JP7451066B2 - Air conditioning heat source control system and air conditioning heat source control method - Google Patents

Air conditioning heat source control system and air conditioning heat source control method Download PDF

Info

Publication number
JP7451066B2
JP7451066B2 JP2022062898A JP2022062898A JP7451066B2 JP 7451066 B2 JP7451066 B2 JP 7451066B2 JP 2022062898 A JP2022062898 A JP 2022062898A JP 2022062898 A JP2022062898 A JP 2022062898A JP 7451066 B2 JP7451066 B2 JP 7451066B2
Authority
JP
Japan
Prior art keywords
heat source
water
temperature
air conditioning
temperature difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022062898A
Other languages
Japanese (ja)
Other versions
JP2023153554A (en
Inventor
裕 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinryo Corp
Original Assignee
Shinryo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinryo Corp filed Critical Shinryo Corp
Priority to JP2022062898A priority Critical patent/JP7451066B2/en
Publication of JP2023153554A publication Critical patent/JP2023153554A/en
Application granted granted Critical
Publication of JP7451066B2 publication Critical patent/JP7451066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱源機器から循環ポンプにより空調機器に冷水又は温水を供給する空調用熱源制御システム及び空調用熱源制御方法に関するものである。 The present invention relates to an air conditioning heat source control system and an air conditioning heat source control method that supply cold water or hot water from a heat source device to an air conditioner using a circulation pump.

空調用熱源を制御する際、部分負荷時に熱源機器の送水温度を高くすることで熱源機器の効率を向上させることができる。しかしながら、熱源機器の送水温度を高くして同等の能力を得るためには、熱源機器の送水量を増やす必要があり、搬送動力が増大する。このように、熱源機器の効率向上と搬送動力の増大とはトレードオフの関係があるため、闇雲に熱源機器の送水温度を高くすると、却って消費エネルギーが増大してしまうことがある。 When controlling the heat source for air conditioning, the efficiency of the heat source device can be improved by increasing the water supply temperature of the heat source device during partial load. However, in order to raise the water supply temperature of the heat source equipment and obtain the same performance, it is necessary to increase the amount of water supplied to the heat source equipment, which increases the transport power. As described above, there is a trade-off relationship between improving the efficiency of the heat source equipment and increasing the transport power, so if you blindly increase the water supply temperature of the heat source equipment, the energy consumption may actually increase.

従来、空調用熱源を制御する技術として、例えば、特許文献1に記載の空調熱源システム及び空調熱源システムの制御方法や、特許文献2に記載の送水温度制御装置及び方法や、特許文献3に記載の負荷応答型空調システム及び方法などが提案されている。 Conventionally, as a technology for controlling an air conditioning heat source, for example, an air conditioning heat source system and a method for controlling an air conditioning heat source system described in Patent Document 1, a water supply temperature control device and method described in Patent Document 2, and a method described in Patent Document 3. Load-responsive air conditioning systems and methods have been proposed.

特開2003―262384号公報Japanese Patent Application Publication No. 2003-262384 特許第5320128号公報Patent No. 5320128 特許第6994218号公報Patent No. 6994218

しかしながら、上記した特許文献1に記載の発明では、多くのインプットデータと複雑な計算を行って最適解を求める必要がある。また、数多くのセンサーや演算装置が必要となり、演算ソフトも個別に開発が必要となるため、コストが増大し、汎用性が高いとは言えない。 However, the invention described in Patent Document 1 described above requires a lot of input data and complicated calculations to find the optimal solution. In addition, a large number of sensors and calculation devices are required, and calculation software also needs to be developed individually, which increases costs and cannot be said to be highly versatile.

また、特許文献2に記載の発明では、学習型のためデータ蓄積装置が必須となり、計算方法も複雑となるという問題がある。 Further, the invention described in Patent Document 2 has the problem that a data storage device is required because it is a learning type, and the calculation method is also complicated.

さらに、特許文献3に記載の発明は、単に制御弁の情報で送水温度可変と圧力可変を切り替える方法を開示しているだけであり、消費エネルギーが最小となる最適な送水温度に制御する方法を開示していないため、省エネルギー化を最大限に図ることができない。 Furthermore, the invention described in Patent Document 3 merely discloses a method of switching between variable water supply temperature and variable pressure using control valve information, and does not disclose a method of controlling the water supply temperature to the optimum temperature that minimizes energy consumption. Since it is not disclosed, it is not possible to maximize energy savings.

このように上記した発明は、いずれも、熱源や空調機器の仕様、台数、制御方法が異なる建物で共通して利用できる手法ではなく、その都度多くの時間とコストを掛けて、変流量(VWV:Variable Water Volume)制御と変送水温度(VWT:Variable Water Temperature)制御のロジックを開発、整備する必要があり、費用対効果や汎用性が低いという共通した課題がある。 In this way, none of the above-mentioned inventions is a method that can be commonly used in buildings with different specifications, numbers, and control methods of heat sources and air conditioning equipment, and requires a lot of time and cost each time to apply variable flow rate (VWV). It is necessary to develop and maintain the logic for variable water volume (VWT) control and variable water temperature (VWT) control, and there are common issues such as low cost effectiveness and low versatility.

本発明は、上記した課題を解決すべくなされたものであり、非常にシンプルで費用対効果や汎用性が高く、省エネルギー化を最大限に図ることのできる空調用熱源制御システム及び空調用熱源制御方法を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and provides an air conditioning heat source control system and an air conditioning heat source control system that are extremely simple, cost-effective, highly versatile, and capable of maximizing energy savings. The purpose is to provide a method.

上記した目的を達成するため、本発明は、熱源機器から循環ポンプにより空調機器に冷水又は温水を供給する空調用熱源制御システムにおいて、前記空調機器の往還送水温度差の設定値と測定値との偏差に基づき前記熱源機器の送水温度を可変に制御すると共に、前記冷水又は温水が流通する配管に設けられた制御弁の情報に基づき前記循環ポンプの圧力を可変に制御する制御装置を備えることを特徴とする。 In order to achieve the above object, the present invention provides an air conditioning heat source control system for supplying cold water or hot water from a heat source device to an air conditioner using a circulation pump, in which a set value and a measured value of the temperature difference between the sending and returning water of the air conditioner are determined. The method further includes a control device that variably controls the water supply temperature of the heat source device based on the deviation, and variably controls the pressure of the circulation pump based on information on a control valve provided in a pipe through which the cold water or hot water flows. Features.

また、本発明は、熱源機器から循環ポンプにより空調機器に冷水又は温水を供給する空調用熱源制御システムにおいて、前記空調機器の往還送水温度差の設定値と測定値との偏差に基づき前記循環ポンプの送水圧力を可変に制御すると共に、前記冷水又は温水が流通する配管に設けられた制御弁の情報に基づき前記熱源機器の送水温度を可変に制御する制御装置を備えることを特徴とする。 The present invention also provides an air conditioning heat source control system that supplies cold water or hot water from a heat source device to an air conditioner using a circulation pump, in which the circulation pump The present invention is characterized by comprising a control device that variably controls the water supply pressure of the heat source device and variably controls the water supply temperature of the heat source device based on information from a control valve provided in a pipe through which the cold water or hot water flows.

本発明に係る空調用熱源制御システムには、前記熱源機器に対して複数の前記空調機器が設けられており、前記制御装置は、前記熱源機器の入口側部分と出口側部分の温度差により前記往還送水温度差の測定値を求めても良い。 In the air conditioning heat source control system according to the present invention, a plurality of the air conditioning devices are provided for the heat source device, and the control device controls the temperature difference between the inlet side portion and the outlet side portion of the heat source device. A measured value of the temperature difference between the sending and returning water may also be obtained.

本発明に係る空調用熱源制御システムには、前記熱源機器に対して複数の前記空調機器が設けられており、前記制御装置は、前記各空調機器の入口側部分と出口側部分のそれぞれの温度差を加重平均することにより前記往還送水温度差の測定値を求めても良い。 In the air conditioning heat source control system according to the present invention, a plurality of the air conditioning devices are provided for the heat source device, and the control device controls the temperature of each of the inlet side portion and the outlet side portion of each of the air conditioning devices. The measured value of the temperature difference between the sent and returned water may be determined by weighted averaging the differences.

本発明に係る空調用熱源制御システムは、前記熱源機器の上流側に冷却塔を直列に接続し、該熱源機器に還る冷水に対して該冷却塔を利用してフリークーリングを行っても良い。 In the air conditioning heat source control system according to the present invention, a cooling tower may be connected in series upstream of the heat source equipment, and the cooling tower may be used to perform free cooling on the cold water that returns to the heat source equipment.

さらに、本発明は、熱源機器から循環ポンプにより空調機器に冷水又は温水を供給する空調用熱源制御方法において、前記空調機器の往還送水温度差の設定値と測定値との偏差に基づき前記熱源機器の送水温度を可変に制御するステップと、前記冷水又は温水が流通する配管に設けられた制御弁の情報に基づき前記循環ポンプの圧力を可変に制御するステップと、を備えることを特徴とする。 Furthermore, the present invention provides an air conditioning heat source control method for supplying cold water or hot water from a heat source device to an air conditioner using a circulation pump, in which the heat source device and variably controlling the pressure of the circulation pump based on information from a control valve provided in a pipe through which the cold water or hot water flows.

さらにまた、本発明は、熱源機器から循環ポンプにより空調機器に冷水又は温水を供給する空調用熱源制御方法において、前記空調機器の往還送水温度差の設定値と測定値との偏差に基づき前記循環ポンプの送水圧力を可変に制御するステップと、前記冷水又は温水が流通する配管に設けられた制御弁の情報に基づき前記熱源機器の送水温度を可変に制御するステップと、を備えることを特徴とする。 Furthermore, the present invention provides an air conditioning heat source control method for supplying cold water or hot water from a heat source device to an air conditioning device using a circulating pump, in which the circulating water is determined based on a deviation between a set value and a measured value of a temperature difference between the incoming and outgoing water of the air conditioning device. It is characterized by comprising the steps of: variably controlling the water supply pressure of the pump; and variably controlling the water supply temperature of the heat source device based on information of a control valve provided in a pipe through which the cold water or hot water flows. do.

本発明によれば、非常にシンプルで費用対効果や汎用性が高く、省エネルギー化を最大限に図ることができる等、種々の優れた効果を得ることができる。 According to the present invention, it is possible to obtain various excellent effects such as being very simple, having high cost effectiveness and versatility, and being able to maximize energy saving.

本発明の実施の形態に係る空調用熱源制御システムの基本的な構成を示す図である。1 is a diagram showing the basic configuration of an air conditioning heat source control system according to an embodiment of the present invention. 本発明の実施の形態に係る空調用熱源制御システムにおいて、熱源機器の送水温度に対する単位エネルギー消費量及びエネルギー消費率の試算結果を示す図である。FIG. 3 is a diagram showing trial calculation results of unit energy consumption and energy consumption rate with respect to water supply temperature of heat source equipment in the air conditioning heat source control system according to the embodiment of the present invention. 本発明の実施の形態に係る空調用熱源制御システムにおいて、負荷率が変化した時の熱源機器の送水温度に対するエネルギー消費率の試算結果を示す図である。FIG. 7 is a diagram showing trial calculation results of the energy consumption rate with respect to the water supply temperature of the heat source equipment when the load factor changes in the air conditioning heat source control system according to the embodiment of the present invention. 本発明の実施の形態に係る空調用熱源制御システムにおいて、負荷率毎の送水温度と空調機器のコイル出口水温及び流量比との関係を示す図である。In the air conditioning heat source control system according to the embodiment of the present invention, it is a diagram showing the relationship between the water supply temperature for each load factor, the coil outlet water temperature of the air conditioner, and the flow rate ratio. 本発明の実施の形態に係る空調用熱源制御システムにおいて、負荷率毎の送水温度と往還送水温度差との関係を示す図である。FIG. 3 is a diagram showing the relationship between the water supply temperature and the return water supply temperature difference for each load factor in the air conditioning heat source control system according to the embodiment of the present invention. 本発明の実施の形態に係る空調用熱源制御システムにおいて、負荷率毎の送還送水温度差とエネルギー消費率との関係を示す図である。FIG. 2 is a diagram showing the relationship between the temperature difference of repatriated water and the energy consumption rate for each load factor in the air conditioning heat source control system according to the embodiment of the present invention. 本発明の実施の形態に係る空調用熱源制御システムにおいて、熱源機器のCOPが5.0から8.0に上昇した場合の負荷率毎の送還送水温度差とエネルギー消費率との関係を示す図である。A diagram showing the relationship between the temperature difference of return water and the energy consumption rate for each load factor when the COP of the heat source equipment increases from 5.0 to 8.0 in the air conditioning heat source control system according to the embodiment of the present invention. It is. 本発明の実施の形態に係る空調用熱源制御システムにおいて、熱源機器に対して複数設置された空調機器に負荷の偏差が生じた場合の一対応例を示す図である。FIG. 3 is a diagram illustrating an example of how to deal with a case where a load deviation occurs in a plurality of air conditioning devices installed with respect to a heat source device in the air conditioning heat source control system according to the embodiment of the present invention. 本発明の実施の形態に係る空調用熱源制御システムにおいて、熱源機器に対して複数設置された空調機器に負荷の偏差が生じた場合の別の対応例を示す図である。FIG. 6 is a diagram illustrating another example of how to deal with a case where a load deviation occurs in a plurality of air conditioners installed with respect to a heat source device in the air conditioning heat source control system according to the embodiment of the present invention. 本発明の実施の形態に係る空調用熱源制御システムの第1の制御方法を示すフローチャートである。It is a flow chart which shows the 1st control method of the heat source control system for air conditioning concerning an embodiment of the present invention. 本発明の実施の形態に係る空調用熱源制御システムの第2の制御方法を示すフローチャートである。It is a flowchart which shows the 2nd control method of the heat source control system for air conditioning based on embodiment of this invention. 本発明の実施の形態に係る空調用熱源制御システムの第2の制御方法を示すフローチャートである。It is a flowchart which shows the 2nd control method of the heat source control system for air conditioning based on embodiment of this invention. 本発明の実施の形態に係る空調用熱源制御システムにおいて、フリークーリング設備を併用した時の構成を示す図である。FIG. 2 is a diagram showing a configuration when a free cooling facility is used in combination with an air conditioning heat source control system according to an embodiment of the present invention. 図13のフリークーリング設備を併用した時の空調用熱源制御システムにおいて、送水温度と往還送水温度差との関係を示す図である。14 is a diagram showing the relationship between the water supply temperature and the return water supply temperature difference in the air conditioning heat source control system when the free cooling equipment of FIG. 13 is used in combination. FIG. 図13のフリークーリング設備を併用した時の空調用熱源制御システムにおいて、(a)は負荷率50%の時の外気湿球温度と往還送水温度差との関係を示す図であり、(b)は負荷率30%の時の外気湿球温度と往還送水温度差との関係を示す図である。In the air conditioning heat source control system when the free cooling equipment of FIG. 13 is used in combination, (a) is a diagram showing the relationship between the outside air wet bulb temperature and the return water temperature difference when the load factor is 50%, and (b) is a diagram showing the relationship between the outside air wet bulb temperature and the return water temperature difference when the load factor is 30%. 図13のフリークーリングを併用した時の空調用熱源制御システムにおいて、(a)は負荷率50%の時の最適往還送水温度差によるシステムCOP向上の効果を示す図であり、(b)は負荷率30%の時の最適往還送水温度差によるシステムCOP向上の効果を示す図である。In the heat source control system for air conditioning when free cooling is used in conjunction with Fig. 13, (a) is a diagram showing the effect of improving the system COP by the optimum return and return water temperature difference when the load factor is 50%, and (b) is a diagram showing the effect of improving the system COP when the load factor is 50%. FIG. 4 is a diagram showing the effect of improving the system COP due to the optimum temperature difference between the forward and return water when the ratio is 30%.

以下、図面を参照しつつ、本発明の実施の形態に係る空調用熱源制御システム及び空調用熱源制御方法について説明する。 Hereinafter, an air conditioning heat source control system and an air conditioning heat source control method according to embodiments of the present invention will be described with reference to the drawings.

[空調用熱源制御システムの概要]
まず、図1~図7を参照しつつ、本発明の実施の形態に係る空調用熱源制御システム10の概要について説明する。なお、本発明の実施の形態では、熱源機器として冷凍機を使用し、負荷側の空調機器に冷水を循環させることで冷房運転を行う場合について説明するが、本発明は、ヒートポンプ式熱源等の他のタイプの熱源機器を使用して空調機器に温水を循環させることで暖房運転を行う場合にも適用可能である。
[Overview of air conditioning heat source control system]
First, an overview of an air conditioning heat source control system 10 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 7. In the embodiment of the present invention, a case will be described in which a refrigerator is used as a heat source device and cooling operation is performed by circulating cold water to the air conditioning device on the load side. It can also be applied to cases where heating operation is performed by circulating hot water to air conditioning equipment using other types of heat source equipment.

図1は本発明の実施の形態に係る空調用熱源制御システム10の基本的な構成を示す図である。空調用熱源制御システム10は、熱源機器である冷凍機11と空調機器12とが冷水配管13を介して接続されて構成されている。空調機器12は、冷水コイル14と送風機15を備えている。そして、送風機15には、給気ダクト16が接続され、給気ダクト16にはVAV(Variable Air Volume)ユニット17や給気出口温度を測定する温度センサー18などが設けられている。 FIG. 1 is a diagram showing the basic configuration of an air conditioning heat source control system 10 according to an embodiment of the present invention. The air conditioning heat source control system 10 is configured by connecting a refrigerator 11, which is a heat source device, and an air conditioning device 12 via a cold water pipe 13. The air conditioner 12 includes a cold water coil 14 and a blower 15. An air supply duct 16 is connected to the blower 15, and the air supply duct 16 is provided with a VAV (Variable Air Volume) unit 17, a temperature sensor 18 for measuring the air supply outlet temperature, and the like.

冷水配管13には、冷凍機11の上流側に一次循環ポンプ20が設けられていると共に、冷凍機11と冷水コイル14との間に二次循環ポンプ21が設けられている。冷水配管13には、一般的な空調システムで設置される制御弁22や、第1~第3の温度センサー23~25などが設けられている。なお、第1の温度センサー23は冷凍機11の送水温度を計測し、第2の温度センサー24は空調機器12への冷水の往き温度を計測し、第3の温度センサー25は空調機器12からの冷水の還り温度を計測する。 In the cold water pipe 13, a primary circulation pump 20 is provided upstream of the refrigerator 11, and a secondary circulation pump 21 is provided between the refrigerator 11 and the cold water coil 14. The cold water pipe 13 is provided with a control valve 22 installed in a general air conditioning system, first to third temperature sensors 23 to 25, and the like. Note that the first temperature sensor 23 measures the temperature of water flowing from the refrigerator 11, the second temperature sensor 24 measures the temperature of cold water flowing to the air conditioner 12, and the third temperature sensor 25 measures the temperature of cold water flowing from the air conditioner 12. Measure the return temperature of cold water.

また、制御対象となる室内には、室温を計測するための温度センサー26が設けられており、前記各機器やセンサー等の制御機器は、汎用コントローラ等の制御装置30によって制御される。 Further, a temperature sensor 26 for measuring the room temperature is provided in the room to be controlled, and control devices such as the respective devices and sensors are controlled by a control device 30 such as a general-purpose controller.

上記した構成を備えた本発明の実施の形態に係る空調用熱源制御システム10は、冷凍機11から空調機器12に送水される冷水の往還送水温度差が一定値(=設計往還送水温度差)になる送水温度に制御すると、冷凍機11と循環ポンプ20,21の消費エネルギーの総和が最小になることに着眼したものである。 In the air-conditioning heat source control system 10 according to the embodiment of the present invention having the above-described configuration, the temperature difference between the two-way water supply of cold water sent from the refrigerator 11 to the air-conditioning equipment 12 is a constant value (=designed two-way water supply temperature difference). This method focuses on the fact that if the water supply temperature is controlled to be , the total energy consumption of the refrigerator 11 and the circulation pumps 20 and 21 will be minimized.

図2は、冷凍機11の送水温度に対する単位エネルギー消費量(kW)及びエネルギー消費率(送水温度7℃時の単位エネルギー消費量に対する比率)の試算結果を示す図であり、この時の試算条件は、次の通りである。 FIG. 2 is a diagram showing the trial calculation results of the unit energy consumption (kW) and the energy consumption rate (ratio to the unit energy consumption when the water supply temperature is 7° C.) with respect to the water supply temperature of the refrigerator 11, and the trial calculation conditions at this time. is as follows.

<試算条件>
・冷凍機11のシステムCOP:5.0(送水温度上昇により2%/℃効率向上)
・循環ポンプ20,21の揚程:20mAq程度(流量の2乗で動力変化)
・空調機器12の風量(=負荷率):70%、50%、30%(出口空気温度16℃)
・冷水コイル14の設計往還送水温度差:6℃(7℃→13℃)
<Estimation conditions>
・System COP of refrigerator 11: 5.0 (2%/℃ efficiency improvement due to increase in water supply temperature)
・Height of circulation pumps 20 and 21: Approximately 20 mAq (power changes with the square of the flow rate)
・Air volume of air conditioner 12 (=load factor): 70%, 50%, 30% (outlet air temperature 16°C)
・Design temperature difference between sending and returning water of chilled water coil 14: 6℃ (7℃→13℃)

図2に示すように、冷凍機11の送水温度を高くすると、送水量の増量が必要になるため、単に冷凍機11の送水温度を上げただけではポンプ動力を含めた総エネルギー消費量を減少させることができない。図2の試算例では、送水温度が10~11℃の時に最も省エネルギー(最適送水温度)になることが分かる。 As shown in Figure 2, increasing the water supply temperature of the refrigerator 11 requires an increase in the amount of water supplied, so simply increasing the water supply temperature of the refrigerator 11 will reduce the total energy consumption including the pump power. I can't do it. In the trial calculation example shown in FIG. 2, it can be seen that the most energy is saved (optimum water supply temperature) when the water supply temperature is 10 to 11°C.

図3は、上記試算条件において、空調機器12の風量(=負荷率)が70%(丸印)、50%(三角印)、30%(四角印)と変化した時の冷凍機11の送水温度に対するエネルギー消費率の試算結果を示す図である。この図3によれば、冷凍機11の最適な送水温度は、負荷率によって変化することが分かる(図中の(1)→(2)→(3)参照)。 Figure 3 shows the water flow of the refrigerator 11 when the air volume (=load factor) of the air conditioner 12 changes from 70% (circle mark), 50% (triangle mark), and 30% (square mark) under the above trial calculation conditions. It is a figure showing the trial calculation result of an energy consumption rate with respect to temperature. According to FIG. 3, it can be seen that the optimum water supply temperature of the refrigerator 11 changes depending on the load factor (see (1)→(2)→(3) in the figure).

図4は、上記試算条件において、負荷率が70%(丸印)、50%(三角印)、30%(四角印)と変化した時の冷凍機11の送水温度と空調機器12の冷水コイル14の出口水温及び流量比との関係を示す図であり、図4によれば、負荷率の増加或いは送水温度の上昇に伴って冷水コイル14の出口水温が低下することが分かる。 Figure 4 shows the water supply temperature of the refrigerator 11 and the cold water coil of the air conditioner 12 when the load factor changes from 70% (circle mark), 50% (triangle mark), and 30% (square mark) under the above trial calculation conditions. FIG. 4 shows the relationship between the outlet water temperature and the flow rate ratio of the cold water coil 14. According to FIG. 4, it can be seen that the outlet water temperature of the chilled water coil 14 decreases as the load factor increases or the water supply temperature increases.

図5は、縦軸を図4の出口水温から往還送水温度差に変更した時の図であり、負荷率が70%(丸印)、50%(三角印)、30%(四角印)と変化した時の冷凍機11の送水温度と往還送水温度差との関係を示している。図5によれば、冷水コイル14の特性として送水温度を上げると往還送水温度差は小さくなり、反対に送水温度を下げると往還送水温度差は大きくなることが分かるが、図3で求めた各負荷率(70%、50%、30%)の最適な送水温度((1)、(2)、(3))の往還送水温度差は、ほぼ6℃差に集中し、この温度差は上記試算条件における冷水コイル14の設計往還送水温度差(6℃)と同値となることが分かる。 Figure 5 is a diagram when the vertical axis is changed from the outlet water temperature in Figure 4 to the return and return water temperature difference, and the load factor is 70% (circle mark), 50% (triangle mark), and 30% (square mark). It shows the relationship between the water supply temperature of the refrigerator 11 and the return water supply temperature difference when the temperature changes. According to FIG. 5, it can be seen that as a characteristic of the chilled water coil 14, as the water supply temperature is increased, the difference in the temperature of the sending water becomes smaller, and on the contrary, as the water temperature is lowered, the difference in the temperature of the sending water becomes larger. The temperature difference between the sending and returning water at the optimum water supply temperature ((1), (2), (3)) for the load factor (70%, 50%, 30%) is concentrated at a difference of approximately 6°C, and this temperature difference is It can be seen that this value is the same as the design temperature difference (6° C.) between the sent and returned water of the chilled water coil 14 under the trial calculation conditions.

このように風量や空気温度などの熱伝達条件が変化したとしても、空調機器12の冷水コイル14に供給する冷水の往還送水温度差を設計往還送水温度差付近の流量に制御すれば、自ずと最適な送水温度付近に収束することが分かる。 Even if heat transfer conditions such as air volume and air temperature change in this way, if the flow rate of the cold water supplied to the chilled water coil 14 of the air conditioning equipment 12 is controlled to a flow rate close to the designed return water temperature difference, the flow rate will be automatically optimized. It can be seen that the temperature converges around the water supply temperature.

また、図6は、図5と同じ条件で、往還送水温度差をX軸、エネルギー消費率をY軸にして、負荷率が70%(丸印)、50%(三角印)、30%(四角印)と変化した時の往還送水温度差とエネルギー消費率との関係を示している。図6によれば、いずれの負荷率でも、最適な往還送水温度差である6℃付近で傾きが小さくなる鍋底型の波形になることから、往還送水温度差が最適な往還送水温度差と多少の乖離があったとしても省エネルギー性能が極端に低下することはない。 In addition, in Figure 6, under the same conditions as Figure 5, the X-axis is the temperature difference between the sending and returning water, and the Y-axis is the energy consumption rate, and the load factor is 70% (circle mark), 50% (triangle mark), and 30% ( (square mark) shows the relationship between the outgoing and returning water temperature difference and the energy consumption rate when the temperature changes. According to Fig. 6, at any load rate, the waveform becomes a pot-bottom type in which the slope decreases around 6°C, which is the optimum temperature difference between the sending water and the sending water. Even if there is a deviation, the energy saving performance will not be significantly reduced.

さらにまた、図7は、冷凍機11の効率や外気環境の変化を想定して、冷凍機11のシステムCOPが5.0から8.0に上昇した場合に、空調機器12の風量(=負荷率)が70%(丸印)、50%(三角印)、30%(四角印)と変化した時の往還送水温度差とエネルギー消費率との関係を示している。図7によれば、冷凍機11の性能が大きく変化したとしても最適な往還送水温度差の値にほとんど変化なく、冷凍機11の効率が変化しても最適な往還送水温度差は一定値としても支障ないことが分かる。 Furthermore, FIG. 7 shows the air volume (=load The graph shows the relationship between the temperature difference of the sent water and the energy consumption rate when the rate) changes from 70% (circle mark), 50% (triangle mark), and 30% (square mark). According to FIG. 7, even if the performance of the refrigerator 11 changes greatly, the value of the optimal return water temperature difference hardly changes, and even if the efficiency of the refrigerator 11 changes, the optimal return water temperature difference remains constant. It turns out that there is no problem.

なお、上記した試算では、送水温度上昇による冷凍機11の効率向上率を定率と仮定したが、実際には冷凍機11の種類、負荷率、或いは外気条件によって効率向上率は微妙に変化する。また、空調機器12側の負荷率によっても最適になる往還送水温度差には若干の偏差が生じる傾向がある。したがって、例えば、負荷率、外気温度、外気湿球温度、外気エンタルピー等をパラメータとして、往還送水温度差の最適値を演算して可変しても良い。 In the above estimation, it is assumed that the efficiency improvement rate of the refrigerator 11 due to an increase in water supply temperature is a constant rate, but in reality, the efficiency improvement rate varies slightly depending on the type of refrigerator 11, the load factor, or the outside air condition. Further, depending on the load factor on the air conditioner 12 side, there tends to be a slight deviation in the optimum temperature difference between the sending and returning water. Therefore, for example, the optimal value of the temperature difference of the returning water may be calculated and varied using the load factor, outside air temperature, outside air wet bulb temperature, outside air enthalpy, etc. as parameters.

[空調用熱源制御システムの第1の制御方法]
次に、図1及び図8~図10を参照しつつ、本発明の実施の形態に係る空調用熱源制御システム10の第1の制御方法について説明する。
[First control method of air conditioning heat source control system]
Next, a first control method for the air conditioning heat source control system 10 according to the embodiment of the present invention will be described with reference to FIG. 1 and FIGS. 8 to 10.

本発明の実施の形態に係る空調用熱源制御システム10は、第1の制御方法として、制御装置30が、冷凍機11に対する往還送水温度差の設定値Sと第2の温度センサー24及び第3の温度センサー25から算出した測定値Mとの偏差に基づき、比例的或いは段階的に、冷凍機11の送水温度を可変に制御する。 In the air conditioning heat source control system 10 according to the embodiment of the present invention, as a first control method, the control device 30 sets the set value S of the temperature difference between the outward and return water to the refrigerator 11, the second temperature sensor 24, and the third temperature sensor 24. Based on the deviation from the measured value M calculated from the temperature sensor 25, the water supply temperature of the refrigerator 11 is variably controlled proportionally or stepwise.

この時、制御装置30は、冷凍機11の送水温度や給気出口温度や室温の変化に基づき、制御弁22の開度を制御して冷水配管13内を流通する冷水量を制御することが必要となる。これにより、冷水配管13内に圧力変動が生じるため、二次循環ポンプ21の送水圧力を制御する必要があるが、その制御方式としては、例えば、往還圧力一定INV制御、末端圧力一定INV制御、推定末端圧力一定INV制御のような一般的な圧力制御方式をそのまま適用可能である。また、上記圧力制御方式を流量計測機能付き二方弁により設定圧力値を可変する方法に適用することも可能である。 At this time, the control device 30 can control the amount of cold water flowing through the cold water pipe 13 by controlling the opening degree of the control valve 22 based on changes in the water supply temperature, air supply outlet temperature, and room temperature of the refrigerator 11. It becomes necessary. As a result, pressure fluctuations occur in the cold water pipe 13, so it is necessary to control the water supply pressure of the secondary circulation pump 21. Examples of control methods include, for example, constant return pressure INV control, constant terminal pressure INV control, A general pressure control method such as estimated terminal pressure constant INV control can be applied as is. It is also possible to apply the above pressure control method to a method of varying the set pressure value using a two-way valve with a flow rate measurement function.

上記した図1では、冷凍機11と空調機器12を1対1で設置した例を示したが、実際には、図8や図9に示すように、1系統の冷凍機11に対して複数の空調機器12a,12b,12cが設置される場合が多い。このような場合、空調機器12a,12b,12c毎に少なからず負荷の偏差が生じ、往還送水温度差にも空調機器12a,12b,12c間で偏差が生じる。 Although FIG. 1 above shows an example in which the refrigerator 11 and the air conditioner 12 are installed one-to-one, in reality, as shown in FIGS. 8 and 9, multiple Air conditioners 12a, 12b, and 12c are often installed. In such a case, a considerable load deviation occurs between the air conditioners 12a, 12b, and 12c, and a deviation also occurs in the temperature difference between the sent and returned water between the air conditioners 12a, 12b, and 12c.

そこで、図8に示すように、冷凍機11廻りの集合管に第4の温度センサー27を設置し、制御装置30は、第1の温度センサー23と第4の温度センサー27との温度差を往還送水温度差の測定値Mとし、この測定値Mと往還送水温度差の設定値Sとの偏差を求めることにより、冷凍機11の送水温度を可変に制御することができる。 Therefore, as shown in FIG. 8, a fourth temperature sensor 27 is installed in the collecting pipe around the refrigerator 11, and the control device 30 detects the temperature difference between the first temperature sensor 23 and the fourth temperature sensor 27. The water temperature of the refrigerator 11 can be variably controlled by taking the measured value M of the temperature difference between the going and returning water and finding the deviation between this measured value M and the set value S of the temperature difference between the going and returning water.

或いは、制御装置30は、各空調機器12a~12cの冷水コイル14a~14cの出入口側部分に設けられた第2の温度センサー24a~24cと第3の温度センサー25a~25cとの温度差と各冷水コイル14a~14cの冷水量とから次式(1)により算出した加重平均温度差を往還送水温度差の測定値Mとし、この測定値Mと往還送水温度差の設定値Sとの偏差を求めることにより、冷凍機11の送水温度を可変に制御しても良い。
加重平均温度差=Σ(Δti×Qi)÷ΣQi (1)
ここで、Qi:水量、Δti:温度差
Alternatively, the control device 30 may detect the temperature difference between the second temperature sensors 24a to 24c and the third temperature sensors 25a to 25c provided at the entrance/exit side portions of the cold water coils 14a to 14c of each of the air conditioners 12a to 12c. The weighted average temperature difference calculated from the amount of chilled water in the chilled water coils 14a to 14c using the following equation (1) is defined as the measured value M of the temperature difference between the outward and return water, and the deviation between this measured value M and the set value S of the temperature difference between the outward and return water is calculated as follows: By determining the temperature, the water temperature of the refrigerator 11 may be variably controlled.
Weighted average temperature difference=Σ(Δti×Qi)÷ΣQi (1)
Here, Qi: water amount, Δti: temperature difference

或いは、制御装置30は、各空調機器12a~12cの冷水コイル14a~14cの出入口側部分に設けられた第2の温度センサー24a~24cと第3の温度センサー25a~25cとの温度差と各制御弁22a~22cの開度とから次式(2)により算出した加重平均温度差を往還送水温度差の測定値Mとし、この測定値Mと往還送水温度差の設定値Sとの偏差を求めることにより、冷凍機11の送水温度を可変に制御しても良い。
加重平均温度差=Σ(Δti×Vi)÷ΣVi (2)
ここで、Vi:制御弁開度
Alternatively, the control device 30 may detect the temperature difference between the second temperature sensors 24a to 24c and the third temperature sensors 25a to 25c provided at the entrance/exit side portions of the cold water coils 14a to 14c of each of the air conditioners 12a to 12c. The weighted average temperature difference calculated by the following equation (2) from the opening degrees of the control valves 22a to 22c is defined as the measured value M of the temperature difference between the outward and return water, and the deviation between this measured value M and the set value S of the temperature difference between the outward and return water is calculated. By determining the temperature, the water temperature of the refrigerator 11 may be variably controlled.
Weighted average temperature difference=Σ(Δti×Vi)÷ΣVi (2)
Here, Vi: control valve opening degree

図8に示したように制御対象の建物全体で負荷形態が似通っていれば、上記した方法で問題なく制御することができるが、例えば、図9に示されている空調機器12cのように、極端に負荷の偏差が大きい系統が発生した場合には、同一系統内の全ての空調機器で決定された送水温度では負荷処理が不能に陥ることもあり得る。 If the load form is similar throughout the building to be controlled as shown in FIG. 8, the above method can be used to control the load without any problem. If a system with an extremely large load deviation occurs, it may become impossible to handle the load at the water supply temperatures determined by all air conditioners in the same system.

例えば、往還送水温度差の設定値Sが6℃であるのに対して測定値Mが3℃以下と極端に小さかったり、或いは、制御弁22cの開度が例えば95%以上と全開に近く、給気出口温度や室温が制御設定値を満たしていなかったりすることを、制御装置30が検知した場合には、送水温度を1℃ずつ下げるなどして補正を行っても良い。 For example, while the set value S of the temperature difference between the incoming and outgoing water is 6°C, the measured value M is extremely small at 3°C or less, or the opening degree of the control valve 22c is close to fully open, for example, 95% or more. If the control device 30 detects that the air supply outlet temperature or the room temperature does not satisfy the control set values, it may correct the temperature by lowering the water supply temperature by 1° C. or the like.

また、空調環境品質の側面から送水温度を高くすると除湿能力が低下して、室内湿度が上昇した場合には、室内の湿度測定値から送水温度を変更して室内環境の悪化を抑制しても良い。 In addition, from the aspect of air conditioning environmental quality, if the water supply temperature is increased, the dehumidification capacity decreases and the indoor humidity increases. good.

次に、図1、図8、図9、及び図10のフローチャートを参照しつつ、本発明の実施の形態に係る空調用熱源制御システム10の第1の制御方法について詳細に説明する。 Next, a first control method for the air conditioning heat source control system 10 according to the embodiment of the present invention will be described in detail with reference to the flowcharts of FIGS. 1, 8, 9, and 10.

まず、制御装置30は、ステップ11(S11)に示すように、各空調機器12a~12cに対する送水温度、還水温度、流量(冷水量)、制御弁開度の情報に基づき、上式(1)又は(2)により加重平均温度差を算出する。 First, as shown in step 11 (S11), the control device 30 uses the above formula (1 ) or (2) to calculate the weighted average temperature difference.

次のステップ12(S12)において、制御装置30は、制御対象の室内で計測された露点温度が所定温度(例えば、18DP℃)未満か否かを判断する。その結果、制御装置30は、室内露点温度が所定温度(例えば、18DP℃)未満であると判断した場合(Yesの場合)には、ステップ13(S13)に進み、各制御弁22a~22cの開度情報に基づき、100%の開度の制御弁22a~22cが存在しないか否かを判断する。その結果、制御装置30は、100%の開度の制御弁22a~22cが存在しないと判断した場合(Yesの場合)には、ステップ14(S14)に進む。 In the next step 12 (S12), the control device 30 determines whether the dew point temperature measured in the room to be controlled is less than a predetermined temperature (for example, 18 DP° C.). As a result, if the control device 30 determines that the indoor dew point temperature is lower than the predetermined temperature (for example, 18DP°C) (in the case of Yes), the control device 30 proceeds to step 13 (S13), and controls the control valves 22a to 22c. Based on the opening degree information, it is determined whether there are any control valves 22a to 22c with an opening degree of 100%. As a result, if the control device 30 determines that there are no control valves 22a to 22c with an opening degree of 100% (in the case of Yes), the process proceeds to step 14 (S14).

一方、制御装置30は、上記ステップ12(S12)において室内露点温度が所定温度(例えば、18DP℃)未満でないと判断した場合(Noの場合)と、上記ステップ13(S13)において100%の開度の制御弁22a~22cが存在すると判断した場合(Noの場合)には、ステップ17(S17)に進み、冷凍機11の送水温度を所定温度(t℃)下げた後、制御を終了する。 On the other hand, if the control device 30 determines that the indoor dew point temperature is not lower than the predetermined temperature (for example, 18DP°C) in step 12 (S12) (No), and in step 13 (S13), the controller 30 If it is determined that the temperature control valves 22a to 22c exist (in the case of No), the process proceeds to step 17 (S17), and after lowering the water supply temperature of the refrigerator 11 by a predetermined temperature (t°C), the control is terminated. .

ステップ14(S14)では、制御装置30は、上記ステップ11(S11)において算出した加重平均往還送水温度差の測定値Mから往還送水温度差の設定値Sを引いた偏差が1℃を超えるかどうかを判断する。その結果、制御装置30は、加重平均往還送水温度差の測定値Mから往還送水温度差の設定値Sを引いた偏差が1℃を超える場合(Yesの場合)には、ステップ15(S15)に進み、冷凍機11の送水温度を所定温度(t℃)上げた後、制御を終了する。 In step 14 (S14), the control device 30 determines whether the deviation obtained by subtracting the set value S of the outgoing water temperature difference from the weighted average measured value M of the outgoing water temperature difference calculated in step 11 (S11) above exceeds 1°C. judge whether As a result, if the deviation obtained by subtracting the set value S of the outgoing water temperature difference from the measured value M of the weighted average outgoing water temperature difference exceeds 1°C (in the case of Yes), the control device 30 performs step 15 (S15). After increasing the water supply temperature of the refrigerator 11 by a predetermined temperature (t° C.), the control ends.

一方、制御装置30は、上記ステップ14(S14)において加重平均温度差の測定値Mから往還送水温度差の設定値Sを引いた偏差が1℃を超えていない場合(Noの場合)には、ステップ16(S16)に進む。 On the other hand, if the deviation obtained by subtracting the set value S of the outgoing water temperature difference from the measured value M of the weighted average temperature difference in step 14 (S14) does not exceed 1°C (in the case of No), the control device 30 , proceed to step 16 (S16).

ステップ16(S16)では、制御装置30は、上記ステップ11(S11)において算出した加重平均温度差の測定値Mから往還送水温度差の設定値Sを引いた偏差が1℃未満かどうかを判断する。その結果、制御装置30は、加重平均温度差の測定値Mから往還送水温度差の設定値Sを引いた偏差が1℃未満であると判断した場合(Yesの場合)には、ステップ17(S17)に進み、送水温度を所定温度(t℃)下げた後、制御を終了する。 In step 16 (S16), the control device 30 determines whether the deviation obtained by subtracting the set value S of the outgoing water temperature difference from the measured value M of the weighted average temperature difference calculated in the above step 11 (S11) is less than 1°C. do. As a result, if the control device 30 determines that the deviation obtained by subtracting the set value S of the outgoing water temperature difference from the measured value M of the weighted average temperature difference is less than 1°C (in the case of Yes), step 17 ( Proceeding to S17), the water supply temperature is lowered by a predetermined temperature (t° C.), and then the control is ended.

一方、制御装置30は、上記ステップ16(S16)において加重平均温度差の測定値Mから往還送水温度差の設定値Sを引いた偏差が1℃未満でないと判断した場合(Noの場合)には、制御を終了する。 On the other hand, if the control device 30 determines in step 16 (S16) that the deviation obtained by subtracting the set value S of the outgoing water temperature difference from the measured value M of the weighted average temperature difference is not less than 1°C (in the case of No), ends control.

なお、上記ステップ15(S15)及び上記ステップ17(S17)における送水温度の変化量である所定温度(t℃)は、固定値としても良いし、偏差量に比例させた値としても良い。 Note that the predetermined temperature (t° C.), which is the amount of change in the water supply temperature in step 15 (S15) and step 17 (S17), may be a fixed value or may be a value proportional to the amount of deviation.

[空調用熱源制御システムの第2の制御方法]
次に、図1、図8、図9、及び図11~図16を参照しつつ、本発明の実施の形態に係る空調用熱源制御システム10の第2の制御方法について説明する。
[Second control method of air conditioning heat source control system]
Next, a second control method for the air conditioning heat source control system 10 according to the embodiment of the present invention will be described with reference to FIGS. 1, 8, 9, and 11 to 16.

本発明の実施の形態に係る空調用熱源制御システム10は、第2の制御方法として、制御装置30が、空調機器12の往還送水温度差の設定値Sと第2の温度センサー24及び第3の温度センサー25から算出した測定値Mとの偏差に基づき、循環ポンプ20,21の送水圧力を可変に制御する。 In the air-conditioning heat source control system 10 according to the embodiment of the present invention, as a second control method, the control device 30 sets a set value S of the temperature difference between the outward and return water of the air conditioner 12, the second temperature sensor 24, and the third temperature sensor 24. Based on the deviation from the measured value M calculated from the temperature sensor 25, the water supply pressure of the circulation pumps 20 and 21 is variably controlled.

すなわち、冷凍機11の送水温度を過度に上昇させると送水量が過剰になり、エネルギー消費量が増大するため、循環ポンプの送水圧力を往還送水温度差で調整することにより、往還送水温度差を一定値に保つ送水量に調整して過流量となることを抑制することが第2の制御方法の特徴である。 In other words, if the water temperature of the refrigerator 11 is increased excessively, the amount of water sent will be excessive and the energy consumption will increase. Therefore, by adjusting the water pressure of the circulation pump by the temperature difference between the outward and returning water, the temperature difference between the outward and returning water can be reduced. A feature of the second control method is to suppress excessive flow by adjusting the water supply amount to a constant value.

この場合、制御装置30は、制御弁22a~22cの開度情報に基づき、冷凍機11の送水温度を可変に制御する。例えば、制御装置30は、制御弁22a~22cの開度情報から、制御弁22a~22cの少なくとも1つが不足な状態(開度95%以上)であると判断した場合には送水温度を1℃下げ、すべての制御弁22a~22cが過剰な状態(開度80%以下)である判断した場合には送水温度を1℃上げ、各制御弁22a~22cに適正な状態(開度80~95%)と過剰な状態とが混在していると判断した場合には送水温度を維持するように制御する。このように制御することにより、送水温度上昇による能力不足を回避するとともに、送水温度をできるだけ高く、かつ制御弁を全開に近い状態に維持することができる。 In this case, the control device 30 variably controls the water supply temperature of the refrigerator 11 based on the opening degree information of the control valves 22a to 22c. For example, if the control device 30 determines that at least one of the control valves 22a to 22c is in an insufficient state (opening degree of 95% or more) based on the opening degree information of the control valves 22a to 22c, the control device 30 lowers the water supply temperature by 1° C. If it is determined that all the control valves 22a to 22c are in an excessive state (opening of 80% or less), the water supply temperature is raised by 1°C, and each control valve 22a to 22c is set to an appropriate state (opening of 80 to 95%). %) and an excessive state coexist, the water supply temperature is controlled to be maintained. By controlling in this way, it is possible to avoid a capacity shortage due to an increase in the water supply temperature, and also to maintain the water supply temperature as high as possible and the control valve in a state close to fully open.

第2の制御方法では、循環ポンプ21の前後の圧力を計測し、空調機器12a~12cの制御弁22a~22cの開閉により上昇又は下降する循環ポンプ21の前後の圧力を一定値に保つように循環ポンプ21のモータの回転数を制御することで省エネルギー化を図っており、この圧力の設定値を可変に制御すれば送水量の増量又は減少が可能である。 In the second control method, the pressure before and after the circulation pump 21 is measured, and the pressure before and after the circulation pump 21, which increases or decreases by opening and closing the control valves 22a to 22c of the air conditioners 12a to 12c, is maintained at a constant value. Energy saving is achieved by controlling the rotation speed of the motor of the circulation pump 21, and by variably controlling the set value of this pressure, it is possible to increase or decrease the amount of water fed.

例えば、往還送水温度差が設定値より小さい時は送水圧力を下げると、送水量が減少して空調機器12a~12cの放熱量が減少するため、制御弁22a~22cは開方向になる。そして、制御弁22a~22cが全開状態でも空調機器12a~12cの放熱量の能力不足になった場合には、制御装置30は、上記したように制御弁22a~22cの開度情報に基づき、送水温度を下げるように制御する。 For example, if the water supply pressure is lowered when the temperature difference between the outward and return water supply is smaller than the set value, the amount of water supplied decreases and the amount of heat dissipated from the air conditioners 12a to 12c decreases, so the control valves 22a to 22c are opened. If the heat radiation capacity of the air conditioners 12a to 12c is insufficient even when the control valves 22a to 22c are fully open, the control device 30, based on the opening degree information of the control valves 22a to 22c, as described above, Control to lower the water temperature.

このように往還送水温度差が目標値になるまで相互制御を場合によっては繰り返しを行うことで、結果的に設定往還送水温度差に収束し、最適な送水温度に制御することができ、送水温度と送水圧力を同時に制御することができる。 In this way, by repeating mutual control in some cases until the temperature difference between the going and returning water reaches the target value, the temperature difference between the going and returning water can be converged to the set temperature difference, and the water temperature can be controlled to the optimum temperature. and water supply pressure can be controlled at the same time.

なお、図8や図9に示すように、1系統の冷凍機11に対して複数の空調機器12a,12b,12cが設置される場合の往還送水温度差は、上記した第1の制御方法と同様に、冷凍機11廻りの冷水配管に設けた温度センサー23,27や加重平均温度差によって求めることができる。 As shown in FIGS. 8 and 9, when a plurality of air conditioners 12a, 12b, 12c are installed for one system of refrigerator 11, the difference in temperature of the sent water is determined by the above-described first control method. Similarly, it can be determined by the temperature sensors 23 and 27 provided in the cold water pipes around the refrigerator 11 or by the weighted average temperature difference.

次に、図1、図8、図9、及び図11と図12のフローチャートを参照しつつ、本発明の実施の形態に係る空調用熱源制御システム10の第2の制御方法について詳細に説明する。 Next, a second control method for the air conditioning heat source control system 10 according to the embodiment of the present invention will be explained in detail with reference to the flowcharts of FIGS. 1, 8, 9, and 11 and 12. .

まず、送水温度制御に関して、図11のステップ21(S21)に示すように、制御装置30は、制御対象の室内で計測された露点温度が所定温度(例えば、18DP℃)未満か否かを判断する。その結果、制御装置30は、室内露点温度が所定温度(例えば、18DP℃)未満であると判断した場合(Yesの場合)には、次のステップ22(S22)に進む。 First, regarding the water supply temperature control, as shown in step 21 (S21) in FIG. do. As a result, if the control device 30 determines that the indoor dew point temperature is less than the predetermined temperature (for example, 18 DP° C.) (in the case of Yes), the control device 30 proceeds to the next step 22 (S22).

一方、制御装置30は、上記ステップ21(S21)において制御対象の室内で計測された露点温度が所定温度(例えば、18DP℃)未満でないと判断した場合(Noの場合)には、ステップ25(S25)に進み、冷凍機11の送水温度を1℃上げて、制御を終了する。 On the other hand, if the control device 30 determines in step 21 (S21) that the dew point temperature measured in the room to be controlled is not lower than the predetermined temperature (for example, 18DP°C) (in the case of No), in step 25 ( Proceeding to S25), the water supply temperature of the refrigerator 11 is increased by 1° C., and the control is ended.

次のステップ22(S22)では、制御装置30は、各制御弁22a~22cの開度情報に基づき、制御弁22a~22cの総合状態を判断する。具体的には、制御装置30は、制御弁22a~22cの少なくとも1つが「不足な状態1」(例えば、開度95%以上)であるか、或いは、各制御弁22a~22cが「適正な状態2」(例えば、開度80~95%)であるか、或いは、すべての制御弁22a~22cが「過剰な状態3」(例えば、開度80%以下)であるかどうかを判断する。 In the next step 22 (S22), the control device 30 determines the overall state of the control valves 22a to 22c based on the opening degree information of each control valve 22a to 22c. Specifically, the control device 30 determines whether at least one of the control valves 22a to 22c is in an "insufficient state 1" (for example, opening degree is 95% or more), or if each control valve 22a to 22c is in an "appropriate state". It is determined whether all control valves 22a to 22c are in "state 2" (for example, opening degree is 80 to 95%) or whether all control valves 22a to 22c are in "excessive state 3" (for example, opening degree is 80% or less).

その結果、制御装置30は、制御弁22a~22cの少なくとも1つの総合状態が、「不足な状態1」であると判断した場合(Yesの場合)には、次のステップ23(S23)に進み、冷凍機11の送水温度を1℃下げる。 As a result, if the control device 30 determines that the overall state of at least one of the control valves 22a to 22c is "insufficient state 1" (in the case of Yes), the control device 30 proceeds to the next step 23 (S23). , lower the water temperature of the refrigerator 11 by 1°C.

一方、制御装置30は、ステップ22(S22)においてすべての制御弁22a~22cの総合状態が「不足な状態1」でないと判断した場合(NOの場合)には、ステップ24(S24)に進む。 On the other hand, if the control device 30 determines in step 22 (S22) that the overall state of all the control valves 22a to 22c is not "insufficient state 1" (in the case of NO), the control device 30 proceeds to step 24 (S24). .

ステップ24(S24)では、制御装置30は、すべての制御弁22a~22cが「過剰な状態3」(例えば、開度80%以下)であるかどうかを判断する。その結果、制御装置30は、すべての制御弁22a~22cの総合状態が「過剰な状態3」であると判断した場合(Yesの場合)には、ステップ25(S25)に進み、冷凍機11の送水温度を1℃上げる。 In step 24 (S24), the control device 30 determines whether all the control valves 22a to 22c are in "excessive state 3" (for example, opening degree is 80% or less). As a result, if the control device 30 determines that the overall state of all the control valves 22a to 22c is "excessive state 3" (in the case of Yes), the control device 30 proceeds to step 25 (S25), and the refrigerator 11 Raise the water temperature by 1℃.

一方、制御装置30は、ステップ24(S24)においていずれかの制御弁22a~22cの総合状態が「過剰な状態3」でないと判断した場合(NOの場合)には、制御を終了する。 On the other hand, if the control device 30 determines in step 24 (S24) that the overall state of any of the control valves 22a to 22c is not "excessive state 3" (in the case of NO), it ends the control.

次に、ポンプ圧力制御に関して、図12のステップ31(S31)に示すように、制御装置30は、各空調機器12a~12cに対する送水温度や還水温度の測定値に基づき、上式(1)又は(2)により加重平均往還送水温度差を算出する。 Next, regarding pump pressure control, as shown in step 31 (S31) in FIG. 12, the control device 30 uses the above formula (1) based on the measured values of the water supply temperature and return water temperature for each air conditioner 12a to 12c. Alternatively, calculate the weighted average outgoing water temperature difference using (2).

次のステップ32(S32)において、制御装置30は、往還送水温度差の設定値Sから上記ステップ31(S31)において算出した加重平均往還送水温度差の測定値Mを引いた偏差が1℃を超えるかどうかを判断する。その結果、制御装置30は、往還送水温度差の設定値Sから加重平均往還送水温度差の設定値Mを引いた偏差が1℃を超える場合(Yesの場合)には、ステップ33(S33)に進み、圧力設定値を10kPa下げた後、制御を終了する。 In the next step 32 (S32), the control device 30 determines that the deviation obtained by subtracting the measured value M of the weighted average return water temperature difference calculated in step 31 (S31) from the set value S of the return water temperature difference is 1°C. Determine whether it exceeds. As a result, if the deviation obtained by subtracting the set value M of the weighted average outgoing water temperature difference from the set value S of the outgoing water temperature difference exceeds 1°C (in the case of Yes), the control device 30 performs step 33 (S33). After the pressure setting value is lowered by 10 kPa, the control is terminated.

一方、制御装置30は、上記ステップ32(S32)において往還送水温度差の設定値Sから往還送水温度差の測定値Mを引いた偏差が1℃を超えない場合(Noの場合)には、ステップ34(S34)に進む。 On the other hand, if the deviation obtained by subtracting the measured value M of the outbound and return water temperature difference from the set value S of the outbound and return water temperature difference in step 32 (S32) does not exceed 1°C (in the case of No), the control device 30 The process advances to step 34 (S34).

ステップ34(S34)では、制御装置30は、往還送水温度差の設定値Sから上記ステップ31(S31)において算出した加重平均往還送水温度差の測定値Mを引いた偏差が1℃未満かどうかを判断する。その結果、制御装置30は、加重平均温度差の設定値Sから往還送水温度差の測定値Mを引いた偏差が1℃未満であると判断した場合(Yesの場合)には、ステップ35(S35)に進み、圧力所定値を10kPa上げた後、制御を終了する。 In step 34 (S34), the control device 30 determines whether the deviation obtained by subtracting the measured value M of the weighted average outgoing water temperature difference calculated in step 31 (S31) from the set value S of the outgoing water temperature difference is less than 1°C. to judge. As a result, if the control device 30 determines that the deviation obtained by subtracting the measured value M of the outgoing water temperature difference from the set value S of the weighted average temperature difference is less than 1°C (in the case of Yes), step 35 ( Proceeding to S35), the predetermined pressure value is increased by 10 kPa, and then the control is ended.

一方、制御装置30は、上記ステップ34(S34)において加重平均温度差の設定値Sから往還送水温度差の測定値Mを引いた偏差が1℃未満でないと判断した場合(Noの場合)には、制御を終了する。 On the other hand, if the control device 30 determines in step 34 (S34) that the deviation obtained by subtracting the measured value M of the outgoing water temperature difference from the set value S of the weighted average temperature difference is not less than 1°C (in the case of No), ends control.

なお、上記ステップ33(S33)及び上記ステップ35(S35)における圧力設定値の変化量である圧力所定値(10kPa)は、固定値としても良いし、偏差量に比例させた値としても良い。
[空調用熱源制御システムの応用例]
Note that the predetermined pressure value (10 kPa), which is the amount of change in the pressure setting value in step 33 (S33) and step 35 (S35), may be a fixed value or may be a value proportional to the deviation amount.
[Application example of heat source control system for air conditioning]

次に、本発明の実施の形態に係る空調用熱源制御システム10の応用例として、図13~図16を参照しつつ、フリークーリング設備を併用した空調用熱源制御システム50について説明する。 Next, as an application example of the air conditioning heat source control system 10 according to the embodiment of the present invention, an air conditioning heat source control system 50 that uses free cooling equipment will be described with reference to FIGS. 13 to 16.

図13に示すように、この空調用熱源制御システム50は、放射パネル51や顕熱空調機52などの比較的高い温度帯の冷水を熱媒とするシステムにおいて、冷却塔53を熱源11と直列に配置し、冷水の還水をこの冷却塔53で冷却した後、下流側の熱源11で所定の温度に冷却するシステムである。 As shown in FIG. 13, this air conditioning heat source control system 50 connects a cooling tower 53 in series with a heat source 11 in a system that uses chilled water in a relatively high temperature range as a heat medium, such as a radiant panel 51 or a sensible heat air conditioner 52. This is a system in which the returned cold water is cooled in the cooling tower 53 and then cooled to a predetermined temperature by the heat source 11 on the downstream side.

このように、外気条件等によって飛躍的に効率が高い冷却システムを併用できる空調用熱源制御システム50では、往還送水温度差を敢えて小さく設定することで、フリークーリング設備のような高効率熱源の活用を促進させることもできる。 In this way, in the air conditioning heat source control system 50, which can be used in conjunction with a cooling system that is dramatically more efficient depending on the outside air conditions, etc., by purposely setting the temperature difference between the incoming and outgoing water to be small, it is possible to utilize highly efficient heat sources such as free cooling equipment. It can also be promoted.

図14に示すように、往還送水温度差を通常の空調用熱源制御システム10の利用時の往還送水温度差の1/2程度に小さくすると、往還送水温度レンジは高温側に移行する。この場合、通常の往還送水温度差の時の往還送水温度レンジではフリークーリング設備の運転が不可能な湿球温度条件でも、往還送水温度レンジが高い温度に推移することでフリークーリング設備の運転が可能となる。フリークーリング設備運転時の冷却効率は、冷凍機11の冷却効率に比べて数倍~数十倍向上するため、搬送動力の増大分を十分に吸収することができる。このように往還送水温度差を条件によって可変にすることで、高効率の冷却システムの運転期間を拡大することができ、省エネルギー効果を向上させることが可能となる。 As shown in FIG. 14, when the temperature difference between the sent and returned water is reduced to about 1/2 of the temperature difference between the sent and sent water when the normal air conditioning heat source control system 10 is used, the temperature range of the sent and sent water shifts to the high temperature side. In this case, even if the wet bulb temperature condition is such that it is impossible to operate the free cooling equipment in the normal temperature range of the sending water and the return water, the free cooling equipment can be operated as the temperature range of the returning water changes to a higher temperature. It becomes possible. Since the cooling efficiency during operation of the free cooling equipment is several to several tens of times higher than the cooling efficiency of the refrigerator 11, it is possible to sufficiently absorb an increase in the conveying power. In this way, by making the temperature difference between the sent and returned water variable depending on the conditions, it is possible to extend the operating period of the highly efficient cooling system, and it is possible to improve the energy saving effect.

フリークーリング設備を併用した空調用熱源制御システム50の場合、外気湿球温度や空調機器の負荷率により、該システム50の効率(システムCOP)は大きく変化する。そのため、図15(a)、(b)に示すように、空調機器の負荷率毎や外気湿球温度毎に、より最適な往還送水温度差(線形)を求め、該負荷率と外気湿球温度により最適往還送水温度差の設定値を可変制御することが好ましい。これにより、図16(a)、(b)に示すように、効率(システムCOP)を向上させることができ、省エネルギー効果をさらに高めることが可能となる。 In the case of the air conditioning heat source control system 50 that uses free cooling equipment, the efficiency of the system 50 (system COP) changes greatly depending on the outside air wet bulb temperature and the load factor of the air conditioning equipment. Therefore, as shown in FIGS. 15(a) and 15(b), a more optimal return and return water temperature difference (linear) is determined for each load factor of air conditioning equipment and each outside air wet bulb temperature, and It is preferable to variably control the setting value of the optimum forward and return water temperature difference depending on the temperature. Thereby, as shown in FIGS. 16(a) and 16(b), efficiency (system COP) can be improved and the energy saving effect can be further enhanced.

[本発明の実施の形態に係る空調用熱源制御システムの効果]
上記したように本発明に係る空調用熱源制御システム10,50は、一般的な空調システムで設置される温度センサーや汎用コントローラ等の通常の制御機器を使用して往還送水温度差による送水温度の可変制御を行うことができ、多数の計測機器や演算装置の導入、及び事前の詳細設計やソフト開発も不要であるため、費用対効果が高く、汎用性も向上させることができる。
[Effects of the air conditioning heat source control system according to the embodiment of the present invention]
As described above, the air conditioning heat source control system 10, 50 according to the present invention uses normal control equipment such as a temperature sensor and a general-purpose controller installed in a general air conditioning system to adjust the water temperature based on the temperature difference between the outward and return water. Variable control can be performed, and there is no need to introduce a large number of measuring instruments or arithmetic devices, nor do detailed design or software development in advance, so it is highly cost-effective and can improve versatility.

また、制御弁の開度情報で送水温度を可変に制御すると共に、往還送水温度差で送水圧力を可変に制御することで、送水温度(VWT)と流量(VWV)の双方を同時且つ最適に制御することができるため、省エネルギー効果を最大限に高めることが可能となる。 In addition, by variably controlling the water supply temperature based on the opening information of the control valve, and variably controlling the water supply pressure based on the difference in the temperature of the returning and returning water, both the water supply temperature (VWT) and flow rate (VWV) can be simultaneously and optimally controlled. Since it can be controlled, it is possible to maximize the energy saving effect.

なお、上記した本発明の実施の形態の説明は、本発明に係る空調用熱源制御システムにおける好適な実施の形態について説明しているため、技術的に好ましい種々の限定を付している場合もあるが、本発明の技術範囲は、特に本発明を限定する記載がない限り、これらの態様に限定されるものではない。 Note that the above description of the embodiments of the present invention describes preferred embodiments of the air conditioning heat source control system according to the present invention, and therefore various technically preferable limitations may be attached. However, the technical scope of the present invention is not limited to these embodiments unless there is a description that specifically limits the present invention.

10 空調用熱源制御システム
11 冷凍機(熱源機器)
12 空調機器
20 一次循環ポンプ
21 二次循環ポンプ
30 制御装置
50 空調用熱源制御システム
53 冷却塔
10 Air conditioning heat source control system 11 Refrigerator (heat source equipment)
12 Air conditioning equipment 20 Primary circulation pump 21 Secondary circulation pump 30 Control device 50 Air conditioning heat source control system 53 Cooling tower

Claims (5)

熱源機器から循環ポンプにより空調機器に冷水又は温水を供給する空調用熱源制御システムにおいて、
前記熱源機器から前記空調機器に送水される前記冷水又は温水の設計往還送水温度差である設定値と、温度センサーにより計測された前記空調機器への往き温度と該空調機器からの還り温度とから算出された往還送水温度差の測定値と、の偏差に基づき前記循環ポンプの送水圧力を可変に制御すると共に、前記冷水又は温水が流通する配管に設けられた制御弁の情報に基づき前記熱源機器の送水温度を可変に制御する制御装置を備えることを特徴とする空調用熱源制御システム。
In an air conditioning heat source control system that supplies cold water or hot water from a heat source device to an air conditioner using a circulation pump,
From a set value that is a designed return water temperature difference of the cold water or hot water sent from the heat source device to the air conditioner, and the temperature measured by the temperature sensor to the air conditioner and the return temperature from the air conditioner. The water supply pressure of the circulation pump is variably controlled based on the deviation between the calculated measured value of the temperature difference between the sent and returned water, and the heat source equipment is controlled based on information on a control valve provided in a pipe through which the cold water or hot water flows 1. A heat source control system for air conditioning, comprising a control device that variably controls the water temperature of the air conditioner.
前記熱源機器に対して複数の前記空調機器が設けられており、前記制御装置は、前記熱源機器の入口側部分と出口側部分の温度差により前記往還送水温度差の測定値を求める請求項1に記載の空調用熱源制御システム。 A plurality of the air conditioning devices are provided for the heat source device, and the control device determines the measured value of the temperature difference between the incoming and outgoing water based on the temperature difference between an inlet side portion and an outlet side portion of the heat source device . The air conditioning heat source control system described in . 前記熱源機器に対して複数の前記空調機器が設けられており、前記制御装置は、前記各空調機器の入口側部分と出口側部分のそれぞれの温度差を加重平均することにより前記往還送水温度差の測定値を求める請求項1に記載の空調用熱源制御システム。 A plurality of the air conditioning devices are provided for the heat source device, and the control device determines the temperature difference between the incoming and outgoing water by weighted averaging the temperature differences between the inlet side portion and the outlet side portion of each of the air conditioners. The air conditioning heat source control system according to claim 1, wherein the measured value of . 前記熱源機器の上流側に冷却塔を直列に接続し、該熱源機器に還る冷水に対して該冷却塔を利用してフリークーリングを行う請求項1に記載の空調用熱源制御システム。 2. The air conditioning heat source control system according to claim 1 , wherein a cooling tower is connected in series upstream of the heat source device, and the cooling tower is used to perform free cooling on cold water that returns to the heat source device. 熱源機器から循環ポンプにより空調機器に冷水又は温水を供給する空調用熱源制御方法において、
前記熱源機器から前記空調機器に送水される前記冷水又は温水の設計往還送水温度差である設定値と、温度センサーにより計測された前記空調機器への往き温度と該空調機器からの還り温度とから算出された往還送水温度差の測定値と、の偏差に基づき前記循環ポンプの送水圧力を可変に制御するステップと、
前記冷水又は温水が流通する配管に設けられた制御弁の情報に基づき前記熱源機器の送水温度を可変に制御するステップと、
を備えることを特徴とする空調用熱源制御方法。
In an air conditioning heat source control method for supplying cold water or hot water from a heat source device to an air conditioner using a circulation pump,
From a set value that is a designed return water temperature difference of the cold water or hot water sent from the heat source device to the air conditioner, and the temperature measured by the temperature sensor to the air conditioner and the return temperature from the air conditioner. variably controlling the water supply pressure of the circulation pump based on the deviation between the calculated measured value of the temperature difference between the sent and returned water;
variably controlling the water supply temperature of the heat source device based on information on a control valve provided in a pipe through which the cold water or hot water flows;
A heat source control method for air conditioning, comprising:
JP2022062898A 2022-04-05 2022-04-05 Air conditioning heat source control system and air conditioning heat source control method Active JP7451066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022062898A JP7451066B2 (en) 2022-04-05 2022-04-05 Air conditioning heat source control system and air conditioning heat source control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022062898A JP7451066B2 (en) 2022-04-05 2022-04-05 Air conditioning heat source control system and air conditioning heat source control method

Publications (2)

Publication Number Publication Date
JP2023153554A JP2023153554A (en) 2023-10-18
JP7451066B2 true JP7451066B2 (en) 2024-03-18

Family

ID=88349725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022062898A Active JP7451066B2 (en) 2022-04-05 2022-04-05 Air conditioning heat source control system and air conditioning heat source control method

Country Status (1)

Country Link
JP (1) JP7451066B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020159671A (en) 2019-03-28 2020-10-01 新菱冷熱工業株式会社 Radiation air conditioning system and control method therefor
WO2021187423A1 (en) 2020-03-16 2021-09-23 三菱電機株式会社 Air conditioning system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020159671A (en) 2019-03-28 2020-10-01 新菱冷熱工業株式会社 Radiation air conditioning system and control method therefor
WO2021187423A1 (en) 2020-03-16 2021-09-23 三菱電機株式会社 Air conditioning system

Also Published As

Publication number Publication date
JP2023153554A (en) 2023-10-18

Similar Documents

Publication Publication Date Title
CN110274361B (en) Water multi-connected air conditioning system and control method of variable-frequency water pump thereof
JP4832960B2 (en) Control method of water source heat pump unit system
CN104024749B (en) Air-conditioning system that adjusts temperature and humidity
JP4422572B2 (en) Cold / hot water control method for cold / hot heat source machine
CZ301374B6 (en) Air-conditioning system
CN102770718A (en) Air conditioning system and method of controlling air conditioning system
JP4840522B2 (en) Refrigeration equipment
WO2013145005A1 (en) Air-conditioning system
JPH1163631A (en) Equipment for controlling temperature of supply water
WO2017081820A1 (en) Air conditioning system and method for controlling air conditioning system
WO2017204287A1 (en) Heat source system and heat source system control method
WO2010038334A1 (en) Air conditioner heat source control device and control method
JP2004069134A (en) Air-conditioning system
CN110822634B (en) Self-adaptive dynamic control method for compressor during refrigeration of capillary radiation air conditioner
JP5737173B2 (en) Air conditioning system that adjusts temperature and humidity
CN112032917B (en) Central air-conditioning cold water system and control method thereof
JP7451066B2 (en) Air conditioning heat source control system and air conditioning heat source control method
CN1243936C (en) Variable capacity one-driving-many control technique
JP2014129912A (en) Air conditioner using direct expansion coils
JP5673524B2 (en) Air conditioning system that adjusts temperature and humidity
JP5318446B2 (en) Outside air intake system
WO2021214931A1 (en) Air conditioning system and control method
JP5062555B2 (en) Energy saving air conditioning control system
JP7374633B2 (en) Air conditioners and air conditioning systems
CN2694162Y (en) Capacity variable central air conditioner with one outdoor unit and multiple indoor units

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240305

R150 Certificate of patent or registration of utility model

Ref document number: 7451066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150