WO2021214931A1 - Air conditioning system and control method - Google Patents
Air conditioning system and control method Download PDFInfo
- Publication number
- WO2021214931A1 WO2021214931A1 PCT/JP2020/017449 JP2020017449W WO2021214931A1 WO 2021214931 A1 WO2021214931 A1 WO 2021214931A1 JP 2020017449 W JP2020017449 W JP 2020017449W WO 2021214931 A1 WO2021214931 A1 WO 2021214931A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- indoor
- temperature
- air conditioning
- detected
- detecting means
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0003—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/61—Control or safety arrangements characterised by user interfaces or communication using timers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/65—Electronic processing for selecting an operating mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
- F24F11/84—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/31—Expansion valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/023—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/025—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2513—Expansion valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2104—Temperatures of an indoor room or compartment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2117—Temperatures of an evaporator
- F25B2700/21175—Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Definitions
- the present invention relates to an air conditioning system and a method of controlling the operation of the air conditioning system.
- a method of adjusting the room temperature by controlling the compressor frequency of the outdoor unit according to the load of the indoor unit is widely adopted. If the compressor of the outdoor unit has an operable frequency range, the load of the indoor unit is small, and the room temperature cannot be maintained even if the compressor operates at the lowest operating frequency, the compressor is stopped (thermo-off) and compressed. The room temperature is stabilized by repeating the operation (thermo-on) of the machine, so-called intermittent operation.
- intermittent operation has the problem that the room temperature fluctuates up and down, impairs comfort, and reduces the efficiency of the equipment compared to continuous operation.
- Patent Documents 1 and 2 there is known a technique of temporarily lowering the frequency to the lowest operating frequency lower than the starting operating frequency or in the range of the lower limit operating frequency for use of the compressor (for example). See Patent Documents 1 and 2). Further, there is also known a technique of reducing the opening degree of the expansion valve of the outdoor unit to reduce the amount of refrigerant circulating (see, for example, Patent Document 3).
- the present invention is an air conditioning system including an indoor unit and an outdoor unit in view of the above problems.
- the indoor unit With a heat exchanger Indoor temperature detecting means for detecting indoor temperature and Including a valve for adjusting the flow rate of the refrigerant flowing in the refrigeration cycle
- the outdoor unit With a heat exchanger With a compressor, Frequency detection means to detect the operating frequency of the compressor, Including a valve for adjusting the flow rate of the refrigerant flowing in the refrigeration cycle, Control to control the valve opening of the indoor unit according to the indoor temperature detected by the indoor temperature detecting means, the amount of change in the indoor temperature in a predetermined time, and the operating frequency detected by the frequency detecting means.
- An air conditioning system, including means, is provided.
- the figure which showed the 1st configuration example of the air conditioning system The figure which illustrated the hardware composition of the control device provided in the air conditioning system.
- the flowchart which showed the 1st example of the opening degree control of an indoor expansion valve The figure which showed the time history of the power consumption after the start of operation in the conventional control and this control.
- the flowchart which showed the 2nd example of the opening degree control of an indoor expansion valve The flowchart which showed the 3rd example of the opening degree control of an indoor expansion valve.
- the flowchart which showed the 4th example of the opening degree control of an indoor expansion valve The figure which showed the 2nd configuration example of the air conditioning system.
- FIG. 1 is a diagram showing a first configuration example of an air conditioning system.
- the air conditioning system includes an indoor unit 10 installed indoors of a house or a building, and an outdoor unit 20 installed outdoors.
- the air conditioning system can include an operating device (remote controller) for operating the indoor unit by wirelessly communicating with the indoor unit 10 in the room where the indoor unit 10 is installed.
- an operating device remote controller
- the indoor unit 10 and the outdoor unit 20 are connected by two pipes 30 and 31 through which a refrigerant as a heat medium circulates.
- a refrigerant for example, hydrofluorocarbons such as R410a and R32 are used.
- the indoor unit 10 and the outdoor unit 20 are connected by a communication cable or the like in order to communicate with each other.
- the indoor unit 10 and the outdoor unit 20 are not limited to being wiredly connected by a communication cable or the like, and may be wirelessly connected by using WiFi (registered trademark) or the like.
- the indoor unit 10 starts or stops in response to a user operation.
- the indoor unit 10 instructs the outdoor unit 20 to start, and notifies the set temperature set in the indoor unit 10, the measured room temperature, and the like.
- the indoor unit 10 receives a change in the operating conditions such as the operation mode and the set temperature from the user, the indoor unit 10 also notifies the outdoor unit 20 of the changed operating conditions.
- the indoor unit 10 commands the outdoor unit 20 to stop the operation.
- the indoor unit 10 takes in indoor air during operation, exchanges heat between the taken-in air and the refrigerant supplied from the outdoor unit 20, and blows out cooled air or warmed air to set the room. Cool or warm to temperature.
- the indoor unit 10 takes in the heat exchanger 11 that exchanges heat between the indoor air and the refrigerant, and the indoor air into the heat exchanger 11, and blows out the heat exchanged air by the heat exchanger 11. It is equipped with a blower (fan) 12.
- the indoor unit 10 includes an indoor temperature detecting means for detecting the indoor temperature in order to notify the outdoor unit 20 of the indoor temperature.
- the room temperature detecting means the room temperature sensor 13 can be used.
- the indoor unit 10 includes a pipe temperature detecting means for detecting the outer wall surface temperature of the two pipes 30 and 31 connected to the heat exchanger 11.
- the pipe temperature detecting means the pipe temperature sensors 14 and 15 can be used.
- the indoor unit 10 includes an indoor expansion valve 16 for expanding the refrigerant and adjusting the flow rate of the refrigerant flowing through the heat exchanger 11.
- the heat exchanger 11 When the indoor unit 10 is used as a cooler, the heat exchanger 11 functions as an evaporator, and the refrigerant flows into the heat exchanger 11 in a two-phase flow state (liquid refrigerant) in which liquid and gas are mixed.
- the refrigerant exchanges heat with the air taken in by the fan 12 in the heat exchanger 11, so that the liquid component evaporates, is discharged from the heat exchanger 11 as a gas refrigerant, and is sent to the outdoor unit 20.
- the liquid component evaporates at a constant temperature (saturation temperature) corresponding to the pressure in the heat exchanger 11 and is discharged from the heat exchanger 11 at a saturation temperature or a temperature higher than the saturation temperature.
- saturation temperature saturated temperature
- ⁇ t indicates a temperature rise from the saturation temperature and is called a degree of superheat.
- the outdoor unit 20 starts in response to the designation from the indoor unit 10, and starts the operation in the set or notified operation mode from the indoor unit 10.
- the operation mode is a cooling mode, a heating mode, a ventilation mode, or the like.
- the outdoor unit 20 controls the temperature, pressure, flow rate, etc. of the refrigerant according to the set temperature, the indoor temperature, the piping temperature, etc., which are set or notified from the indoor unit 10. Further, the outdoor unit 20 stops its operation in response to a command from the indoor unit 10.
- the outdoor unit 20 is connected to the indoor unit 10 via pipes 30 and 31, and circulates the refrigerant. Therefore, a compressor 21 for circulating the refrigerant is provided. The refrigerant gas compressed by the compressor 21 exchanges heat with the air taken in by the fan 23 in the heat exchanger 22 to become a high-pressure liquid refrigerant. Further, the outdoor unit 20 is provided with a four-way valve 25 for reversing the direction in which the refrigerant flows in order to enable the heating operation.
- the outdoor expansion valve 24 is provided to change the refrigerant that has been in a high pressure state during heating into a low temperature and low pressure refrigerant and to adjust the flow rate of the refrigerant.
- the compressor 21 can change the flow rate of the refrigerant by changing the operating frequency.
- the outdoor unit 20 includes a control device 26.
- the control device 26 controls the operating frequency of the compressor 21 and the opening degree of the outdoor expansion valve 24 based on the indoor temperature, the set temperature, the piping temperature, and the operation mode detected by the room temperature sensor 13. Further, the four-way valve 25 is switched according to the set operation mode.
- the operating frequency of the compressor 21 There is a lower limit to the operating frequency of the compressor 21, and even if the compressor 21 operates at the lowest operating frequency, if the generation capacity is larger than the indoor load, the indoor temperature cannot be maintained at the set temperature by continuous operation. .. Therefore, the room temperature is maintained at the set temperature by performing an intermittent operation in which the thermo-on and the thermo-off are repeated. However, when the intermittent operation is performed, the efficiency and reliability of the device are lowered as compared with the continuous operation, and the room temperature also fluctuates, so that there is a problem that the comfort is impaired.
- the outdoor unit 20 includes a frequency sensor 27 as a frequency detecting means for detecting the operating frequency of the compressor 21, and the control device 26 determines the room temperature detected by the room temperature sensor 13 and the amount of change in the room temperature over a predetermined time. , The opening degree of the indoor expansion valve 16 is controlled according to the operating frequency detected by the frequency sensor 27.
- the control device 26 When the compressor 21 is operating near the minimum operating frequency, the control device 26 reduces the opening degree of the indoor expansion valve 16 to reduce the flow rate of the refrigerant flowing into the heat exchanger 11, resulting in air conditioning. Reduce the capacity (cooling capacity). As a result, even if the compressor 21 is operating at the lowest operating frequency, the cooling capacity can be further reduced. Therefore, even if the air conditioning load conventionally requires intermittent operation of the compressor 21, the compressor 21 can be operated. Intermittent operation can be avoided. The details will be described below.
- FIG. 2 is a diagram showing an example of the hardware configuration of the control device 26 used in the air conditioning system.
- the control device 26 includes a CPU 40, a flash memory 41, a RAM 42, a communication I / F43, and a control I / F44. Components such as the CPU 40 are connected to the bus 45, and information and the like are exchanged via the bus 45.
- the flash memory 41 stores a program executed by the CPU 40, various data, and the like.
- the RAM 42 provides a work area for the CPU 40.
- the CPU 40 realizes the above control by reading and executing the program stored in the flash memory 41 into the RAM 42.
- the communication I / F 43 is connected to the indoor unit 10 and receives information such as the indoor temperature, the liquid pipe temperature, and the gas pipe temperature from the indoor unit 10.
- the communication I / F 43 also receives information from the frequency sensor 27.
- the control I / F44 is connected to the compressor 21, the fan 23, the outdoor expansion valve 24, the four-way valve 25, and the indoor expansion valve 16 to control each device.
- control device 26 realizes the above control by the CPU 40 reading and executing the program from the flash memory 41, but the above control may be realized by using hardware such as a circuit.
- FIG. 3 is a flowchart showing a first example of opening degree control of the indoor expansion valve 16.
- This control starts from step 100 when the cooling operation is started.
- step 101 it is determined whether or not the operating frequency F is smaller than an arbitrary frequency (frequency threshold) F d that is larger than the minimum operating frequency F min.
- the frequency threshold value F d is determined with a certain margin at the minimum operating frequency F min so as not to enter the intermittent operation before starting the control of the opening degree of the indoor expansion valve 16.
- the determination in step 101 is repeated until F is determined to be smaller than F d.
- step 101 If it is determined in step 101 that F is smaller than F d , the process proceeds to step 102, and it is determined whether or not the difference RL between the indoor air conditioning load and the generated cooling capacity is smaller than the load threshold value RL th.
- the difference RL between the indoor air conditioning load and the generation capacity can be detected by using the set temperature, the detection value (room temperature) detected by the room temperature sensor 13, and the amount of change in room temperature within a predetermined time.
- the predetermined time if it is a short time such as the time required to control the indoor expansion valve 16 (about several seconds), the amount of change is too small to detect the amount of change, and if it is a long time, intermittent operation is performed during that time. Since there is a possibility that it will enter, it can be set to, for example, several tens of seconds to several minutes.
- the cooling capacity is relatively small with respect to the air conditioning load and it is not necessary to reduce the capacity, so that the opening degree of the indoor expansion valve 16 is not controlled. Therefore, the process returns to step 101 and the control is continued.
- step 102 when it is determined in step 102 that the RL is smaller than the RL th , the cooling capacity is relatively large with respect to the air conditioning load, so the process proceeds to step 103 and the indoor expansion valve 16 is opened in order to reduce the flow rate of the refrigerant. Reduce the degree.
- the opening degree of the indoor expansion valve 16 is reduced, the flow rate of the refrigerant is reduced, and since the pressure is low, the two-phase refrigerant becomes a gas phase with a smaller amount of heat exchange, and thus functions as an evaporator of the heat exchanger 11.
- the area (effective area) of the heat transfer tube is also reduced.
- the cooling capacity can be reduced by reducing the effective area. By reducing the cooling capacity, all the refrigerant can be evaporated, and the degree of superheat can be imparted and discharged from the heat exchanger 11.
- the control device 26 controls the rotation speed of the compressor 21 based on the set temperature and the detection value of the room temperature sensor 13, and controls the opening degree of the outdoor expansion valve 24 so as to keep the degree of superheat within a certain range. Therefore, when the indoor load is large, the control device 26 increases the rotation speed of the compressor 21 to increase the circulation amount of the refrigerant, and when the indoor load is small, the rotation speed of the compressor 21 is decreased to increase the circulation amount of the refrigerant. Reduce.
- the compressor 21 operates at the minimum by reducing the opening degree of the indoor expansion valve 16 to reduce the cooling capacity. Room temperature can be maintained even if the operation is continued at the frequency. Therefore, it is possible to maintain the continuous operation of the compressor 21.
- step 103 After reducing the opening degree of the indoor expansion valve 16 in step 103, the process returns to step 101 to continue the control. When the operation of the air conditioning system is stopped, this control is also terminated.
- FIG. 4 shows the time history of power consumption after the start of operation in the conventional control and the opening control of the indoor expansion valve 16 shown in FIG.
- the conventional control is a control in which intermittent operation is repeated, and the time history is indicated by a broken line.
- the conventional control consumes zero power when the thermo is turned off, but consumes a lot of power when the thermo is turned on.
- the opening degree control (main control) of the indoor expansion valve 16 is performed, thermo-off / thermo-on does not occur and only a certain low power consumption is consumed. Therefore, the total power consumption surrounded by the time axis and the solid line is consumed. (Value of time integration of power consumption) is smaller than the total power consumption of the conventional control, which is also surrounded by the time axis and the broken line. Therefore, this control can reduce the power consumption as compared with the conventional control.
- the control shown in FIG. 3 was only to reduce the opening degree of the indoor expansion valve 16, but when the room temperature rises due to an increase in the outside air temperature and the air conditioning load increases, the reduced cooling capacity is improved. You may want to let it. Further, if the circulation amount of the refrigerant is small and the effective area of the evaporator remains small when the air conditioning load is large, the operation becomes inefficient. Therefore, the control capable of improving the cooling capacity will be described with reference to FIG.
- FIG. 5 is a flowchart showing a second example of opening degree control of the indoor expansion valve 16.
- step 201 it is determined whether or not the operating frequency F is smaller than the frequency threshold value F d. If it is determined that F is smaller than F d , the process proceeds to step 202, and it is determined whether or not the difference RL between the indoor air conditioning load and the generated cooling capacity is smaller than the threshold value RL th. Then, when it is determined that the RL is smaller than the RL th , the process proceeds to step 203, and the opening degree of the indoor expansion valve 16 is reduced in order to reduce the flow rate of the refrigerant. After reducing the opening degree of the indoor expansion valve 16, the process returns to step 201 to continue the control.
- step 204 the process proceeds to step 204 to increase the opening degree of the indoor expansion valve 16.
- F is F d or more, it indicates that it is necessary to improve the cooling capacity, and in order to improve the cooling capacity, the circulation amount of the refrigerant is increased and the degree of superheat on the outlet side of the heat exchanger 11 is increased.
- the opening degree of the indoor expansion valve 16 is increased in order to decrease and increase the effective area.
- step 201 After increasing the opening degree of the indoor expansion valve 16, the process returns to step 201 and the control is continued. In this case as well, when the operation of the air conditioning system is stopped, the control is terminated.
- the control shown in FIG. 5 was a control for reducing or increasing the opening degree of the indoor expansion valve 16, but if the opening degree is greatly changed at one time, the room temperature will fluctuate. Further, depending on the air conditioning load, the fluctuation of the room temperature may be smaller if the opening degree of the indoor expansion valve 16 is maintained without being changed. This is because the room temperature fluctuates, and if the fluctuation is large, the comfort is impaired. Therefore, the control capable of adjusting and maintaining the opening degree of the indoor expansion valve 16 will be described with reference to FIG.
- FIG. 6 is a flowchart showing a third example of opening degree control of the indoor expansion valve 16. Since steps 301 and 302 shown in FIG. 6 are the same as steps 201 and 202 shown in FIG. 5, the description thereof will be omitted.
- step 302 If it is determined in step 302 that the RL is smaller than the RL th , the process proceeds to step 303, and it is determined whether or not the change amount dT in of the room temperature at a predetermined time is smaller than the preset opening decrease start change amount dT dec. do.
- the dT dec is the amount of change in room temperature that serves as a reference for starting the decrease in the opening degree of the indoor expansion valve 16.
- the amount of change in room temperature dT in can be calculated as the amount of change in the detected value of the room temperature sensor 13 in a predetermined time.
- step 303 If it is determined in step 303 that dT in is smaller than dT dec , the room temperature has dropped sharply and it is necessary to reduce the cooling capacity. Therefore, the process proceeds to step 304, depending on the amount of change in room temperature dT in . Therefore, the amount of change in the opening degree of the indoor expansion valve 16 is calculated, and the opening degree of the indoor expansion valve 16 is reduced according to the amount of change. Then, the process returns to step 301 to continue the control.
- Step 303 when it is determined that dT dec above, the process proceeds to step 305, the temperature difference between the set temperature T set room temperature T in is either preset opening decrease start temperature difference [Delta] T dec smaller Judge whether or not.
- ⁇ T dec is the temperature difference between the room temperature and the set temperature, which is a reference for starting the decrease in the opening degree of the indoor expansion valve 16.
- the process returns to step 301 to continue the control.
- step 305 when it is determined in step 305 that the temperature difference is ⁇ T dec or more, it can be determined that the room temperature has not decreased, and if control is performed to reduce the opening degree of the indoor expansion valve 16, the generation capacity is too small and the room temperature rises. May rise. Therefore, the process proceeds to step 306, and the opening degree of the indoor expansion valve 16 is maintained at the current opening degree. Then, the process returns to step 301 to continue the control.
- dT in is a preset opening increase start change amount dT inc. Determine if it is greater than.
- dT inc is the amount of change in room temperature that serves as a reference for starting an increase in the opening degree of the indoor expansion valve 16.
- dT in is larger than dT inc , it indicates that the room temperature has changed significantly due to an increase in outside air temperature or the like, so it is necessary to increase the opening degree of the indoor expansion valve 16 to increase the flow rate of the refrigerant.
- step 308 the process proceeds to step 308, and the amount of change in the opening degree of the indoor expansion valve 16 is calculated according to the amount of change in the detected value of the room temperature sensor 13, and the indoor expansion is performed. Increase the opening degree of the valve 16.
- step 309 room T the temperature difference between the in and the set temperature T set is greater than a preset opening degree increase start temperature difference [Delta] T inc not Is determined.
- ⁇ T inc is the temperature difference between the room temperature and the set temperature, which is a reference for starting the increase in the opening degree of the indoor expansion valve 16.
- the opening degree of the indoor expansion valve 16 is controlled to be increased when the temperature difference is ⁇ T inc or less, the cooling capacity may be increased and the room temperature may be lowered even though the room temperature has not risen. Therefore, the process proceeds to step 310, and the opening degree of the indoor expansion valve 16 is maintained at the current opening degree. Then, the process returns to step 301 to continue the control.
- the room temperature can be further stabilized by controlling the opening degree of the indoor expansion valve 16 to be adjusted and maintained. In this case as well, when the operation of the air conditioning system is stopped, the control is terminated.
- the control shown in FIG. 6 was a control for adjusting and maintaining the opening degree of the indoor expansion valve 16, but by using the detected values of the pipe temperature sensors 14 and 15, the refrigerant on the outlet side of the indoor heat exchanger Control with the degree of superheat as the target value becomes possible. Therefore, the control using the detected values of the pipe temperature sensors 14 and 15 will be described with reference to FIG. 7.
- FIG. 7 is a flowchart showing a fourth example of opening degree control of the indoor expansion valve 16. Also in this case, only the parts different from the processing shown in FIG. 5 will be described.
- step 403 it is determined whether or not the dT in is smaller than the superheat degree increase start change amount dT inc.
- dT inc was the opening change start change amount, but in this example, it is the superheat degree increase start change amount.
- dT dec is the amount of change in the start of decrease in superheat
- ⁇ T inc is the difference in start temperature of increase in superheat
- ⁇ T dec is the difference in start temperature of increase in superheat.
- dT inc is the amount of change in room temperature that is the reference for starting the increase in the degree of superheat
- dT des is the amount of change in the room temperature that is the reference for starting the decrease in the degree of superheat
- ⁇ T inc is the temperature difference between the room temperature and the set temperature, which is the reference for starting the increase in the degree of superheat
- ⁇ T dec is the temperature difference between the room temperature and the set temperature, which is the reference for starting the decrease in the degree of superheat.
- step 404 the target degree of superheat on the outlet side of the refrigerant of the heat exchanger 11 is calculated based on the detected value of the room temperature sensor 13 and the amount of change in the detected value of the room temperature sensor 13 in a predetermined time.
- the cooling capacity is lowered, so that the degree of superheat increases.
- step 405 the amount of change in the opening degree of the indoor expansion valve 16 is calculated so that the refrigerant superheat degree on the outlet side of the indoor heat exchanger becomes the target superheat degree obtained in step 404, and the opening degree of the indoor expansion valve 16 is controlled. do.
- the opening degree of the indoor expansion valve 16 is reduced. Then, the process returns to step 401 to continue the control.
- step 406 If the temperature difference between T in and T set is less than or equal to [Delta] T dec at step 406, the process proceeds to step 407, as in step 404, for although calculates the target degree of superheat, not to lower the cooling capacity, heating The degree is maintained at the current degree of superheat, and in step 408, the opening degree of the indoor expansion valve 16 is maintained at the current opening degree. Then, the process returns to step 401 to continue the control.
- step 409 If it is determined in step 409 that dT in is larger than dT inc , the process proceeds to step 410, and the target superheat degree is calculated in the same manner as in step 404. In this case, the degree of superheat is reduced because the cooling capacity is improved by increasing the flow rate of the refrigerant and reducing the degree of superheat to increase the effective area.
- step 411 in the same manner as in step 405, the amount of change in the opening degree of the indoor expansion valve 16 such that the refrigerant superheat degree on the outlet side of the indoor heat exchanger becomes the target superheat degree obtained in step 410 is calculated to expand the room.
- the opening degree of the valve 16 is controlled. In this case, the opening degree of the indoor expansion valve 16 is increased. Then, the process returns to step 401 to continue the control.
- step 412 If the temperature difference between T in and T set is judged to be larger than [Delta] T inc at step 412, the process proceeds to step 413, as in step 404, for although calculates the target degree of superheat, which does not increase the cooling capacity, The degree of superheat is maintained at the current degree of superheat, and in step 414, the opening degree of the indoor expansion valve 16 is maintained at the current opening degree. Then, the process returns to step 401 to continue the control. In this case as well, when the operation of the air conditioning system is stopped, the control is terminated.
- the opening degree control of the indoor expansion valve 16 is performed by the control device 26 included in the outdoor unit 20, but the opening degree control of the indoor expansion valve 16 is limited to the control device 26. It is not something that is done. For example, it may be carried out by a control device provided in the indoor unit 10, or may be carried out by a centralized control device provided separately from the indoor unit 10 and the outdoor unit 20.
- the air conditioning system is not limited to one in which the indoor unit 10 and the outdoor unit 20 are composed of one unit each. Therefore, a system in which a plurality of indoor units 10 are connected to one outdoor unit 20 or a system in which a plurality of outdoor units 20 and a plurality of indoor units 10 are connected may be used.
- FIG. 8 shows an example of a system in which a plurality of indoor units 10 are connected to one outdoor unit 20. In the example shown in FIG. 8, three indoor units 10a to 10c and an outdoor unit 20 are connected.
- Each indoor unit 10a to 10c is installed in each room and adjusts the room temperature in each room so as to reach the set temperature. Since each of the indoor units 10a to 10c is provided with indoor expansion valves 16a to 16c, the cooling capacity can be adjusted for each room. Therefore, even if the air conditioning load differs from room to room, the room temperature in each room can be stabilized while avoiding intermittent operation.
- the indoor unit, the air conditioning system, and the control method of the present invention have been described in detail with the above-described embodiments, the present invention is not limited to the above-described embodiments, and other embodiments and additions have been made. , Changes, deletions, etc. can be made within the range that can be conceived by those skilled in the art, and are included in the scope of the present invention as long as the actions and effects of the present invention are exhibited in any of the embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Thermal Sciences (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Human Computer Interaction (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Provided are a system and a method which can prevent or reduce an intermittent operation and maintain comfort. This air conditioning system includes an indoor unit and an outdoor unit. The indoor unit includes: a heat exchanger; an indoor temperature detection means for detecting an indoor temperature; and a valve for adjusting the flow rate of a refrigerant flowing in a refrigeration cycle. The outdoor unit includes: a heat exchanger; a compressor; a frequency detection means for detecting the operation frequency of the compressor; and a valve for adjusting the flow rate of the refrigerant flowing in the refrigeration cycle. The air conditioning system further includes a control means for controlling the opening degree of the valve of the indoor unit depending on the indoor temperature detected by the indoor temperature detection means, the amount of change in the indoor temperature over a predetermined period of time, and the operation frequency detected by the frequency detection means.
Description
本発明は、空気調和システムおよび該空気調和システムの運転を制御する方法に関する。
The present invention relates to an air conditioning system and a method of controlling the operation of the air conditioning system.
従来の空気調和システムでは、室内機の負荷に応じて室外機の圧縮機周波数を制御し、室温を調整する手法が広く採用されている。室外機の圧縮機には、運転可能な周波数範囲があり、室内機の負荷が小さく、圧縮機が最低運転周波数で運転しても室温を維持できない場合は、圧縮機の停止(サーモオフ)と圧縮機の運転(サーモオン)を繰り返す運転、いわゆる断続運転を実施して、室温を安定させている。
In the conventional air conditioning system, a method of adjusting the room temperature by controlling the compressor frequency of the outdoor unit according to the load of the indoor unit is widely adopted. If the compressor of the outdoor unit has an operable frequency range, the load of the indoor unit is small, and the room temperature cannot be maintained even if the compressor operates at the lowest operating frequency, the compressor is stopped (thermo-off) and compressed. The room temperature is stabilized by repeating the operation (thermo-on) of the machine, so-called intermittent operation.
しかしながら、断続運転は、室温の上下変動があり、快適性を損ない、連続運転に比較して機器の効率が低下するという問題がある。
However, intermittent operation has the problem that the room temperature fluctuates up and down, impairs comfort, and reduces the efficiency of the equipment compared to continuous operation.
そこで、断続運転を回避する目的で、起動用運転周波数より低い最低運転周波数に、あるいは圧縮機の使用上の下限運転周波数以上の範囲で一時的に周波数を下げる技術が知られている(例えば、特許文献1、2参照)。また、室外機の膨張弁の開度を小さくし、冷媒循環量を減少させる技術も知られている(例えば、特許文献3参照)。
Therefore, for the purpose of avoiding intermittent operation, there is known a technique of temporarily lowering the frequency to the lowest operating frequency lower than the starting operating frequency or in the range of the lower limit operating frequency for use of the compressor (for example). See Patent Documents 1 and 2). Further, there is also known a technique of reducing the opening degree of the expansion valve of the outdoor unit to reduce the amount of refrigerant circulating (see, for example, Patent Document 3).
しかしながら、上記の特許文献1、2に記載の技術では、室温を設定温度に保つために必要な圧縮機周波数が、圧縮機の使用上の下限運転周波数より低下することになる場合、断続運転を回避することができなくなるという問題があった。
However, in the techniques described in Patent Documents 1 and 2 described above, when the compressor frequency required to keep the room temperature at the set temperature is lower than the lower limit operating frequency in use of the compressor, intermittent operation is performed. There was a problem that it could not be avoided.
上記の特許文献3に記載の技術では、室外機の膨張弁の開度を強制的に小さくし、冷媒循環量を減少させて能力を低下させるため、複数の室内機が接続されている場合には、すべての室内機の冷房能力を低下させてしまう。そのため、室内機が負荷の異なる部屋に位置する場合には、負荷の大きい部屋で室温を維持することができなくなり、快適性を維持することができないという問題があった。
In the technique described in Patent Document 3 above, in order to forcibly reduce the opening degree of the expansion valve of the outdoor unit and reduce the amount of refrigerant circulation to reduce the capacity, when a plurality of indoor units are connected. Reduces the cooling capacity of all indoor units. Therefore, when the indoor unit is located in a room having a different load, it is not possible to maintain the room temperature in the room having a large load, and there is a problem that the comfort cannot be maintained.
本発明は、上記課題に鑑み、室内機と室外機とを備える空気調和システムであって、
室内機が、
熱交換器と、
室内の温度を検出する室内温度検出手段と、
冷凍サイクル内を流れる冷媒の流量を調整するための弁と
を含み、
室外機が、
熱交換器と、
圧縮機と、
圧縮機の運転周波数を検出する周波数検出手段と、
冷凍サイクル内を流れる冷媒の流量を調整するための弁と
を含み、
室内温度検出手段により検出された室内の温度と、所定時間における該室内の温度の変化量と、周波数検出手段により検出された運転周波数とに応じて、室内機の弁の開度を制御する制御手段
を含む、空気調和システムが提供される。 The present invention is an air conditioning system including an indoor unit and an outdoor unit in view of the above problems.
The indoor unit
With a heat exchanger
Indoor temperature detecting means for detecting indoor temperature and
Including a valve for adjusting the flow rate of the refrigerant flowing in the refrigeration cycle,
The outdoor unit
With a heat exchanger
With a compressor,
Frequency detection means to detect the operating frequency of the compressor,
Including a valve for adjusting the flow rate of the refrigerant flowing in the refrigeration cycle,
Control to control the valve opening of the indoor unit according to the indoor temperature detected by the indoor temperature detecting means, the amount of change in the indoor temperature in a predetermined time, and the operating frequency detected by the frequency detecting means. An air conditioning system, including means, is provided.
室内機が、
熱交換器と、
室内の温度を検出する室内温度検出手段と、
冷凍サイクル内を流れる冷媒の流量を調整するための弁と
を含み、
室外機が、
熱交換器と、
圧縮機と、
圧縮機の運転周波数を検出する周波数検出手段と、
冷凍サイクル内を流れる冷媒の流量を調整するための弁と
を含み、
室内温度検出手段により検出された室内の温度と、所定時間における該室内の温度の変化量と、周波数検出手段により検出された運転周波数とに応じて、室内機の弁の開度を制御する制御手段
を含む、空気調和システムが提供される。 The present invention is an air conditioning system including an indoor unit and an outdoor unit in view of the above problems.
The indoor unit
With a heat exchanger
Indoor temperature detecting means for detecting indoor temperature and
Including a valve for adjusting the flow rate of the refrigerant flowing in the refrigeration cycle,
The outdoor unit
With a heat exchanger
With a compressor,
Frequency detection means to detect the operating frequency of the compressor,
Including a valve for adjusting the flow rate of the refrigerant flowing in the refrigeration cycle,
Control to control the valve opening of the indoor unit according to the indoor temperature detected by the indoor temperature detecting means, the amount of change in the indoor temperature in a predetermined time, and the operating frequency detected by the frequency detecting means. An air conditioning system, including means, is provided.
本発明によれば、断続運転を抑制し、快適性を維持することも可能となる。
According to the present invention, it is possible to suppress intermittent operation and maintain comfort.
図1は、空気調和システムの第1の構成例を示した図である。空気調和システムは、住宅やビル等の室内に設置される室内機10と、室外に設置される室外機20とを含んで構成される。空気調和システムは、室内機10が設置される室内に、室内機10と無線により通信を行い、室内機を操作するための操作装置(リモートコントローラ)を含むことができる。
FIG. 1 is a diagram showing a first configuration example of an air conditioning system. The air conditioning system includes an indoor unit 10 installed indoors of a house or a building, and an outdoor unit 20 installed outdoors. The air conditioning system can include an operating device (remote controller) for operating the indoor unit by wirelessly communicating with the indoor unit 10 in the room where the indoor unit 10 is installed.
室内機10と室外機20とは、熱媒体としての冷媒が循環する2本の配管30、31により接続される。冷媒としては、例えばR410aやR32等のハイドロフルオロカーボンが用いられる。また、室内機10と室外機20とは、互いに通信を行うために通信ケーブル等により接続される。なお、室内機10と室外機20とは、通信ケーブル等により有線接続されることに限定されるものではなく、WiFi(登録商標)等を使用して無線接続されていてもよい。
The indoor unit 10 and the outdoor unit 20 are connected by two pipes 30 and 31 through which a refrigerant as a heat medium circulates. As the refrigerant, for example, hydrofluorocarbons such as R410a and R32 are used. Further, the indoor unit 10 and the outdoor unit 20 are connected by a communication cable or the like in order to communicate with each other. The indoor unit 10 and the outdoor unit 20 are not limited to being wiredly connected by a communication cable or the like, and may be wirelessly connected by using WiFi (registered trademark) or the like.
室内機10は、ユーザの操作を受けて起動し、または停止する。室内機10は、起動した際、室外機20に対して起動を指令し、室内機10において設定された設定温度や測定した室温等を通知する。室内機10は、ユーザから運転モードや設定温度等の運転条件の変更を受け付けた場合、室外機20に対して変更された運転条件も通知する。室内機10は、停止する際、室外機20に対して運転の停止を指令する。
The indoor unit 10 starts or stops in response to a user operation. When the indoor unit 10 starts, it instructs the outdoor unit 20 to start, and notifies the set temperature set in the indoor unit 10, the measured room temperature, and the like. When the indoor unit 10 receives a change in the operating conditions such as the operation mode and the set temperature from the user, the indoor unit 10 also notifies the outdoor unit 20 of the changed operating conditions. When the indoor unit 10 is stopped, the indoor unit 10 commands the outdoor unit 20 to stop the operation.
室内機10は、運転中、室内の空気を取り込み、取り込んだ空気と、室外機20から供給される冷媒との間で熱交換し、冷却された空気または暖められた空気を吹き出し、室内を設定温度になるように冷却または暖める。
The indoor unit 10 takes in indoor air during operation, exchanges heat between the taken-in air and the refrigerant supplied from the outdoor unit 20, and blows out cooled air or warmed air to set the room. Cool or warm to temperature.
このため、室内機10は、室内の空気と冷媒との間で熱交換を行う熱交換器11と、室内の空気を熱交換器11へ取り込み、熱交換器11により熱交換された空気を吹き出す送風機(ファン)12とを備える。
Therefore, the indoor unit 10 takes in the heat exchanger 11 that exchanges heat between the indoor air and the refrigerant, and the indoor air into the heat exchanger 11, and blows out the heat exchanged air by the heat exchanger 11. It is equipped with a blower (fan) 12.
室内機10は、室外機20へ室内の温度を通知するために、室内の温度を検出する室内温度検出手段を備える。室内温度検出手段としては、室温センサ13を用いることができる。また、室内機10は、熱交換器11と接続される2本の配管30、31の外壁面温度を検出するための配管温度検出手段を備える。配管温度検出手段としては、配管温度センサ14、15を用いることができる。さらに、室内機10は、冷媒を膨張させ、熱交換器11を流れる冷媒の流量を調整するための室内膨張弁16を含む。
The indoor unit 10 includes an indoor temperature detecting means for detecting the indoor temperature in order to notify the outdoor unit 20 of the indoor temperature. As the room temperature detecting means, the room temperature sensor 13 can be used. Further, the indoor unit 10 includes a pipe temperature detecting means for detecting the outer wall surface temperature of the two pipes 30 and 31 connected to the heat exchanger 11. As the pipe temperature detecting means, the pipe temperature sensors 14 and 15 can be used. Further, the indoor unit 10 includes an indoor expansion valve 16 for expanding the refrigerant and adjusting the flow rate of the refrigerant flowing through the heat exchanger 11.
室内機10を冷房として使用する場合、熱交換器11は、蒸発器として機能し、冷媒は液とガスが混在した二相流の状態(液冷媒)として熱交換器11へ流入する。冷媒は、熱交換器11においてファン12により取り込まれた空気と熱交換を行うことで液成分が蒸発し、ガス冷媒として熱交換器11から排出され、室外機20へ送られる。液成分は、熱交換器11内の圧力に対応する一定の温度(飽和温度)で蒸発し、飽和温度または飽和温度より高い温度で熱交換器11から排出される。飽和温度よりΔtほど高い温度で排出される場合のΔtは、飽和温度からの温度上昇を示し、過熱度と呼ばれる。
When the indoor unit 10 is used as a cooler, the heat exchanger 11 functions as an evaporator, and the refrigerant flows into the heat exchanger 11 in a two-phase flow state (liquid refrigerant) in which liquid and gas are mixed. The refrigerant exchanges heat with the air taken in by the fan 12 in the heat exchanger 11, so that the liquid component evaporates, is discharged from the heat exchanger 11 as a gas refrigerant, and is sent to the outdoor unit 20. The liquid component evaporates at a constant temperature (saturation temperature) corresponding to the pressure in the heat exchanger 11 and is discharged from the heat exchanger 11 at a saturation temperature or a temperature higher than the saturation temperature. When discharged at a temperature higher than the saturation temperature by Δt, Δt indicates a temperature rise from the saturation temperature and is called a degree of superheat.
室外機20は、室内機10からの指定を受けて起動し、設定された、または室内機10から通知された運転モードで運転を開始する。運転モードは、冷房モード、暖房モード、送風モード等である。室外機20は、設定された、または室内機10から通知された設定温度、室内温度、配管温度等に応じて、冷媒の温度、圧力、流量等を制御する。また、室外機20は、室内機10からの指令を受けて運転を停止する。
The outdoor unit 20 starts in response to the designation from the indoor unit 10, and starts the operation in the set or notified operation mode from the indoor unit 10. The operation mode is a cooling mode, a heating mode, a ventilation mode, or the like. The outdoor unit 20 controls the temperature, pressure, flow rate, etc. of the refrigerant according to the set temperature, the indoor temperature, the piping temperature, etc., which are set or notified from the indoor unit 10. Further, the outdoor unit 20 stops its operation in response to a command from the indoor unit 10.
室外機20は、配管30、31を介して室内機10と接続され、冷媒を循環させる。このため、冷媒を循環させるための圧縮機21を備える。圧縮機21によって圧縮された冷媒ガスは、熱交換器22においてファン23によって取り込まれた空気と熱交換を行い、高圧の液冷媒となる。また、室外機20は、暖房運転も可能にするため、冷媒が流れる方向を逆にするための四方弁25を備える。室外膨張弁24は、暖房時に高圧の状態となった冷媒を、低温、低圧の冷媒にするとともに、冷媒の流量を調整するために備えられる。
The outdoor unit 20 is connected to the indoor unit 10 via pipes 30 and 31, and circulates the refrigerant. Therefore, a compressor 21 for circulating the refrigerant is provided. The refrigerant gas compressed by the compressor 21 exchanges heat with the air taken in by the fan 23 in the heat exchanger 22 to become a high-pressure liquid refrigerant. Further, the outdoor unit 20 is provided with a four-way valve 25 for reversing the direction in which the refrigerant flows in order to enable the heating operation. The outdoor expansion valve 24 is provided to change the refrigerant that has been in a high pressure state during heating into a low temperature and low pressure refrigerant and to adjust the flow rate of the refrigerant.
圧縮機21は、運転周波数を変えることで冷媒の流量が変えられる。
The compressor 21 can change the flow rate of the refrigerant by changing the operating frequency.
室外機20は、制御装置26を備える。制御装置26は、室温センサ13により検出された室内温度と、設定温度と、配管温度と、運転モードとに基づき、圧縮機21の運転周波数と、室外膨張弁24の開度とを制御する。また、設定された運転モードに応じて、四方弁25を切り替える。
The outdoor unit 20 includes a control device 26. The control device 26 controls the operating frequency of the compressor 21 and the opening degree of the outdoor expansion valve 24 based on the indoor temperature, the set temperature, the piping temperature, and the operation mode detected by the room temperature sensor 13. Further, the four-way valve 25 is switched according to the set operation mode.
圧縮機21の運転周波数には下限があり、圧縮機21が最低運転周波数で運転しても発生能力が室内負荷よりも大きい場合には、連続運転で室内温度を設定温度に維持することができない。そのため、サーモオンとサーモオフとを繰り返す断続運転を実施して、室内温度を設定温度に維持する。しかしながら、断続運転を行うと、連続運転に比較して機器の効率や信頼性が低下し、室内温度も変動するため、快適性を損なうという問題がある。
There is a lower limit to the operating frequency of the compressor 21, and even if the compressor 21 operates at the lowest operating frequency, if the generation capacity is larger than the indoor load, the indoor temperature cannot be maintained at the set temperature by continuous operation. .. Therefore, the room temperature is maintained at the set temperature by performing an intermittent operation in which the thermo-on and the thermo-off are repeated. However, when the intermittent operation is performed, the efficiency and reliability of the device are lowered as compared with the continuous operation, and the room temperature also fluctuates, so that there is a problem that the comfort is impaired.
そこで、室外機20は、圧縮機21の運転周波数を検出する周波数検出手段として、周波数センサ27を備え、制御装置26が、室温センサ13により検出された室温および該室温の所定時間における変化量と、周波数センサ27により検出された運転周波数とに応じて、室内膨張弁16の開度を制御するように構成される。
Therefore, the outdoor unit 20 includes a frequency sensor 27 as a frequency detecting means for detecting the operating frequency of the compressor 21, and the control device 26 determines the room temperature detected by the room temperature sensor 13 and the amount of change in the room temperature over a predetermined time. , The opening degree of the indoor expansion valve 16 is controlled according to the operating frequency detected by the frequency sensor 27.
制御装置26は、圧縮機21が最低運転周波数付近で運転している場合に、室内膨張弁16の開度を小さくして、熱交換器11へ流入する冷媒の流量を減少させ、発生する空調能力(冷房能力)を小さくする。これにより、圧縮機21が最低運転周波数で動作していても、さらなる冷房能力の低減が可能となるため、従来では圧縮機21の断続運転が必要となる空調負荷であっても、圧縮機21の断続運転を回避することができる。この詳細については以下に説明する。
When the compressor 21 is operating near the minimum operating frequency, the control device 26 reduces the opening degree of the indoor expansion valve 16 to reduce the flow rate of the refrigerant flowing into the heat exchanger 11, resulting in air conditioning. Reduce the capacity (cooling capacity). As a result, even if the compressor 21 is operating at the lowest operating frequency, the cooling capacity can be further reduced. Therefore, even if the air conditioning load conventionally requires intermittent operation of the compressor 21, the compressor 21 can be operated. Intermittent operation can be avoided. The details will be described below.
図2は、空気調和システムに用いられる制御装置26のハードウェア構成の一例を示した図である。制御装置26は、CPU40と、フラッシュメモリ41と、RAM42と、通信I/F43と、制御I/F44とを備える。CPU40等の構成要素は、バス45に接続され、バス45を介して情報等のやりとりを行う。
FIG. 2 is a diagram showing an example of the hardware configuration of the control device 26 used in the air conditioning system. The control device 26 includes a CPU 40, a flash memory 41, a RAM 42, a communication I / F43, and a control I / F44. Components such as the CPU 40 are connected to the bus 45, and information and the like are exchanged via the bus 45.
フラッシュメモリ41は、CPU40により実行されるプログラムや各種のデータ等を記憶する。RAM42は、CPU40に対して作業領域を提供する。CPU40は、フラッシュメモリ41に記憶されたプログラムをRAM42に読み出し実行することで、上記の制御を実現する。
The flash memory 41 stores a program executed by the CPU 40, various data, and the like. The RAM 42 provides a work area for the CPU 40. The CPU 40 realizes the above control by reading and executing the program stored in the flash memory 41 into the RAM 42.
通信I/F43は、室内機10と接続し、室内機10から室内温度、液配管温度、ガス配管温度等の情報を受信する。また、通信I/F43は、周波数センサ27からの情報も受信する。制御I/F44は、圧縮機21、ファン23、室外膨張弁24、四方弁25、室内膨張弁16と接続し、それぞれの機器の制御を行う。
The communication I / F 43 is connected to the indoor unit 10 and receives information such as the indoor temperature, the liquid pipe temperature, and the gas pipe temperature from the indoor unit 10. The communication I / F 43 also receives information from the frequency sensor 27. The control I / F44 is connected to the compressor 21, the fan 23, the outdoor expansion valve 24, the four-way valve 25, and the indoor expansion valve 16 to control each device.
ここでは、制御装置26は、CPU40がフラッシュメモリ41からプログラムを読み出し実行することにより上記の制御を実現するが、回路等のハードウェアを使用して上記の制御を実現してもよい。
Here, the control device 26 realizes the above control by the CPU 40 reading and executing the program from the flash memory 41, but the above control may be realized by using hardware such as a circuit.
以下に具体的な制御を、冷房運転時の制御として詳細に説明する。図3は、室内膨張弁16の開度制御の第1の例を示したフローチャートである。この制御は、冷房運転を開始した段階で、ステップ100から開始する。ステップ101では、運転周波数Fが、最低運転周波数Fminより大きい任意の周波数(周波数閾値)Fdより小さいか否かを判定する。周波数閾値Fdは、室内膨張弁16の開度の制御を開始する前に断続運転に入らないように、最低運転周波数Fminに一定の余裕をみて決定される。室内膨張弁16の開度制御は、FがFdより小さいと判定されるまでステップ101の判定が繰り返される。
Specific control will be described in detail below as control during cooling operation. FIG. 3 is a flowchart showing a first example of opening degree control of the indoor expansion valve 16. This control starts from step 100 when the cooling operation is started. In step 101, it is determined whether or not the operating frequency F is smaller than an arbitrary frequency (frequency threshold) F d that is larger than the minimum operating frequency F min. The frequency threshold value F d is determined with a certain margin at the minimum operating frequency F min so as not to enter the intermittent operation before starting the control of the opening degree of the indoor expansion valve 16. In the opening degree control of the indoor expansion valve 16, the determination in step 101 is repeated until F is determined to be smaller than F d.
ステップ101でFがFdより小さいと判定された場合、ステップ102へ進み、室内の空調負荷と発生冷房能力との差分RLが、負荷閾値RLthより小さいか否かを判定する。
If it is determined in step 101 that F is smaller than F d , the process proceeds to step 102, and it is determined whether or not the difference RL between the indoor air conditioning load and the generated cooling capacity is smaller than the load threshold value RL th.
室内の空調負荷と発生能力との差分RLは、設定温度と、室温センサ13により検出された検出値(室温)と、所定時間内の室温の変化量とを用いて検出することができる。所定時間は、室内膨張弁16の制御にかかる時間(数秒程度)のように短い時間では、変化量が小さすぎて、変化量を検出することができず、長い時間では、その間に断続運転に入ってしまう可能性があることから、例えば数十秒から数分程度とすることができる。
The difference RL between the indoor air conditioning load and the generation capacity can be detected by using the set temperature, the detection value (room temperature) detected by the room temperature sensor 13, and the amount of change in room temperature within a predetermined time. In the predetermined time, if it is a short time such as the time required to control the indoor expansion valve 16 (about several seconds), the amount of change is too small to detect the amount of change, and if it is a long time, intermittent operation is performed during that time. Since there is a possibility that it will enter, it can be set to, for example, several tens of seconds to several minutes.
RLがRLth以上と判定された場合、空調負荷に対して冷房能力が相対的に小さく能力を減少させる必要がないため、室内膨張弁16の開度制御を行わない。このため、ステップ101へ戻り、制御を継続する。
When it is determined that the RL is RL th or more, the cooling capacity is relatively small with respect to the air conditioning load and it is not necessary to reduce the capacity, so that the opening degree of the indoor expansion valve 16 is not controlled. Therefore, the process returns to step 101 and the control is continued.
一方、ステップ102でRLがRLthより小さいと判定された場合、空調負荷に対して冷房能力が相対的に大きいため、ステップ103へ進み、冷媒の流量を低下させるべく、室内膨張弁16の開度を小さくする。室内膨張弁16の開度を小さくすると、冷媒の流量を低下させるとともに、圧力が低いために二相冷媒はより小さい熱交換量で気相となるので、熱交換器11の蒸発器として機能する伝熱管の部分の面積(有効面積)も小さくなる。室内の空気は、主に冷媒が蒸発する際の潜熱により冷却されるため、有効面積が小さくなることにより冷房能力を低下させることができる。冷房能力が低下することで、冷媒を全て蒸発させ、さらには過熱度を付与して熱交換器11から排出させることができる。
On the other hand, when it is determined in step 102 that the RL is smaller than the RL th , the cooling capacity is relatively large with respect to the air conditioning load, so the process proceeds to step 103 and the indoor expansion valve 16 is opened in order to reduce the flow rate of the refrigerant. Reduce the degree. When the opening degree of the indoor expansion valve 16 is reduced, the flow rate of the refrigerant is reduced, and since the pressure is low, the two-phase refrigerant becomes a gas phase with a smaller amount of heat exchange, and thus functions as an evaporator of the heat exchanger 11. The area (effective area) of the heat transfer tube is also reduced. Since the air in the room is cooled mainly by the latent heat when the refrigerant evaporates, the cooling capacity can be reduced by reducing the effective area. By reducing the cooling capacity, all the refrigerant can be evaporated, and the degree of superheat can be imparted and discharged from the heat exchanger 11.
制御装置26は、設定温度と、室温センサ13の検出値に基づき、圧縮機21の回転数を制御し、過熱度を一定の範囲に保つように室外膨張弁24の開度を制御する。したがって、室内負荷が大きい場合、制御装置26は、圧縮機21の回転数を上げて冷媒の循環量を増加させ、室内負荷が小さくなると、圧縮機21の回転数を下げて冷媒の循環量を減少させる。
The control device 26 controls the rotation speed of the compressor 21 based on the set temperature and the detection value of the room temperature sensor 13, and controls the opening degree of the outdoor expansion valve 24 so as to keep the degree of superheat within a certain range. Therefore, when the indoor load is large, the control device 26 increases the rotation speed of the compressor 21 to increase the circulation amount of the refrigerant, and when the indoor load is small, the rotation speed of the compressor 21 is decreased to increase the circulation amount of the refrigerant. Reduce.
室内負荷が次第に小さくなり、圧縮機21の運転が最低運転周波数になった場合であっても、室内膨張弁16の開度を小さくして冷房能力を低下させることで、圧縮機21が最低運転周波数で運転し続けても、室温を維持することができる。このため、圧縮機21の連続運転を維持することが可能となる。
Even when the indoor load gradually decreases and the operation of the compressor 21 reaches the minimum operating frequency, the compressor 21 operates at the minimum by reducing the opening degree of the indoor expansion valve 16 to reduce the cooling capacity. Room temperature can be maintained even if the operation is continued at the frequency. Therefore, it is possible to maintain the continuous operation of the compressor 21.
ステップ103で室内膨張弁16の開度を小さくした後は、ステップ101へ戻り、制御を継続する。なお、空気調和システムの運転を停止した場合は、この制御も終了する。
After reducing the opening degree of the indoor expansion valve 16 in step 103, the process returns to step 101 to continue the control. When the operation of the air conditioning system is stopped, this control is also terminated.
図4に、従来の制御と図3に示した室内膨張弁16の開度制御における運転開始後の消費電力の時間履歴を示す。従来の制御は、断続運転を繰り返す制御であり、時間履歴を破線で示す。従来の制御は、サーモオフになると、消費電力がゼロになるが、サーモオン時に電力を多く消費する。一方、室内膨張弁16の開度制御(本制御)を行うと、サーモオフ/サーモオンが発生せず、一定の低い電力を消費するのみであるため、時間軸と実線とにより囲まれるトータルの消費電力(消費電力の時間積分の値)は、同じく時間軸と破線とにより囲まれる従来の制御のトータルの消費電力に比較して小さくなる。したがって、本制御は、従来制御に比較して消費電力を低減することができる。
FIG. 4 shows the time history of power consumption after the start of operation in the conventional control and the opening control of the indoor expansion valve 16 shown in FIG. The conventional control is a control in which intermittent operation is repeated, and the time history is indicated by a broken line. The conventional control consumes zero power when the thermo is turned off, but consumes a lot of power when the thermo is turned on. On the other hand, when the opening degree control (main control) of the indoor expansion valve 16 is performed, thermo-off / thermo-on does not occur and only a certain low power consumption is consumed. Therefore, the total power consumption surrounded by the time axis and the solid line is consumed. (Value of time integration of power consumption) is smaller than the total power consumption of the conventional control, which is also surrounded by the time axis and the broken line. Therefore, this control can reduce the power consumption as compared with the conventional control.
図3に示した制御は、室内膨張弁16の開度を小さくするのみの制御であったが、外気温の上昇等により、室温が上昇し、空調負荷が大きくなると、低下した冷房能力を向上させたい場合がある。また、空調負荷が大きくなった場合に冷媒の循環量が小さく、蒸発器の有効面積も小さいままであると、非効率な運転となる。そこで、冷房能力を向上させることができる制御について、図5を参照して説明する。
The control shown in FIG. 3 was only to reduce the opening degree of the indoor expansion valve 16, but when the room temperature rises due to an increase in the outside air temperature and the air conditioning load increases, the reduced cooling capacity is improved. You may want to let it. Further, if the circulation amount of the refrigerant is small and the effective area of the evaporator remains small when the air conditioning load is large, the operation becomes inefficient. Therefore, the control capable of improving the cooling capacity will be described with reference to FIG.
図5は、室内膨張弁16の開度制御の第2の例を示したフローチャートである。ステップ200から開始し、図3に示した制御と同様、ステップ201では、運転周波数Fが、周波数閾値Fdより小さいか否かを判定する。FがFdより小さいと判定された場合、ステップ202へ進み、室内の空調負荷と発生冷房能力との差分RLが、閾値RLthより小さいか否かを判定する。そして、RLがRLthより小さいと判定された場合、ステップ203へ進み、冷媒の流量を低下させるべく、室内膨張弁16の開度を小さくする。室内膨張弁16の開度を小さくした後、ステップ201へ戻り、制御を継続する。
FIG. 5 is a flowchart showing a second example of opening degree control of the indoor expansion valve 16. Starting from step 200, in the same manner as the control shown in FIG. 3, in step 201, it is determined whether or not the operating frequency F is smaller than the frequency threshold value F d. If it is determined that F is smaller than F d , the process proceeds to step 202, and it is determined whether or not the difference RL between the indoor air conditioning load and the generated cooling capacity is smaller than the threshold value RL th. Then, when it is determined that the RL is smaller than the RL th , the process proceeds to step 203, and the opening degree of the indoor expansion valve 16 is reduced in order to reduce the flow rate of the refrigerant. After reducing the opening degree of the indoor expansion valve 16, the process returns to step 201 to continue the control.
ステップ201でFがFd以上と判定された場合、またはステップ202でRLがRLth以上と判定された場合、ステップ204へ進み、室内膨張弁16の開度を大きくする。FがFd以上である場合、冷房能力を向上させる必要があることを示しており、冷房能力を向上させるために、冷媒の循環量を増加させ、熱交換器11の出口側の過熱度を減少させて有効面積を増加させるべく、室内膨張弁16の開度を大きくする。RLがRLth以上である場合、発生冷房能力に比較して空調負荷が相対的に大きくなったことを示しており、空調負荷が大きくなったのに、冷媒の循環量が少なく、有効面積も小さいままであると、非効率な運転となることから、室内膨張弁16の開度を大きくし、冷媒の循環量を増加させる。
If F is determined to be F d or more in step 201, or if RL is determined to be RL th or more in step 202, the process proceeds to step 204 to increase the opening degree of the indoor expansion valve 16. When F is F d or more, it indicates that it is necessary to improve the cooling capacity, and in order to improve the cooling capacity, the circulation amount of the refrigerant is increased and the degree of superheat on the outlet side of the heat exchanger 11 is increased. The opening degree of the indoor expansion valve 16 is increased in order to decrease and increase the effective area. When RL is RL th or more, it indicates that the air conditioning load is relatively large compared to the generated cooling capacity, and even though the air conditioning load is large, the amount of refrigerant circulating is small and the effective area is also large. If it remains small, the operation will be inefficient. Therefore, the opening degree of the indoor expansion valve 16 is increased to increase the circulation amount of the refrigerant.
室内膨張弁16の開度を大きくした後は、ステップ201へ戻り、制御を継続する。この場合も、空気調和システムの運転を停止した場合、制御を終了する。
After increasing the opening degree of the indoor expansion valve 16, the process returns to step 201 and the control is continued. In this case as well, when the operation of the air conditioning system is stopped, the control is terminated.
図5に示した制御は、室内膨張弁16の開度を小さく、または大きくする制御であったが、一度に開度を大きく変化させると、室温に変動が生じる。また、空調負荷によっては室内膨張弁16の開度を変更せず、維持したほうが室温の変動が小さい場合もある。室温に変動が生じ、その変動が大きいと、快適性が損なわれるからである。そこで、室内膨張弁16の開度を調整し、維持することができる制御について、図6を参照して説明する。
The control shown in FIG. 5 was a control for reducing or increasing the opening degree of the indoor expansion valve 16, but if the opening degree is greatly changed at one time, the room temperature will fluctuate. Further, depending on the air conditioning load, the fluctuation of the room temperature may be smaller if the opening degree of the indoor expansion valve 16 is maintained without being changed. This is because the room temperature fluctuates, and if the fluctuation is large, the comfort is impaired. Therefore, the control capable of adjusting and maintaining the opening degree of the indoor expansion valve 16 will be described with reference to FIG.
図6は、室内膨張弁16の開度制御の第3の例を示したフローチャートである。図6に示すステップ301、302については、図5に示したステップ201、202と同様であるため、その説明については省略する。
FIG. 6 is a flowchart showing a third example of opening degree control of the indoor expansion valve 16. Since steps 301 and 302 shown in FIG. 6 are the same as steps 201 and 202 shown in FIG. 5, the description thereof will be omitted.
ステップ302でRLがRLthより小さいと判定された場合、ステップ303へ進み、所定時間における室温の変化量dTinが、予め設定された開度減少開始変化量dTdecより小さいか否かを判定する。dTdecは、室内膨張弁16の開度の減少を開始させる基準となる室温の変化量である。なお、室温の変化量dTinは、所定時間における室温センサ13の検出値の変化量として算出することができる。
If it is determined in step 302 that the RL is smaller than the RL th , the process proceeds to step 303, and it is determined whether or not the change amount dT in of the room temperature at a predetermined time is smaller than the preset opening decrease start change amount dT dec. do. The dT dec is the amount of change in room temperature that serves as a reference for starting the decrease in the opening degree of the indoor expansion valve 16. The amount of change in room temperature dT in can be calculated as the amount of change in the detected value of the room temperature sensor 13 in a predetermined time.
ステップ303でdTinがdTdecより小さいと判定された場合は、室温が急激に下がっているので、冷房能力を低下させる必要があることから、ステップ304へ進み、室温の変化量dTinに応じて、室内膨張弁16の開度の変化量を演算し、その変化量に応じて室内膨張弁16の開度を減少させる。そして、ステップ301へ戻り、制御を継続する。
If it is determined in step 303 that dT in is smaller than dT dec , the room temperature has dropped sharply and it is necessary to reduce the cooling capacity. Therefore, the process proceeds to step 304, depending on the amount of change in room temperature dT in . Therefore, the amount of change in the opening degree of the indoor expansion valve 16 is calculated, and the opening degree of the indoor expansion valve 16 is reduced according to the amount of change. Then, the process returns to step 301 to continue the control.
ステップ303でdTinが、dTdec以上と判定された場合、ステップ305へ進み、室温Tinと設定温度Tsetとの温度差が、予め設定された開度減少開始温度差ΔTdecより小さいか否かを判定する。ΔTdecは、室内膨張弁16の開度の減少を開始させる基準となる室温と設定温度との温度差である。温度差がΔTdecより小さいと判定された場合、室温の変化量としてはdTdecより大きいが、室温が低いため冷房能力を低下させる必要があることから、ステップ304へ進み、室内膨張弁16の開度を減少させる。そして、ステップ301へ戻り、制御を継続する。
DT in Step 303, when it is determined that dT dec above, the process proceeds to step 305, the temperature difference between the set temperature T set room temperature T in is either preset opening decrease start temperature difference [Delta] T dec smaller Judge whether or not. ΔT dec is the temperature difference between the room temperature and the set temperature, which is a reference for starting the decrease in the opening degree of the indoor expansion valve 16. When it is determined that the temperature difference is smaller than ΔT dec , the amount of change in room temperature is larger than dT dec, but since the room temperature is low, it is necessary to reduce the cooling capacity. Reduce the opening. Then, the process returns to step 301 to continue the control.
一方、ステップ305で温度差がΔTdec以上と判定された場合、室温が下がっていないと判断でき、室内膨張弁16の開度を減少する制御を行うと、発生能力を小さくしすぎて室温が上昇する可能性がある。このため、ステップ306へ進み、室内膨張弁16の開度を現在の開度に維持する。そして、ステップ301へ戻り、制御を継続する。
On the other hand, when it is determined in step 305 that the temperature difference is ΔT dec or more, it can be determined that the room temperature has not decreased, and if control is performed to reduce the opening degree of the indoor expansion valve 16, the generation capacity is too small and the room temperature rises. May rise. Therefore, the process proceeds to step 306, and the opening degree of the indoor expansion valve 16 is maintained at the current opening degree. Then, the process returns to step 301 to continue the control.
ステップ301でFがFd以上と判定された場合、またはステップ302でRLがRLth以上と判定された場合、ステップ307へ進み、dTinが、予め設定された開度増加開始変化量dTincより大きいか否かを判定する。dTincは、室内膨張弁16の開度の増加を開始させる基準となる室温の変化量である。dTinがdTincより大きい場合、外気温の上昇等により室温が大きく変化していることを示すため、室内膨張弁16の開度を増加して冷媒の流量を増加させる必要がある。このため、dTinがdTincより大きいと判定された場合、ステップ308へ進み、室温センサ13の検出値の変化量に応じて、室内膨張弁16の開度の変化量を演算し、室内膨張弁16の開度を増加させる。
If F is determined to be F d or more in step 301, or if RL is determined to be RL th or more in step 302, the process proceeds to step 307, and dT in is a preset opening increase start change amount dT inc. Determine if it is greater than. dT inc is the amount of change in room temperature that serves as a reference for starting an increase in the opening degree of the indoor expansion valve 16. When dT in is larger than dT inc , it indicates that the room temperature has changed significantly due to an increase in outside air temperature or the like, so it is necessary to increase the opening degree of the indoor expansion valve 16 to increase the flow rate of the refrigerant. Therefore, when it is determined that the dT in is larger than the dT inc , the process proceeds to step 308, and the amount of change in the opening degree of the indoor expansion valve 16 is calculated according to the amount of change in the detected value of the room temperature sensor 13, and the indoor expansion is performed. Increase the opening degree of the valve 16.
ステップ307でdTinがdTinc以下と判定された場合、ステップ309へ進み、室温Tinと設定温度Tsetとの温度差が、予め設定された開度増加開始温度差ΔTincより大きいか否かを判定する。ΔTincは、室内膨張弁16の開度の増加を開始させる基準となる室温と設定温度との温度差である。温度差がΔTincより大きい場合、室内膨張弁16の開度を増加して冷媒の流量を増加させる必要があるため、ステップ308へ進む。一方、温度差がΔTinc以下である場合に室内膨張弁16の開度を増加する制御を行うと、室温が上がっていないのに冷房能力を高め、室温を低下させる可能性がある。このため、ステップ310へ進み、室内膨張弁16の開度を現在の開度に維持する。そして、ステップ301へ戻り、制御を継続する。
If dT in in step 307 is less than or equal to dT inc, the process proceeds to step 309, room T the temperature difference between the in and the set temperature T set is greater than a preset opening degree increase start temperature difference [Delta] T inc not Is determined. ΔT inc is the temperature difference between the room temperature and the set temperature, which is a reference for starting the increase in the opening degree of the indoor expansion valve 16. When the temperature difference is larger than ΔT inc , it is necessary to increase the opening degree of the indoor expansion valve 16 to increase the flow rate of the refrigerant, so the process proceeds to step 308. On the other hand, if the opening degree of the indoor expansion valve 16 is controlled to be increased when the temperature difference is ΔT inc or less, the cooling capacity may be increased and the room temperature may be lowered even though the room temperature has not risen. Therefore, the process proceeds to step 310, and the opening degree of the indoor expansion valve 16 is maintained at the current opening degree. Then, the process returns to step 301 to continue the control.
このようにして、室内膨張弁16の開度を調整し、維持する制御を行うことで、室温をより安定させることができる。この場合も、空気調和システムの運転を停止した場合、制御を終了する。
In this way, the room temperature can be further stabilized by controlling the opening degree of the indoor expansion valve 16 to be adjusted and maintained. In this case as well, when the operation of the air conditioning system is stopped, the control is terminated.
図6に示した制御は、室内膨張弁16の開度を調整し、維持する制御であったが、配管温度センサ14、15の検出値を使用することで、室内熱交換器出口側の冷媒過熱度を目標値とする制御が可能となる。そこで、配管温度センサ14、15の検出値を用いた制御について、図7を参照して説明する。
The control shown in FIG. 6 was a control for adjusting and maintaining the opening degree of the indoor expansion valve 16, but by using the detected values of the pipe temperature sensors 14 and 15, the refrigerant on the outlet side of the indoor heat exchanger Control with the degree of superheat as the target value becomes possible. Therefore, the control using the detected values of the pipe temperature sensors 14 and 15 will be described with reference to FIG. 7.
図7は、室内膨張弁16の開度制御の第4の例を示したフローチャートである。この場合も、図5に示した処理とは異なる部分についてのみ説明する。ステップ403では、dTinが過熱度増加開始変化量dTincより小さいか否かを判定する。図6に示した例では、dTincが開度増加開始変化量であったが、この例では過熱度増加開始変化量とされている。同様に、この例ではdTdecが過熱度減少開始変化量とされ、ΔTincが過熱度増加開始温度差、ΔTdecが過熱度増加開始温度差とされている。
FIG. 7 is a flowchart showing a fourth example of opening degree control of the indoor expansion valve 16. Also in this case, only the parts different from the processing shown in FIG. 5 will be described. In step 403, it is determined whether or not the dT in is smaller than the superheat degree increase start change amount dT inc. In the example shown in FIG. 6, dT inc was the opening change start change amount, but in this example, it is the superheat degree increase start change amount. Similarly, in this example, dT dec is the amount of change in the start of decrease in superheat, ΔT inc is the difference in start temperature of increase in superheat, and ΔT dec is the difference in start temperature of increase in superheat.
dTincは、過熱度の増加を開始させる基準となる室温の変化量であり、dTdesは、過熱度の減少を開始させる基準となる室温の変化量である。ΔTincは、過熱度の増加を開始させる基準となる室温と設定温度との温度差であり、ΔTdecは、過熱度の減少を開始させる基準となる室温と設定温度との温度差である。
dT inc is the amount of change in room temperature that is the reference for starting the increase in the degree of superheat, and dT des is the amount of change in the room temperature that is the reference for starting the decrease in the degree of superheat. ΔT inc is the temperature difference between the room temperature and the set temperature, which is the reference for starting the increase in the degree of superheat, and ΔT dec is the temperature difference between the room temperature and the set temperature, which is the reference for starting the decrease in the degree of superheat.
ステップ404では、室温センサ13の検出値と、所定時間における室温センサ13の検出値の変化量とに基づき、熱交換器11の冷媒の出口側の目標過熱度を演算する。この場合、冷媒の流量を減少させ、過熱度を付与して有効面積を減少させることにより、冷房能力を低下させるため、過熱度が増加する。
In step 404, the target degree of superheat on the outlet side of the refrigerant of the heat exchanger 11 is calculated based on the detected value of the room temperature sensor 13 and the amount of change in the detected value of the room temperature sensor 13 in a predetermined time. In this case, by reducing the flow rate of the refrigerant and imparting a degree of superheat to reduce the effective area, the cooling capacity is lowered, so that the degree of superheat increases.
ステップ405では、室内熱交換器出口側の冷媒過熱度がステップ404で求めた目標過熱度となるような室内膨張弁16の開度の変化量を演算し、室内膨張弁16の開度を制御する。ここでは、室内膨張弁16の開度を減少させる。そして、ステップ401へ戻り、制御を継続する。
In step 405, the amount of change in the opening degree of the indoor expansion valve 16 is calculated so that the refrigerant superheat degree on the outlet side of the indoor heat exchanger becomes the target superheat degree obtained in step 404, and the opening degree of the indoor expansion valve 16 is controlled. do. Here, the opening degree of the indoor expansion valve 16 is reduced. Then, the process returns to step 401 to continue the control.
ステップ406でTinとTsetとの温度差がΔTdec以下と判定された場合、ステップ407へ進み、ステップ404と同様にして、目標過熱度を演算するが、冷房能力を低下させないため、過熱度を現在の過熱度に維持し、ステップ408では、室内膨張弁16の開度を現在の開度に維持する。そして、ステップ401へ戻り、制御を継続する。
If the temperature difference between T in and T set is less than or equal to [Delta] T dec at step 406, the process proceeds to step 407, as in step 404, for although calculates the target degree of superheat, not to lower the cooling capacity, heating The degree is maintained at the current degree of superheat, and in step 408, the opening degree of the indoor expansion valve 16 is maintained at the current opening degree. Then, the process returns to step 401 to continue the control.
ステップ409でdTinがdTincより大きいと判定された場合、ステップ410へ進み、ステップ404と同様、目標過熱度を演算する。この場合、冷媒の流量を増加させ、過熱度を減じて有効面積を増加させることにより、冷房能力を向上させるため、過熱度が減少する。
If it is determined in step 409 that dT in is larger than dT inc , the process proceeds to step 410, and the target superheat degree is calculated in the same manner as in step 404. In this case, the degree of superheat is reduced because the cooling capacity is improved by increasing the flow rate of the refrigerant and reducing the degree of superheat to increase the effective area.
ステップ411では、ステップ405と同様にして、室内熱交換器出口側の冷媒過熱度がステップ410で求めた目標過熱度となるような室内膨張弁16の開度の変化量を演算し、室内膨張弁16の開度を制御する。この場合、室内膨張弁16の開度を増加させる。そして、ステップ401へ戻り、制御を継続する。
In step 411, in the same manner as in step 405, the amount of change in the opening degree of the indoor expansion valve 16 such that the refrigerant superheat degree on the outlet side of the indoor heat exchanger becomes the target superheat degree obtained in step 410 is calculated to expand the room. The opening degree of the valve 16 is controlled. In this case, the opening degree of the indoor expansion valve 16 is increased. Then, the process returns to step 401 to continue the control.
ステップ412でTinとTsetとの温度差がΔTincより大きいと判定された場合、ステップ413へ進み、ステップ404と同様にして、目標過熱度を演算するが、冷房能力を増加させないため、過熱度を現在の過熱度に維持し、ステップ414では、室内膨張弁16の開度を現在の開度に維持する。そして、ステップ401へ戻り、制御を継続する。この場合も、空気調和システムの運転を停止した場合、制御を終了する。
If the temperature difference between T in and T set is judged to be larger than [Delta] T inc at step 412, the process proceeds to step 413, as in step 404, for although calculates the target degree of superheat, which does not increase the cooling capacity, The degree of superheat is maintained at the current degree of superheat, and in step 414, the opening degree of the indoor expansion valve 16 is maintained at the current opening degree. Then, the process returns to step 401 to continue the control. In this case as well, when the operation of the air conditioning system is stopped, the control is terminated.
これまで、室内膨張弁16の開度制御を、室外機20が備える制御装置26により実施することを説明してきたが、室内膨張弁16の開度制御は、制御装置26により実施することに限定されるものではない。例えば、室内機10が備える制御装置で実施してもよいし、室内機10や室外機20とは別に設けられた集中制御装置等で実施してもよい。
So far, it has been described that the opening degree control of the indoor expansion valve 16 is performed by the control device 26 included in the outdoor unit 20, but the opening degree control of the indoor expansion valve 16 is limited to the control device 26. It is not something that is done. For example, it may be carried out by a control device provided in the indoor unit 10, or may be carried out by a centralized control device provided separately from the indoor unit 10 and the outdoor unit 20.
空気調和システムは、室内機10と室外機20が1台ずつで構成されるものに限定されるものではない。したがって、1台の室外機20に複数の室内機10が接続されたシステムや、複数の室外機20と複数の室内機10とを接続したシステムであってもよい。図8は、1台の室外機20に複数の室内機10が接続されたシステムの例を示している。図8に示す例では、3台の室内機10a~10cと室外機20とが接続されている。
The air conditioning system is not limited to one in which the indoor unit 10 and the outdoor unit 20 are composed of one unit each. Therefore, a system in which a plurality of indoor units 10 are connected to one outdoor unit 20 or a system in which a plurality of outdoor units 20 and a plurality of indoor units 10 are connected may be used. FIG. 8 shows an example of a system in which a plurality of indoor units 10 are connected to one outdoor unit 20. In the example shown in FIG. 8, three indoor units 10a to 10c and an outdoor unit 20 are connected.
各室内機10a~10cは、各室内に設置され、各室内の室温を設定温度になるように調整する。各室内機10a~10cは、それぞれ室内膨張弁16a~16cを備えるため、室内ごとに冷房能力を調整することができる。このため、室内ごとに空調負荷が異なる場合でも、断続運転を回避しつつ、各室内の室温を安定させることができる。
Each indoor unit 10a to 10c is installed in each room and adjusts the room temperature in each room so as to reach the set temperature. Since each of the indoor units 10a to 10c is provided with indoor expansion valves 16a to 16c, the cooling capacity can be adjusted for each room. Therefore, even if the air conditioning load differs from room to room, the room temperature in each room can be stabilized while avoiding intermittent operation.
断続運転を回避し、連続運転を実現することにより、消費電力を低減させることもでき、また、起動、停止の回数を減少させることができるので機器の効率を向上させることができ、故障等も減少するので、信頼性を向上させることもできる。また、室温を安定させることができるため、快適性を維持することができる。
By avoiding intermittent operation and realizing continuous operation, power consumption can be reduced, and the number of starts and stops can be reduced, so that the efficiency of equipment can be improved and failures can occur. Since it is reduced, reliability can be improved. Moreover, since the room temperature can be stabilized, comfort can be maintained.
これまで本発明の室内機、空気調和システムおよび制御方法について上述した実施形態をもって詳細に説明してきたが、本発明は、上述した実施形態に限定されるものではなく、他の実施形態や、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。
Although the indoor unit, the air conditioning system, and the control method of the present invention have been described in detail with the above-described embodiments, the present invention is not limited to the above-described embodiments, and other embodiments and additions have been made. , Changes, deletions, etc. can be made within the range that can be conceived by those skilled in the art, and are included in the scope of the present invention as long as the actions and effects of the present invention are exhibited in any of the embodiments.
10、10a~10c…室内機
11、11a~11c…熱交換器
12、12a~12c…ファン
13、13a~13c…室温センサ
14、14a~14c、15、15a~15c…配管温度センサ
16、16a~16c…室内膨張弁
20…室外機
21…圧縮機
22…熱交換器
23…ファン
24…室外膨張弁
25…四方弁
26…制御装置
27…周波数センサ
30、31…配管
40…CPU
41…フラッシュメモリ
42…RAM
43…通信I/F
44…制御I/F
45…バス 10, 10a to 10c ... Indoor units 11, 11a to 11c ... Heat exchangers 12, 12a to 12c ... Fans 13, 13a to 13c ... Room temperature sensors 14, 14a to 14c, 15, 15a to 15c ... Piping temperature sensors 16, 16a ~ 16c ... Indoor expansion valve 20 ... Outdoor unit 21 ... Compressor 22 ... Heat exchanger 23 ... Fan 24 ... Outdoor expansion valve 25 ... Four-way valve 26 ... Control device 27 ... Frequency sensors 30, 31 ... Piping 40 ... CPU
41 ...Flash memory 42 ... RAM
43 ... Communication I / F
44 ... Control I / F
45 ... Bus
11、11a~11c…熱交換器
12、12a~12c…ファン
13、13a~13c…室温センサ
14、14a~14c、15、15a~15c…配管温度センサ
16、16a~16c…室内膨張弁
20…室外機
21…圧縮機
22…熱交換器
23…ファン
24…室外膨張弁
25…四方弁
26…制御装置
27…周波数センサ
30、31…配管
40…CPU
41…フラッシュメモリ
42…RAM
43…通信I/F
44…制御I/F
45…バス 10, 10a to 10c ...
41 ...
43 ... Communication I / F
44 ... Control I / F
45 ... Bus
Claims (11)
- 室内機と室外機とを備える空気調和システムであって、
前記室内機が、
熱交換器と、
室内の温度を検出する室内温度検出手段と、
冷凍サイクル内を流れる冷媒の流量を調整するための弁と
を含み、
前記室外機が、
熱交換器と、
圧縮機と、
前記圧縮機の運転周波数を検出する周波数検出手段と、
前記冷凍サイクル内を流れる冷媒の流量を調整するための弁と
を含み、
前記室内温度検出手段により検出された前記室内の温度と、所定時間における該室内の温度の変化量と、前記周波数検出手段により検出された前記運転周波数とに応じて、前記室内機の前記弁の開度を制御する制御手段
を含む、空気調和システム。 An air conditioning system that includes an indoor unit and an outdoor unit.
The indoor unit
With a heat exchanger
Indoor temperature detecting means for detecting indoor temperature and
Including a valve for adjusting the flow rate of the refrigerant flowing in the refrigeration cycle,
The outdoor unit
With a heat exchanger
With a compressor,
A frequency detecting means for detecting the operating frequency of the compressor, and
Including a valve for adjusting the flow rate of the refrigerant flowing in the refrigeration cycle.
According to the indoor temperature detected by the indoor temperature detecting means, the amount of change in the indoor temperature over a predetermined time, and the operating frequency detected by the frequency detecting means, the valve of the indoor unit An air conditioning system that includes control means to control the opening. - 前記制御手段は、前記周波数検出手段により検出された前記運転周波数が周波数閾値より小さく、かつ、空調負荷と空調能力との差分を、前記室内温度検出手段により検出された前記室内の温度と設定温度との差と、前記所定時間における室内温度の変化量とから検出し、検出された前記差分が負荷閾値より小さい場合に、前記室内機の前記弁の開度を小さくする制御を行う、請求項1に記載の空気調和システム。 In the control means, the operating frequency detected by the frequency detecting means is smaller than the frequency threshold value, and the difference between the air conditioning load and the air conditioning capacity is set as the indoor temperature and the set temperature detected by the indoor temperature detecting means. A claim that controls to reduce the opening degree of the valve of the indoor unit when the difference is detected from the difference between the above and the amount of change in the indoor temperature during the predetermined time and the detected difference is smaller than the load threshold value. The air conditioning system according to 1.
- 前記制御手段は、前記周波数検出手段により検出された前記運転周波数が周波数閾値以上、または、空調負荷と空調能力との差分を、前記室内温度検出手段により検出された前記室内の温度と設定温度との差と、前記所定時間における室内温度の変化量とから検出し、検出された前記差分が負荷閾値以上である場合に、前記室内機の前記弁の開度を大きくする制御を行う、請求項1に記載の空気調和システム。 In the control means, the operating frequency detected by the frequency detecting means is equal to or higher than the frequency threshold value, or the difference between the air conditioning load and the air conditioning capacity is set to the indoor temperature and the set temperature detected by the indoor temperature detecting means. The difference is detected from the difference between the above and the amount of change in the indoor temperature during the predetermined time, and when the detected difference is equal to or greater than the load threshold value, control is performed to increase the opening degree of the valve of the indoor unit. The air conditioning system according to 1.
- 前記制御手段は、前記室内温度検出手段により検出された前記室内の温度と、前記所定時間における室内の温度の変化量とに基づいて、前記室内機の前記弁の開度の変化量を計算する、請求項1~3のいずれか1項に記載の空気調和システム。 The control means calculates the amount of change in the opening degree of the valve of the indoor unit based on the temperature in the room detected by the room temperature detecting means and the amount of change in the temperature in the room in the predetermined time. , The air conditioning system according to any one of claims 1 to 3.
- 前記室内機は、
前記熱交換器と前記室外機とを接続する2本の配管のそれぞれの温度を検出する2つの配管温度検出手段
を含み、
前記制御手段は、前記室内温度検出手段により検出された前記室内の温度と、前記所定時間における室内の温度の変化量とに基づいて、前記熱交換器から排出される前記冷媒の目標過熱度を計算し、前記2つの配管温度検出手段により検出された2つの温度の差から得られる過熱度が、計算した前記目標過熱度になるような前記室内機の前記弁の開度の変化量を計算する、請求項4に記載の空気調和システム。 The indoor unit is
Includes two pipe temperature detecting means for detecting the temperature of each of the two pipes connecting the heat exchanger and the outdoor unit.
The control means determines the target degree of superheat of the refrigerant discharged from the heat exchanger based on the temperature in the room detected by the room temperature detecting means and the amount of change in the temperature in the room in the predetermined time. Calculate and calculate the amount of change in the opening degree of the valve of the indoor unit so that the degree of superheat obtained from the difference between the two temperatures detected by the two pipe temperature detecting means becomes the calculated target degree of superheat. The air conditioning system according to claim 4. - 複数の室内機と室外機とを備える空気調和システムであって、
前記各室内機が、
熱交換器と、
室内の温度を検出する室内温度検出手段と、
冷凍サイクル内を流れる冷媒の流量を調整するための弁と
を含み、
前記室外機が、
熱交換器と、
圧縮機と、
前記圧縮機の運転周波数を検出する周波数検出手段と、
前記冷凍サイクル内を流れる冷媒の流量を調整するための弁と
を含み、
前記各室内機の前記各室内温度検出手段により検出された前記各室内の温度と、所定時間における該各室内の温度の変化量と、前記各室内機の前記各周波数検出手段により検出された前記各運転周波数とに応じて、前記各室内機の前記各弁の開度を制御する制御手段
を含む、空気調和システム。 An air conditioning system equipped with multiple indoor units and outdoor units.
Each of the indoor units
With a heat exchanger
Indoor temperature detecting means for detecting indoor temperature and
Including a valve for adjusting the flow rate of the refrigerant flowing in the refrigeration cycle,
The outdoor unit
With a heat exchanger
With a compressor,
A frequency detecting means for detecting the operating frequency of the compressor, and
Including a valve for adjusting the flow rate of the refrigerant flowing in the refrigeration cycle.
The temperature of each room detected by the indoor temperature detecting means of each indoor unit, the amount of change in the temperature of each room in a predetermined time, and the frequency detection means of each indoor unit detected. An air conditioning system including a control means for controlling the opening degree of each valve of each indoor unit according to each operating frequency. - 前記制御手段は、1以上の前記室内機につき、該室内機の前記周波数検出手段により検出された前記運転周波数が周波数閾値より小さく、かつ、空調負荷と空調能力との差分を、前記室内温度検出手段により検出された前記室内の温度と設定温度との差と、前記所定時間における室内温度の変化量とから検出し、検出された前記差分が負荷閾値より小さい場合に、該室内機の前記弁の開度を小さくする制御を行う、請求項6に記載の空気調和システム。 The control means detects the indoor temperature of one or more indoor units when the operating frequency detected by the frequency detecting means of the indoor unit is smaller than the frequency threshold value and the difference between the air conditioning load and the air conditioning capacity is detected. The valve of the indoor unit is detected from the difference between the indoor temperature and the set temperature detected by the means and the amount of change in the indoor temperature during the predetermined time, and when the detected difference is smaller than the load threshold value. The air conditioning system according to claim 6, wherein control is performed to reduce the opening degree of the air conditioning system.
- 前記制御手段は、1以上の前記室内機につき、該室内機の前記周波数検出手段により検出された前記運転周波数が周波数閾値以上、または、空調負荷と空調能力との差分を、前記室内温度検出手段により検出された前記室内の温度と設定温度との差と、前記所定時間における室内温度の変化量とから検出し、検出された前記差分が負荷閾値以上である場合に、該室内機の前記弁の開度を大きくする制御を行う、請求項6に記載の空気調和システム。 For one or more indoor units, the indoor temperature detecting means determines that the operating frequency detected by the frequency detecting means of the indoor unit is equal to or higher than the frequency threshold value, or the difference between the air conditioning load and the air conditioning capacity. When the difference detected from the difference between the indoor temperature and the set temperature detected by the above and the amount of change in the indoor temperature during the predetermined time is equal to or greater than the load threshold value, the valve of the indoor unit is used. The air conditioning system according to claim 6, wherein the air conditioning system is controlled to increase the opening degree of the air conditioning system.
- 前記制御手段は、1以上の前記室内機につき、該室内機の前記室内温度検出手段により検出された前記室内の温度と、前記所定時間における室内の温度の変化量とに基づいて、該室内機の前記弁の開度の変化量を計算する、請求項6~8のいずれか1項に記載の空気調和システム。 The control means is based on the indoor temperature detected by the indoor temperature detecting means of the indoor unit and the amount of change in the indoor temperature in the predetermined time for one or more indoor units. The air conditioning system according to any one of claims 6 to 8, wherein the amount of change in the opening degree of the valve is calculated.
- 前記各室内機は、
前記熱交換器と前記室外機とを接続する2本の配管のそれぞれの温度を検出する2つの配管温度検出手段
を含み、
前記制御手段は、1以上の前記室内機につき、該室内機の前記室内温度検出手段により検出された前記室内の温度と、前記所定時間における室内の温度の変化量とに基づいて、該室内機の前記熱交換器から排出される前記冷媒の目標過熱度を計算し、該室内機の前記2つの配管温度検出手段により検出された2つの温度の差から得られる過熱度が、計算した前記目標過熱度になるような該室内機の前記弁の開度の変化量を計算する、請求項9に記載の空気調和システム。 Each indoor unit is
Includes two pipe temperature detecting means for detecting the temperature of each of the two pipes connecting the heat exchanger and the outdoor unit.
For one or more indoor units, the control means is based on the indoor temperature detected by the indoor temperature detecting means of the indoor unit and the amount of change in the indoor temperature in the predetermined time. The target superheat degree of the refrigerant discharged from the heat exchanger is calculated, and the superheat degree obtained from the difference between the two temperatures detected by the two pipe temperature detecting means of the indoor unit is the calculated target. The air conditioning system according to claim 9, wherein the amount of change in the opening degree of the valve of the indoor unit so as to become superheated is calculated. - 熱交換器と、室内の温度を検出する室内温度検出手段と、冷凍サイクル内を流れる冷媒の流量を調整するための弁とを含む室内機と、
熱交換器と、圧縮機と、前記圧縮機の運転周波数を検出する周波数検出手段と、冷凍サイクル内を流れる冷媒の流量を調整するための弁とを含む室外機と、
制御手段と
を含む、空気調和システムの前記制御手段により実行される制御方法であって、
前記室内温度検出手段により検出された前記室内の温度から所定時間における該室内の温度の変化量を計算するステップと、
前記室内温度検出手段により検出された前記室内の温度と、前記周波数検出手段により検出された前記運転周波数と、計算した前記室内の温度の変化量とに応じて、前記室内機の前記弁の開度を制御するステップと
を含む、制御方法。 An indoor unit including a heat exchanger, an indoor temperature detecting means for detecting the indoor temperature, and a valve for adjusting the flow rate of the refrigerant flowing in the refrigeration cycle.
An outdoor unit including a heat exchanger, a compressor, a frequency detecting means for detecting the operating frequency of the compressor, and a valve for adjusting the flow rate of the refrigerant flowing in the refrigeration cycle.
A control method performed by said control means of an air conditioning system, including control means.
A step of calculating the amount of change in the temperature of the room in a predetermined time from the temperature of the room detected by the room temperature detecting means, and
The valve of the indoor unit is opened according to the indoor temperature detected by the indoor temperature detecting means, the operating frequency detected by the frequency detecting means, and the calculated amount of change in the indoor temperature. A control method, including steps to control the degree.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020545600A JP6890727B1 (en) | 2020-04-23 | 2020-04-23 | Air conditioning system and control method |
PCT/JP2020/017449 WO2021214931A1 (en) | 2020-04-23 | 2020-04-23 | Air conditioning system and control method |
JP2020149112A JP6890706B1 (en) | 2020-04-23 | 2020-09-04 | Air conditioning system and control method |
CN202110301759.3A CN113551437B (en) | 2020-04-23 | 2021-03-22 | Air conditioning system and control method |
KR1020210050295A KR102558826B1 (en) | 2020-04-23 | 2021-04-19 | Air conditioner system and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/017449 WO2021214931A1 (en) | 2020-04-23 | 2020-04-23 | Air conditioning system and control method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021214931A1 true WO2021214931A1 (en) | 2021-10-28 |
Family
ID=76429615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/017449 WO2021214931A1 (en) | 2020-04-23 | 2020-04-23 | Air conditioning system and control method |
Country Status (4)
Country | Link |
---|---|
JP (2) | JP6890727B1 (en) |
KR (1) | KR102558826B1 (en) |
CN (1) | CN113551437B (en) |
WO (1) | WO2021214931A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7068537B1 (en) * | 2021-09-28 | 2022-05-16 | 日立ジョンソンコントロールズ空調株式会社 | Air conditioner and control method |
CN114278985A (en) * | 2021-12-21 | 2022-04-05 | 珠海格力电器股份有限公司 | Control method, device and system of air conditioning system and air conditioning system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10141740A (en) * | 1996-11-06 | 1998-05-29 | Daikin Ind Ltd | Air conditioning device |
JP2009058200A (en) * | 2007-09-03 | 2009-03-19 | Orion Mach Co Ltd | Control method of cooling device |
JP2010249452A (en) * | 2009-04-17 | 2010-11-04 | Mitsubishi Electric Corp | Air conditioner |
WO2017017767A1 (en) * | 2015-07-27 | 2017-02-02 | 三菱電機株式会社 | Air conditioning device |
WO2018211682A1 (en) * | 2017-05-19 | 2018-11-22 | 三菱電機株式会社 | Chilling unit and water-circulating temperature-adjustment system |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3384150B2 (en) * | 1994-12-02 | 2003-03-10 | 株式会社日立製作所 | Multi-room air conditioner and operation method thereof |
KR100468917B1 (en) * | 2002-04-29 | 2005-02-02 | 삼성전자주식회사 | Multi-type air conditioner |
KR100437805B1 (en) * | 2002-06-12 | 2004-06-30 | 엘지전자 주식회사 | Multi-type air conditioner for cooling/heating the same time and method for controlling the same |
KR20100072943A (en) * | 2008-12-22 | 2010-07-01 | 삼성전자주식회사 | Multi-type air conditioner and operating method thereof |
JP5492625B2 (en) | 2010-03-25 | 2014-05-14 | 東芝キヤリア株式会社 | Air conditioner |
JP5955401B2 (en) * | 2012-10-18 | 2016-07-20 | ダイキン工業株式会社 | Air conditioner |
JP5932759B2 (en) | 2013-11-21 | 2016-06-08 | 三菱電機株式会社 | Air conditioner |
KR102344058B1 (en) * | 2013-12-24 | 2021-12-28 | 엘지전자 주식회사 | An air conditioning system and a method for controlling the same |
CN105588272B (en) * | 2015-09-29 | 2018-05-18 | 海信(广东)空调有限公司 | Air conditioner fan control method and device |
JP2017072298A (en) * | 2015-10-06 | 2017-04-13 | ダイキン工業株式会社 | Air conditioner |
KR102435203B1 (en) * | 2015-10-20 | 2022-08-24 | 삼성전자주식회사 | Air conditioner and control method thereof |
KR101880463B1 (en) * | 2016-12-21 | 2018-07-24 | 엘지전자 주식회사 | Air conditioner and Method for controlling it |
KR101954150B1 (en) * | 2017-05-23 | 2019-03-05 | 엘지전자 주식회사 | Air conditioner and Method for controlling it |
CN108758976B (en) * | 2018-06-19 | 2021-03-19 | 广东美的制冷设备有限公司 | Control method and device of air conditioner and air conditioner with control device |
CN110822617B (en) * | 2018-08-13 | 2021-07-27 | 青岛海尔空调电子有限公司 | Control method for air conditioner and air conditioner |
CN110285618B (en) * | 2019-06-27 | 2020-03-27 | 山东建筑大学 | Frequency conversion control device and control method of heat pump |
-
2020
- 2020-04-23 WO PCT/JP2020/017449 patent/WO2021214931A1/en active Application Filing
- 2020-04-23 JP JP2020545600A patent/JP6890727B1/en active Active
- 2020-09-04 JP JP2020149112A patent/JP6890706B1/en active Active
-
2021
- 2021-03-22 CN CN202110301759.3A patent/CN113551437B/en active Active
- 2021-04-19 KR KR1020210050295A patent/KR102558826B1/en active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10141740A (en) * | 1996-11-06 | 1998-05-29 | Daikin Ind Ltd | Air conditioning device |
JP2009058200A (en) * | 2007-09-03 | 2009-03-19 | Orion Mach Co Ltd | Control method of cooling device |
JP2010249452A (en) * | 2009-04-17 | 2010-11-04 | Mitsubishi Electric Corp | Air conditioner |
WO2017017767A1 (en) * | 2015-07-27 | 2017-02-02 | 三菱電機株式会社 | Air conditioning device |
WO2018211682A1 (en) * | 2017-05-19 | 2018-11-22 | 三菱電機株式会社 | Chilling unit and water-circulating temperature-adjustment system |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021214931A1 (en) | 2021-10-28 |
CN113551437A (en) | 2021-10-26 |
KR102558826B1 (en) | 2023-07-25 |
KR20210131237A (en) | 2021-11-02 |
JP6890706B1 (en) | 2021-06-18 |
JP6890727B1 (en) | 2021-06-18 |
CN113551437B (en) | 2023-07-04 |
JP2021173518A (en) | 2021-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4134069B2 (en) | Multi air conditioner system and valve opening control method of multi air conditioner system | |
JP5657110B2 (en) | Temperature control system and air conditioning system | |
KR100484800B1 (en) | Compressor's Operating Method in Air Conditioner | |
CN110671777B (en) | Control method and device of air conditioner and air conditioner | |
JP5182358B2 (en) | Refrigeration equipment | |
WO2009119023A1 (en) | Freezing apparatus | |
US20110203298A1 (en) | Heat pump system and control method thereof | |
JP2008064439A (en) | Air conditioner | |
JP2009139014A (en) | Air conditioner and operation control method for it | |
WO2016194098A1 (en) | Air-conditioning device and operation control device | |
JP2010249452A (en) | Air conditioner | |
JP6890706B1 (en) | Air conditioning system and control method | |
TW201104181A (en) | Energy saver device and method for cooling and heating apparatus | |
JP2010236816A (en) | Heat pump type air conditioner and method of controlling heat pump type air conditioner | |
CN115398158A (en) | Air conditioning system and control method | |
JP6987217B2 (en) | Air conditioning system controller, outdoor unit, repeater, heat source unit and air conditioning system | |
JP5768151B2 (en) | Heat pump type air conditioner and control method of heat pump type air conditioner | |
JP7068537B1 (en) | Air conditioner and control method | |
JP7086276B2 (en) | Air conditioner | |
JP2003254588A (en) | Multi-type air conditioner | |
WO2016002052A1 (en) | Refrigerating and air-conditioning apparatus | |
JP2016102635A (en) | Air conditioner system | |
JP2013181730A (en) | Heat pump type water heater | |
KR20080059911A (en) | Air conditioner and the controlling method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020545600 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20931945 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20931945 Country of ref document: EP Kind code of ref document: A1 |