を行うため、伝熱管の入口部分と出口部分では温
度差が生じて、この温度差がさらに蒸発器における冷媒
の蒸発温度と不凍液との温度差に加わることとなり、本
発明の空気調和装置に使用される、直接、冷媒によって
氷を作るチラーユニットに比較して蒸発温度が10℃〜
15℃も低くなるばかりでなく、不凍液の出入口におけ
る温度差によって伝熱管表面の着氷の不均一が生じるな
どの欠点もあった。
Conventionally, in the case of a commercialized ice storage chiller using an antifreeze, heat is transferred by a change in the temperature of the antifreeze itself, so that a temperature difference occurs between an inlet portion and an outlet portion of the heat transfer tube. The temperature difference further adds to the difference between the evaporation temperature of the refrigerant in the evaporator and the temperature of the antifreeze, and the evaporation temperature is 10 times lower than that of the chiller unit that directly uses the refrigerant to make ice using the air conditioner of the present invention. ° C ~
Not only did the temperature drop by as much as 15 ° C., but there was also a drawback that the temperature difference between the inlet and outlet of the antifreeze caused uneven icing on the heat transfer tube surface.

【0046】氷蓄熱運転が完了して、空調使用時間帯、
即ち、昼間時間帯になると、チラーユニット1の低温冷
水循環ポンプ19を運転し、外気調和器31の主プレー
トフィンチューブ熱交換器38に氷点に極めて近い温度
の低温の冷水を循環供給する。外気調和器31では、送
風機40を運転し、空気吸込口32から外気フィルター
33、第1、第3、のレートフィンチューブ熱交換器、
34、36、主プレートフィンチューブ熱交換器38、
第4のプレートフィンチューブ熱交換器37、第2のプ
レートフィンチューブ熱交換器35を順次通過して温度
調節された外気を吸い込み加圧して、外気給気ダクト4
6を経て、空調を行う部屋47の天井懐スペース48に
給気する。本実施例の外気調和器は風量は1250m
/hで、各熱交換器の通過面積は0.3m、高さ50
0mm、幅600mmとなっている。
When the ice heat storage operation is completed, the air conditioning use time zone,
That is, in the daytime, the low-temperature chilled water circulation pump 19 of the chiller unit 1 is operated to circulate and supply low-temperature chilled water having a temperature very close to the freezing point to the main plate fin tube heat exchanger 38 of the outside air conditioner 31. In the outside air conditioner 31, the blower 40 is operated, and the outside air filter 33, the first and third rate fin tube heat exchangers from the air inlet 32,
34, 36, main plate fin tube heat exchanger 38,
The outside air supply duct 4 passes through the fourth plate fin tube heat exchanger 37 and the second plate fin tube heat exchanger 35 in order and sucks and pressurizes the outside air whose temperature has been adjusted.
After 6, the air is supplied to the ceiling space 48 of the room 47 to be air-conditioned. The outside air conditioner of this embodiment has an air volume of 1250 m 3.
/ H, the passage area of each heat exchanger is 0.3 m 2 , height 50
0 mm and 600 mm in width.

【0047】夏季には、水循環ポンプ43を運転し、開
放水槽44から水を吸い上げて第1のプレートフィンチ
ューブ熱交換器34を通し、水循環配管42を経て、第
2のプレートフィンチューブ熱交換器35を通して開放
水槽44へ戻し、再循環させる。この水循環によって乾
球温度32℃、相対湿度70%の外気は第1のプレート
フィンチューブ熱交換器34を通過する際に、第2のプ
レートフィンチューブ熱交換器35で7℃の低露点の除
湿空気と熱交換して温度が17℃に下がった循環水と熱
交換して7.5kw熱量を奪われ23℃の飽和点まで冷
却除湿され、循環水は逆に29℃まで昇温する。
In the summer, the water circulation pump 43 is operated to draw water from the open water tank 44, pass through the first plate fin tube heat exchanger 34, pass through the water circulation pipe 42, and pass through the second plate fin tube heat exchanger. Return to the open water tank 44 through 35 and recirculate. By this water circulation, when the outside air having a dry bulb temperature of 32 ° C. and a relative humidity of 70% passes through the first plate-fin tube heat exchanger, the second plate-fin tube heat exchanger 35 has a low dew point of 7 ° C. It exchanges heat with air and exchanges heat with circulating water whose temperature has dropped to 17 ° C., loses 7.5 kW of heat, cools and dehumidifies it to a saturation point of 23 ° C., and conversely raises the temperature of circulating water to 29 ° C.

【0048】これと引き換えに第2のプレートフィンチ
ューブ熱交換器35では主プレートフィンチューブ熱交
換器38でチラーユニットの氷蓄熱水槽16から低温冷
水循環ポンプ19によって低温冷水往管20を経て送ら
れてくる氷点に極めて近い低温冷水と熱交換して7℃ま
で冷却除湿された低温の空気と、第1のプレートフィン
チューブ熱交換器34で29℃まで昇温して水循環配管
42を経て供給される水と熱交換して出口空気は25℃
まで再熱され、逆に29℃の循環水は17℃まで冷却さ
れる。この第2のプレートフィンチューブ熱交換器35
での交換熱量は第1のプレートフィンチューブ熱交換器
34での交換熱量と同じとなる。
In exchange for this, in the second plate fin tube heat exchanger 35, the main plate fin tube heat exchanger 38 is fed from the ice storage water tank 16 of the chiller unit by the low temperature chilled water circulation pump 19 via the low temperature chilled water outgoing pipe 20. The low-temperature air cooled and dehumidified to 7 ° C. by exchanging heat with low-temperature cold water very close to the freezing point, and heated to 29 ° C. by the first plate-fin tube heat exchanger 34 and supplied through the water circulation pipe 42. Heat exchange with water and outlet air is 25 ℃
And the circulating water at 29 ° C. is cooled to 17 ° C. This second plate fin tube heat exchanger 35
Is the same as the amount of heat exchanged in the first plate-fin tube heat exchanger.

【0049】外気温度が低く、7℃の低露点の冷却除湿
空気の再熱に役立たない季節には水循環ポンプ43を停
止すると、循環水は当該水循環系統の最下部に位置して
設けた開放水槽へ流下し、第1のプレートフィンチュー
ブ熱交換器34、第2のプレートフィンチューブ熱交換
器の中は空になる。
When the water circulation pump 43 is stopped in a season in which the outside air temperature is low and it is not useful to reheat the cooling dehumidified air having a low dew point of 7 ° C., the circulating water is supplied to an open water tank provided at the bottom of the water circulation system. And the first plate-fin tube heat exchanger 34 and the second plate-fin tube heat exchanger become empty.

【0050】第3のプレートフィンチューブ熱交換器3
6には高い温度レベルの冷水還主縦管51から、室内と
の循環空調系統で室内の発生顕熱を冷却除去した熱を各
階の熱交換器52で受けて21℃まで温度の上昇した高
い温度レベルの戻り冷水、180lit/minを通水
して、第1のプレートフィンチューブ熱交換器34を経
て23℃の飽和空気となった外気と熱交換させて22℃
の飽和点まで1.5kwの冷却除湿を行う。
Third plate fin tube heat exchanger 3
In FIG. 6, the heat obtained by cooling and removing the sensible heat generated in the room by the circulating air conditioning system with the room is received by the heat exchangers 52 on the respective floors, and the temperature rises to 21 ° C. Return cold water at a temperature level of 180 lit / min is passed through the first plate-fin tube heat exchanger 34 to exchange heat with the outside air that has become saturated air at 23 ° C. and 22 ° C.
1.5 kW of cooling and dehumidification up to the saturation point of

【0051】この第3のプレートフィンチューブ熱交換
器36での熱交換量は夏季には少ない値であるが冬季に
は外気温度が0℃の場合、21℃の高い温度レベルの戻
り冷水の熱を受けて6.7kwの熱量を与えられて16
℃まで温度上昇し、超音波式加湿器39で断熱加湿され
6℃の飽和空気となり室内に供給されて室内空気の相対
湿度を40%以上に保つための熱源として十分の加熱量
となるのみならず、室内の顕熱除去の約11%を担うこ
とになる。
The amount of heat exchange in the third plate-fin tube heat exchanger 36 is small in summer, but in winter, when the outside air temperature is 0 ° C., the heat of the return chilled water having a high temperature level of 21 ° C. Received 6.7 kW of heat and 16
If the temperature rises up to ℃, the adiabatic humidifier 39 adiabatically humidifies the air and supplies it to the room as saturated air at 6 ° C. Instead, it accounts for about 11% of indoor sensible heat removal.

【0052】第4のプレートフィンチューブ熱交換器3
7は外気温度があまり高温ではなく、第1、第2のプレ
ートフィンチューブ熱交換器、34、35による再熱が
不足して7℃の低露点の外気の再熱温度が25℃に達し
ない場合、チラーユニット1の第2の凝縮器9を弁5、
6、7、8を適宜に操作、切り替えて、空冷式凝縮器4
と併用出来るようにし、これを通して35℃の温水を温
水循環ポンプ27により循環供給して25℃まで7.5
kwの再熱を行う能力をもつ。
Fourth plate fin tube heat exchanger 3
7, the outside air temperature is not very high, and the reheating by the first and second plate fin tube heat exchangers 34 and 35 is insufficient, so that the reheating temperature of the outside air having a low dew point of 7 ° C. does not reach 25 ° C. In this case, the second condenser 9 of the chiller unit 1 is connected to the valve 5,
6, 7, and 8 are appropriately operated and switched, and the air-cooled condenser 4
Through which hot water of 35 ° C. is circulated and supplied by a hot water circulating pump 27 to 7.5 ° C. up to 25 ° C.
It has the ability to reheat kw.

【0053】前記、第2の凝縮器9からの温水は、冬
季、一部分に暖房が必要になる空調系統がある場合に、
その空調系統へ同じ温水を供給出来るように、弁を切り
替えて、建物の大部分が冷房している場合でも、当該空
調系統には温水を供給して暖房に供することも出来る。
The hot water from the second condenser 9 is used in winter when there is an air conditioning system that requires heating in part.
By switching the valves so that the same hot water can be supplied to the air conditioning system, even when most of the building is being cooled, the air conditioning system can be supplied with hot water for heating.

【0054】主プレートフィンチューブ熱交換器38で
は第3のプレートフィンチューブ熱交換器36で22℃
の飽和点まで予冷却された外気と、氷蓄熱水槽16から
低温冷水循環ポンプ19によって低温冷水往管20を経
て送られる氷点に近い低温の冷水とを17.4kwの熱
交換を行って、外気を7℃の露点まで冷却除湿する。
In the main plate fin tube heat exchanger 38, the temperature is 22 ° C. in the third plate fin tube heat exchanger 36.
Is exchanged between the outside air pre-cooled to the saturation point and low-temperature cold water close to the freezing point sent from the ice heat storage water tank 16 through the low-temperature cold water circulation pipe 19 by the low-temperature cold water circulation pump 19 by 17.4 kW. Is cooled and dehumidified to a dew point of 7 ° C.

【0055】前記、主プレートフィンチューブ熱交換器
38は別形式の熱交換器、例えば薄い樹脂製の多数のシ
ートで成型した充填材のような直接接触形熱交換器を使
用してもよい。また、第3のプレートフィンチューブ熱
交換器36と前記直接接触形熱交換器を組み合わせて、
複数段に分割し、直列に並べて使用してもよく、さら
に、第3のプレートフィンチューブ熱交換器36と主プ
レートフィンチューブ熱交換器38とを組み合わせて、
複数段に分割し各段に蒸発式加湿器または超音波加湿器
などの断熱式加湿器を挟んで直列に並べて使用してもよ
い。
The main plate fin tube heat exchanger 38 may use another type of heat exchanger, for example, a direct contact heat exchanger such as a filler molded from a plurality of thin resin sheets. Further, by combining the third plate fin tube heat exchanger 36 with the direct contact heat exchanger,
It may be divided into a plurality of stages and used in series, and further, by combining the third plate fin tube heat exchanger 36 and the main plate fin tube heat exchanger 38,
It may be divided into a plurality of stages and used in series with an adiabatic humidifier such as an evaporative humidifier or an ultrasonic humidifier interposed at each stage.

【0056】前記、7℃の低温の露点までの冷却は氷蓄
熱による氷点に近い低温冷水で初めて経済的に成り立つ
もので、在来の5℃〜7℃の冷水では経済的理由により
実現出来ない。
The above-mentioned cooling to a low-temperature dew point of 7 ° C. is economically feasible only with low-temperature cold water close to the freezing point due to ice storage, and cannot be realized with conventional cold water of 5 ° C. to 7 ° C. for economic reasons. .

【0057】この7℃の低温の露点の空気が含む水蒸気
量は湿り空気中の乾燥空気1kg当たり6.2g/kg
で、空調を行う部屋47の室内空気の条件を乾球温度2
5℃相対湿度50%とすると、その室内空気が含む水蒸
気量は、同じく乾燥空気1kg当たり10g/kgであ
るため、7℃の露点の空気の方が10g/kg−6.2
g/kg=3.8g/kg含有水蒸気量が少ない。
The amount of water vapor contained in the low-temperature dew point air at 7 ° C. is 6.2 g / kg / kg of dry air in humid air.
The condition of the indoor air in the room 47 to be air-conditioned is
Assuming that the relative humidity is 5 ° C. and the relative humidity is 50%, the amount of water vapor contained in the indoor air is also 10 g / kg per 1 kg of dry air, so that air having a dew point of 7 ° C. is 10 g / kg−6.2.
g / kg = 3.8 g / kg The amount of water vapor contained is small.

【0058】この含有水蒸気量の3.8g/kg少ない
露点7℃の空気を1250m/h室内へ給気すれば
3.8g/kg×1250m/h×1.2kg/m
(空気の密度)=5700g/hの室内で発生する水蒸
気の負荷を打ち消すことが出来る。在室者1名当たりの
通常の水蒸気発生量は100g/h程度とされるので、
前記5700gの水蒸気負荷は在室者57名分に相当
し、在室者1名分の慣行的に実用される外気取入量25
/hで本実施例の外気取入量1250m/hを除
すると丁度、在室者50名分に相当することから、除湿
能力に14%程度の余裕を持つ状態で、無駄に外気取入
量を増す事なく、室内の潜熱負荷を100%外気調和器
の系統に委ねて、室内との再循環空調系統では顕熱のみ
を除去すれば済む。
If air having a dew point of 7 ° C., which is 3.8 g / kg less than the content of water vapor, is supplied to the room at 1250 m 3 / h, 3.8 g / kg × 1250 m 2 /h×1.2 kg / m 3
(Density of air) = The load of water vapor generated in a room of 5700 g / h can be canceled. Since the normal amount of water vapor generated per occupant is about 100 g / h,
The water vapor load of 5700 g corresponds to 57 occupants, and the outside air intake amount 25 that is conventionally used for one occupant.
Just when dividing the fresh air intake amount 1250 m 3 / h of this embodiment in m 3 / h, since it corresponds to the occupants 50 persons, in a state with a margin of about 14% to dehumidification capacity, wasted outside air Without increasing the intake amount, the latent heat load in the room is left to the 100% outside air conditioner system, and only the sensible heat needs to be removed in the recirculating air conditioning system with the room.

【0059】このようにして、室内との再循環空調系統
では顕熱の冷却除去のみを行い、潜熱負荷を受け持つこ
とがないので、冷却のための空気を室内空気の露点温度
以下に下げる必要がなく、一例を挙げれば室温より6℃
低い19℃程度まで冷却するだけでも済むことになり、
この冷却を行うためには露点温度より高い温度レベルの
冷水、例えばファンコイルユニット49の入口で17
℃、出口で22℃のような高い温度レベルの冷水で間に
合う。
In this manner, in the recirculating air conditioning system with the room, only the cooling of the sensible heat is performed, and the latent heat load is not taken over. Therefore, it is necessary to lower the cooling air to the dew point temperature of the room air. No, 6 ° C above room temperature to give an example
Just cooling down to a low temperature of about 19 ° C
In order to perform this cooling, cold water at a temperature level higher than the dew point temperature, for example,
C., cold water at a high temperature level such as 22.degree. C. at the outlet.

【0060】本実施例では空調使用時間帯、8時〜18
時の10時間の昼間時間帯には夜間時間帯と同様圧縮機
の運転を行うが、夜間時間帯と異なり、切り替え弁1
2、13により冷媒回路を切り替えて空調使用時間帯用
蒸発器14を使用し、15℃の高い蒸発温度で圧縮機2
を運転して、室内との再循環空調系統のファンコイルユ
ニットから各階冷水循環ポンプ54によって各階の高い
温度レベルの冷水循環系統配管53を経て送られてくる
22℃の高い温度レベルの冷水を各階熱交換器52で熱
交換して17℃まで冷却した結果21℃まで昇温した高
い温度レベルの還冷水180lit/minの内、20
lit/minを氷蓄熱水槽16へ戻して、残り160
lit/minを18℃まで冷却して、これに氷蓄熱水
槽16からからの氷点に極く近い低温の冷水を自動混合
弁25で混合して、高い温度レベルの冷水温度センサー
26の信号により16℃になるようにして高い温度レベ
ルの冷水往主縦管50、同還主縦管51を経由してチラ
ーユニット1内部の高い温度レベルの冷水循環ポンプ2
2によって循環させる。
In this embodiment, the air-conditioning use time period is from 8:00 to 18
During the daytime period of 10 hours, the compressor operates in the same manner as the night time zone, but unlike the night time zone, the switching valve 1
The refrigerant circuit is switched by using the air conditioners 2 and 13, and the evaporator 14 for the air conditioning use time zone is used.
Is operated, and the chilled water of the high temperature level of 22 ° C. sent from the fan coil unit of the recirculation air-conditioning system to the room through the chilled water circulation system piping 53 of each floor by the chilled water circulation pump 54 of each floor is supplied to each floor. Out of 180 liters / min of high temperature level recirculated water heated to 21 ° C. as a result of cooling to 17 ° C. by heat exchange in heat exchanger 52,
lit / min is returned to the ice heat storage water tank 16, and the remaining 160
lit / min is cooled down to 18 ° C., and low-temperature cold water very close to the freezing point from the ice heat storage water tank 16 is mixed by the automatic mixing valve 25, and the low-temperature water is cooled to 16 ° C. by the signal of the high-temperature cold water temperature sensor 26. ° C and a high temperature level cold water circulation pump 2 inside the chiller unit 1 via a high temperature level cold water outflow main vertical pipe 50 and a return main vertical pipe 51.
Circulate through 2.

【0061】このようにして、チラーユニット1の圧縮
機2は夜間時間帯の14時間については、蓄熱運転初期
においては−0.5℃、氷蓄熱完了時には−0.7℃の
蒸発温度となり、平均蒸発温度は−0.6℃で運転さ
れ、昼間時間帯の10時間については、15℃の蒸発温
度で運転されることになる。他方、凝縮温度については
空冷式凝縮器4に散水装置17によって散水を掛けて、
散水の蒸発潜熱で凝縮温度を低く抑えているために、昼
間時間帯は平均37℃、夜間時間帯は平均35℃程度と
なり、その結果、圧縮機2の高い蒸発温度での運転で起
こり勝ちな過負荷運転を回避できると同時に、冷却能力
も向上して、昼間時間帯における冷却能力は44kw、
同入力は6.5kw、10時間ではそれぞれ440kw
h、65kwhとなり、一方、夜間時間帯での冷却能力
は26kw、同入力は6.1kw、14時間ではそれぞ
れ364kwh、85.4kwhとなって、1日24時
間では804kwhの冷却効果に対して僅か150.4
kwhの電力消費で済む結果となり、エネルギー消費効
率は5.4にも達する。
As described above, the compressor 2 of the chiller unit 1 has an evaporation temperature of -0.5 ° C at the beginning of the heat storage operation and -0.7 ° C at the completion of ice heat storage for 14 hours in the night time zone. The average evaporating temperature is operated at −0.6 ° C., and the operation is performed at an evaporating temperature of 15 ° C. for 10 hours in the daytime. On the other hand, with respect to the condensation temperature, water is applied to the air-cooled condenser 4 by using a watering device 17.
Since the condensation temperature is kept low by the latent heat of vaporization of water, the average during the daytime is about 37 ° C and the average during the nighttime is about 35 ° C. As a result, it is unlikely that the compressor 2 will operate at a high evaporation temperature. At the same time as avoiding overload operation, the cooling capacity is improved, and the cooling capacity during the daytime is 44 kw,
The same input is 6.5kw, 440kw each for 10 hours
h, 65 kwh, while the cooling capacity in the night time zone is 26 kw, the input is 6.1 kw, and in the 14 hours, 364 kwh and 85.4 kwh, respectively. 150.4
kWh of power consumption results, and the energy consumption efficiency reaches 5.4.

【0062】この値に凝縮器用送風機18の電力0.1
kw、高い温度レベルの冷水循環ポンプ19と54の合
計の電力0.9kw、低温冷水循環ポンプ22の電力
0.1kw、送風機40の電力0.4kw、ファンコイ
ルユニット54台分0.54kwなどを、その各々の運
転時間を乗じて加えた1日の消費電力21.8kwhを
加味した総合エネルギー消費効率でも4.5より大きい
値となる。
The electric power of the condenser blower 18 is set to 0.1
kw, the total power of the high temperature level chilled water circulating pumps 19 and 54 is 0.9 kW, the power of the low temperature chilled water circulating pump 22 is 0.1 kW, the power of the blower 40 is 0.4 kW, and 0.54 kW for 54 fan coil units. Also, the total energy consumption efficiency taking into account the daily power consumption of 21.8 kwh, which is obtained by multiplying the respective operation times, is also a value larger than 4.5.

【0063】図中58は空調使用時間帯用蒸発器14と
直列または並列にまたは各々単独で使用し得るように2
個の3方切り替え弁59、60を介して高い温度レベル
の冷水管で連結した標準冷却能力45kwの密閉型冷却
塔で、外気温度が低く、密閉型冷却塔58の出口温度が
高い温度レベルの冷水の戻り温度より低い場合はこれに
通水、運転して空調時間帯用蒸発器14の負荷を減少
し、圧縮機2の消費電力を節減する。前記、密閉型冷却
塔は空冷式凝縮器を水冷式凝縮器に替えてこれと組み合
わせてチラーの圧縮機冷凍サイクルの放熱手段として使
用してもよい。
In the drawing, reference numeral 58 designates a series or parallel connection with the evaporator 14 for the air-conditioning use time zone, or 2 so that each can be used alone.
A closed cooling tower with a standard cooling capacity of 45 kW connected with a high-temperature chilled water pipe via the three-way switching valves 59 and 60, the outside air temperature is low, and the outlet temperature of the closed cooling tower 58 is high. When the temperature is lower than the return temperature of the chilled water, the load on the evaporator 14 for the air-conditioning time zone is reduced by passing water and operating the chilled water, thereby reducing the power consumption of the compressor 2. In the closed cooling tower, the air-cooled condenser may be replaced with a water-cooled condenser and used in combination with the water-cooled condenser as a radiator of a chiller compressor refrigeration cycle.

【0064】外気温度がさらに低下して密閉型冷却塔5
8の出口温度が高い温度レベルの冷水の往温度より低く
なった場合は切り替え弁59、60を操作、切り替え
て、空調時間帯用蒸発器14を使用せず、密閉型冷却塔
58のみで冷却が可能となる。高い温度レベルの冷水往
温度を17℃とする場合、関東地方を例に取れば、平均
外気湿球温度が12℃より低い11月から翌年の4月ま
での半年の間は密閉型冷却塔58のみにて冷却が可能
で、さらに大形の密閉型冷却塔を使用すれば10月から
翌年の5月までをこの大形の密閉型冷却塔のみで冷却す
ることが出来る。
As the outside air temperature further decreases, the closed cooling tower 5
When the outlet temperature of 8 becomes lower than the outgoing temperature of the chilled water of the high temperature level, the switching valves 59 and 60 are operated and switched, and the cooling is performed only by the closed cooling tower 58 without using the evaporator 14 for the air conditioning time zone. Becomes possible. If the cold water outgoing temperature of the high temperature level is 17 ° C., taking the Kanto region as an example, the closed cooling tower 58 is used for a half year from November, when the average open-air wet-bulb temperature is lower than 12 ° C., to April of the following year. It is possible to cool only with this large closed cooling tower from October to May of the following year if a large closed cooling tower is used.

【0065】また、外気温度が高く、密閉型冷却塔の出
口温度が高い温度レベルの冷水戻り温度より高い場合は
切り替え弁59、60を操作、切り替えて、密閉型冷却
塔58には通水せずに、空調使用時間帯用蒸発器14を
専門に使用する。
When the outside air temperature is high and the outlet temperature of the closed type cooling tower is higher than the high temperature level chilled water return temperature, the switching valves 59 and 60 are operated and switched to pass water through the closed type cooling tower 58. Instead, the air conditioner use time evaporator 14 is used exclusively.

【0066】[0066]

【図2】は本発明による空気調和装置に主として使用す
るファンコイルユニット49の詳細説明図で、図中61
は直径500mmの回転円盤62に放射状に取り付けら
れた180mm×60mmの厚さ2mmの36枚の翼で
回転円盤62とともに樹脂製とし輻流式回転翼車63を
構成する。図中64は600mm×500mmの平面寸
法を持つ高さ40mmのプレートフィンチューブ熱交換
器で、上部中央に軸垂直に取り付けられたファンモータ
ー65はその軸の先端に前記輻流式回転翼車63を直結
している。なお、本実施例における前記ファンコイルユ
ニットの冷却能力は1.2kwで、風量は10m/m
in、送風機の消費電力は10ワットである。
FIG. 2 is a detailed explanatory view of a fan coil unit 49 mainly used in the air conditioner according to the present invention, and 61 in the figure.
Are made of resin together with the rotating disk 62 with 36 blades of 180 mm × 60 mm and 2 mm thick, which are radially attached to the rotating disk 62 having a diameter of 500 mm. In the figure, reference numeral 64 denotes a plate fin tube heat exchanger having a plane dimension of 600 mm × 500 mm and a height of 40 mm. Is directly connected. In this embodiment, the cooling capacity of the fan coil unit is 1.2 kw, and the air volume is 10 m 3 / m.
in, the power consumption of the blower is 10 watts.

【0067】図中66はプレートフィンチューブ熱交換
器64の下方に隣接して設置したプレートフィンチュー
ブ熱交換器64とほぼ同じ幅600mmのフィルターメ
ディアで、両端部をプレートフィンチューブ熱交換器6
4の両端部に平行に設置された直径30mmで駆動モー
ター67によって正・逆転を可能にした駆動ロール68
とロールスプリング69で常にフィルターメディア66
に張力を与えてフィルターメディア66を平面状に保ち
ながら、駆動ロール68の正転、逆転の回転によってフ
ィルターメディア66をプレートフィンチューブ熱交換
器65の下面に接してその全長500mmに亙って平行
移動できるようにした同じく直径30mmの巻き取りロ
ール70とに巻かれている。さらにフィルターメディア
66の下方には天井面に沿って空調を行う部屋47へ開
口する空気吸込口71が連接している。
In the drawing, reference numeral 66 denotes a filter medium having a width of about 600 mm, which is almost the same as the plate fin tube heat exchanger 64 installed below and adjacent to the plate fin tube heat exchanger 64.
4 is a driving roll 68 having a diameter of 30 mm and being capable of normal and reverse rotation by a driving motor 67 installed in parallel at both ends.
And filter media 66 with roll spring 69
While applying tension to the filter media 66 to keep the filter media 66 flat, the filter media 66 is brought into contact with the lower surface of the plate-fin tube heat exchanger 65 by the forward and reverse rotation of the driving roll 68 so as to be parallel over the entire length of 500 mm. It is wound around a take-up roll 70 also having a diameter of 30 mm which can be moved. Further, below the filter media 66, an air inlet 71 that opens to the room 47 for air conditioning is connected along the ceiling surface.

【0068】図中72は輻流式回転翼車63を囲い、周
囲をディフューザー73として成型して輻流式回転翼車
63の周囲から送出される空気を周囲の天井面で空調を
行う部屋47へ開口する空気吹出口74に導く様に取り
付けた上部ケーシングで、中央部に防虫網75の付いた
直径100mm開口部76を持っていて、天井懐スペー
ス48へ開口している。
In the drawing, reference numeral 72 denotes a radiation-type rotary impeller 63, and the surroundings are molded as a diffuser 73, and the air supplied from the periphery of the radiation-type rotary impeller 63 is air-conditioned on the surrounding ceiling surface. The upper casing has a 100 mm diameter opening 76 with an insect net 75 at the center and opens to the ceiling space 48.

【0069】輻流式回転翼車63の回転円盤62の中央
付近には36枚の翼61の間隙に位置して36個の直径
10mmの翼車吸気口77があり、輻流式回転翼車63
が回転すると、下方の空調を行う部屋47から空気吸込
口71、フィルターメディア66を経由してプレートフ
ィンチューブ熱交換器64で高い温度レベルの冷水で冷
却された空気を輻流式回転翼車63の翼61の間隙に吸
い込むと同時に、天井懐スペース48から、上部ケーシ
ング72の中央部の直径100mmの開口部76を、さ
らに輻流式回転翼車64の中央付近の36個の直径10
mmの翼車吸気口77を経て同じく、輻流式回転翼車6
4の翼62の間隙に吸い込み、両方の空気は平均的に混
合されながら遠心力により加圧されて周囲のディフュー
ザー73と空気吹出口74を経て、空調を行う部屋47
へ吹き出す。
In the vicinity of the center of the rotating disk 62 of the radiation impeller 63, there are 36 impeller inlets 77 having a diameter of 10 mm, which are located in the gap between the 36 blades 61. 63
Rotates, the air cooled by the high temperature level cold water in the plate fin tube heat exchanger 64 via the air suction port 71 and the filter media 66 from the lower air conditioning room 47 to the radiation type rotary impeller 63 At the same time, the opening 76 having a diameter of 100 mm at the center of the upper casing 72 is formed from the ceiling space 48 through the 36 openings 10 near the center of the radiating rotary impeller 64.
Similarly, through the impeller inlet 77 mm, the radiation type rotary impeller 6
4 is sucked into the gap between the wings 62 of the air conditioner 4, and both airs are pressurized by centrifugal force while being mixed on average, and are passed through a diffuser 73 and an air outlet 74 around the air.
Blow out to

【0070】前記フィルターメディア66はファンコイ
ルユニット49の運転中は空調を行う部屋47から吸い
込まれる空気を濾過し、空気中の塵埃がここに付着す
る。この付着した塵埃によってフィルターメディア66
が目詰まりを生じない様に再生するために、駆動ロール
68とフィルーメディア66を挟んで向いあって、フィ
ルターメディア66とその多穴列またはスリットを接す
る状態で取り付け、一端を盲にした真空除塵管78を設
け、他端を電動弁79を経て、中央式真空除塵装置80
に配管連結する。
During the operation of the fan coil unit 49, the filter media 66 filters the air sucked from the room 47 for air conditioning, and the dust in the air adheres to the filter media 66. The adhering dust causes the filter media 66
In order to regenerate so that clogging does not occur, the filter roll 66 and the filter media 66 are opposed to each other with the filter media 66 facing the filter media 66 and the multi-hole rows or slits are in contact with each other. A dust removal tube 78 is provided, and the other end is passed through a motor-operated valve 79 to a central vacuum dust removal device 80.
To the pipe.

【0071】駆動ロール68の正転、逆転により、フィ
ルターメディア66をプレートフィンチューブ熱交換器
64の全長500mmに亙って往復平行移動させなが
ら、中央式真空除塵装置80を運転し、電動弁79を開
放して、フィルターメディア66に付着した塵埃を吸い
取り、逆洗して、フィルターメディア66を再生する。
By the forward and reverse rotation of the driving roll 68, the central type vacuum dust removing device 80 is operated while the filter medium 66 is reciprocated in parallel over the entire length of 500 mm of the plate fin tube heat exchanger 64, and the electric valve 79 is operated. Is released, dust adhering to the filter media 66 is sucked, backwashed, and the filter media 66 is regenerated.

【0072】本発明による空気調和装置ではファンコイ
ルユニット49では、天井懐スペース48を経て外気調
和器31から低露点の給気を供給されているため、室内
の潜熱負荷を除去する必要がなく、室内空気の露点温度
より高い温度レベルの冷水を使用して顕熱専門に冷却除
去を行うため、ドレンパンを付属していない。
In the air conditioner according to the present invention, since the fan coil unit 49 is supplied with air having a low dew point from the outside air conditioner 31 through the ceiling space 48, it is not necessary to remove the indoor latent heat load. It does not include a drain pan because it uses chilled water with a temperature level higher than the dew point of indoor air to cool and remove sensible heat.

【0073】然し乍ら、急遽、在室者数が極端に増加す
るなどの原因で室内空気の水蒸気量が増加し、プレート
フィンチューブ熱交換器64に結露が生じて、漏水事故
になるのを防止することが望ましい。そのため、プレー
トフィンチューブ熱交換器64の適した箇所に水分を感
知する電子回路81のセンサー82を取り付けてこの電
子回路81の信号で高い温度レベルの冷水の入口管83
の部分に設けた電磁弁84を閉じて、高い温度レベルの
冷水の流入を停止して、それ以上の結露が生じない様に
した。また他の実施例では前記、電子回路81の信号で
ファンの回転数を上げ、風量を増加し、入口空気温度と
出口空気温度の差を小さくして、結露を生じない様にし
た。この水分の感知は出口空気の相対湿度の感知に替え
ても良い。
However, it is possible to prevent a sudden increase in the number of occupants in the room and an increase in the amount of water vapor in the room air, thereby preventing dew condensation on the plate fin tube heat exchanger 64 and causing a water leakage accident. It is desirable. For this reason, a sensor 82 of an electronic circuit 81 for detecting moisture is attached to a suitable portion of the plate fin tube heat exchanger 64, and an inlet pipe 83 of a high temperature level cold water is supplied by a signal of the electronic circuit 81.
The electromagnetic valve 84 provided at the portion is closed to stop the flow of the high-temperature cold water so that no more dew condensation occurs. In another embodiment, the rotation speed of the fan is increased by the signal of the electronic circuit 81, the air volume is increased, and the difference between the inlet air temperature and the outlet air temperature is reduced so that dew condensation does not occur. This sensing of moisture may be replaced by sensing the relative humidity of the outlet air.

【0074】[0074]

【発明の効果】本発明は以上に述べたように構成したの
で、次のとおり多くの効果を上げることが出来る。ま
ず、近年のOA化に伴って顕熱負荷の割合が増したオフ
ィスビルなどの空調で、取り入れ外気の系統の給気露点
温度を7℃程度と十分に低くして、これによって室内の
潜熱負荷を100%処理するようにしたので、室内顕熱
負荷については在来より10℃以上高い温度レベル、す
なわち、往温度16℃程度の冷水で冷却できるようにな
り、このためにチラーの圧縮機の冷凍サイクルの蒸発温
度を大幅に引き上げることが出来、エネルギー消費効率
を2倍近く向上した。
Since the present invention is constructed as described above, many effects can be obtained as follows. First, in air-conditioning of office buildings and the like where the ratio of sensible heat load has increased due to the recent OA, the supply air dew point temperature of the system of intake outside air is sufficiently lowered to about 7 ° C., and thereby the indoor latent heat load is reduced. 100%, the indoor sensible heat load can be cooled by a temperature level higher than conventional by 10 ° C. or more, that is, by cold water at an outgoing temperature of about 16 ° C. The evaporating temperature of the refrigeration cycle can be raised significantly, and the energy consumption efficiency has improved almost twice.

【0075】本発明ではさらに中間期から冬季にかけて
も冷房が必要なこれらのインテリジェントビルでは高い
温度レベルの冷水循環系統に大形の密閉式冷却塔をチラ
ーの蒸発器に連携して使用出来るように接続したから、
10月から翌年の5月までの半年以上の間を空調使用時
間帯の冷凍機の運転をしないで、外気で冷房することが
可能で年間のエネルギー消費効率を大幅に高めることが
出来た。
In the present invention, a large closed cooling tower can be used in conjunction with an evaporator of a chiller in a chilled water circulation system of a high temperature level in these intelligent buildings requiring cooling even in the middle period to winter. After connecting,
During the period of more than half a year from October to May of the following year, the refrigerator can be cooled by the outside air without operating the refrigerator during the air-conditioning use time, and the annual energy consumption efficiency can be greatly increased.

【0076】本発明では、取り入れ外気の系統の給気露
点温度を十分に低くするため、在来の冷却方法と異な
り、氷蓄熱による低温の冷水を使用するが、本発明で
は、在来の氷蓄熱チラーが不凍液を使用して氷を作って
いるため製氷時の蒸発温度が低く、従って、エネルギー
消費効率が低いと言う点を改めて、キャピラリーチュー
ブによる、伝熱面積が大きく容積が極めて小さい蒸発器
を使用して冷媒ガスで直接製氷出来るようにして製氷時
のエネルギー消費効率をも2倍にも向上させた。
In the present invention, unlike the conventional cooling method, low-temperature chilled water by ice storage is used in order to sufficiently lower the supply air dew point temperature of the intake external air system. The heat storage chiller uses antifreeze to make ice, so the evaporation temperature during ice making is low, and the energy consumption efficiency is low. Thus, ice can be directly made with refrigerant gas, thereby improving the energy consumption efficiency during ice making by a factor of two.

【0077】このキャピラリーチューブによる蒸発器の
発明は伝熱管のピッチを小さくして着氷の厚さを低減
し、熱伝達率向上を図るのみならず、氷蓄熱水槽におけ
る蓄氷効率を30%近く向上し、不凍液の設備を不必要
とし、チラーユニット全体を小型化、軽量化することが
でき、1つの共通架台上に纏めて、チラーユニットを工
場生産とし、現場組み立てによる品質管理の難点を除去
することも出来た。
The invention of the evaporator using the capillary tube not only reduces the pitch of the heat transfer tubes to reduce the thickness of icing and improves the heat transfer coefficient, but also increases the ice storage efficiency in the ice storage water tank by nearly 30%. Improved, eliminates the need for antifreeze equipment, reduces the size and weight of the entire chiller unit, integrates it on one common mount, makes the chiller unit factory-produced, and eliminates the difficulties of quality control by on-site assembly I was able to do it.

【0078】本発明のチラーユニットではエネルギー消
費効率を向上するため在来より10℃以上も高い蒸発温
度で圧縮機を運転するが、そのため空冷式では、外気温
度が高い場合に市販の圧縮機では過負荷となる。これを
防止するため空冷式凝縮器に散水装置を取り付け、散水
の蒸発潜熱を利用して凝縮温度を低く抑えた。これは水
冷式凝縮器の凝縮温度よりさらに5℃以上の凝縮温度引
き下げの効果があり、水冷式より設備が簡単、廉価でし
かも冷凍サイクルの省エネルギーの向上に大幅に寄与し
ている。
In the chiller unit of the present invention, the compressor is operated at an evaporating temperature higher than the conventional one by 10 ° C. or more in order to improve the energy consumption efficiency. Overload. To prevent this, a water sprinkler was attached to the air-cooled condenser, and the condensation temperature was kept low by utilizing the latent heat of evaporation of water sprinkling. This has the effect of lowering the condensing temperature by 5 ° C. or more than the condensing temperature of the water-cooled condenser, and is simpler and cheaper than the water-cooled condenser, and greatly contributes to the improvement in energy saving of the refrigeration cycle.

【0079】本発明では7℃まで外気給気の露点温度を
下げることでその特色を発揮するが、この外気を低温の
まま室内へ供給すると、途上のダクトなどで結露による
漏水事故を引き起こす可能性があり、温度分布にも影響
を与えるなどの虞れがあるのを防止するため、またさら
に、高い温度レベルのエネルギー消費効率の高い冷水に
負荷を移して装置全体のエネルギー消費効率の向上を図
るため、7℃の低露点化した外気を室温の25℃近くま
で再熱する。
In the present invention, the characteristic is exhibited by lowering the dew point temperature of the outside air supply to 7 ° C. However, if this outside air is supplied to the room at a low temperature, a water leakage accident due to dew condensation in a duct or the like in the middle may occur. In order to prevent the possibility of affecting the temperature distribution, the load is shifted to cold water having a high temperature level and high energy consumption efficiency to improve the energy consumption efficiency of the entire apparatus. Therefore, the outside air having a low dew point of 7 ° C. is reheated to near room temperature of 25 ° C.

【0080】そのために本発明では空冷式の凝縮器の他
に水冷式の第2の凝縮器を設け、この廃熱を前記再熱の
熱源として利用して外気の再熱を行い、さらにそうする
ことにより、圧縮機の凝縮温度を下げて、両面でエネル
ギー消費効率の向上を図った。また前記第2の水冷式凝
縮器はその建物の殆どが冷房負荷であるにも拘わらず、
一部分の系統で暖房が必要な場合、その系統に温水を供
給することも出来る。
For this purpose, in the present invention, a water-cooled second condenser is provided in addition to the air-cooled condenser, and the waste heat is used as the heat source for the reheating, and the outside air is reheated. As a result, the condensing temperature of the compressor was lowered, and the energy consumption efficiency was improved on both sides. In addition, the second water-cooled condenser has a cooling load in most of its buildings,
If heating is required in a part of the system, hot water can be supplied to the system.

【0081】本発明では在来より10℃以上も高い温度
レベルの冷水を使用して室内の顕熱冷却を行うので、在
来より2倍に近い空調風量を必要とするが、本発明によ
るファンコイルユニットは輻流式回転翼車を採り入れた
輻流ファンを軸垂直に使用して、本発明の空調方式によ
ってドレンパンの必要が無くなった熱交換器との巧みな
組み合わせでユニット内部で極めて方向転換の回数が少
ない、低速の気流構造を形成し、空気の圧力損失を低減
し、送風の機械効率を3倍近くにまで向上した。
In the present invention, since the sensible heat of the room is cooled using cold water at a temperature level higher than the conventional one by 10 ° C. or more, the air-conditioning air volume almost twice as much as the conventional one is required. The coil unit uses a radiant fan that adopts a radiant type impeller in a direction perpendicular to the axis, and turns extremely inside the unit in a skillful combination with a heat exchanger that eliminates the need for a drain pan by the air conditioning system of the present invention A low-speed airflow structure with a small number of airflows was formed, the pressure loss of air was reduced, and the mechanical efficiency of blowing was improved to nearly three times.

【0082】その結果、空調風量が2倍近くに増えて
も、送風動力は逆に低減することが出来て、さらに空調
風量が増すことで、室内の風量分布、温度分布が良好と
なって、在来の空調方式より居住性が向上した。特に在
来の氷蓄熱式空調による吹き出し空気の低温化、少量化
による居住性の低下を、氷蓄熱を使用しながらも、逆に
大幅に改善するにとが出来た。
As a result, even if the air-conditioning air volume is nearly doubled, the blowing power can be reduced on the contrary, and the air-conditioning air volume is further increased, so that the air volume distribution and temperature distribution in the room are improved. Comfortability has been improved compared to conventional air conditioning systems. In particular, it was possible to significantly reduce the lowering of the volume of air blown out by the conventional ice storage type air conditioning and the reduction in the livability due to the small amount, while using ice storage.

【0083】本発明によるファンコイルユニットは前記
の通り輻流ファンを使用しているがその回転円盤の中央
付近に穴を明け、ほぼ同位置に上部ケーシングにも開口
部を作り、ファンコイルユニットの設置される天井懐か
ら全く曲折なしに、天井懐の空気を吸込んで室内からの
再循環空気と輻流回転翼車のなかで平均的に混合できる
ようにしたので、外気の流れの機械効率が向上し、外気
の分布も良好となり、また、天井懐を外気チャンバーと
して機能させるようにしたので、天井懐は低露点の空気
で満たされていて、このスペースにあるファンコイルユ
ニットなどへ冷水を供給するための高い温度レベルの冷
水管などについては配管の保温・防露を不必要とし、設
備費の低減を図ることが出来た。
The fan coil unit according to the present invention uses a radiating fan as described above. However, a hole is formed near the center of the rotating disk, and an opening is formed in the upper casing at substantially the same position. The air in the ceiling can be sucked in without any bending from the installed ceiling, and the recirculated air from the room can be mixed with the radiant impeller in average, so that the mechanical efficiency of the outside air flow is improved. Improved, the distribution of outside air is improved, and the ceiling is made to function as an outside air chamber, so the ceiling is filled with low dew point air, and cold water is supplied to the fan coil unit etc. in this space For high-temperature cold water pipes and the like, it is not necessary to keep the pipes warm and dew-proof, and it was possible to reduce equipment costs.

【0084】本発明による空気調和システムは前記の送
風の機械効率の高いファンコイルユニットを使用するこ
とが経済的に当方式を成り立たせる条件となるが、本発
明では在来ファンコイルユニット方式の欠点となってい
る水配管からの漏水事故の可能性とフィルターの保守交
換の問題点を解決した。
In the air conditioning system according to the present invention, it is economically necessary to use the fan coil unit having a high mechanical efficiency of the above-mentioned air blow, but the present invention is disadvantageous in the conventional fan coil unit system. The problem of the possibility of water leakage from the water pipe and the maintenance and replacement of the filter were solved.

【0085】すなわち、水配管についてはドレン配管は
本発明による空調方式では方式の特性上不必要であるた
めドレン配管を無くし、冷水循環配管については、上階
の熱源装置との圧力関係を切り離すため、各階に熱交換
器を設置して、各階を独立した循環回路とし、ここに開
放水槽を設けて、循環ポンプの吸入側、吐出側のいずれ
かに切り替え接続出来るようにしたので、試運転時には
開放水槽を循環ポンプの吸入側へ接続し配管系に水を張
り、エアを抜いて後、吐出側へ切り替えることによって
水循環配管系の内部を大気圧より低い圧力に保ちながら
冷水循環を行うことが出来、配管からの漏水事故を完全
に防止できる。
That is, in the case of the water pipe, the drain pipe is unnecessary in the air conditioning system according to the present invention because of the characteristics of the system, so that the drain pipe is eliminated, and the cold water circulation pipe is separated from the pressure relationship with the heat source device on the upper floor. A heat exchanger is installed on each floor, each floor is an independent circulation circuit, and an open water tank is provided here so that it can be switched and connected to either the suction side or the discharge side of the circulation pump. By connecting the water tank to the suction side of the circulation pump, filling the piping system with water, bleeding air, and then switching to the discharge side, it is possible to circulate cold water while maintaining the inside of the water circulation piping system at a pressure lower than atmospheric pressure. In addition, water leakage accidents from pipes can be completely prevented.

【0086】本発明によるファンコイルユニットは吸込
口に接してロール駆動形の自動再生式フィルターメディ
アを備え多数設置されるユニットを1系列の中央式真空
除塵装置の配管にそれぞれ電動弁を介して接続し,1台
ずつ再生操作を可能にしたのでフィルターの交換は不必
要となり、全自動で保守できるようになった。
The fan coil unit according to the present invention is provided with a roll drive type automatic regeneration type filter medium in contact with the suction port, and a number of units are connected to the pipes of a series of central vacuum cleaners via electric valves. However, since the regeneration operation was enabled one by one, there was no need to replace the filter, and the maintenance became fully automatic.

【0087】本発明による外気調和器は夏季には、外気
の熱で、低露点まで除湿した外気を再熱すると同時に外
気を冷却する第1、第2のプレートフィンチューブ熱交
換器を設置して、水循環ポンプを運転して双方の熱交換
器の間に水を循環して熱交換をさせたので、外気負荷を
在来より低減し、高い温度レベルの冷水に外気負荷の一
部分を移してエネルギー消費効率を高めることが出来
た。
The outside air conditioner according to the present invention is provided with first and second plate fin tube heat exchangers for reheating the outside air dehumidified to a low dew point by the heat of the outside air and cooling the outside air in summer. By operating the water circulation pump and circulating water between both heat exchangers to exchange heat, the external air load was reduced from the conventional level, and a part of the external air load was transferred to cold water with a high temperature level to save energy. Consumption efficiency could be improved.

【0088】前記装置において外気温度が低く低露点の
除湿空気を再熱する効力が無い時季にはポンプを停止す
れば、循環水は下方に設置した開放水槽に自然流下して
熱交換器内部が空になり冬季、低温の外気による熱交換
器の凍結事故を自然に防止出来る。
If the pump is stopped during the period when the outside air temperature is low and the dehumidifying air with a low dew point is not effective in the above apparatus, the circulating water flows down naturally into the open water tank installed below, and the inside of the heat exchanger is discharged. It becomes empty and can prevent the heat exchanger from freezing accidents in winter due to low temperature outside air.

【0089】本発明では第3のプレートフィンチューブ
熱交換器を設置することによって、夏季の外気負荷を、
高い温度レベルの還冷水を利用してさらに一段温度レベ
ルの高い冷水に移すと同時にさらに温度レベルを向上
し、冬季には室内の発生熱を利用して外気の加熱、加湿
の熱源に充てることが出来、廃熱利用によってエネルギ
ー消費効率を高めることができる。
In the present invention, by installing the third plate fin tube heat exchanger, the outside air load in summer can be reduced.
By using high-temperature return water, it can be transferred to cold water with a higher temperature level and at the same time the temperature level can be further improved.In winter, the heat generated inside the room can be used to heat and humidify the outside air. Energy efficiency by using waste heat.

【0090】また第3のプレートフィンチューブ熱交換
器と主熱交換器を組み合わせて数段に分割し、直列に配
置し、その各々の間隙に加湿器を備えた本発明による外
気調和器の方式を採用すれば、前記室内の発生熱が少な
く、高い温度レベルの冷水の還温度があまり上昇しない
場合でも、外気を段階的に加熱・加湿する方法で熱源と
して有効に利用することができる。
Further, the third plate fin tube heat exchanger and the main heat exchanger are combined and divided into several stages, arranged in series, and provided with a humidifier in each gap. Is adopted, even if the generated heat in the room is small and the return temperature of the high-temperature cold water does not rise so much, the outside air can be effectively used as a heat source by a method of heating and humidifying the outside air in a stepwise manner.

【0091】本発明の外気調和器において主熱交換器を
直接接触形の熱交換器とした方式では、冷水と空気との
直接接触により熱交換効率が向上される他、外気の塵埃
や水溶性有害ガスを除去し、外気フィルターの保守を簡
便にしたり、別途、加湿器の設置を不必要にするなどの
大きい効果がある。
In the outside air conditioner of the present invention, in the system in which the main heat exchanger is a direct contact type heat exchanger, the heat exchange efficiency is improved by the direct contact between the cold water and the air, and the dust and the water solubility of the outside air are improved. There are great effects such as removing harmful gases, simplifying maintenance of the outside air filter, and eliminating the need for a separate humidifier.

【0092】[0092]

【図面の簡単な説明】[Brief description of the drawings]

【図1】は本発明による空気調和装置の全体を示す系統
説明図、
FIG. 1 is a system explanatory view showing an entire air conditioner according to the present invention;

【図2】は本発明による空気調和装置に使用されるファ
ンコイルユニットの詳細説明図である。
FIG. 2 is a detailed explanatory view of a fan coil unit used in the air conditioner according to the present invention.

【0093】[0093]

【符号の説明】[Explanation of symbols]

1. チラーユニット 2. 圧縮機 3. 四方弁 4. 空冷式凝縮器 5. 冷媒管の弁 6. 同上 7. 同上 8. 同上 9. 第2の凝縮器 10. 絞り弁 11. 氷蓄熱用蒸発器 12. 冷媒切り替え弁 13. 同上 14. 空調使用時間帯用蒸発器 15. 冷媒接続管 16. 氷蓄熱水槽 17. 散水装置 18. 凝縮器用送風機 19. 低温冷水循環ポンプ 20. 低温冷水往管 21. 低温冷水還管 22. 高い温度レベルの冷水循環ポンプ 23. 高い温度レベルの冷水往管 24. 高い温度レベルの冷水還管 25. 高い温度レベルの冷水と低温冷水の自動混合弁 26. 高い温度レベルの冷水温度センサー 27. 温水循環ポンプ 28. チラーユニットケーシング 29. 共通架台 30. 建物の屋上 31. 外気調和器 32. 空気吸込口 33. 外気フィルター 34. 第1のプレートフィンチューブ熱交換器 35. 第2のプレートフィンチューブ熱交換器 36. 第3のプレートフィンチューブ熱交換器 37. 第4のプレートフィンチューブ熱交換器 38. 主プレートフィンチューブ熱交換器 39. 加湿器 40. 送風機 41. ドレンパン 42. 水循環配管 43. 水循環ポンプ 44. 開放水槽 45. 外気調和器ケーシング 46. 外気給ダクト 47. 空調を行う部屋 48. 天井懐スペース 49. ファンコイルユニット 50. 高い温度レベルの冷水往主縦管 51. 高い温度レベルの冷水還主縦管 52. 各階の熱交換器 53. 各階の冷水循環系統配管 54. 高い温度レベルの各階冷水循環ポンプ 55. 各階の開放水槽 56. 切り替え弁 57. 同上 58. 密閉型冷却塔 59. 切り替え弁 60. 同上 61. 翼 62. 回転円盤 63. 輻流式回転翼車 64. プレートフィンチューブ熱交換器 65. ファンモーター 66. フィルターメディア 67. 駆動モーター 68. 駆動ロール 69. ロールスプリング 70. 巻き取りロール 71. 空気吸込口 72. 上部ケーシング 73. ディフューザー 74. 空気吹出口 75. 防虫網 76. 開口部 77. 翼車吸気口 78. 真空除塵管 79. 電動弁 80. 中央式真空除塵装置 81. 電子回路 82. センサー 83. 高い温度レベルの冷水入口管 84. 電磁弁 1. 1. Chiller unit Compressor 3. Four-way valve 4. 4. Air-cooled condenser 5. Refrigerant pipe valve Same as above 7. Same as above 8. Same as above 9. Second condenser 10. Throttle valve 11. Ice storage evaporator 12. 12. Refrigerant switching valve Same as above 14. 14. Evaporator for air conditioning use hours Refrigerant connection pipe 16. Ice storage water tank 17. Watering device 18. Blower for condenser 19. Low-temperature chilled water circulation pump 20. Outgoing pipe of low-temperature cold water 21. 22. Low temperature cold water return pipe 23. High temperature level cold water circulation pump High temperature level cold water outgoing pipe 24. High temperature level cold water return tube 25. 26. Automatic mixing valve for high temperature cold water and low temperature cold water High temperature level chilled water temperature sensor 27. Hot water circulation pump 28. Chiller unit casing 29. Common stand 30. Roof of building 31. Outside air conditioner 32. Air inlet 33. Outside air filter 34. First plate fin tube heat exchanger 35. Second plate fin tube heat exchanger 36. Third plate fin tube heat exchanger 37. Fourth plate fin tube heat exchanger 38. Main plate fin tube heat exchanger 39. Humidifier 40. Blower 41. Drain pan 42. Water circulation piping 43. Water circulation pump 44. Open water tank 45. Outside air conditioner casing 46. External air supply duct 47. Room for air conditioning 48. Ceiling pocket space 49. Fan coil unit 50. High temperature level cold water main vertical pipe 51. High temperature level cold water return vertical pipe 52. Heat exchangers on each floor 53. Cooling water circulation system piping on each floor 54. High temperature level chilled water circulation pump on each floor 55. Open water tank on each floor 56. Switching valve 57. Same as above 58. Closed cooling tower 59. Switching valve 60. Same as above. Wing 62. Rotating disk 63. Radiation impeller 64. Plate fin tube heat exchanger 65. Fan motor 66. Filter media 67. Drive motor 68. Drive roll 69. Roll spring 70. Take-up roll 71. Air inlet 72. Upper casing 73. Diffuser 74. Air outlet 75. Insect repellent net Opening 77. Impeller inlet 78. Vacuum cleaner tube 79. Electric valve 80. Central vacuum dust removal device 81. Electronic circuit 82. Sensor 83. High temperature level cold water inlet pipe 84. solenoid valve

Claims (22)

【特許請求の範囲】[Claims] 【請求項1】空気調和を行う部屋の在室者1名当たりに
必要最小限度の外気の取り入れ量で、同じく在室者1名
分の潜熱負荷を処理吸収できるより以上の除湿能力を保
持するような低露点まで外気調和器で取り入れ外気を冷
却除湿して室内に送風し、それによって室内空気の絶対
湿度を所定の値に保ち、室内側では空調使用時の室内空
気の露点温度より高い範囲でファンコイルユニットなど
の空調器によって空気を冷却し、室内と循環して室内の
顕熱負荷を処理吸収して室内空気の温度を所定の値に保
つことによって、室内空気の乾球温度・相対湿度を所定
の値に保つことを特色とする空気調和装置。
1. A minimum amount of outside air taken in per room occupant in an air-conditioning room, and a dehumidifying capacity that can handle and absorb the latent heat load of one room occupant is maintained. The outside air conditioner cools and dehumidifies the outside air and sends it to the room until the low dew point, so that the absolute humidity of the room air is maintained at a predetermined value. The air is cooled by an air conditioner such as a fan coil unit, and circulated through the room to process and absorb the sensible heat load in the room and maintain the temperature of the room air at a predetermined value, thereby controlling the dry bulb temperature and relative An air conditioner characterized by maintaining humidity at a predetermined value.
【請求項2】氷蓄熱装置を運転して得られる氷を融解し
て水となった極めて氷点に近い温度の冷水を用いて、取
り入れ外気を所要の低露点まで冷却除湿することを特色
とする請求項1の空気調和装置。
2. A method of cooling and dehumidifying intake air to a required low dew point by using cold water having a temperature very close to the freezing point obtained by melting ice obtained by operating an ice heat storage device and forming water. The air conditioner according to claim 1.
【請求項3】外気調和器の空気入口に第1のプレートフ
ィンチューブ熱交換器を設けて、これに温湿度未調整の
外気を通し、同じく外気調和器の出口に第2のプレート
フィンチューブ熱交換器を設け、第1のプレートフィン
チューブ熱交換器の後位にある主冷却器で低露点まで冷
却除湿された外気を通すようにして、かつ、第1と第2
のプレートフィンチューブ熱交換器双方の間に水循環回
路を設けて、循環ポンプによって水を循環し、夏季、高
温の外気と低露点の除湿空気の間で、循環水を介して間
接的に熱交換を行い、外気を冷却すると同時に低露点の
除湿空気を再熱することを特色とする請求項1の空気調
和装置。
3. A first plate fin tube heat exchanger is provided at an air inlet of the outside air conditioner, through which outside air whose temperature and humidity are not adjusted is passed, and a second plate fin tube heat exchanger is also provided at an outlet of the outside air conditioner. An exchanger is provided for passing outside air cooled and dehumidified to a low dew point in a main cooler located downstream of the first plate fin tube heat exchanger, and
A water circulation circuit is provided between both plate fin tube heat exchangers, and water is circulated by a circulation pump.In summer, heat is indirectly exchanged between high temperature outside air and low dew point dehumidified air via circulating water. 2. The air conditioner according to claim 1, wherein the air conditioner is cooled to reheat dehumidified air having a low dew point while cooling outside air.
【請求項4】請求項3における第1並びに第2のプレー
トフィンチューブ熱交換器の間を循環する水循環回路上
で双方のプレートフィンチューブ熱交換器より低い位置
に開放水槽を設けて、循環ポンプを停止した場合は重力
によってプレートフィンチューブ熱交換器内部の水が開
放水槽に流下して空になるように配置したことを特色と
する請求項1の空気調和装置。
4. An open water tank is provided at a position lower than both plate fin tube heat exchangers on a water circulation circuit circulating between the first and second plate fin tube heat exchangers according to claim 3, and a circulation pump. 2. The air conditioner according to claim 1, wherein when the step is stopped, the water inside the plate fin tube heat exchanger flows down to the open water tank and becomes empty by gravity.
【請求項5】請求項3の第1のプレートフィンチューブ
熱交換器の次位に第3のプレートフィンチューブ熱交換
器を設けて、室内空気の循環冷却のためにファンコイル
ユニットなどの空調機で使用して温度の上昇した冷水を
これに通して夏季は外気を予冷し、冬季は外気を予熱す
ることを特色とする請求項1の空気調和装置。
5. An air conditioner, such as a fan coil unit, provided with a third plate fin tube heat exchanger next to the first plate fin tube heat exchanger of claim 3 for circulating cooling of room air. 2. The air conditioner according to claim 1, wherein the cold water whose temperature has risen is used to pre-cool the outside air in summer and pre-heat the outside air in winter.
【請求項6】請求項3における第2のプレートフィンチ
ューブ熱交換器の前又は後に隣接して第4のプレートフ
ィンチューブ熱交換器を設けて、外気を冷却除湿または
室内の顕熱負荷を冷却除去するために冷凍機を運転した
結果として生じる凝縮器側の排熱を利用して、低露点ま
で冷却除湿された給気をこの第4のプレートフィンチュ
ーブ熱交換器で再熱するようにしたことを特色とする請
求項1の空気調和装置。
6. A fourth plate fin tube heat exchanger is provided before or after the second plate fin tube heat exchanger according to claim 3 to cool and dehumidify outside air or cool a sensible heat load in a room. Utilizing exhaust heat on the condenser side resulting from the operation of the refrigerator for removal, the supply air cooled and dehumidified to a low dew point is reheated by the fourth plate-fin tube heat exchanger. The air conditioner according to claim 1, characterized in that:
【請求項7】請求項5における第3のプレートフィンチ
ューブ熱交換器の次位に低露点までの冷却除湿を目的と
する主プレートフィンチューブ熱交換器を設置し、氷蓄
熱によって得た氷点に究めて近い温度の冷水で外気の冷
却除湿を行うことを特色とする請求項1の空気調和装
置。
7. A main plate fin tube heat exchanger for cooling and dehumidifying to a low dew point is installed next to the third plate fin tube heat exchanger according to claim 5, and the temperature is reduced to the freezing point obtained by ice heat storage. 2. The air conditioner according to claim 1, wherein the outside air is cooled and dehumidified with cold water at an extremely close temperature.
【請求項8】請求項7における主プレートフィンチュー
ブ熱交換器を散水式の直接接触形の主熱交換器に入れ替
えた請求項1の空気調和装置。
8. The air conditioner according to claim 1, wherein the main plate fin tube heat exchanger according to claim 7 is replaced with a water spray type direct contact type main heat exchanger.
【請求項9】請求項5における第3のプレートフィンチ
ューブ熱交換器と請求項8における直接接触形の主熱交
換器を同数の複数段に分割して、交互に気流に沿って直
列に配置したことを特色とする請求項1の空気調和装
置。
9. The third plate fin tube heat exchanger according to claim 5 and the direct contact type main heat exchanger according to claim 8 are divided into the same number of stages and alternately arranged in series along the air flow. The air conditioner according to claim 1, wherein
【請求項10】1000本以上の極めて多数の内径3.
5mm以下のキャピラリーチューブを並列に接続して、
これを氷蓄熱運転時用の冷媒の蒸発器として氷蓄熱槽の
中に配列し、不凍液を使用せずに直接冷媒と熱交換冷却
して氷を作り、空調使用時間帯にこの氷を融解して得ら
れる氷点に極めて近い温度の冷水を用いて外気の冷却除
湿に使用することを特色とする請求項1の空気調和装
置。
10. An extremely large number of inner diameters of 1,000 or more.
Capillary tubes of 5 mm or less are connected in parallel,
This is arranged in an ice heat storage tank as a refrigerant evaporator for ice heat storage operation, and heat is directly exchanged with the refrigerant without using antifreeze to form ice, and this ice is thawed during air conditioning use time. 2. The air conditioner according to claim 1, wherein the air conditioner is used for cooling and dehumidifying outside air using cold water having a temperature very close to the freezing point obtained by the method.
【請求項11】請求項10における冷凍機の回路をその
空調使用時間帯には氷蓄熱用の蒸発器とは別に設けた空
調使用時間帯用蒸発器に弁操作で切り替えて運転し、蒸
発温度を室内空気の露点温度またはそれより高い温度で
運転して得られる高い温度の冷水を、空調非使用時間帯
に蓄熱運転して作った氷を融解して得られる氷点に究め
て近い低温の冷水と混合して、室内の顕熱の冷却除去に
必要な温度でかつ室内空気の露点温度を越えた高い温度
レベルの冷水として室内の顕熱冷却用のファンコイルユ
ニットまたは空調器で使用することを特色とする請求項
1の空気調和装置。
11. The refrigerator circuit according to claim 10 is operated by switching a valve operation to an air conditioning use time evaporator provided separately from the ice heat storage evaporator during the air conditioning use time period. Low-temperature chilled water that is very close to the freezing point obtained by melting the ice produced by operating the high-temperature chilled water obtained by operating the chiller at the dew point temperature of the indoor air or at a temperature higher than the dew point temperature of the indoor air during non-air-conditioning hours. Mixed with chilled water at a temperature required to cool and remove indoor sensible heat and at a high temperature level exceeding the dew point temperature of indoor air in a fan coil unit for indoor sensible heat cooling or an air conditioner. The air conditioner according to claim 1, wherein the air conditioner is characterized by the following.
【請求項12】請求項11の冷凍機において空調使用時
間帯に通常の冷凍機より高い蒸発温度で運転する場合に
備えて、空冷式凝縮器に散水を掛けて、その蒸発潜熱に
よって凝縮温度を低く抑えるか、または水冷式凝縮器を
用いて密閉形圧縮機の過負荷を防止したチラーユニット
を使用することを特色とする請求項1の空気調和装置。
12. An air-cooled condenser is sprinkled with water, and the condensing temperature is reduced by the latent heat of evaporation, in case the refrigerator of the eleventh embodiment operates at a higher evaporation temperature than a normal refrigerator during the air-conditioning use time period. 2. The air conditioner according to claim 1, wherein a chiller unit is used which is kept low or uses a water-cooled condenser to prevent overload of the hermetic compressor.
【請求項13】請求項10の氷蓄熱槽とその内部に収納
された蓄熱用蒸発器を圧縮機、空冷式凝縮器、空調使用
時間帯用蒸発器など冷媒回路を構成するすべての部品と
ともに1つの共通架台の上に纏めたチラーユニットを使
用することを特色とする請求項1の空気調和装置。
13. The ice heat storage tank according to claim 10 and the heat storage evaporator housed therein together with all components constituting a refrigerant circuit, such as a compressor, an air-cooled condenser, and an evaporator for use during air conditioning. The air conditioner according to claim 1, wherein a chiller unit integrated on two common mounts is used.
【請求項14】中間期または冬季に大部分の室内を冷房
しながら、外周に面した室内を暖房する必要がある場合
に応じ、冷水を大部分の配管系統に送水すると同時に温
水を外周に面したファンコイルユニットの配管系統に送
水するため、空冷式凝縮器に並列または直列に水冷式凝
縮器を設けて前記配管系統の温水を加熱するようにした
チラーユニットを使用することを特色とする請求項1の
空気調和装置。
14. When it is necessary to heat the room facing the outer periphery while cooling most of the room in the middle or winter season, cold water is supplied to most of the piping systems and, at the same time, hot water is supplied to the outer periphery. A water-cooled condenser is provided in parallel or in series with the air-cooled condenser to supply water to the piping system of the fan coil unit, and a chiller unit that heats the hot water of the piping system is used. Item 1. The air conditioner according to Item 1.
【請求項15】請求項11のファンコイルユニットまた
は空調器に供給する高い温度レベルの冷水の冷熱源回路
に直列または並列にまたは直列・並列切り替え可能に密
閉形冷却塔を接続して外気温度が充分に低く、密閉冷却
塔の出口でファンコイルユニットまたは空調器の出口の
冷水温度より低い水温が得られる場合はこれを利用して
冷凍機による冷却を減じるか、停止しても所要の冷却が
可能なようにした請求項1の空気調和設備。
15. A closed-type cooling tower connected in series or in parallel or switchable in series / parallel to a cooling source circuit of high-temperature chilled water supplied to a fan coil unit or an air conditioner according to claim 11 to reduce the outside air temperature. If the water temperature is sufficiently low and the water temperature at the outlet of the closed cooling tower is lower than the cooling water temperature at the fan coil unit or air conditioner outlet, use this to reduce the cooling by the refrigerator or to achieve the required cooling even if the cooling is stopped. The air conditioning equipment according to claim 1, wherein the equipment is enabled.
【請求項16】請求項1に述べたように低露点まで除湿
し、再熱した外気を、空気調和を行う部屋の天井懐を外
気チャンバーとしてここに導入したのち、天井に設置し
たファンコイルユニットで吸い込んで、室内へ給気する
ようにして、天井懐の空気を低露点に保ち、ファンコイ
ルユニットへの天井懐内部の冷水管の保温・防露を省い
たことを特色とする請求項1の空気調和装置。
16. A fan coil unit installed on a ceiling after introducing dehumidified air to a low dew point and reheated outside air into a ceiling chamber of an air conditioning room as an outside air chamber, as described in claim 1. The air is supplied into the room by suctioning the air, the air in the ceiling is kept at a low dew point, and the heat insulation and dew-prevention of the cooling water pipe inside the ceiling to the fan coil unit are omitted. Air conditioner.
【請求項17】平面形状が正方形または長方形、円形な
どのプレートフィンチューブ熱交換器の上方に近接して
軸垂直で下面開放の状態で輻流式回転翼車をモーター直
結にて設置し、その上方をケーシングで囲み、プレート
フィンチューブ熱交換器の下方、室内天井面より空気吸
込口、フィルターを経て、空気を吸い込んでプレートフ
ィンチューブ熱交換器を通過させて冷却または加熱し、
該輻流式回転翼車を回転し加圧して、周囲に設けたディ
フューザー、空気吹出口を経て天井面より室内へ吹き出
して循環するようにした天井面に接して設置されるファ
ンコイルユニットを使用することを特色とする請求項1
の空気調和設備。
17. A radiating rotary impeller is directly connected to a motor in a state in which the planar shape is square, rectangular, circular, or the like, and close to the upper side of the plate fin tube heat exchanger, the axis is vertical and the lower surface is open. The upper part is surrounded by a casing, the lower part of the plate fin tube heat exchanger, the air suction port from the indoor ceiling surface, through the filter, sucks air and passes through the plate fin tube heat exchanger to cool or heat,
Uses a fan coil unit installed in contact with the ceiling surface, which rotates and pressurizes the radiant impeller, diffuses it around, and blows it out of the room through the ceiling through the air outlet to circulate. Claim 1 characterized in that
Air conditioning equipment.
【請求項18】請求項17におけるファンコイルユニッ
トにおいて、輻流式回転翼車の回転円盤の中央に近く、
複数個の穴を空けて、かつ、輻流式回転翼車の上方のケ
ーシングにも輻流式回転翼車の中心に開口部を作って、
輻流式回転翼車を回転させる時に、前記ケーシングの開
口部から前記回転円盤に空けた複数個の穴を通して、フ
ァンコイルユニットの設置されている天井懐の空気を吸
い込んで、一方、下方の室内から空気吸込口、フィルタ
ー、プレートフィンチューブ熱交換器をへて来た再循環
空気と、回転している輻流式回転翼車の内部で平均的に
混合してディフューザー、空気吹出口を経て室内へ混合
空気を供給するようにしたファンコイルユニットを使用
することを特色とした請求項1の空気調和装置。
18. The fan coil unit according to claim 17, wherein the fan coil unit is located near the center of the rotating disk of the radiant impeller.
By making a plurality of holes, and also making an opening in the center of the radiation type impeller in the casing above the radiation type impeller,
When rotating the radiant impeller, the air from the ceiling where the fan coil unit is installed is sucked through a plurality of holes opened in the rotating disk from the opening of the casing, while the lower indoor Recirculated air coming from the air inlet, filter, plate fin tube heat exchanger to the inside, is mixed evenly inside the rotating radiant impeller, and diffused through the diffuser and air outlet to be indoors. The air conditioner according to claim 1, wherein a fan coil unit adapted to supply mixed air to the air conditioner is used.
【請求項19】請求項1に述べた室内の顕熱負荷を冷却
除去するために使用する請求項11のファンコイルユニ
ットにおいて空調使用時の室内空気の露点温度より高い
温度の冷水を用いることによって、ファンコイルユニッ
ト周りのドレンパン、ドレン配管、保温などを省いて、
顕熱冷却専用のファンコイルユニットとしたファンコイ
ルユニットを使用する事を特色とする請求項1の空気調
和装置。
19. A fan coil unit according to claim 11, which is used for cooling and removing a sensible heat load in a room as described in claim 1, by using cold water having a temperature higher than the dew point temperature of room air when air conditioning is used. , And omit the drain pan, drain piping, heat insulation, etc. around the fan coil unit.
2. The air conditioner according to claim 1, wherein a fan coil unit dedicated to sensible heat cooling is used.
【請求項20】請求項19におけるファンコイルユニッ
トにおいて、熱交換器の最も結露を生じ易い部分に水分
センサーを設けるか、出口空気の相対湿度のセンサーを
設けて結露の生じる状況を検知し、この信号によってフ
ァンの回転数を上げて風量を増加し、空気入口温度と出
口温度の差を小さくして結露を防止するか、または、冷
水出入口に設けた電磁弁を閉じて冷水の流れを停止して
結露を防止するか、または双方の方法で結露を防止する
機能を備えたファンコイルユニットを使用することを特
色とする請求項1の空気調和装置。
20. The fan coil unit according to claim 19, wherein a moisture sensor is provided in a portion of the heat exchanger where dew condensation is most likely to occur, or a sensor for the relative humidity of the outlet air is provided to detect a situation in which dew condensation occurs. Depending on the signal, increase the fan speed to increase the air volume and reduce the difference between the air inlet and outlet temperatures to prevent dew condensation, or close the solenoid valve provided at the cold water inlet and outlet to stop the flow of cold water. The air conditioner according to claim 1, characterized in that a fan coil unit having a function of preventing dew condensation by using a fan coil unit is provided.
【請求項21】請求項17におけるファンコイルユニッ
トのプレートフィンチューブ熱交換器の下方に、不織布
製のフィルターを設け、このフィルターの両端をロール
に巻いてこのロールを回転させることによりプレートフ
ィンチューブ熱交換器全長に亙ってフィルターメディア
を往復移動させるようにして、この移動方向に直角にフ
ィルターメディアの下面の一端に接して多孔式またはス
リット式の真空除塵管を設けて、これを電動弁を介して
集中式真空掃除設備に接続し、電動弁を開放して集中式
真空掃除設備を運転し、フィルターメディアを往復移動
させる事によって逆洗浄し、フィルターメディアを自動
再生して半永久的に使用できるようにしたファンコイル
ユニットを使用することを特色とする請求項1の空気調
和装置。
21. A filter made of non-woven fabric is provided below the plate fin tube heat exchanger of the fan coil unit according to claim 17, and both ends of the filter are wound around a roll, and the roll is rotated to make the heat of the plate fin tube heat exchanger. The filter media is reciprocated over the entire length of the exchanger, and a porous or slit type vacuum dust removing tube is provided in contact with one end of the lower surface of the filter media at right angles to the moving direction, and an electric valve is provided. Connected to the centralized vacuum cleaning equipment through, open the electric valve to operate the centralized vacuum cleaning equipment, backwash by reciprocating the filter media, automatically regenerate the filter media and use it semipermanently 2. An air conditioner according to claim 1, wherein said fan coil unit is used.
【請求項22】多層階建物において、熱源装置を屋上な
どに集中的に設置して、各階にファンコイルユニットま
たは空調器を多数設置してなる空気調和装置において、
請求項11におけるファンコイルユニットまたは空調器
にて使用する温度レベルの高い冷水の回路上に各階に熱
交換器を設置して屋上からの圧力の掛かった配管と縁を
切り、各階に開放水槽と循環ポンプをもつ独立した冷水
循環回路を設けて、前記各階の熱交換器で熱交換して当
該階の冷却を可能とし、かつ、前記開放水槽を前記循環
ポンプの吐出側と吸込側に切り替えて接続出来るように
したことを特色とする請求項1の空気調和装置。
22. An air conditioner in which a heat source device is intensively installed on a rooftop or the like in a multi-story building and a number of fan coil units or air conditioners are installed on each floor.
A heat exchanger is installed on each floor on a circuit of cold water having a high temperature level used in a fan coil unit or an air conditioner according to claim 11 to cut off piping and edges under pressure from the roof, and an open water tank is provided on each floor. Providing an independent chilled water circulation circuit having a circulation pump, allowing heat exchange in the heat exchangers of each floor to cool the floor, and switching the open water tank to the discharge side and the suction side of the circulation pump. 2. The air conditioner according to claim 1, wherein the air conditioner can be connected.
JP10155114A 1998-04-27 1998-04-27 Air conditioner Pending JPH11311438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10155114A JPH11311438A (en) 1998-04-27 1998-04-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10155114A JPH11311438A (en) 1998-04-27 1998-04-27 Air conditioner

Publications (1)

Publication Number Publication Date
JPH11311438A true JPH11311438A (en) 1999-11-09

Family

ID=15598901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10155114A Pending JPH11311438A (en) 1998-04-27 1998-04-27 Air conditioner

Country Status (1)

Country Link
JP (1) JPH11311438A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003247741A (en) * 2002-02-24 2003-09-05 Kiyoshi Yanagimachi Air conditioning facility
JP2005049059A (en) * 2003-07-31 2005-02-24 Daikin Ind Ltd Air-conditioning system
JP2008224155A (en) * 2007-03-14 2008-09-25 Mitsubishi Electric Corp Ice heat storage type heat source machine device and its control method
CN104697085A (en) * 2015-02-12 2015-06-10 上海境和环境科技有限公司 Household combination type radiant air conditioning system, control method and corresponding control system
CN105115212A (en) * 2015-07-28 2015-12-02 中国计量学院 Control method capable of controlling evaporating temperature of dehumidifier
CN106765953A (en) * 2016-12-23 2017-05-31 新智能源系统控制有限责任公司 Water rationing vari- able flow control system
CN106969536A (en) * 2017-03-31 2017-07-21 浙江陆特能源科技股份有限公司 The three-source integrated source pump of ground aqueous vapor
JP2018031535A (en) * 2016-08-25 2018-03-01 高砂熱学工業株式会社 Control device of air conditioning system, control method, control program, and air conditioning system
CN107816760A (en) * 2016-09-06 2018-03-20 深圳市昊昱环保科技有限公司 A kind of four seasons type water-cooled dehumidification system and its control method
CN108286740A (en) * 2018-01-11 2018-07-17 广东美的制冷设备有限公司 The control method and air conditioner of air conditioner
CN108679796A (en) * 2018-05-24 2018-10-19 珠海格力电器股份有限公司 Air conditioning control method, device and air-conditioning
CN110207325A (en) * 2019-05-15 2019-09-06 中安瑞材(北京)科技有限公司 A kind of method and air-conditioning system controlling air-conditioning system
US11885524B2 (en) 2019-10-17 2024-01-30 Johnson Controls Tyco IP Holdings LLP HVAC system using reheat from alternative heat source

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003247741A (en) * 2002-02-24 2003-09-05 Kiyoshi Yanagimachi Air conditioning facility
JP2005049059A (en) * 2003-07-31 2005-02-24 Daikin Ind Ltd Air-conditioning system
JP2008224155A (en) * 2007-03-14 2008-09-25 Mitsubishi Electric Corp Ice heat storage type heat source machine device and its control method
CN104697085A (en) * 2015-02-12 2015-06-10 上海境和环境科技有限公司 Household combination type radiant air conditioning system, control method and corresponding control system
CN104697085B (en) * 2015-02-12 2018-05-01 上海境和环境科技有限公司 Divide family combined type air-conditioning system
CN105115212A (en) * 2015-07-28 2015-12-02 中国计量学院 Control method capable of controlling evaporating temperature of dehumidifier
JP2018031535A (en) * 2016-08-25 2018-03-01 高砂熱学工業株式会社 Control device of air conditioning system, control method, control program, and air conditioning system
CN107816760A (en) * 2016-09-06 2018-03-20 深圳市昊昱环保科技有限公司 A kind of four seasons type water-cooled dehumidification system and its control method
CN106765953A (en) * 2016-12-23 2017-05-31 新智能源系统控制有限责任公司 Water rationing vari- able flow control system
CN106765953B (en) * 2016-12-23 2019-02-22 新智能源系统控制有限责任公司 Water rationing vari- able flow control system
CN106969536A (en) * 2017-03-31 2017-07-21 浙江陆特能源科技股份有限公司 The three-source integrated source pump of ground aqueous vapor
CN108286740A (en) * 2018-01-11 2018-07-17 广东美的制冷设备有限公司 The control method and air conditioner of air conditioner
CN108679796A (en) * 2018-05-24 2018-10-19 珠海格力电器股份有限公司 Air conditioning control method, device and air-conditioning
CN108679796B (en) * 2018-05-24 2019-07-30 珠海格力电器股份有限公司 Air conditioning control method, device and air-conditioning
CN110207325A (en) * 2019-05-15 2019-09-06 中安瑞材(北京)科技有限公司 A kind of method and air-conditioning system controlling air-conditioning system
CN110207325B (en) * 2019-05-15 2021-04-20 中安瑞材(北京)科技有限公司 Method for controlling air conditioning system and air conditioning system
US11885524B2 (en) 2019-10-17 2024-01-30 Johnson Controls Tyco IP Holdings LLP HVAC system using reheat from alternative heat source

Similar Documents

Publication Publication Date Title
JP3114448U (en) Total heat recovery air conditioning unit
KR100628205B1 (en) air-conditioner system with ventilation and control method
CN110691492B (en) Refrigeration system and data center
CN104613574B (en) Humiture independence control air conditioner system based on cascaded utilization of energy
JPH11311438A (en) Air conditioner
CN102767873A (en) Healthy comfortable energy-saving air conditioner and air treating method
CN105737302A (en) Central air-conditioning based on dry air energy
CN103982968A (en) Active radiant panel heat exchange system and heat exchange processing method thereof
CN105020807B (en) It crosses cold mould heat-pump-type solution humidifying and evaporates cooling combined air-conditioning system
JP4022842B2 (en) Air conditioner
CN104251543B (en) A kind of air conditioning air exhaust structure
CN206959551U (en) A kind of heat pump drying dehumidifying integrated machine
CN210808053U (en) Container cooling system combining indirect evaporative cooling and gravity heat pipe
JP4439534B2 (en) Air conditioner
WO2022062413A1 (en) Evaporative cooling and seasonal cold storage-based low energy consumption air conditioning cooling system
JP3614775B2 (en) Heat pump air conditioner
CN107763737A (en) A kind of indoor apparatus of air conditioner and air-conditioning
JP2007333377A (en) Heat pump type air conditioner
CN210808051U (en) Data center cooling system combining indirect evaporative cooling and gravity heat pipe
CN208253835U (en) A kind of evaporation cooling channel air-conditioning system of combination laminar air-supply
CN104374028A (en) Dual-system unit of evaporation and refrigeration all-in-one machine
CN111520823B (en) Air supply mode and humidity-adjustable air conditioning system
CN205090532U (en) Water tray pipe driving side perpendicularly upwards air curtain of ejecting wind variable blast volume that induced drafts
CN214038741U (en) Natural cooling air conditioning system
CN214406272U (en) Dual-cold-source depth humidity-adjusting air treatment unit based on cascade utilization principle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050329

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050329

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20050329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703