JP2013204833A - Heating medium piping system - Google Patents

Heating medium piping system Download PDF

Info

Publication number
JP2013204833A
JP2013204833A JP2012070874A JP2012070874A JP2013204833A JP 2013204833 A JP2013204833 A JP 2013204833A JP 2012070874 A JP2012070874 A JP 2012070874A JP 2012070874 A JP2012070874 A JP 2012070874A JP 2013204833 A JP2013204833 A JP 2013204833A
Authority
JP
Japan
Prior art keywords
air conditioner
pump
piping system
heat medium
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012070874A
Other languages
Japanese (ja)
Other versions
JP5869394B2 (en
Inventor
Shoji Yamane
唱司 山根
Taneya Yamashita
植也 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2012070874A priority Critical patent/JP5869394B2/en
Publication of JP2013204833A publication Critical patent/JP2013204833A/en
Application granted granted Critical
Publication of JP5869394B2 publication Critical patent/JP5869394B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce pump power by separating a control of a center-side secondary pump and a local control.SOLUTION: A heating medium piping system includes a primary pump which circulates hot and cold water on the side of a heat source machine, and a secondary pump which circulates the hot and cold water to an air conditioner side, and is equipped with an air conditioner piping system for independently conditioning air in a plurality of areas, and a heat medium main conveyance loop. A distribution pump and a two-way valve are provided in each load side temperature control piping system. The rotation speed of the distribution pump and the opening degree of the valve are controlled, by using a signal obtained by calculating measured signal of a load-side control target temperature as two ratio biases. In controlling temperatures of the air conditioner, the rotation speed of an inverter of the air conditioner pump is adjusted in preference to the opening degree of the two-way valve.

Description

本発明は、ビル、工場等の建物の空気調和設備における冷水、温水等の熱媒体を送給するための熱媒体配管システムに関するものである。   The present invention relates to a heat medium piping system for supplying a heat medium such as cold water or hot water in air conditioning equipment of buildings such as buildings and factories.

周知のように、複数の店舗及び事務所等が入居するオフィスビル等の建造物には、複数の空調機が設けられ、各空調機には、冷凍機や冷温水発生器等の熱源機で冷却又は加熱された冷水及び温水等の熱媒体がポンプにより各空調機のコイル等に送水された後また熱源機へ還ってくる循環を行うことで、各空調機が受け持つ部屋やゾーン(空調対象領域)の熱負荷にコイルでの熱交換に対応する流量で熱媒体が供給されて、冷房や暖房が行われる。
従来、建物の空調設備では、空調機毎に異なる熱負荷を熱媒体との熱交換できちんと対応処理させるため、空調機のコイル毎に備える二方弁で熱媒体流量を制御することが最も一般的であり、熱源機から空調機へ冷温水を搬送する際に、熱源機の圧損とその周りの配管圧損の揚程を受け持つ一次ポンプと、空調機等の熱負荷側圧損と長い配管系圧損とを受け持つ二次ポンプとに熱媒体循環系を分担させて、一次ポンプ、二次ポンプとも機械室に設置して一括して送水し、空調機個々(又は空調機群毎)に設置した二方弁の開度調整によって各コイルでの熱媒体流量を変えることで、熱負荷の変動に対応していた。
As is well known, a plurality of air conditioners are provided in a building such as an office building where a plurality of stores and offices occupy, and each air conditioner is provided with a heat source machine such as a refrigerator or a cold / hot water generator. After the cooled or heated heat medium such as cold water and hot water is sent to the coil of each air conditioner by the pump and returned to the heat source machine, it is circulated so that the room or zone (air conditioner) The heat medium is supplied to the heat load in the region at a flow rate corresponding to the heat exchange in the coil, and cooling and heating are performed.
Conventionally, in building air conditioning equipment, it is most common to control the heat medium flow rate with a two-way valve provided for each coil of the air conditioner in order to properly handle different heat loads for each air conditioner by heat exchange with the heat medium When transporting cold / hot water from the heat source unit to the air conditioner, the primary pump responsible for the pressure loss of the heat source unit and the surrounding pressure loss of the heat source unit, the heat load side pressure loss of the air conditioner etc. and the long pipe system pressure loss The heat medium circulation system is shared with the secondary pumps responsible for this, and both the primary pump and the secondary pump are installed in the machine room to feed water in one batch and are installed individually for each air conditioner (or for each air conditioner group). By changing the flow rate of the heat medium in each coil by adjusting the opening of the valve, it was possible to cope with fluctuations in the heat load.

この場合、二方弁の絞りに応じて二次ポンプの動力を削減するために、往還差圧を一定にする二次ポンプ変流量(インバータ)制御を採用することが多い。しかし、この往還差圧をある一定の値に保つインバータ制御では、二次ポンプの流量だけ制御していて揚程は一定としているので、熱負荷が小さくなる部分負荷時に、ポンプの回転数を下げられる範囲は小さく、ポンプ動力の削減効果は少ない。
そこで、様々なパラメータを記憶して、推定末端差圧制御を行う二次ポンブ制御によって、部分負荷時に空調機の流量不足を生じない範囲で往還差圧の設定値を小さく変更することで、インバータ制御によるポンプ動力の削減効果を大きくする技術が開示されている(例えば、特許文献1の図1参照)。
In this case, in order to reduce the power of the secondary pump in accordance with the restriction of the two-way valve, secondary pump variable flow rate (inverter) control that makes the return differential pressure constant is often adopted. However, in the inverter control that keeps the return differential pressure at a certain value, only the flow rate of the secondary pump is controlled and the head is constant, so that the pump rotation speed can be lowered at the partial load when the heat load is small. The range is small and the pump power reduction effect is small.
Therefore, by storing various parameters and performing secondary pump control that performs estimated terminal differential pressure control, the set value of the return differential pressure is changed to a small value within a range that does not cause an insufficient flow rate of the air conditioner during partial load. A technique for increasing the effect of reducing pump power by control is disclosed (for example, see FIG. 1 of Patent Document 1).

図19は、斯かる空調機を備えた従来の熱媒体配管システムの一例を示す。
図19に示す熱媒体配管システムは、冷凍機又はボイラのような熱源機1と、熱源機1の出口側に接続されて冷水又は温水等の熱媒体が送給される往き主管2と、往き主管2から分岐した複数の往き管3と、入口側が各往き管3に接続されて互いに並列配置される空調機4と、各空調機4の出口側に接続される還り管5と、各還り管5が合流するように接続されると共に、熱源機1の入口側に接続される還り主管6と、往き主管2側においては、最も熱源機1側の空調機4よりも熱媒体流れ方向上流側において往き主管2に接続され、還り主管6側においては、最も熱源機1側の空調機4よりも熱媒体流れ方向下流側において還り主管6に接続されたバイパス管7とを備えている。
FIG. 19 shows an example of a conventional heat medium piping system provided with such an air conditioner.
The heat medium piping system shown in FIG. 19 includes a heat source device 1 such as a refrigerator or a boiler, an outgoing main pipe 2 connected to the outlet side of the heat source device 1 and supplied with a heat medium such as cold water or hot water, A plurality of forward pipes 3 branched from the main pipe 2, an air conditioner 4 whose inlet side is connected to each forward pipe 3 and arranged in parallel to each other, a return pipe 5 connected to the outlet side of each air conditioner 4, and each return The return main pipe 6 connected to the inlet side of the heat source unit 1 and the outgoing main pipe 2 side are connected upstream so that the pipes 5 are joined together, and the heat medium flow direction upstream of the air conditioner 4 on the most heat source unit 1 side. It is connected to the return main pipe 2 on the side, and on the return main pipe 6 side, a bypass pipe 7 connected to the return main pipe 6 on the most downstream side in the heat medium flow direction from the air conditioner 4 on the most heat source unit 1 side is provided.

バイパス管7は、往き主管2に設けた第一往きヘッダ17と還り主管6に設けた還りヘッダ18とを繋いでいる。
還り主管6には、バイパス管7の還り主管6との接続位置に設けた還りヘッダ18よりも熱源機1側において熱源ポンプ(一次ポンプ)8が接続されると共に、往き主管2の第一往きヘッダ17より熱媒体流れ方向側において羽根車を駆動するモータの回転数がインバータ制御可能な二次ポンプ9が接続され、二次ポンプ9の吐出側に設けた第二往きヘッダ19が設けられている。
各還り管5には二方弁10が設けられている。
各空調機4によって空調が行われる空調対象領域11には、制御対象領域の空気温度を計測する温度センサ12と、温度センサ12からの計測信号と設定されている設定温度との偏差に基づいて演算した出力にて二方弁10の開度調整を行う温度制御装置(TIC)13とが設置されている。
The bypass pipe 7 connects the first forward header 17 provided on the forward main pipe 2 and the return header 18 provided on the return main pipe 6.
A heat source pump (primary pump) 8 is connected to the return main pipe 6 on the heat source unit 1 side of the return header 18 provided at a position where the bypass pipe 7 is connected to the return main pipe 6. A secondary pump 9 capable of inverter-controlling the rotational speed of the motor that drives the impeller on the heat medium flow direction side from the header 17 is connected, and a second forward header 19 provided on the discharge side of the secondary pump 9 is provided. Yes.
Each return pipe 5 is provided with a two-way valve 10.
The air-conditioning target area 11 where air conditioning is performed by each air conditioner 4 is based on a temperature sensor 12 that measures the air temperature in the control target area, and a deviation between a measurement signal from the temperature sensor 12 and a set temperature that is set. A temperature control device (TIC) 13 that adjusts the opening of the two-way valve 10 with the calculated output is installed.

往き主管2の第二ヘッダ19と還り主管6との間の差圧を測定し、その差圧を出力する差圧計14を備えている。差圧計14の測定値は、圧力指示調節計機能を含む二次ポンプコントローラ16に出力される。
二次ポンプコントローラ16は、先ず、還り主管6に設けた流量計15での負荷流量測定値を入力され、予め設定している演算式によって差圧の設定値を演算決定する。次に、入力されている差圧計14で測定されるヘッダ間の差圧の計測値と、現状の流量計測定値における演算決定差圧設定値との偏差に基づいてPID演算された二次ポンプ9のインバータ周波数に対応する出力信号を出力する。
A differential pressure gauge 14 that measures the differential pressure between the second header 19 of the forward main pipe 2 and the return main pipe 6 and outputs the differential pressure is provided. The measured value of the differential pressure gauge 14 is output to the secondary pump controller 16 including a pressure indicating controller function.
First, the secondary pump controller 16 receives the load flow rate measurement value from the flow meter 15 provided in the return main pipe 6, and calculates and determines the set value of the differential pressure using a preset equation. Next, the secondary pump 9 that has been PID-calculated based on the deviation between the measured value of the differential pressure between the headers measured by the differential pressure gauge 14 and the calculation-determined differential pressure setting value in the current flow meter measurement value. An output signal corresponding to the inverter frequency is output.

図19に示す熱媒体配管システムでは、冷却又は加熱されて熱源機1から送出された熱媒体は、熱源ポンプ8により往き主管2へ送給され、一部の熱媒体はバイパス管7を通って還り主管6へ流入する。
また、残りの熱媒体は、二次ポンプ9によりさらに往き主管2へ送給され、往き管3から空調機4へ導入されて冷熱又は温熱を消費し、還り管5を通って還り主管6へ流入し、バイパス管7からの熱媒体と共に熱源機1へ戻る。この際、空調機4を通る熱媒体は、空調機4を経て空調対象領域11に送給される空気により空調対象領域11が所定の空気温度になるよう、温度制御装置13によって二方弁10の流量制御を行う。また、バイパス管7で熱媒体の冷熱又は温熱を消費せず熱源機1に戻すのは、第一往きヘッダ17及び還りヘッダ18の空調機4側である二次側配管系では複数の二方弁10の開閉に伴って熱媒体の流量が大きく変動するが、熱源機1が不具合を起こさないようにするため最低確保すべき熱源機1の熱媒体流量が決まっており、その流量を確保するためである。
In the heat medium piping system shown in FIG. 19, the heat medium cooled or heated and sent from the heat source device 1 is sent to the forward main pipe 2 by the heat source pump 8, and a part of the heat medium passes through the bypass pipe 7. It flows into the return main pipe 6.
Further, the remaining heat medium is further fed to the forward main pipe 2 by the secondary pump 9, introduced into the air conditioner 4 from the forward pipe 3, consumes cold or hot heat, passes through the return pipe 5 to the return main pipe 6. It flows in and returns to the heat source unit 1 together with the heat medium from the bypass pipe 7. At this time, the temperature control device 13 causes the two-way valve 10 so that the heat medium passing through the air conditioner 4 has a predetermined air temperature in the air conditioning target area 11 by the air supplied to the air conditioning target area 11 through the air conditioner 4. Control the flow rate. The bypass pipe 7 does not consume the heat or heat of the heat medium and returns to the heat source unit 1 in the secondary piping system on the air conditioner 4 side of the first forward header 17 and the return header 18 in a plurality of two directions. Although the flow rate of the heat medium greatly fluctuates with the opening and closing of the valve 10, the heat medium flow rate of the heat source device 1 that should be secured at least is determined in order to prevent the heat source device 1 from malfunctioning, and the flow rate is secured. Because.

図19に示す熱媒体配管システムでは、二方弁10の開度調整による配管抵抗の増加を軽減し、ポンプ動力の低減が要望されている。
しかし、図19に示す熱媒体配管システムでは、空調機4毎の負荷が偏在する場合においても、空調機4の流量不足を発生させないように、往還差圧の設定値は、余裕をもって設定せざるを得ない。そのため、設定値を大きくした分だけ配管系に二方弁10の絞り抵抗が生じ、ポンプ動力が増加するという問題がある。
逆に、往還差圧の設定値を必要以上に小さくしすぎると、空調機4の流量不足が発生してしまうため、ポンプ動力の削減効果をできるだけ発揮させるための往還差圧の設定値の決め方が難しいという問題がある。
In the heat medium piping system shown in FIG. 19, an increase in piping resistance due to adjustment of the opening degree of the two-way valve 10 is alleviated, and a reduction in pump power is desired.
However, in the heat medium piping system shown in FIG. 19, even when the load for each air conditioner 4 is unevenly distributed, the set value of the return differential pressure must be set with a margin so that the flow rate of the air conditioner 4 is not insufficient. I do not get. Therefore, there is a problem that the throttle resistance of the two-way valve 10 is generated in the piping system by an amount corresponding to the set value being increased, and the pump power is increased.
On the other hand, if the set value of the return differential pressure is made too small as necessary, the flow rate of the air conditioner 4 will be insufficient. Therefore, how to determine the set value of the return differential pressure to maximize the pump power reduction effect There is a problem that is difficult.

そこで、例えば、図20に示すように、二方弁10の絞り抵抗を完全に排除することで、ポンプ動力を大幅に削減できる方式が提案されている(例えば、特許文献2参照)。なお、図20において、図19に示す熱媒体配管システムと同一記号の構成は同一機能を表す。
図20に示す熱媒体配管システムでは、往き主管2と還り主管6との間の往き管3及び還り管5を含む分散系に、複数の空調対象領域11をそれぞれ独立して空調するために、上流側から下流側に向かって羽根車を駆動するモータの回転数がインバータ制御可能な空調機ポンプ20と、空調機4と、全開及び全閉が可能な二方弁21とを順に配管22に備えている。
Thus, for example, as shown in FIG. 20, a method has been proposed in which the pump power can be significantly reduced by completely eliminating the throttle resistance of the two-way valve 10 (see, for example, Patent Document 2). In FIG. 20, the same reference numerals as those in the heat medium piping system shown in FIG. 19 represent the same functions.
In the heat medium piping system shown in FIG. 20, in order to independently air-condition a plurality of air-conditioning target areas 11 in the distributed system including the outgoing pipe 3 and the return pipe 5 between the outgoing main pipe 2 and the return main pipe 6, An air conditioner pump 20 capable of inverter-controlling the rotational speed of a motor that drives the impeller from the upstream side toward the downstream side, an air conditioner 4, and a two-way valve 21 that can be fully opened and fully closed are sequentially connected to the pipe 22. I have.

空調機ポンプ20と全閉全開が可能な二方弁21とは、制御装置23によって動きが制御されている。空調機ポンプ20は、制御装置23によって、空調機4が対象とする空調対象領域11の温度センサ12による計測値と設定値との偏差により羽根車の回転数が制御される。全閉全開が可能な二方弁21は、制御装置23によって、空調機ポンプ20の立ち上げ時には閉じ、空調機ポンプ20の回転数が所定の回転数に達した後に全開するように制御されている。なお、全閉全開が可能な二方弁21としては、望ましくは配管22と同径とされ、更に配管22での流路抵抗の小さいボール弁、特に二位置制御式フルボア電動ボール弁が好適である。また、配管22と同径とされる二位置制御式電動バタフライ弁が好適である。   The movement of the air conditioner pump 20 and the two-way valve 21 that can be fully closed and fully opened is controlled by the control device 23. In the air conditioner pump 20, the rotational speed of the impeller is controlled by the control device 23 based on a deviation between a measured value and a set value by the temperature sensor 12 in the air conditioning target area 11 targeted by the air conditioner 4. The two-way valve 21 that can be fully closed and fully opened is controlled by the control device 23 so that it is closed when the air conditioner pump 20 is started up and fully opened after the rotation speed of the air conditioner pump 20 reaches a predetermined rotation speed. Yes. The two-way valve 21 that can be fully closed and fully opened is preferably a ball valve having the same diameter as the pipe 22 and having a small flow resistance in the pipe 22, particularly a two-position control type full-bore electric ball valve. is there. Further, a two-position control type electric butterfly valve having the same diameter as the pipe 22 is suitable.

図20に示す熱媒体配管システムでは、二方弁21に加えて空調機ポンプ20を空調機4毎に設置し、空調機4の停止時には二方弁21を全閉、空調機4の運転時に二方弁21を全開とし、空調機ポンプ20で流量調整を行っている。
そして、二次ポンプ9と空調機ポンプ20とで揚程を分担し、各分散系に負荷が少しでもあれば、空調機ポンプ20は運転する。
どの分散系の空調機ポンプ20においても、そのサクションで大気圧より負圧にならないように、二次ポンプ9は、定格流量と定格揚程を最大値とする二次曲線上を流量計15の測定流量に応じて動かし揚程圧力設定値を演算し、往き主管2及び還り主管6の間の差圧(往還差圧)を差圧計14で測定しその流量での設定値になるよう圧力制御装置16で制御している。
二方弁21は、全開時に関係と同じ内径となって圧力損失が無く、自身の分散系の負荷がなくなった場合、閉鎖されて隣の空調機ポンプ20の圧力による逆流を防止する。
In the heat medium piping system shown in FIG. 20, in addition to the two-way valve 21, an air conditioner pump 20 is installed for each air conditioner 4, the two-way valve 21 is fully closed when the air conditioner 4 is stopped, and the air conditioner 4 is in operation. The two-way valve 21 is fully opened, and the flow rate is adjusted by the air conditioner pump 20.
And if the secondary pump 9 and the air conditioner pump 20 share the lifting head and each dispersion system has a little load, the air conditioner pump 20 is operated.
In any distributed air conditioner pump 20, the secondary pump 9 measures the flowmeter 15 on the secondary curve with the rated flow rate and the rated head as maximum values so that the suction does not become a negative pressure from the atmospheric pressure. The pressure control device 16 calculates the head pressure set value by moving in accordance with the flow rate, measures the differential pressure between the forward main pipe 2 and the return main pipe 6 (forward differential pressure) with the differential pressure gauge 14 and sets it to the set value at that flow rate. It is controlled by.
When the two-way valve 21 has the same inner diameter as that of the relationship when fully opened and there is no pressure loss and the load of its own dispersion system disappears, the two-way valve 21 is closed to prevent backflow due to the pressure of the adjacent air conditioner pump 20.

特許第3917835号公報Japanese Patent No. 3917835 特開2010−112699号公報JP 2010-112699 A 特開昭60−226650号公報JP 60-226650 A

図20に示す熱媒体配管システムでは、二次ポンプ9の機器容量に対して空調機ポンプ20の機器容量が小さいと、二次ポンプ9と空調機ポンプ20とで揚程を分担しているので、システム全体としてポンプ効率等を考慮した消費電力が大きくなる場合がある(一般的に、ポンプ機器の効率は、ポンプケーシングや羽根車の仕事に寄与しない部分の容積比率によるポンプ効率や、発生磁界が仕事に影響せず熱に変わる部位の容積比率によるモータ効率等から、ポンプ容量が大きいほど大きい傾向にあるため。)。
この場合、システム全体の消費電力を小さくするためには、二次ポンプ9で制御する往還差圧の設定値をできる限り大きくとり、二次ポンプ9の仕事量の割合を増やせばよい。
しかし、図20に示す熱媒体配管システムでは、空調機ポンプ20に対する背圧が大きくなり空調機流量が制御不能になることを避けるには、空調機廻りの情報が必要となり制御が困難である。
In the heat medium piping system shown in FIG. 20, if the device capacity of the air conditioner pump 20 is smaller than the device capacity of the secondary pump 9, the secondary pump 9 and the air conditioner pump 20 share the head. In some cases, the power consumption of the system as a whole increases in consideration of the pump efficiency (generally, the efficiency of pump equipment depends on the volume ratio of the parts that do not contribute to the work of the pump casing and impeller, and the generated magnetic field Because the motor efficiency is based on the volume ratio of the part that changes to heat without affecting work, the larger the pump capacity, the greater the tendency.)
In this case, in order to reduce the power consumption of the entire system, the set value of the return differential pressure controlled by the secondary pump 9 should be as large as possible, and the work rate of the secondary pump 9 should be increased.
However, in the heat medium piping system shown in FIG. 20, information about the air conditioner is necessary and difficult to control in order to prevent the back pressure on the air conditioner pump 20 from increasing and the flow rate of the air conditioner from becoming uncontrollable.

なお、特許文献3には、二次ポンプを介さずに各分散系に分散ポンプを設け、制御対象領域の温度計測値を、温度指示調節計に入力し、温度指示調節計の演算結果を、他の出力制御装置に入力したり、制御信号変換器によって二種の信号に分けたりすることで、分散ポンプと開閉弁それぞれに制御信号を出力し、それに応じて分散ポンプを制御する熱源システムの開示がある。
開閉弁は、全開時に分岐管と同じ内径となりそうなボール弁やバタフライ弁で圧力損失が無く、自身の分散系の負荷がなくなった場合、閉鎖されて隣の分散ポンプ圧による逆流を防止するように構成されている。開閉弁は、特許文献3では二方弁のような流量制御するものではない。
しかし、特許文献3には、熱媒体往き主管と熱媒体還り主管との差圧を測定する技術も、それにより制御される二次ポンプも存在しないため、図20に示す熱媒体配管システムにおける不具合を解消することはできない。
In Patent Document 3, a dispersion pump is provided in each dispersion system without using a secondary pump, and the temperature measurement value of the control target region is input to the temperature indicator controller, and the calculation result of the temperature indicator controller is A heat source system that outputs a control signal to each of the dispersion pump and the on-off valve and controls the dispersion pump accordingly by inputting to another output control device or dividing into two kinds of signals by the control signal converter. There is disclosure.
The on-off valve is a ball valve or butterfly valve that is likely to have the same inner diameter as the branch pipe when fully opened, and if there is no pressure loss on its own dispersion system, it will be closed to prevent backflow due to the adjacent dispersion pump pressure It is configured. According to Patent Document 3, the on-off valve is not a flow rate control like a two-way valve.
However, in Patent Document 3, since there is no technique for measuring the differential pressure between the heat medium forward main pipe and the heat medium return main pipe, and there is no secondary pump controlled by the technique, there is a problem in the heat medium piping system shown in FIG. Cannot be resolved.

本発明は斯かる従来の問題点を解決するために為されたもので、その目的は、各分散系に備わる空調機ポンプの回転数と二方弁の開度とを、負荷側の制御対象領域における空気温度の計測信号を演算処理した出力信号を出力調整した二信号として各々の操作器(ポンプインバータと二方弁)へ送ることで、中央側二次ポンプの制御と空調機配管系のローカル制御とを分離する簡単な制御により、熱源からの熱媒体の省エネ搬送を実現することが可能な熱媒体配管システムを提供することにある。   The present invention has been made in order to solve such a conventional problem, and an object of the present invention is to control the rotational speed of the air conditioner pump and the opening of the two-way valve provided in each dispersion system on the load side. By sending the output signal obtained by calculating the air temperature measurement signal in the area to each operating device (pump inverter and two-way valve) as an output-adjusted signal, control of the secondary pump on the central side and the air-conditioner piping system An object of the present invention is to provide a heat medium piping system capable of realizing energy-saving conveyance of a heat medium from a heat source by simple control separating local control.

請求項1に係る発明は、羽根車を駆動するモータの回転数がインバータ制御可能な空調機ポンプと、制御対象領域へ送る空気と熱交換するための熱媒体を流すコイルを有する空調機と、開度調整可能な二方弁とを順に往き管と還り管に備え、複数の空調対象領域毎にそれぞれ独立して配置される空調機配管系と、前記空調機配管系の前記空調機ポンプの回転数及び前記二方弁の開度の制御を行う前記制御対象領域の温度制御装置と、前記各空調機配管系に温度調整した熱媒体を供給する熱源装置と、前記各空調機配管系の前記各空調機ポンプ入口側往き管と前記熱源装置の出口側とに第一往きヘッダを介して繋がる往き主管と、前記各空調機配管系の前記各二方弁出口側還り管と前記熱源装置の入口側とに還りヘッダを介して繋がる還り主管と、前記還り主管の前記熱源装置の入口側に位置し前記還りヘッダから前記第一往きヘッダまでの圧力損失分の揚程で前記熱媒体を搬送する一次ポンプと、前記各空調機配管系へ前記熱媒体を搬送する前記往き主管の前記第一往きヘッダの下流側に配置される羽根車を駆動するモータの回転数がインバータ制御可能な二次ポンプと、前記二次ポンプの吐出側の往き主管途中に繋がる第二往きヘッダと、前記第一往きヘッダと前記還りヘッダとを繋ぐヘッダ間バイパス管と、前記第二往きヘッダと前記還りヘッダとの差圧を測定する差圧計と、前記差圧計の測定値に基づいて前記二次ポンプのインバータを制御する圧力制御装置と、前記還り管の前記還りヘッダ上流側に設置される流量計とを備え、前記制御対象領域の温度制御装置は、前記複数の空調対象領域毎の制御対象領域の空気温度を測定する温度センサと、前記温度センサからの測定値と前記制御対象領域の空気温度設定値との偏差に基づいてPI演算した結果の一次制御出力を出力する温度指示調節計と、前記温度指示調節計からの一次制御出力に基づいて前記空調ポンプのインバータへの制御出力を調整して出力する第一出力調整装置と、前記温度指示調節計からの一次制御出力に基づいて前記二方弁の開度制御出力を調整して出力する第二出力調整装置とを備え、且つ前記第一出力調整装置と前記第二出力調整装置との調整割付に差異を持たせることで、前記一次制御出力の変動に際して、前記二方弁の開度調整より前記空調機ポンプのインバータの周波数調整を先に変化させるようにし、前記圧力制御装置は、前記流量計で測定した負荷流量測定値を入力され、予め与えられた負荷流量と設定差圧との関係式により差圧の設定値を演算し、前記差圧計で測定した差圧測定値と演算した前記差圧の設定値との偏差に基づいて演算した圧力制御出力により、前記二次ポンプのインバータを制御することを特徴とする。   The invention according to claim 1 is an air conditioner pump in which the rotation speed of a motor that drives an impeller is inverter-controllable, an air conditioner having a coil that flows a heat medium for heat exchange with air to be sent to a control target area, A two-way valve with adjustable opening is provided in the forward pipe and the return pipe in order, and an air conditioner piping system arranged independently for each of a plurality of air conditioning target areas, and the air conditioner pump of the air conditioning machine piping system A temperature control device for controlling the rotational speed and the opening degree of the two-way valve, a heat source device for supplying a heat medium adjusted in temperature to each air conditioner piping system, and each air conditioning piping system A forward main pipe connected to each air conditioner pump inlet side forward pipe and the outlet side of the heat source device via a first forward header, each two-way valve outlet side return pipe of each air conditioner piping system, and the heat source device Return pipe connected to the entrance side of the car via a header A primary pump that is located on the inlet side of the heat source device of the return main pipe and conveys the heat medium with a head for a pressure loss from the return header to the first forward header, and the heat to each air conditioner piping system A secondary pump capable of inverter-controlling the rotational speed of a motor that drives an impeller disposed downstream of the first forward header of the forward main pipe that conveys the medium, and a middle of the forward main pipe on the discharge side of the secondary pump A second forward header connected to the first header, a header bypass pipe connecting the first forward header and the return header, a differential pressure gauge for measuring a differential pressure between the second forward header and the return header, and the differential pressure gauge A pressure control device that controls an inverter of the secondary pump based on a measured value; and a flow meter that is installed upstream of the return header of the return pipe. Temperature sensor for measuring the air temperature in the control target area for each air conditioning target area, and the primary control output as a result of PI calculation based on the deviation between the measured value from the temperature sensor and the air temperature set value in the control target area From the temperature indicating controller, a first output adjusting device that adjusts and outputs a control output to the inverter of the air conditioning pump based on a primary control output from the temperature indicating controller, and the temperature indicating controller A second output adjusting device that adjusts and outputs the opening control output of the two-way valve based on the primary control output, and for the adjustment assignment between the first output adjusting device and the second output adjusting device. By providing the difference, the frequency adjustment of the inverter of the air conditioner pump is changed before the adjustment of the opening degree of the two-way valve when the primary control output fluctuates, and the pressure control device A load flow measurement value measured with a meter is inputted, a set value of differential pressure is calculated by a relational expression between a load flow rate and a set differential pressure given in advance, and calculated with a differential pressure measurement value measured with the differential pressure meter The inverter of the secondary pump is controlled by a pressure control output calculated based on a deviation from the set value of the differential pressure.

請求項2に係る発明は、請求項1記載の熱媒体配管システムにおいて、前記二次ポンプは、全ての前記二方弁を全開としたまま、前記各空調機ポンプの中で最も揚程の低い空調機ポンプに対し、当該空調機ポンプのインバータを制御して揚程を0kPaで且つ所定の流量流れるようにした状態にて、全空調機の定格熱負荷を合計した熱量を処理できるだけの定格流量Q0を、前記最も揚程の低い空調機ポンプを備える前記空調機配管系の往き管還り管接続点までの、前記往き主管及び前記還り主管及び当該空調機配管系の圧力損失を賄える定格揚程P0で搬送できる能力を有することを特徴とする。
請求項3に係る発明は、請求項1又は2記載の熱媒体配管システムにおいて、前記圧力制御装置は、前記二次ポンプの定格流量Q0における定格揚程P0から、定格流量Q0における往還差圧P0を前記負荷流量と設定差圧との関係式の基準点とし、前記差圧の設定値を、前記流量計の計測負荷流量値の二乗に比例して変化させることを特徴とする。
According to a second aspect of the present invention, in the heat medium piping system according to the first aspect, the secondary pump is an air conditioner having the lowest head among the air conditioner pumps with all the two-way valves fully opened. The rated flow rate Q0 that can process the total heat load of all the air conditioners in a state where the air conditioner pump inverter is controlled so that the head is at 0 kPa and a predetermined flow rate flows. It can be transported at a rated head P0 that can cover the pressure loss of the forward main pipe, the return main pipe and the air conditioner piping system up to the connection point of the forward pipe return pipe of the air conditioner piping system including the air conditioner pump having the lowest lift. It has the ability.
According to a third aspect of the present invention, in the heat medium piping system according to the first or second aspect, the pressure control device calculates the return differential pressure P0 at the rated flow rate Q0 from the rated head P0 at the rated flow rate Q0 of the secondary pump. The reference value of the relational expression between the load flow rate and the set differential pressure is used, and the set value of the differential pressure is changed in proportion to the square of the measured load flow rate value of the flow meter.

請求項4に係る発明は、請求項1乃至3の何れか記載の熱媒体配管システムにおいて、前記各空調機ポンプは、前記二次ポンプの揚程がゼロであっても、前記各空調機の定格流量を確保できるよう、前記第一往きヘッダから前記還りヘッダまでの圧力損失を賄うだけの定格揚程にて定格流量を流せる能力を有していることを特徴とする。
請求項5に係る発明は、請求項1乃至4の何れか記載の熱媒体配管システムにおいて、前記制御対象領域の温度制御装置は、前記空調機ポンプの回転数調整による制御時には前記二方弁を全開とし、前記空調機ポンプの回転数が下限値となった場合に、前記二方弁の開度調整によって制御させるように、前記空調機ポンプの回転数調整と前記二方弁の開度調整とを行うことを特徴とする。
The invention according to claim 4 is the heat medium piping system according to any one of claims 1 to 3, wherein each air conditioner pump has a rating of each air conditioner even if the lift of the secondary pump is zero. In order to secure the flow rate, the flow rate is allowed to flow at a rated head sufficient to cover the pressure loss from the first forward header to the return header.
According to a fifth aspect of the present invention, in the heat medium piping system according to any one of the first to fourth aspects, the temperature control device in the control target region is configured to control the two-way valve during control by adjusting the rotation speed of the air conditioner pump. Fully open and when the air conditioner pump rotation speed reaches the lower limit, the air conditioner pump rotation speed adjustment and the two-way valve opening adjustment are controlled by adjusting the two-way valve opening degree adjustment. It is characterized by performing.

請求項6に係る発明は、請求項1乃至5の何れか記載の熱媒体配管システムにおいて、前記二方弁は、全開時に前記還り管と同じ内径となるフルボア電動ボール弁又はバタフライ弁で前後配管に比べ圧力損失増加がほぼ無いことを特徴とする。
請求項7に係る発明は、請求項1乃至6の何れか記載の熱媒体配管システムにおいて、前記第一出力調整装置及び前記第二出力調整装置は、レシオバイアス設定器であることを特徴とする。
The invention according to claim 6 is the heat medium piping system according to any one of claims 1 to 5, wherein the two-way valve is a full-bore electric ball valve or butterfly valve having the same inner diameter as the return pipe when fully opened. Compared to the above, there is almost no increase in pressure loss.
The invention according to claim 7 is the heat medium piping system according to any one of claims 1 to 6, wherein the first output adjustment device and the second output adjustment device are ratio bias setting devices. .

本発明は、空調設備の空調用水搬送システムとして、各負荷側温度制御配管系に分散ポンプである空調機ポンプと二方弁を設け、空調機ポンプの回転数と二方弁の開度を、制御対象領域の空気温度の計測信号を演算処理した信号を二つのレシオバイアスとして各々制御することで、中央側二次ポンプの制御とローカル制御を分離する簡単な制御で省エネ搬送を実現する。
そのため、空調機の流量不足を発生させることなく、往還差圧の設定値を理想通りに下げることができると共に、二方弁の絞り抵抗が小さくなり、空調機ポンプを含めたポンプ動力を低減することができる。
The present invention provides an air conditioner pump and a two-way valve as a dispersion pump in each load-side temperature control piping system as an air conditioning water transfer system for an air conditioner, and the rotation speed of the air conditioner pump and the opening degree of the two-way valve are By controlling each of the signals obtained by calculating the measurement signal of the air temperature in the control target area as two ratio biases, energy-saving conveyance is realized by simple control that separates the control of the central secondary pump and the local control.
For this reason, the set value of the return differential pressure can be lowered as desired without causing an insufficient flow rate of the air conditioner, the throttle resistance of the two-way valve is reduced, and the pump power including the air conditioner pump is reduced. be able to.

また、往還差圧の設定値は、定格流量時の値を基準とした負荷流量の二乗に比例した曲線等、容易に決定できる。
また、二次ポンプの往還差圧の設定値は定格流量時の値を基準とした負荷流量の二乗に比例曲線で設定するが、定格流量時の値を二方弁の開度調整がない範囲で可能な限り大きくとることで、二次ポンプの仕事量の割合が大きくなり、システム全体の消費電力が小さくできる。
また、二次ポンプ廻りと各空調機廻りの制御は切り離して構成できるため、制御が容易に構成できる。
The set value of the return differential pressure can be easily determined such as a curve proportional to the square of the load flow rate based on the value at the rated flow rate.
In addition, the set value of the return pressure of the secondary pump is set as a proportional curve to the square of the load flow rate based on the value at the rated flow rate, but the value at the rated flow rate is within the range where the opening of the two-way valve is not adjusted. By making it as large as possible, the work rate of the secondary pump increases and the power consumption of the entire system can be reduced.
Further, since the control around the secondary pump and the air conditioners can be configured separately, the control can be easily configured.

本発明の一実施形態に係る熱媒体配管システムを示す説明図である。It is explanatory drawing which shows the heat carrier piping system which concerns on one Embodiment of this invention. 図1の制御対象領域の温度制御装置を示す説明図である。It is explanatory drawing which shows the temperature control apparatus of the control object area | region of FIG. 図1の熱媒体配管システムにおける定格条件である運転状態Aを示す説明図である。It is explanatory drawing which shows the driving | running state A which is a rated condition in the heat carrier piping system of FIG. 図3に示す定格条件である運転状態Aから空調機41〜44の負荷が均等に減少(負荷流量が100L/minから50L/minに減少)して運転状態Bに変化した状態を示す説明図である。Explanatory drawing which shows the state which the load of the air conditioners 41-44 decreased equally from the operating state A which is a rated condition shown in FIG. 3 (the load flow rate decreased from 100 L / min to 50 L / min) and changed to the operating state B It is. 図3に示す定格条件である運転状態Aにおける二次ポンプの運転状態を示すグラフである。It is a graph which shows the driving | running state of the secondary pump in the driving | running state A which is a rated condition shown in FIG. 図3に示す定格条件である運転状態Aにおける空調機41〜44の空調機ポンプのインバータと二方弁との運転状態を示すグラフである。It is a graph which shows the driving | running state of the inverter and the two-way valve of the air conditioner pump of the air conditioners 41-44 in the driving | running state A which is a rated condition shown in FIG. 図3に示す定格条件である運転状態Aにおける空調機41〜44の空調機ポンプの運転状態を示すグラフである。It is a graph which shows the driving | running state of the air conditioner pump of the air conditioners 41-44 in the driving | running state A which is a rated condition shown in FIG. 図3に示す定格条件である運転状態Aから図4に示す運転状態Bへの途中過程における空調機41〜44の空調機ポンプのインバータと二方弁との運転状態を示すグラフである。It is a graph which shows the driving | running state of the inverter and the two-way valve of the air conditioner pump of the air conditioners 41-44 in the middle process from the driving | running state A which is a rated condition shown in FIG. 3 to the driving | running state B shown in FIG. 図3に示す定格条件である運転状態Aから図4に示す運転状態Bへの途中過程における二次ポンプの運転状態を示すグラフである。FIG. 5 is a graph showing an operation state of the secondary pump in an intermediate process from an operation state A which is a rated condition shown in FIG. 3 to an operation state B shown in FIG. 4. 図3に示す定格条件である運転状態Aから図4に示す運転状態Bへの途中過程における空調機41〜44の空調機ポンプのインバータと二方弁との運転状態を示すグラフである。It is a graph which shows the driving | running state of the inverter and the two-way valve of the air conditioner pump of the air conditioners 41-44 in the middle process from the driving | running state A which is a rated condition shown in FIG. 3 to the driving | running state B shown in FIG. 図3に示す定格条件である運転状態Aから図4に示す運転状態Bへの途中過程における空調機41〜44の空調機ポンプの運転状態を示すグラフである。It is a graph which shows the driving | running state of the air conditioner pumps of the air conditioners 41-44 in the middle process from the driving | running state A which is a rated condition shown in FIG. 3 to the driving | running state B shown in FIG. 図3に示す定格条件である運転状態Aから空調機41の負荷が均等に減少(負荷流量が100L/minから20L/minに減少)して運転状態Cに変化した状態を示す説明図である。It is explanatory drawing which shows the state which the load of the air conditioner 41 decreased equally from the driving | running state A which is a rated condition shown in FIG. 3 (load flow volume decreased from 100L / min to 20L / min), and changed into the driving | running state C. . 図3に示す定格条件である運転状態Aから図12に示す運転状態Cへの途中過程における空調機41の空調機ポンプのインバータと二方弁との運転状態を示すグラフである。It is a graph which shows the driving | running state of the inverter of the air conditioner pump of the air conditioning machine 41 and the two-way valve in the middle process from the driving | running state A which is a rated condition shown in FIG. 3 to the driving | running state C shown in FIG. 図3に示す定格条件である運転状態Aから図12に示す運転状態Cへの途中過程における二次ポンプの運転状態を示すグラフである。It is a graph which shows the driving | running state of the secondary pump in the middle process from the driving | running state A which is a rated condition shown in FIG. 3 to the driving | running state C shown in FIG. 図3に示す定格条件である運転状態Aから図12に示す運転状態Cへの途中過程における空調機41の空調機ポンプのインバータと二方弁との運転状態を示すグラフである。It is a graph which shows the driving | running state of the inverter of the air conditioner pump of the air conditioning machine 41 and the two-way valve in the middle process from the driving | running state A which is a rated condition shown in FIG. 3 to the driving | running state C shown in FIG. 図3に示す定格条件である運転状態Aから図12に示す運転状態Cへの途中過程における空調機41の空調機ポンプの運転状態を示すグラフである。It is a graph which shows the driving | running state of the air conditioner pump of the air conditioning machine 41 in the middle process from the driving | running state A which is a rated condition shown in FIG. 3 to the driving | running state C shown in FIG. 図3に示す定格条件である運転状態Aから図12に示す運転状態Cへの途中過程における空調機42〜44の空調機ポンプのインバータと二方弁との運転状態を示すグラフである。It is a graph which shows the driving | running state of the inverter and the two-way valve of the air conditioner pump of the air conditioning machines 42-44 in the middle process from the driving | running state A which is the rated conditions shown in FIG. 3 to the driving | running state C shown in FIG. 図3に示す定格条件である運転状態Aから図12に示す運転状態Cへの途中過程における空調機42〜44の空調機ポンプの運転状態を示すグラフである。It is a graph which shows the driving | running state of the air conditioner pump of the air conditioners 42-44 in the middle process from the driving | running state A which is a rated condition shown in FIG. 3 to the driving | running state C shown in FIG. 従来の熱媒体配管システムを示す説明図である。It is explanatory drawing which shows the conventional heat carrier piping system. 従来の別の熱媒体配管システムを示す説明図である。It is explanatory drawing which shows another conventional heat carrier piping system.

以下、本発明を図面に示す実施形態に基づいて説明する。
図1〜図18は、本発明の一実施形態に係る熱媒体配管システムを示す説明図である。なお、図19、図20と同一記号の構成は同一機能を表す。
本実施形態に係る熱媒体配管システムは、図20に示す熱媒体配管システムと同様に、熱源機1側の冷温水を循環させる一次ポンプ8と空調機4側への冷温水を循環させるインバータ等による回転数制御可能な二次ポンプ9とで構成されるツーポンプシステムであり、複数の空調対象領域11をそれぞれ独立して空調するための空調機配管系である温度制御配管系Xと、熱媒体主搬送ループYとを備えている。
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
1-18 is explanatory drawing which shows the heat carrier piping system which concerns on one Embodiment of this invention. In addition, the structure of the same symbol as FIG. 19, FIG. 20 represents the same function.
As in the heat medium piping system shown in FIG. 20, the heat medium piping system according to the present embodiment is a primary pump 8 that circulates cold / hot water on the heat source unit 1 side, an inverter that circulates cold / hot water to the air conditioner 4 side, and the like. A temperature control piping system X, which is an air conditioner piping system for independently air-conditioning a plurality of air-conditioning target regions 11, and a heat pump. And a medium main transport loop Y.

空調機配管系である温度制御配管系Xは、上流側から下流側に向かって往き管3にインバータ等による回転数制御可能な分散ポンプである空調機ポンプ20と、空調機(送風機、エリミネータ、加湿器、加熱コイル、冷却コイル、フィルタ及びドレーンパン等を含んだエアハンドリングユニット又はファンコイルユニット)4と、還り管5に開度調整可能な二方弁10とを順に、空調機4を境とした往き管還り管である配管22に備え、熱媒体主搬送ループYの往き主管2と還り主管6との間にそれぞれ接続することによって構成されている。
各温度制御配管系Xによって空調される空調対象領域11には、空調機ポンプ20のインバータ20aの回転数及び二方弁10の開度の制御を行う制御対象領域の温度制御装置Zを備えている。
The temperature control piping system X which is an air conditioner piping system includes an air conditioner pump 20 which is a distributed pump capable of controlling the rotation speed by an inverter or the like in the forward pipe 3 from the upstream side to the downstream side, and an air conditioner (blower, eliminator, The air handling unit or fan coil unit including a humidifier, a heating coil, a cooling coil, a filter, a drain pan, and the like) 4 and a two-way valve 10 whose opening degree can be adjusted to the return pipe 5 are arranged in this order. The pipe 22 is a return pipe return pipe, and is connected between the forward main pipe 2 and the return main pipe 6 of the heat medium main transport loop Y.
The air-conditioning target region 11 that is air-conditioned by each temperature control piping system X includes a control target region temperature control device Z that controls the rotation speed of the inverter 20a of the air conditioner pump 20 and the opening degree of the two-way valve 10. Yes.

制御対象領域の温度制御装置Zは、図1、図2に示すように、複数の空調対象領域11毎の制御対象領域の空気温度を測定する温度センサ12と、温度センサ12からの測定値と制御対象領域の空気温度設定値との偏差に基づいてPI又はPID演算した結果の一次制御出力を出力する温度指示調節計である温度制御装置30と、温度制御装置30からの一次制御出力に基づいて空調ポンプ20のインバータ20aへの制御出力を調整する第一出力調整装置31と、温度制御装置30からの一次制御出力に基づいて二方弁10の開度制御出力を調整する第二出力調整装置32とを備え、且つ一次制御出力を入力された第一出力調整装置31と第二出力調整装置32とで、一次制御出力を別な割付で調整して出力するのに、それぞれ割付に差異を持たせることで、一次制御出力の変動に際して、二方弁10の開度調整より空調機ポンプ20のインバータ20aの周波数調整を先に変化させるようにしている。   As shown in FIGS. 1 and 2, the temperature control device Z for the control target area includes a temperature sensor 12 that measures the air temperature in the control target area for each of the plurality of air conditioning target areas 11, and a measured value from the temperature sensor 12. Based on the temperature control device 30 that is a temperature indicating controller that outputs a primary control output as a result of PI or PID calculation based on the deviation from the air temperature set value in the control target region, and the primary control output from the temperature control device 30 A first output adjusting device 31 that adjusts the control output to the inverter 20a of the air conditioning pump 20 and a second output adjustment that adjusts the opening control output of the two-way valve 10 based on the primary control output from the temperature control device 30. The first output adjustment device 31 and the second output adjustment device 32 that are provided with the device 32 and have received the primary control output, adjust the primary control output with a different assignment, and output the difference. By providing, so that upon variation of the primary control output, changing the previously frequency adjustment of the inverter 20a of the air conditioner pump 20 than the opening degree adjustment of the two-way valve 10.

熱媒体主搬送ループYは、各温度制御配管系Xに温度調整した熱媒体を供給する熱源機1と、各温度制御配管系Xの各空調機ポンプ20入口側往き管3と熱源機1の出口側とに第一往きヘッダ17を介して繋がる往き主管2と、各温度制御配管系Xの各二方弁10の出口側還り管5と熱源機1の入口側とに還りヘッダ18を介して繋がる還り主管6と、還り主管6の熱源機1の入口側に位置し還りヘッダ18から第一往きヘッダ17までの圧力損失分の揚程で熱媒体を搬送する一次ポンプ8と、温度制御配管系Xへ熱媒体を搬送する往き主管2の第一往きヘッダ17の下流側に配置される羽根車を駆動するモータの回転数がインバータ制御可能な二次ポンプ9と、二次ポンプ9の往き側に往き主管2の途中に繋がる第二往きヘッダ19と、第一往きヘッダ17と還りヘッダ18とを繋ぐヘッダ間バイパス管7と、還り主管6の還りヘッダ18の上流側に設けた流量計15と、第二往きヘッダ19と還りヘッダ18との差圧を計測する差圧計14と、差圧計14と流量計15との計測値を取り込んで二次ポンプ9のインバータ9aを制御する圧力制御装置16とを備えている。   The heat medium main transfer loop Y includes a heat source device 1 that supplies a temperature-controlled heat medium to each temperature control piping system X, an air conditioner pump 20 inlet-side forward pipe 3 of each temperature control piping system X, and a heat source device 1. The return main pipe 2 connected to the outlet side via the first forward header 17, the return side return pipe 5 of each two-way valve 10 of each temperature control piping system X, and the inlet side of the heat source unit 1 via the return header 18 A return main pipe 6 connected to each other, a primary pump 8 which is located on the inlet side of the heat source unit 1 of the return main pipe 6 and conveys the heat medium by a head of pressure loss from the return header 18 to the first forward header 17, and a temperature control pipe A secondary pump 9 capable of inverter-controlling the rotational speed of a motor that drives an impeller disposed downstream of the first forward header 17 of the forward main pipe 2 that conveys the heat medium to the system X; A second forward header 19 connected in the middle of the main pipe 2 going to the side, Measures the differential pressure between the header bypass pipe 7 connecting the forward header 17 and the return header 18, the flow meter 15 provided upstream of the return header 18 of the return main pipe 6, and the second forward header 19 and the return header 18. And a pressure control device 16 that takes in the measured values of the differential pressure gauge 14 and the flow meter 15 and controls the inverter 9 a of the secondary pump 9.

なお、熱源機1としては、冷凍機と冷却塔等から構成される冷熱源装置や、蒸気ボイラと蒸気・水熱交換器、冷温水発生機等から構成される温熱源装置が用いられる。
還り主管6には、バイパス管7の還り主管6との接続位置に設けた還りヘッダ18よりも熱源機1側において一次ポンプである熱源ポンプ8が接続されると共に、第一往きヘッダ17より熱媒体流れ方向側の往き主管2には羽根車を駆動するモータの回転数がインバータ制御可能な二次ポンプ9が接続され、二次ポンプ9の吐出側に第2往きヘッダ19が設けられている。
圧力制御装置16では、流量計15で測定した負荷流量測定値を入力され、予め与えられた負荷流量と設定差圧との関係式により差圧の設定値を演算し、差圧計14で測定した差圧測定値と演算した前記差圧の設定値との偏差に基づいて、例えば、PIやPID演算した圧力制御出力により、二次ポンプ9のインバータ9aを制御する。
In addition, as the heat source unit 1, a cold heat source device including a refrigerator and a cooling tower, a hot heat source device including a steam boiler, a steam / water heat exchanger, a cold / hot water generator, and the like are used.
A heat source pump 8 that is a primary pump is connected to the return main pipe 6 on the side of the heat source unit 1 with respect to the return header 18 provided at a position where the bypass pipe 7 is connected to the return main pipe 6. A secondary pump 9 capable of inverter-controlling the rotational speed of the motor driving the impeller is connected to the forward main pipe 2 on the medium flow direction side, and a second forward header 19 is provided on the discharge side of the secondary pump 9. .
In the pressure control device 16, the measured value of the load flow rate measured by the flow meter 15 is input, the set value of the differential pressure is calculated by the relational expression between the load flow rate given in advance and the set differential pressure, and measured by the differential pressure meter 14. Based on the difference between the measured differential pressure value and the calculated set value of the differential pressure, for example, the inverter 9a of the secondary pump 9 is controlled by the pressure control output calculated by PI or PID.

本実施形態において、還りヘッダ18から熱源機1を経由して第一往きヘッダ17まで(熱源側、一次側ともいう)の配管抵抗は一次ポンプ8の揚程にほぼ等しく、第一往きヘッダ17からそれぞれの空調機4を経由して還りヘッダ18まで(二次側)の配管抵抗は二次ポンプ9の揚程にそれぞれの空調機4に対応した空調機ポンプ20の揚程を足したものにほぼ等しい。つまり、二次側へ冷温水を循環するための仕事量は、二次ポンプ9と複数の空調機ポンプ20によって分担される。このとき、空調機ポンプ20に対して機器単体として運転効率が高い二次ポンプ9の仕事量(楊程〉の割合をできる限り大きくとるようにする。
二次ポンプ9は、コイルや弁を含む配管抵抗が流量のほぼ二乗に比例する特性を考慮し、差圧計14で測定した往還差圧(≒二次ポンプ9の揚程)が、全ての空調機4の流量の合計である負荷流量の二乗に比例した値になるよう、圧力制御装置16に予め与えられている負荷流量と設定差圧との関係式によって設定されて制御される。
In the present embodiment, the piping resistance from the return header 18 to the first forward header 17 via the heat source unit 1 (also referred to as the heat source side and the primary side) is substantially equal to the head of the primary pump 8, and from the first forward header 17. The piping resistance from each air conditioner 4 to the return header 18 (secondary side) is approximately equal to the lift of the secondary pump 9 plus the lift of the air conditioner pump 20 corresponding to each air conditioner 4. . That is, the work amount for circulating cold / hot water to the secondary side is shared by the secondary pump 9 and the plurality of air conditioner pumps 20. At this time, the ratio of the work amount (stroke) of the secondary pump 9 having high operation efficiency as a single unit with respect to the air conditioner pump 20 is set as large as possible.
The secondary pump 9 takes into account the characteristic that the pipe resistance including the coil and the valve is proportional to the square of the flow rate, and the return differential pressure measured by the differential pressure gauge 14 (≈ lift of the secondary pump 9) 4 is set and controlled by a relational expression between the load flow rate given in advance to the pressure control device 16 and the set differential pressure so as to be a value proportional to the square of the load flow rate, which is the sum of the four flow rates.

各空調機4の熱負荷に応じた流量調整は、それぞれに該当する空調機ポンプ20と二方弁10とによって行うが、基本的(各空調機4の負荷傾向が等しい場合)には二方弁10を全開に保ちつつ、熱負荷に応じて空調機ポンプ20のインバータ20aの回転数調整を行う。
各空調機4の負荷傾向にバラツキが見られた場合には、全体負荷の平均より負荷の高い系統は、二次ポンプ9による仕事量が相対的に小さくなるため(二次ポンプ9による押込み圧が小さくなるため)、熱負荷に対応した流量を確保するために空調機ポンプ20のインバータ20aの回転数が上昇していく。反対に、全体負荷の平均より負荷の低い系統は、二次ポンプ9による仕事量が相対的に大きくなるため(二次ポンプ9による押込み圧が大きくなるため)、空調機ポンプ20のインバータ20aの回転数が下降し、さらに下限回転数(下限周波数)に達すると、二方弁10の開度を絞り、熱負荷に応じた流量に調整する。
The flow rate adjustment according to the heat load of each air conditioner 4 is performed by the air conditioner pump 20 and the two-way valve 10 corresponding to each, but basically in two directions (when the load tendency of each air conditioner 4 is equal). The rotation speed of the inverter 20a of the air conditioner pump 20 is adjusted according to the heat load while keeping the valve 10 fully open.
When the load tendency of each air conditioner 4 varies, the work load by the secondary pump 9 is relatively small in the system having a higher load than the average of the total loads (the indentation pressure by the secondary pump 9). Therefore, the rotational speed of the inverter 20a of the air conditioner pump 20 increases in order to secure a flow rate corresponding to the heat load. On the other hand, in the system having a lower load than the average of the total load, the work amount by the secondary pump 9 becomes relatively large (because the pushing pressure by the secondary pump 9 becomes large), so that the inverter 20a of the air conditioner pump 20 When the rotational speed decreases and further reaches the lower limit rotational speed (lower limit frequency), the opening of the two-way valve 10 is throttled and adjusted to a flow rate according to the thermal load.

二次ポンプ9の能力は、全ての二方弁10を全開としたまま、各空調機ポンプ20の中で最も揚程の低い空調機ポンプ20に対し、当該空調機ポンプ20のインバータ20aを制御して揚程を0kPaで、且つその空調機ポンプ20の定格流量が流れるようにした状態にて、全空調機4の定格熱負荷を合計した熱量を処理できるだけの定格流量Q0を、最も揚程の低い空調機ポンプ20を備える温度制御配管系Xの往き管還り管接続点までの、往き主管2及び還り主管6及び当該温度制御配管22の圧力損失を賄える定格揚程P0で搬送できる能力を有している。二次ポンプ9の揚程がP0より大きければ、空調機ポンプ20に対する二次ポンプ9からの背圧が大きくなるため、空調機ポンプ20による制御が不能となり過流量となる。このとき、流量を絞るために二方弁10の絞り抵抗が発生し、ポンプの所要動力が増加し、消費電力が大きくなる。一方、二次ポンプ9の揚程がP0より小さければ、空調機ポンプ20の仕事量が大きくなり、機器効率を考慮したシステム全体としての消費電力が大きくなる。 The capacity of the secondary pump 9 controls the inverter 20a of the air conditioner pump 20 with respect to the air conditioner pump 20 having the lowest head among the air conditioner pumps 20 with all the two-way valves 10 fully opened. In the state where the head is 0 kPa and the rated flow rate of the air conditioner pump 20 flows, the rated flow rate Q0 that can process the total amount of heat of the rated heat loads of all the air conditioners 4 is the air conditioning with the lowest lift. It has the ability to convey at the rated head P0 that can cover the pressure loss of the forward main pipe 2, the return main pipe 6 and the temperature control pipe 22 up to the connection point of the forward pipe return pipe of the temperature control piping system X including the mechanical pump 20. . If the lift of the secondary pump 9 is larger than P0, the back pressure from the secondary pump 9 to the air conditioner pump 20 becomes large, so that the control by the air conditioner pump 20 becomes impossible and the flow rate becomes excessive. At this time, the throttle resistance of the two-way valve 10 is generated to reduce the flow rate, the required power of the pump is increased, and the power consumption is increased. On the other hand, if the head of the secondary pump 9 is smaller than P 0 , the work amount of the air conditioner pump 20 is increased, and the power consumption of the entire system considering the device efficiency is increased.

二次ポンプ9は往還差圧が設定値になるようにインバータ制御を行う。圧力制御装置16は、二次ポンプ9の定格流量Q0における定格揚程P0であることから、定格流量Q0における往還差圧P0を負荷流量と設定差圧との関係式の基準点とし、差圧の設定値を、流量計15によって計測した計測負荷流量値の二乗に比例して変化させる。
それぞれの空調機ポンプ20の能力は、二次ポンプ9の揚程がゼロであっても、それぞれの各空調機4の定格流量を確保できるよう、第一往きヘッダ17から還りヘッダ18までの圧力損失を賄うだけの定格揚程にて定格流量を流せる能力を有している。二次ポンプ9は全体負荷の平均とみることができる負荷流量によって往還差圧を決定しているため、各空調機4で熱負荷がばらついた場合、特に極端に熱負荷が小さい系統が多数あり、定格の熱負荷がある系統が少数ある場合、定格の熱負荷がある系統にとって二次ポンプ9の仕事量は極端に小さくなり、その分空調機ポンプ20の仕事量を増やさなければならない。
The secondary pump 9 performs inverter control so that the return differential pressure becomes a set value. Since the pressure control device 16 has the rated head P0 at the rated flow rate Q0 of the secondary pump 9, the return differential pressure P0 at the rated flow rate Q0 is used as a reference point for the relational expression between the load flow rate and the set differential pressure, The set value is changed in proportion to the square of the measured load flow rate value measured by the flow meter 15.
The capacity of each air conditioner pump 20 is such that the pressure loss from the first forward header 17 to the return header 18 so that the rated flow rate of each air conditioner 4 can be secured even if the head of the secondary pump 9 is zero. It has the ability to allow the rated flow to flow with a rated head that only covers Since the secondary pump 9 determines the return differential pressure based on the load flow rate that can be regarded as the average of the total load, there are many systems that have extremely small heat loads, especially when the heat load varies among the air conditioners 4. When there are a few systems with the rated heat load, the work of the secondary pump 9 becomes extremely small for the system with the rated heat load, and the work of the air conditioner pump 20 must be increased accordingly.

次に、本実施形態における空調機ポンプ20と二方弁10との制御方法を説明する。
空調機ポンプ20と二方弁10とによって、一般的なシステムと同じように、制御対象領域の空気温度を一定にするように冷温水量を調整して熱負荷を処理する。制御対象領域の空気温度は、空調機4が変風量の場合は給気温度、空調機4が定風量の場合は代表室の室内空気温度となる場合が多い。
制御対象領域の空気温度の制御は、空調機ポンプ20のインバータ20aの回転数調整と二方弁10の開度調整とによって行うが、二方弁10の開度調整より空調機ポンプ20のインバータ20aの回転数調整を優先させる。つまり、空調機ポンプ20のインバータ20aの回転数調整による制御時には二方弁10が全開となり、空調機ポンプ20インバータ20aの回転数の下限値となった場合に、二方弁10の開度調整によって制御させるようにする。
Next, a control method of the air conditioner pump 20 and the two-way valve 10 in the present embodiment will be described.
As with a general system, the air conditioner pump 20 and the two-way valve 10 adjust the amount of cold / hot water so as to keep the air temperature in the control target area constant, thereby processing the heat load. In many cases, the air temperature in the control target region is the supply air temperature when the air conditioner 4 has a variable amount of air, and the indoor air temperature of the representative room when the air conditioner 4 has a constant amount of air.
The air temperature in the control target area is controlled by adjusting the rotation speed of the inverter 20a of the air conditioner pump 20 and adjusting the opening of the two-way valve 10, but by adjusting the opening of the two-way valve 10, the inverter of the air conditioner pump 20 is controlled. Priority is given to the rotation speed adjustment of 20a. That is, when the two-way valve 10 is fully opened at the time of control by adjusting the rotation speed of the inverter 20a of the air conditioner pump 20, the opening degree adjustment of the two-way valve 10 is performed when the lower limit value of the rotation speed of the air conditioner pump 20 inverter 20a is reached. To be controlled by.

図2に基づいて具体的な制御方法の一例を説明する。図2では冷房の制御動作を示す。
制御量である制御対象領域の空気温度Tを温度制御装置30に入力し、制御対象領域の空気温度Tとその設定値Tspとの偏差に基づいてPI又はPID演算し、制御出力X(0〜100%)を決定する。この温度制御装置30からの制御出力X(0〜100%)を、空調機ポンプ20のインバータ20aと二方弁10とにそれぞれに設けたレシオバイアス設定器等の第一出力調整装置31、第二出力調整装置32に入力し、ある基準値(例えば、50%)〜100%の制御出力Xの値を、空調機ポンプ20のインバータ20aへの制御出力XINVとしての0〜100%に割付て出力し、0%〜ある基準値(例えば、50%)の制御出力Xの値を、二方弁10への制御出力Xvalveとしての0〜100%に割付て出力する。
An example of a specific control method will be described based on FIG. FIG. 2 shows the cooling control operation.
The air temperature T in the control target area, which is a controlled variable, is input to the temperature control device 30, and PI or PID is calculated based on the deviation between the air temperature T in the control target area and its set value Tsp, and the control output X (0 to 0). 100%). The control output X (0 to 100%) from the temperature control device 30 is supplied to the first output adjusting device 31 such as a ratio bias setting device provided in the inverter 20a and the two-way valve 10 of the air conditioner pump 20, respectively. Input to the two-output adjusting device 32 and assign a value of the control output X of a certain reference value (for example, 50%) to 100% to 0 to 100% as the control output XINV to the inverter 20a of the air conditioner pump 20 The value of the control output X from 0% to a certain reference value (for example, 50%) is assigned to 0 to 100% as the control output Xvalve to the two-way valve 10 and output.

このようにすることで、例えば、冷房時に熱負荷が増加した場合は、熱負荷に対して必要な冷水量が小さくなるため、制御対象領域の空気温度が上昇する。このとき、温度制御装置30のPID演算によって制御出力Xが上昇するため、空調機ポンプ20のインバータ20aの周波数が下限の場合には二方弁10の開度が大きくなる、又は二方弁10全開時には空調機ポンプ20のインバータ20aの周波数が大きくなることで、冷水量が増加するので熱負荷を処理することができる。   By doing in this way, for example, when the heat load increases during cooling, the amount of cold water required for the heat load decreases, so the air temperature in the control target region increases. At this time, since the control output X is increased by the PID calculation of the temperature control device 30, when the frequency of the inverter 20a of the air conditioner pump 20 is the lower limit, the opening degree of the two-way valve 10 is increased, or the two-way valve 10 When fully opened, the frequency of the inverter 20a of the air conditioner pump 20 increases, so that the amount of cold water increases, so that the heat load can be processed.

なお、温度制御装置30における比例帯は、実際のシステムの応答性に合わせて現地で調整するパラメータである。また、基準値の例として挙げた50%という値は、この値を境に温度制御装置30における比例帯をインバータ20aと二方弁10とに分割している意味をもっており(例えば、この50%という値を大きくすると、制御出力Xの変化に対してインバータ20a用制御出力XINVの応答は速くなり、二方弁10用制御出力Xvalvsの応答は遅くなる)、やはり実際のシステムの応答性に合わせて現地で調整するパラメータである。
また、温度制御装置30と第一出力制御装置31、第二出力装置32における比例帯は、実際のシステムの応答性に合わせて現地で調整するパラメータである。
Note that the proportional band in the temperature control device 30 is a parameter that is adjusted locally in accordance with the response of the actual system. Further, the value of 50% given as an example of the reference value means that the proportional band in the temperature control device 30 is divided into the inverter 20a and the two-way valve 10 with this value as a boundary (for example, this 50% When the value is increased, the response of the control output X INV for the inverter 20a becomes faster and the response of the control output X valvs for the two-way valve 10 becomes slower with respect to the change of the control output X). This parameter is adjusted locally according to
Further, the proportional band in the temperature control device 30, the first output control device 31, and the second output device 32 is a parameter that is adjusted on site in accordance with the response of the actual system.

次に、本実施形態に係る熱媒体配管システムの作用を説明する。
図3に示す定格条件である運転状態Aから、空調機41〜44の負荷が均等に減少(負荷流量が100L/minから50L/minに減少)して図4に示す運転状態Bに変化するときの、各制御機器の制御動作について説明する。
各制御機器は、それぞれ個別の制御対象を制御しているが(空調機ポンプ20と二方弁10とはそれぞれ制御対象領域の空気温度Tを、二次ポンプ9は往還差圧を)、以下のような動作によって、最終的には運転状態Bでバランスする。
Next, the operation of the heat medium piping system according to this embodiment will be described.
From the operating state A, which is the rated condition shown in FIG. 3, the load of the air conditioners 41 to 44 is evenly reduced (the load flow rate is reduced from 100 L / min to 50 L / min), and changes to the operating state B shown in FIG. The control operation of each control device will be described.
Each control device controls an individual control target (the air conditioner pump 20 and the two-way valve 10 each have an air temperature T in the control target area, and the secondary pump 9 has a return differential pressure). Thus, the balance is finally achieved in the driving state B.

図3に示す定格条件である運転状態Aは、基準圧力(膨張タンク接続位置)が100kPaとする。また、二次ポンプ9の運転状態は、図5に示すように、圧力制御装置16に予め与えられている抵抗曲線=設定圧力(Psp=aQ2)(但し、aは係数、Qは流量)と、定格時のポンプ特性曲線(二次ポンプ9のインバータ9a設定周波数50Hz)との交点である、流量400L/min、揚程200kPaを、二次ポンプ9の羽根車を駆動するモータをインバータ周波数50Hzの供給電力で回転させて確保する。
ここで、二次ポンプ9のインバータ9aの制御は、圧力制御装置16によって下記のように制御される。先ず、流量計15で測定した負荷流量Qを入力し、予め設定している演算式(Psp=aQ2)によって、差圧(往還差圧)の設定値Pspを演算する。ここで、aは定格時の流量と揚程とから予め設定しておく値であり、この例の場合は、a=(200/4002)である。次に、差圧計14で測定したヘッダ18,19間の差圧(往還差圧)を入力し、ヘッダ18,19間の差圧(往還差圧)が演算式(Psp=aQ2)で演算された設定値PspになるようにPID演算された値に基づいて行われる。
In the operating state A, which is the rated condition shown in FIG. 3, the reference pressure (expansion tank connection position) is 100 kPa. Further, as shown in FIG. 5, the operation state of the secondary pump 9 is as follows: resistance curve given to the pressure control device 16 = set pressure (Psp = aQ2) (where a is a coefficient and Q is a flow rate). , The intersection with the rated pump characteristic curve (inverter 9a set frequency of the secondary pump 9 is 50 Hz), the flow rate of 400 L / min, the lift of 200 kPa, the motor that drives the impeller of the secondary pump 9 is the inverter frequency of 50 Hz Rotate with supply power to secure.
Here, the control of the inverter 9 a of the secondary pump 9 is controlled by the pressure controller 16 as follows. First, enter the load flow rate Q measured by the flow meter 15, the arithmetic expression is set in advance (P sp = aQ 2), calculates the set value P sp differential pressure (shuttle differential pressure). Here, a is a value set in advance from the flow rate at the rated time and the head, and in this example, a = (200/400 2 ). Next, the differential pressure between the headers 18 and 19 (return differential pressure) measured by the differential pressure gauge 14 is input, and the differential pressure between the headers 18 and 19 (return differential pressure) is calculated by the equation (P sp = aQ 2 ). This is performed based on the value calculated by PID so that the calculated set value Psp is obtained.

図3に示すように、共通部分の往き主管2の配管抵抗は50kPaであるから、空調機41〜44に連なる配管系22の往き管3と往き主管2との接合部には、それぞれ250kPaの圧力が掛かる。
定格条件である運転状態Aでは、システム全体の搬送消費電力を小さくするため、当然二次ポンプ9の圧力つまり揚程が大きく設定され、容量の小さい空調機ポンプ20の揚程は極限に小さい0とされるべきである。よって、空調機41〜44にそれぞれ連なる空調機ポンプ20の揚程は0kPa、空調機41〜44のコイル抵抗は何れも80kPa、二方弁の全開時抵抗は20kPaである。そのため、空調機41〜44の入口側の圧力は250kPa、流量は100L/minとなり、空調機41〜44の出口側の圧力は170kPaとなり、還り主管6との接合部の圧力は150kPaとなる。
As shown in FIG. 3, the pipe resistance of the forward main pipe 2 in the common portion is 50 kPa, so that the joint between the forward pipe 3 and the forward main pipe 2 of the piping system 22 connected to the air conditioners 41 to 44 is 250 kPa, respectively. Pressure is applied.
In the operating condition A, which is a rated condition, the pressure of the secondary pump 9, that is, the lift, is naturally set large in order to reduce the transport power consumption of the entire system, and the lift of the small capacity air conditioner pump 20 is set to 0, which is extremely small. Should be. Therefore, the head of the air conditioner pump 20 connected to the air conditioners 41 to 44 is 0 kPa, the coil resistance of each of the air conditioners 41 to 44 is 80 kPa, and the resistance when the two-way valve is fully opened is 20 kPa. Therefore, the pressure on the inlet side of the air conditioners 41 to 44 is 250 kPa, the flow rate is 100 L / min, the pressure on the outlet side of the air conditioners 41 to 44 is 170 kPa, and the pressure at the joint with the return main pipe 6 is 150 kPa.

空調機ポンプ20のインバータ20aと二方弁10の運転状態(空調機41〜44とも共通)は、図6に示すように、温度制御装置30において、制御対象領域の空気温度の設定値SP=測定値PVで、制御出力70%とする。
これに基づいて、空調機ポンプ20のインバータ20aは、第一出力調整装置31で求められたインバータ制御出力46%(インバータ制御出力の0〜100%をインバータ20aの周波数の0〜50Hzに割り当てる場合は23Hz、以下同様の考え方とする。)によって羽根車の回転周波数が制御される。図7は、空調機ポンプ20の運転状態を示す。揚程は0kPaであるが、当然搬送すべき流量100L/min搬送している。
また、二方弁10は、図6にあるように、第二出力調整装置32で割付直された二方弁制御出力100%を出力し、二方弁10の開度が全開に制御される。
還り主管6の配管抵抗は50kPaであるから、還りヘッダ18における圧力は100kPaとなり、基準圧力(膨張タンク接続位置)に一致する。
As shown in FIG. 6, the operating state of the inverter 20 a of the air conditioner pump 20 and the two-way valve 10 (common to the air conditioners 41 to 44) is set in the temperature control device 30 as the set value SP of the air temperature in the control target region. The measured output PV is 70% control output.
Based on this, the inverter 20a of the air conditioner pump 20 has an inverter control output of 46% obtained by the first output adjustment device 31 (when 0 to 100% of the inverter control output is assigned to 0 to 50 Hz of the frequency of the inverter 20a). The frequency of the impeller is controlled by 23 Hz, and so on. FIG. 7 shows the operating state of the air conditioner pump 20. Although the head is 0 kPa, it is naturally transported at a flow rate of 100 L / min to be transported.
Further, as shown in FIG. 6, the two-way valve 10 outputs the two-way valve control output 100% reassigned by the second output adjusting device 32, and the opening degree of the two-way valve 10 is controlled to be fully opened. .
Since the piping resistance of the return main pipe 6 is 50 kPa, the pressure in the return header 18 is 100 kPa, which matches the reference pressure (expansion tank connection position).

次に、運転状態Aから運転状態Bへの途中過程を説明する。
図8に示すように、空調機41〜44の負荷が減少すると制御対象領域の空気温度の測定値PVが矢印方向に低下し、制御出力が70%から40%になる。このとき、それぞれの温度制御配管系への制御出力も同様に減少し、第一出力調整装置31を介して割付直された出力は0%、つまり空調機ポンプ20のインバータ20aの周波数が最低周波数(例えば、5Hz)まで減少することとなり、第二出力調整装置32を介して割付直された出力は、二方弁の開度調整信号として80%を出力する。
次に、全体の負荷流量が400L/minから200L/minへ2分の1に低下するため、図9に示すように、二次ポンプ9は負荷流量の二乗に比例した圧力、つまり200kPaの4分の1である50kPaになるように、圧力制御装置16に予め与えられている抵抗曲線=設定圧力(Psp=aQ2)(但し、aは係数、Qは流量)上を変化させ、結果、インバータ9aの周波数を50Hzから25Hzに減少させる。
Next, an intermediate process from the operation state A to the operation state B will be described.
As shown in FIG. 8, when the load on the air conditioners 41 to 44 decreases, the measured value PV of the air temperature in the control target area decreases in the direction of the arrow, and the control output becomes 70% to 40%. At this time, the control output to each temperature control piping system similarly decreases, the output reassigned via the first output adjustment device 31 is 0%, that is, the frequency of the inverter 20a of the air conditioner pump 20 is the lowest frequency. (For example, 5 Hz), the output reassigned via the second output adjustment device 32 outputs 80% as the opening adjustment signal of the two-way valve.
Next, since the entire load flow rate is reduced by a factor of 2 from 400 L / min to 200 L / min, as shown in FIG. 9, the secondary pump 9 has a pressure proportional to the square of the load flow rate, that is, 4 of 200 kPa. The resistance curve given in advance to the pressure control device 16 = set pressure (Psp = aQ2) (where a is a coefficient and Q is a flow rate) is changed so as to be 50 kPa which is a fraction, and as a result, the inverter Reduce the frequency of 9a from 50 Hz to 25 Hz.

次に、二次ポンプ9の揚程が減少するため、各空調機系統における押し込み圧力が低下し、全体的に流量が減少する。この結果、各空調機41〜44で、負荷を処理するために必要な流量が流れなくなり、図10に示すように、制御対象領域の空気温度の測定値PVが上昇するため、制御出力が増加し、空調機ポンプ20のインバータ20aの周波数が11.5Hz、二方弁10の開閉制御信号が100%となり全開となる。図11は各空調機ポンプ20の運転状態を示しており、インバータ20aの周波数が23Hzから11.5Hzに減少することで、流量が100L/minから50L/minに減少している。
以上の過程を経て、図4に示す運転状態B(空調機41〜44の負荷流量が均等に50L/minに減少した状態)になる。
なお、以上の制御動作については、制御機器の動作を分かりやすく説明するために制御量を急激に変化させているが、実際の変化は緩やかであるため、このように急激に制御量が変化することはない。また、運転状態Bにおける設置値SPと測定値PVとの差(オフセット)は、積分動作によって取り除かれる。
Next, since the head of the secondary pump 9 decreases, the pushing pressure in each air conditioner system decreases, and the flow rate decreases as a whole. As a result, in each of the air conditioners 41 to 44, the flow rate necessary for processing the load does not flow, and the measured value PV of the air temperature in the control target area increases as shown in FIG. Then, the frequency of the inverter 20a of the air conditioner pump 20 is 11.5 Hz, the open / close control signal of the two-way valve 10 is 100%, and it is fully opened. FIG. 11 shows the operating state of each air conditioner pump 20, and the flow rate is reduced from 100 L / min to 50 L / min by reducing the frequency of the inverter 20a from 23 Hz to 11.5 Hz.
Through the above process, the operation state B shown in FIG. 4 (the state in which the load flow rates of the air conditioners 41 to 44 are uniformly reduced to 50 L / min) is obtained.
As for the above control operation, the control amount is suddenly changed to explain the operation of the control device in an easy-to-understand manner. However, since the actual change is gradual, the control amount changes abruptly in this way. There is nothing. Further, the difference (offset) between the installation value SP and the measurement value PV in the operation state B is removed by the integration operation.

次に、図3に示す定格条件である運転状態Aから、空調機41の負荷として、例えば、4台の内1台のみ減少(負荷流量が100L/minから20L/minに減少)して、図12に示す負荷が偏在する運転状態Cに変化したときの、各制御機器の制御動作について説明する。
各制御機器はそれぞれ個別の制御対象を制御しているが(空調機ポンプ20と二方弁10とはそれぞれの制御対象領域の空気温度Tを、二次ポンプ9は往還差圧を)、以下のような動作によって、最終的には運転状態Cでバランスする。
Next, from the operating state A which is the rated condition shown in FIG. 3, as the load of the air conditioner 41, for example, only one of the four units is reduced (load flow rate is reduced from 100 L / min to 20 L / min), The control operation of each control device when it changes to the operation state C where the load shown in FIG. 12 is unevenly distributed will be described.
Each control device controls an individual control object (the air conditioner pump 20 and the two-way valve 10 have the air temperature T in the respective control object area, and the secondary pump 9 has the return differential pressure). Thus, the balance is finally achieved in the driving state C.

二次ポンプ9の運転状態、空調機ポンプ20のインバータ20aと二方弁10の運転状態、空調機ポンプ20の運転状態は、それぞれ図5〜図7に示すとおりである。
次に、図3に示す運転状態Aから図12に示す運転状態Cへの途中過程を説明する。
先ず、空調機41の負荷が減少すると制御対象領域の空気温度の測定値PVが低下する。このとき、空調機41系統の温度指示調節計(TIC)30からの制御出力が減少し、図13に示すように、空調機41の負荷が減少すると制御対象領域の空気温度の測定値PVが矢印方向に低下し、制御出力が70%から15%になる。このとき、空調機41系への制御出力も同様に減少し、第一出力調整装置31を介して割付直された出力は0%、つまり空調機ポンプ20のインバータ20aの周波数が最低周波数(例えば、5Hz)まで減少することとなり、第二出力調整装置32を介して割付直された出力は、二方弁10の開度調整信号として30%に減少する。
The operation state of the secondary pump 9, the operation state of the inverter 20a and the two-way valve 10 of the air conditioner pump 20, and the operation state of the air conditioner pump 20 are as shown in FIGS.
Next, an intermediate process from the operation state A shown in FIG. 3 to the operation state C shown in FIG. 12 will be described.
First, when the load of the air conditioner 41 decreases, the measured value PV of the air temperature in the control target region decreases. At this time, when the control output from the temperature indicating controller (TIC) 30 of the air conditioner 41 system decreases and the load on the air conditioner 41 decreases as shown in FIG. It decreases in the direction of the arrow, and the control output is changed from 70% to 15%. At this time, the control output to the air conditioner 41 system is similarly reduced, the output reassigned via the first output adjustment device 31 is 0%, that is, the frequency of the inverter 20a of the air conditioner pump 20 is the lowest frequency (for example, 5 Hz), and the output reassigned via the second output adjustment device 32 is reduced to 30% as the opening degree adjustment signal of the two-way valve 10.

次に、全体の負荷流量が400L/minから320L/minへ0.8の割合に低下するため、図14に示すように、二次ポンプ9は負荷流量の二乗に比例した圧力、つまり200kPaの0.64の割合である128kPaになるように、圧力制御装置16に予め与えられている抵抗曲線=設定圧力(Psp=aQ2)(但し、aは係数、Qは流量)上を変化させ、結果、インバータ9aの周波数を50Hzから40Hzに減少させる。
次に、二次ポンプ9の揚程が200kPaから128kPaに減少するため、各空調機系統における押し込み圧力が低下し、全体的に流量が減少する。この結果、図15に示すように、空調機41で、負荷を処理するために必要な流量が流れなくなり、制御対象領域の空気温度の測定値PVが上昇するため、制御出力が15%から30%に増加し、空調機ポンプ20のインバータ20aの周波数が5Hzのまま、二方弁10の開度信号は30%から60%に増加する。図16は、空調機41の系統の空調機ポンプ20の運転状態を示しており、インバータ20aの周波数が運転状態Aの23Hzから運転状態Cの5Hzに減少したことで、流量100L/minから20L/minに減少している。
Next, since the entire load flow rate is reduced from 400 L / min to 320 L / min at a rate of 0.8, as shown in FIG. 14, the secondary pump 9 has a pressure proportional to the square of the load flow rate, that is, 200 kPa. The resistance curve given in advance to the pressure control device 16 = set pressure (Psp = aQ2) (where a is a coefficient and Q is a flow rate) is changed to a result of 128 kPa, which is a ratio of 0.64. The frequency of the inverter 9a is reduced from 50 Hz to 40 Hz.
Next, since the head of the secondary pump 9 is reduced from 200 kPa to 128 kPa, the pushing pressure in each air conditioner system is lowered, and the flow rate is reduced as a whole. As a result, as shown in FIG. 15, in the air conditioner 41, the flow rate necessary for processing the load does not flow, and the measured value PV of the air temperature in the control target region increases, so the control output is 15% to 30%. The opening signal of the two-way valve 10 increases from 30% to 60% while the frequency of the inverter 20a of the air conditioner pump 20 remains at 5 Hz. FIG. 16 shows the operating state of the air conditioner pump 20 in the system of the air conditioner 41. The frequency of the inverter 20a is decreased from 23 Hz in the operating state A to 5 Hz in the operating state C, so that the flow rate is 100 L / min to 20 L. / Min.

また、図17に示すように、空調機42〜44で、負荷を処理するために必要な流量が流れなくなり、制御対象領域の空気温度の測定値PVが上昇するため、制御出力が70%から80%に増加し、空調機ポンプ20のインバータ20aの周波数が23Hzから32Hzに増加し、二方弁10の開度信号は100%のままとなる。図18は、空調機42〜44の系統の空調機ポンプ20の運転状態を示しており、インバータ20aの周波数が運転状態Aの23Hzから運転状態Cの32Hzに増加したことで、流量100L/minのまま揚程が増加している。
以上の過程を経て、図12に示す運転状態C(空調機41の負荷流量が20L/minに減少した状態)になる。
Further, as shown in FIG. 17, in the air conditioners 42 to 44, the flow rate necessary for processing the load does not flow, and the measured value PV of the air temperature in the control target area rises. The frequency of the inverter 20a of the air conditioner pump 20 increases from 23 Hz to 32 Hz, and the opening signal of the two-way valve 10 remains 100%. FIG. 18 shows the operating state of the air conditioner pump 20 in the system of the air conditioners 42 to 44. The frequency of the inverter 20a is increased from 23 Hz in the operating state A to 32 Hz in the operating state C. The head is increasing.
Through the above process, the operation state C shown in FIG. 12 (the state in which the load flow rate of the air conditioner 41 is reduced to 20 L / min) is obtained.

次に、本実施形態に係る熱媒体配管システム及び図19、図20に示す従来の熱媒体配管システムにおける動力の試算例を示す。
試算条件
例えば、各空調機41〜44の流量が以下の条件になった場合、
空調機41:100L/min
空調機42:80L/min
空調機43:60L/min
空調機44:40L/min
(このとき共通往還配管の流量:280L/min)
配管抵抗は流量の二乗に比例するので、それぞれの配管抵抗は以下となる。なお、図19、図20に示す従来の熱媒体配管システムにおける空調機4を、図3、図4、図12と同様に空調機41〜44として説明する。
Next, a trial calculation example of power in the heat medium piping system according to the present embodiment and the conventional heat medium piping system shown in FIGS. 19 and 20 will be described.
Trial calculation condition For example, when the flow rate of each air conditioner 41-44 becomes the following conditions,
Air conditioner 41: 100L / min
Air conditioner 42: 80L / min
Air conditioner 43: 60L / min
Air conditioner 44: 40L / min
(At this time, the flow rate of the common return pipe: 280 L / min)
Since the pipe resistance is proportional to the square of the flow rate, each pipe resistance is as follows. The air conditioners 4 in the conventional heat medium piping system shown in FIGS. 19 and 20 will be described as air conditioners 41 to 44 as in FIGS. 3, 4, and 12.

空調機41循環配管:100kPa[=100×(100/100)2kPa]
空調機42循環配管:64kPa[=100×(80/100)2kPa]
空調機43循環配管:36kPa[=100×(60/100)2kPa]
空調機44循環配管:16kPa[=100×(40/100)2kPa]
共通往還配管:49kPa[=100×(280/400)2kPa]
以上の条件で、各システムの動力を試算すると、表1、表2、表3のようになる。
Air conditioner 41 circulation piping: 100 kPa [= 100 × (100/100) 2 kPa]
Air conditioner 42 circulation piping: 64 kPa [= 100 × (80/100) 2 kPa]
Air conditioner 43 circulation piping: 36 kPa [= 100 × (60/100) 2 kPa]
Air conditioner 44 circulation piping: 16 kPa [= 100 × (40/100) 2 kPa]
Common return piping: 49 kPa [= 100 × (280/400) 2 kPa]
Table 1, Table 2, and Table 3 show the motive power of each system under the above conditions.

表1〜表3において、ポンプ水動力(Pw[kW]とする)はポンプから実際に流体に与えられる動力である。
Pw=ρgQH/1000=ρg(Q′/60000)(H′/9.8)/1000
=Q′H′/60000
ρ:密度[kg/m3
g:重力加速度[m/s2
Q:ポンプ流量[m3/s]
H:ポンプ揚程[m]
Q′:ポンプ流量[L/min]
H′:ポンプ揚程[kPa]
また、ポンプ軸動力(P[kW]とする)はポンプを動かすのに必要な動力である。
P=Pw/η
η:ポンプ効率
In Tables 1 to 3, pump water power (Pw [kW]) is power actually given to the fluid from the pump.
Pw = ρgQH / 1000 = ρg (Q ′ / 60000) (H ′ / 9.8) / 1000
= Q'H '/ 60000
ρ: Density [kg / m 3 ]
g: Gravity acceleration [m / s 2 ]
Q: Pump flow rate [m 3 / s]
H: Pump head [m]
Q ': Pump flow rate [L / min]
H ': Pump head [kPa]
The pump shaft power (P [kW]) is power necessary to move the pump.
P = Pw / η
η: Pump efficiency

Figure 2013204833
Figure 2013204833

表1は、図19のシステムに対応する。往還差圧(≒二次ポンプ9の揚程)は、余裕分を0kPaとし、最も配管抵抗の大きい空調機41循環配管の100kPaに、共通往還配管の25kPaを加えた値としている。これは差圧(往還差圧)の設定値を理想的に設定できた場合であるが、実際の往還差圧は余裕を見込んだ値で設定されるため、ポンプ軸動力は1.158kWより大きくなる。   Table 1 corresponds to the system of FIG. The return differential pressure (≈the head of the secondary pump 9) has a margin of 0 kPa, and is a value obtained by adding 25 kPa of the common return piping to 100 kPa of the circulation piping of the air conditioner 41 having the largest piping resistance. This is a case where the set value of the differential pressure (return differential pressure) can be ideally set. However, since the actual return differential pressure is set with a value allowing for a margin, the pump shaft power is larger than 1.158 kW. Become.

Figure 2013204833
Figure 2013204833

表2は、図20のシステムに対応する。往還差圧(≒二次ポンプ9の揚程)は、定格時の共通循環配管の抵抗100kPaを基準として負荷流量の二乗に比例した25kPaとし、それ以降は各空調機ポンプ20で昇圧している。ポンプ水動力は0.528kWで、ポンプ効率を上表のように仮定すると、ポンプ軸動力は1.129kWとなる。
図19のシステムに比べて約3%削減した。
Table 2 corresponds to the system of FIG. The return differential pressure (≈the head of the secondary pump 9) is 25 kPa proportional to the square of the load flow rate with reference to the resistance of the common circulation pipe at the rated time of 100 kPa, and thereafter the pressure is increased by each air conditioner pump 20. Assuming that the pump water power is 0.528 kW and the pump efficiency is as shown in the above table, the pump shaft power is 1.129 kW.
Compared to the system of FIG.

Figure 2013204833
Figure 2013204833

表3は、図1のシステムに対応する。往還差圧(≒二次ポンプの揚程)は、定格時の最大抵抗200kPaを基準として負荷流量の二乗に比例した50kPaとし、それ以降は各空調機ポンプ20で昇圧又は二方弁10の開度調整を行っている。ポンプ水動力は0.562kWで、ポンプ効率を上表のように仮定すると、ポンプ軸動力は1.044kWとなる。ただし、空調機ポンプ20の揚程が0kPaになる場合は、最低周波数になっているものとし、ポンプ軸動力に一定値0.010kW(実験によって得られた実測値)を与えた。
図19のシステムに比べて約10%削減した。
Table 3 corresponds to the system of FIG. The return differential pressure (≈the lift of the secondary pump) is 50 kPa proportional to the square of the load flow rate with reference to the maximum resistance of 200 kPa at the rated time, and thereafter, the air pressure is increased by each air conditioner pump 20 or the opening of the two-way valve 10 Adjustments are being made. Assuming that the pump water power is 0.562 kW and the pump efficiency is as shown in the above table, the pump shaft power is 1.044 kW. However, when the head of the air conditioner pump 20 was 0 kPa, it was assumed that the pump had the lowest frequency, and a constant value of 0.010 kW (actual value obtained by experiment) was given to the pump shaft power.
Compared to the system of FIG.

1 熱源機
2 往き主管
4 空調機
6 還り主管
7 バイパス管
8 一次ポンプ
9 二次ポンプ
9a インバータ
10 二方弁
11 空調対象領域
12 温度センサ
14 差圧計
15 流量計
16 圧力制御装置
17 往きヘッダ
18 還りヘッダ
20 空調機ポンプ
20a インバータ
22 配管
30 温度制御装置
31 第一出力調整装置
32 第二出力調整装置
X 空調機配管系
Y 熱媒体主搬送ループ
Z 制御対象領域の温度制御装置
DESCRIPTION OF SYMBOLS 1 Heat source machine 2 Outbound main pipe 4 Air conditioner 6 Return main pipe 7 Bypass pipe 8 Primary pump 9 Secondary pump 9a Inverter 10 Two-way valve 11 Air-conditioning object area 12 Temperature sensor 14 Differential pressure gauge 15 Flowmeter 16 Pressure control device 17 Outbound header 18 Return Header 20 Air-conditioner pump 20a Inverter 22 Piping 30 Temperature control device 31 First output adjustment device 32 Second output adjustment device X Air-conditioner piping system Y Heat medium main transfer loop Z Temperature control device in control target area

Claims (7)

羽根車を駆動するモータの回転数がインバータ制御可能な空調機ポンプと、制御対象領域へ送る空気と熱交換するための熱媒体を流すコイルを有する空調機と、開度調整可能な二方弁とを順に往き管と還り管に備え、複数の空調対象領域毎にそれぞれ独立して配置される空調機配管系と、
前記空調機配管系の前記空調機ポンプの回転数及び前記二方弁の開度の制御を行う前記制御対象領域の温度制御装置と、
前記各空調機配管系に温度調整した熱媒体を供給する熱源装置と、
前記各空調機配管系の前記各空調機ポンプ入口側往き管と前記熱源装置の出口側とに第一往きヘッダを介して繋がる往き主管と、
前記各空調機配管系の前記各二方弁出口側還り管と前記熱源装置の入口側とに還りヘッダを介して繋がる還り主管と、
前記還り主管の前記熱源装置の入口側に位置し前記還りヘッダから前記第一往きヘッダまでの圧力損失分の揚程で前記熱媒体を搬送する一次ポンプと、
前記各空調機配管系へ前記熱媒体を搬送する前記往き主管の前記第一往きヘッダの下流側に配置される羽根車を駆動するモータの回転数がインバータ制御可能な二次ポンプと、
前記二次ポンプの吐出側の往き主管途中に繋がる第二往きヘッダと、
前記第一往きヘッダと前記還りヘッダとを繋ぐヘッダ間バイパス管と、
前記第二往きヘッダと前記還りヘッダとの差圧を測定する差圧計と、
前記差圧計の測定値に基づいて前記二次ポンプのインバータを制御する圧力制御装置と、
前記還り管の前記還りヘッダ上流側に設置される流量計と
を備え、
前記制御対象領域の温度制御装置は、
前記複数の空調対象領域毎の制御対象領域の空気温度を測定する温度センサと、
前記温度センサからの測定値と前記制御対象領域の空気温度設定値との偏差に基づいてPI演算した結果の一次制御出力を出力する温度指示調節計と、
前記温度指示調節計からの一次制御出力に基づいて前記空調ポンプのインバータへの制御出力を調整して出力する第一出力調整装置と、
前記温度指示調節計からの一次制御出力に基づいて前記二方弁の開度制御出力を調整して出力する第二出力調整装置と
を備え、且つ前記第一出力調整装置と前記第二出力調整装置との調整割付に差異を持たせることで、前記一次制御出力の変動に際して、前記二方弁の開度調整より前記空調機ポンプのインバータの周波数調整を先に変化させるようにし、
前記圧力制御装置は、
前記流量計で測定した負荷流量測定値を入力され、予め与えられた負荷流量と設定差圧との関係式により差圧の設定値を演算し、前記差圧計で測定した差圧測定値と演算した前記差圧の設定値との偏差に基づいて演算した圧力制御出力により、前記二次ポンプのインバータを制御する
ことを特徴とする熱媒体配管システム。
An air conditioner pump in which the rotation speed of a motor for driving an impeller can be controlled by an inverter, an air conditioner having a coil for flowing a heat medium for heat exchange with air to be controlled, and a two-way valve whose opening degree can be adjusted. And in order the air-conditioner piping system that is arranged in each of the plurality of air-conditioning target areas,
A temperature control device for the control target region for controlling the rotation speed of the air conditioner pump of the air conditioner piping system and the opening of the two-way valve;
A heat source device for supplying a temperature-adjusted heat medium to each air conditioner piping system;
A forward main pipe connected via a first forward header to each air conditioner pump inlet side outgoing pipe and the heat source device outlet side of each air conditioner piping system;
A return main pipe connected via a return header to each of the two-way valve outlet side return pipes of each of the air conditioner piping systems and the inlet side of the heat source device;
A primary pump that is located on the inlet side of the heat source device of the return main pipe and conveys the heat medium at a head for a pressure loss from the return header to the first forward header;
A secondary pump capable of inverter-controlling the rotational speed of a motor that drives an impeller disposed downstream of the first forward header of the forward main pipe that conveys the heat medium to each of the air conditioner piping systems;
A second forward header connected in the middle of the outgoing main pipe on the discharge side of the secondary pump;
An inter-header bypass pipe connecting the first forward header and the return header;
A differential pressure gauge for measuring a differential pressure between the second forward header and the return header;
A pressure control device for controlling an inverter of the secondary pump based on a measured value of the differential pressure gauge;
A flow meter installed upstream of the return header of the return pipe,
The temperature control device of the control target area is
A temperature sensor for measuring an air temperature in a control target region for each of the plurality of air conditioning target regions;
A temperature indicating controller that outputs a primary control output as a result of PI calculation based on a deviation between a measured value from the temperature sensor and an air temperature set value of the control target region;
A first output adjusting device that adjusts and outputs a control output to the inverter of the air conditioning pump based on a primary control output from the temperature indicating controller;
A second output adjustment device that adjusts and outputs an opening control output of the two-way valve based on a primary control output from the temperature indicating controller, and the first output adjustment device and the second output adjustment By giving a difference in the adjustment allocation with the device, when the primary control output varies, the frequency adjustment of the inverter of the air conditioner pump is changed earlier than the opening adjustment of the two-way valve,
The pressure control device includes:
The load flow measurement value measured by the flow meter is inputted, the set value of the differential pressure is calculated by the relational expression between the load flow rate given in advance and the set differential pressure, and the differential pressure measurement value measured by the differential pressure meter is calculated. A heat medium piping system, wherein an inverter of the secondary pump is controlled by a pressure control output calculated based on a deviation from the set value of the differential pressure.
請求項1記載の熱媒体配管システムにおいて、
前記二次ポンプは、全ての前記二方弁を全開としたまま、前記各空調機ポンプの中で最も揚程の低い空調機ポンプに対し、当該空調機ポンプのインバータを制御して揚程を0kPaで且つ所定の流量流れるようにした状態にて、全空調機の定格熱負荷を合計した熱量を処理できるだけの定格流量Q0を、前記最も揚程の低い空調機ポンプを備える前記空調機配管系の往き管還り管接続点までの、前記往き主管及び前記還り主管及び当該空調機配管系の圧力損失を賄える定格揚程P0で搬送できる能力を有する
ことを特徴とする熱媒体配管システム。
The heat medium piping system according to claim 1,
The secondary pump controls the inverter of the air conditioner pump with respect to the air conditioner pump having the lowest lift among the air conditioner pumps while keeping all the two-way valves fully open, and the lift is 0 kPa. In a state where a predetermined flow rate is allowed to flow, a rated flow rate Q0 capable of processing a heat quantity obtained by summing up the rated heat loads of all the air conditioners, and a forward pipe of the air conditioner piping system including the air conditioner pump having the lowest lift. A heat medium piping system having a capability of being transported at a rated head P0 that can cover the pressure loss of the forward main pipe, the return main pipe, and the air conditioner piping system up to a return pipe connection point.
請求項1又は2記載の熱媒体配管システムにおいて、
前記圧力制御装置は、前記二次ポンプの定格流量Q0における定格揚程P0から、定格流量Q0における往還差圧P0を前記負荷流量と設定差圧との関係式の基準点とし、前記差圧の設定値を、前記流量計の計測負荷流量値の二乗に比例して変化させる
ことを特徴とする熱媒体配管システム。
In the heat medium piping system according to claim 1 or 2,
The pressure control device sets the differential pressure from the rated head P0 at the rated flow rate Q0 of the secondary pump, using the return differential pressure P0 at the rated flow rate Q0 as a reference point of the relational expression between the load flow rate and the set differential pressure. The heat medium piping system, wherein the value is changed in proportion to the square of the measured load flow rate value of the flow meter.
請求項1乃至3の何れか記載の熱媒体配管システムにおいて、
前記各空調機ポンプは、前記二次ポンプの揚程がゼロであっても、前記各空調機の定格流量を確保できるよう、前記第一往きヘッダから前記還りヘッダまでの圧力損失を賄うだけの定格揚程にて定格流量を流せる能力を有している
ことを特徴とする熱媒体配管システム。
In the heat medium piping system according to any one of claims 1 to 3,
Each air conditioner pump is rated to cover the pressure loss from the first forward header to the return header so that the rated flow rate of each air conditioner can be secured even if the head of the secondary pump is zero. A heat medium piping system characterized by having the ability to flow the rated flow at the head.
請求項1乃至4の何れか記載の熱媒体配管システムにおいて、
前記制御対象領域の温度制御装置は、前記空調機ポンプの回転数調整による制御時には前記二方弁を全開とし、前記空調機ポンプの回転数が下限値となった場合に、前記二方弁の開度調整によって制御させるように、前記空調機ポンプの回転数調整と前記二方弁の開度調整とを行う
ことを特徴とする熱媒体配管システム。
In the heat medium piping system according to any one of claims 1 to 4,
The temperature control device in the control target region opens the two-way valve at the time of control by adjusting the rotation speed of the air conditioner pump, and when the rotation speed of the air conditioner pump becomes a lower limit value, The heat medium piping system, wherein the rotation speed of the air conditioner pump and the opening of the two-way valve are adjusted so as to be controlled by adjusting the opening.
請求項1乃至5の何れか記載の熱媒体配管システムにおいて、
前記二方弁は、全開時に前記還り管と同じ内径となるフルボア電動ボール弁又はバタフライ弁で前後配管に比べ圧力損失増加がほぼ無い
ことを特徴とする熱媒体配管システム。
In the heat medium piping system according to any one of claims 1 to 5,
The two-way valve is a full-bore electric ball valve or butterfly valve having the same inner diameter as the return pipe when fully opened, and there is almost no increase in pressure loss compared to the front and rear pipes.
請求項1乃至6の何れか記載の熱媒体配管システムにおいて、
前記第一出力調整装置及び前記第二出力調整装置は、レシオバイアス設定器である
ことを特徴とする熱媒体配管システム。
In the heat medium piping system according to any one of claims 1 to 6,
Said 1st output adjustment apparatus and said 2nd output adjustment apparatus are ratio bias setting devices. The heat medium piping system characterized by the above-mentioned.
JP2012070874A 2012-03-27 2012-03-27 Heat medium piping system Active JP5869394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012070874A JP5869394B2 (en) 2012-03-27 2012-03-27 Heat medium piping system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012070874A JP5869394B2 (en) 2012-03-27 2012-03-27 Heat medium piping system

Publications (2)

Publication Number Publication Date
JP2013204833A true JP2013204833A (en) 2013-10-07
JP5869394B2 JP5869394B2 (en) 2016-02-24

Family

ID=49524123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012070874A Active JP5869394B2 (en) 2012-03-27 2012-03-27 Heat medium piping system

Country Status (1)

Country Link
JP (1) JP5869394B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016102635A (en) * 2014-11-28 2016-06-02 ダイキン工業株式会社 Air conditioner system
JP2018136109A (en) * 2017-02-24 2018-08-30 株式会社竹中工務店 Air conditioning system
WO2018159703A1 (en) * 2017-03-02 2018-09-07 東芝キヤリア株式会社 Heat source water control method and heat source water control device
CN109945460A (en) * 2019-03-28 2019-06-28 中铁第四勘察设计院集团有限公司 A kind of air conditioning cooling water secondary pump variable volume system and control method
CN114719357A (en) * 2022-04-12 2022-07-08 湖北华工能源股份有限公司 Energy-saving design method for secondary cascade pump of central air conditioner
WO2023057409A1 (en) * 2021-10-07 2023-04-13 Belimo Holding Ag Fluid transportation network and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105890118B (en) * 2016-04-29 2018-10-30 宁波奥克斯电气股份有限公司 The method and its unit of mechanism thermal effect in a kind of promotion multi-connected machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735369A (en) * 1993-07-22 1995-02-07 Hibiya Eng Ltd Controller of air-conditioning apparatus having outlet in floor of pressure type
JPH07175528A (en) * 1993-12-17 1995-07-14 Toshiba Corp Secondary cold and hot water feeding pressure controller
JP2010112699A (en) * 2008-10-09 2010-05-20 Sanki Eng Co Ltd Heating medium piping system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735369A (en) * 1993-07-22 1995-02-07 Hibiya Eng Ltd Controller of air-conditioning apparatus having outlet in floor of pressure type
JPH07175528A (en) * 1993-12-17 1995-07-14 Toshiba Corp Secondary cold and hot water feeding pressure controller
JP2010112699A (en) * 2008-10-09 2010-05-20 Sanki Eng Co Ltd Heating medium piping system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016102635A (en) * 2014-11-28 2016-06-02 ダイキン工業株式会社 Air conditioner system
JP2018136109A (en) * 2017-02-24 2018-08-30 株式会社竹中工務店 Air conditioning system
WO2018159703A1 (en) * 2017-03-02 2018-09-07 東芝キヤリア株式会社 Heat source water control method and heat source water control device
JPWO2018159703A1 (en) * 2017-03-02 2019-11-14 東芝キヤリア株式会社 Heat source water control method and heat source water control apparatus
JP2021036197A (en) * 2017-03-02 2021-03-04 東芝キヤリア株式会社 Heat source water control method and heat source water control device
JP7004791B2 (en) 2017-03-02 2022-02-04 東芝キヤリア株式会社 Heat source water control method and heat source water control device
CN109945460A (en) * 2019-03-28 2019-06-28 中铁第四勘察设计院集团有限公司 A kind of air conditioning cooling water secondary pump variable volume system and control method
WO2023057409A1 (en) * 2021-10-07 2023-04-13 Belimo Holding Ag Fluid transportation network and method
CN114719357A (en) * 2022-04-12 2022-07-08 湖北华工能源股份有限公司 Energy-saving design method for secondary cascade pump of central air conditioner

Also Published As

Publication number Publication date
JP5869394B2 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
JP5869394B2 (en) Heat medium piping system
JP5350166B2 (en) Heat medium piping system
JP2022137259A (en) Method for improving work efficiency of cooling system by remodeling building by main control device
JP5905077B2 (en) Air conditioning system
JP5524467B2 (en) Server room air conditioning system
JP5274222B2 (en) Heat source control system for air conditioning equipment
CN109556219B (en) Variable air volume air conditioning unit and control method thereof
JP6644559B2 (en) Heat source control system, control method and control device
JP2017072364A (en) Cooling recovery system and method
JP3851285B2 (en) Control device
JP5284295B2 (en) Heat source control system and heat source control method
JP5595975B2 (en) Air conditioning piping system
JP2008039230A (en) Heat medium piping system
JP2006250445A (en) Operation control method in two pump-type heat source equipment
CN204943786U (en) Be applicable to the vari-able flow control system of air-conditioning Primary pump system
JP3656299B2 (en) Air conditioning system
JP2006266566A (en) Operation control method for two pump system heating source facility
JP4477914B2 (en) Air conditioning system
JP3745357B2 (en) Air conditioning system
JP4369841B2 (en) Heat medium piping system
JP5285925B2 (en) Air conditioning system
JP4594146B2 (en) Optimum control method for variable air volume of air conditioning system
JP7383364B1 (en) Air conditioning system and its control method
JP7451066B2 (en) Air conditioning heat source control system and air conditioning heat source control method
KR102580588B1 (en) Heat source system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160107

R150 Certificate of patent or registration of utility model

Ref document number: 5869394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250