WO2018211682A1 - Chilling unit and water-circulating temperature-adjustment system - Google Patents

Chilling unit and water-circulating temperature-adjustment system Download PDF

Info

Publication number
WO2018211682A1
WO2018211682A1 PCT/JP2017/018815 JP2017018815W WO2018211682A1 WO 2018211682 A1 WO2018211682 A1 WO 2018211682A1 JP 2017018815 W JP2017018815 W JP 2017018815W WO 2018211682 A1 WO2018211682 A1 WO 2018211682A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat medium
load
refrigerant
heat exchanger
side heat
Prior art date
Application number
PCT/JP2017/018815
Other languages
French (fr)
Japanese (ja)
Inventor
善生 山野
仁隆 門脇
隆宏 秋月
拓也 伊藤
靖 大越
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to GB1913959.1A priority Critical patent/GB2578373B/en
Priority to PCT/JP2017/018815 priority patent/WO2018211682A1/en
Priority to US16/487,891 priority patent/US11181304B2/en
Priority to JP2019518713A priority patent/JP6707192B2/en
Publication of WO2018211682A1 publication Critical patent/WO2018211682A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0254Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Definitions

  • the present invention relates to a chilling unit equipped with a refrigeration cycle and a water circulation temperature control system, and in particular, has a structure that stabilizes the supply water temperature even at low loads.
  • chilling units have been used as heat sources for water circulation temperature control systems.
  • the water circulation temperature control system circulates water in a building or a building of a large-scale commercial facility, and uses the heat for cooling and heating via a fan coil unit or an air handling unit that is a load side device.
  • the water circulation temperature control system is also used for industrial purposes, and circulates water in a factory to cool or adjust the temperature of equipment.
  • a plurality of chilling units including a refrigerant circuit are generally used for one water circulation circuit.
  • the water piping of each chilling unit is connected via header piping, and the water circulates in the water circulation circuit by the water circulation pump.
  • Patent Document 1 discloses a chilling unit.
  • Patent Document 1 discloses a system in which two water circuits of water heat exchangers arranged in four refrigerant circuits are connected in parallel, and the parallel water circuits are connected in series.
  • Patent Document 1 describes a technique for changing the combination of water pipes through which water flows according to the operating conditions of a plurality of refrigerant circuits.
  • the water circulation temperature control system in order to stabilize the supply water temperature in the chilling system and the water circulation temperature control system, it is effective to use a compressor and a water circulation pump corresponding to the inverter. And for those inverter controls, the water temperature and the water pressure before and after the water heat exchanger are measured, and the optimum control for the load is constructed. Moreover, in the water circulation temperature control system having a plurality of chilling units, not only the inverter control but also the number of operating chilling units is controlled to cope with a low load.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a chilling unit and a water circulation temperature control system that can realize a stable supply water temperature even at a low load.
  • a chilling unit includes a compressor, a pair of air-side heat exchangers, an expansion valve, and a heat medium-side heat exchanger.
  • a flow path switching device for switching the circulation path, a temperature sensor for measuring the temperature of the heat medium at the inlet / outlet of the heat medium side heat exchanger, and a differential pressure of the heat medium at the inlet / outlet of the heat medium side heat exchanger
  • a control device that controls the compressor, the expansion valve, and the flow path switching device.
  • the control device includes a preset target outlet temperature and a heat medium measured by the temperature sensor. Temperature The compressor is controlled based on the differential pressure of the heat medium measured by the pressure sensor, and when the load of the load side device becomes a low load equal to or lower than the minimum capacity of the compressor, the compressor The start / stop avoidance control is performed in a state where the minimum capacity operation is maintained, and one of the pair of air side heat exchangers and the heat medium side heat exchanger are connected in parallel by the flow path switching device. is there. Further, the chilling unit according to the present invention includes a compressor, a flow path switching device, an air side heat exchanger, an expansion valve, and a heat medium side heat exchanger, and these are connected by piping to circulate the refrigerant.
  • a refrigerant circuit a pipe connected to a load-side device and through which a heat medium that exchanges heat with each of the refrigerant in a heat medium side heat exchanger of the two sets of refrigerant circuits, and heat of the two sets of refrigerant circuits
  • a plurality of temperature sensors for measuring the temperature of the heat medium at the inlet / outlet, and for each of the heat medium side heat exchangers of the two sets of refrigerant circuits, the differential pressure of the heat medium at the inlet / outlet
  • a plurality of pressure sensors for measuring the pressure, and a control device for controlling the compressor, the flow path switching device, and the expansion valve of each of the two sets of refrigerant circuits, and each of the two sets of refrigerant circuits
  • the flow path switching device includes the heat medium.
  • the heat exchanger switches between a heating-side flow path serving as a condenser and a cooling-side flow path serving as an evaporator
  • the control device includes a preset target outlet temperature and a plurality of temperature sensors.
  • the compressor is controlled based on the measured temperature of the heat medium and the differential pressure of the heat medium measured by the plurality of pressure sensors, and the load on the load side device is low enough to be less than the minimum capacity of the compressor.
  • one of the flow path switching devices of the two sets of refrigerant circuits is switched while maintaining the minimum capacity operation of the compressor.
  • the flow path switching device is switched when the load side device becomes a low load.
  • a surplus of the heating capacity or the cooling capacity is consumed in a part of the plurality of air-side heat exchangers of the chilling unit while the minimum capacity operation of the compressor is maintained.
  • the chilling unit and the water circulation temperature control system can suppress the thermal start / stop of the compressor and supply a heat medium having a stable temperature to the load-side device even when the load-side device has a low load.
  • FIG. 1 is a schematic configuration diagram showing a configuration of a chilling unit according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram illustrating functions of the control device for the chilling unit according to Embodiment 1 of the present invention.
  • the heat medium flowing through the pipe of the heat medium circuit 30 is heated or cooled by the refrigerant flowing through the refrigerant pipe of the refrigerant circuit 10.
  • the heat medium heated or cooled by the chilling unit 100 is sent to the load side device via the heat medium circuit 30, and the heat is used for air conditioning or the like.
  • Any type of refrigerant and heat medium may be used, but for example, chlorofluorocarbon is used as the refrigerant, and water, brine, or the like is used as the heat medium.
  • the chilling unit 100 includes one refrigerant circuit 10 in which a refrigerant circulates and piping of a heat medium circuit 30 in which a heat medium flows.
  • the refrigerant circuit 10 includes a compressor 1, a first flow switching device 2, a pair of air side heat exchangers, a second flow switching device 8, a decompression device, a heat medium side heat exchanger 7, and the like. These are connected via a refrigerant pipe.
  • the chilling unit 100 includes a part of the heat medium circuit 30, and a part of the heat medium circuit 30 includes a circulation pump 31, the heat medium side heat exchanger 7, and a pipe that connects them. included.
  • the compressor 1 sucks low-temperature and low-pressure refrigerant, compresses the refrigerant, discharges it in a high-temperature and high-pressure state, and circulates the refrigerant.
  • the compressor 1 is composed of an inverter compressor capable of capacity control.
  • the 1st flow-path switching apparatus 2 is comprised, for example with a four-way valve etc., and switches the flow of a refrigerant
  • the first flow path switching device 2 is provided on the discharge side of the compressor 1, and the destination of the high-temperature and high-pressure refrigerant discharged from the compressor 1 is a pair of air-side heat exchanger or heat medium-side heat exchange. Switch to vessel 7.
  • the decompression device is composed of an electronic expansion valve or the like, and decompresses the refrigerant to expand it.
  • the decompression device includes an expansion valve 5 and a sub-expansion valve 6.
  • the expansion valve 5 is provided in the refrigerant pipe 15 between the first air side heat exchanger 3 and the second air side heat exchanger 4 and the heat medium side heat exchanger 7, and the sub expansion valve 6 will be described later.
  • the first bypass pipe 16 is provided.
  • the pair of air-side heat exchangers includes a first air-side heat exchanger 3 and a second air-side heat exchanger 4 that are connected in parallel, exchange heat between the air and the refrigerant, and heat the atmosphere. Absorbs or releases heat to the atmosphere.
  • the first air side heat exchanger 3 and the second air side heat exchanger 4 function as an evaporator during a heating operation and function as a condenser during a cooling operation.
  • the 1st air side heat exchanger 3 and the 2nd air side heat exchanger 4 are each attached with the air blower comprised with a propeller fan etc., and air is supplied by an air blower.
  • the first air side heat exchanger 3 and the second air side heat exchanger 4 are connected in parallel.
  • the refrigerant pipe provided with the first air side heat exchanger 3 is referred to as 13
  • the refrigerant pipe provided with the second air side heat exchanger 4 is referred to as 14.
  • the heat medium side heat exchanger 7 exchanges heat between the refrigerant and the heat medium, and heats or cools the heat medium to a target temperature with the heat of the refrigerant.
  • the heat medium side heat exchanger 7 exchanges heat between the high-temperature and high-pressure refrigerant and the heat medium during the heating operation to increase the temperature of the heat medium, and causes heat exchange between the low-temperature and low-pressure refrigerant and the heat medium during the cooling operation. To lower the temperature of the heating medium.
  • the second flow path switching device 8 switches the refrigerant circulation path between normal control and start / stop avoidance control described later.
  • the second flow path switching device 8 is composed of, for example, two three-way valves 8a and 8b.
  • the two three-way valves 8a and 8b are arranged on the refrigerant pipe 14 so as to sandwich the second air-side heat exchanger 4, and switch the refrigerant flow in the second air-side heat exchanger 4.
  • the three-way valve 8a is provided between the first flow switching device 2 and the second air side heat exchanger 4
  • the three-way valve 8b is provided between the second air side heat exchanger 4 and the expansion valve 5. It has been.
  • the refrigerant circuit 10 has a bypass circuit that bypasses the heat medium side heat exchanger 7.
  • the bypass circuit includes a first bypass pipe 16, a second bypass pipe 17, and a pipe between the three-way valve 8a and the three-way valve 8b in the refrigerant pipe 14 described above.
  • the first bypass pipe 16 connects the refrigerant pipe between the first air side heat exchanger 3 and the second air side heat exchanger 4 and the expansion valve 5 and the three-way valve 8b.
  • the second bypass pipe 17 connects the refrigerant pipe 19 between the heat medium side heat exchanger 7 and the first flow path switching device 2 and the three-way valve 8a.
  • the refrigerant circulation path can be switched by the stop avoidance control.
  • the start / stop avoidance control becomes an unstable state in which the compressor 1 of the refrigerant circuit 10 repeats start and stop when the load side device connected to the heat medium circuit 30 becomes a low load. This control is performed to avoid this.
  • the second flow switching device 8 is in the normal control connection state, the refrigerant flows in the second air side heat exchanger 4 on the bypass circuit in the same direction as the first air side heat exchanger 3, and the second When the flow path switching device 8 is in the connected state for start / stop avoidance control, the refrigerant flows in the same direction as the heat medium side heat exchanger 7.
  • the circulation pump 31 circulates the heat medium in the heat medium circuit 30, so that the heat medium flows between the load-side device and the heat medium-side heat exchanger 7 that are annularly connected via the pipe. .
  • the circulation pump 31 is composed of an inverter type pump, and makes the flow rate of the heat medium variable in multiple stages or continuously.
  • the circulation pump 31 receives a control signal for adjusting the flow rate according to the load from the control device 50 described later, and adjusts the flow rate of the circulating heat medium by driving the frequency of the motor according to the control signal. ing.
  • the chilling unit 100 includes a plurality of sensors such as a temperature sensor and a pressure sensor.
  • temperature sensors 32, 34 and pressure sensors 33, 35 are arranged in the piping at the entrance / exit of the heat medium side heat exchanger 7.
  • the temperature sensor 32 and the temperature sensor 34 measure the temperature of the heat medium at the inlet / outlet of the heat medium side heat exchanger 7, and the pressure sensor 33 and the pressure sensor 35 are the difference of the heat medium at the inlet / outlet of the heat medium side heat exchanger 7. Measure the pressure.
  • the refrigerant circuit 10 is provided with a low pressure sensor for detecting the refrigerant suction pressure in the suction pipe of the compressor 1, and a high pressure for detecting the refrigerant discharge pressure in the discharge pipe of the compressor 1.
  • a pressure sensor is installed.
  • the control device 50 is composed of, for example, a microcomputer and controls each actuator of the chilling unit 100.
  • the control device 50 receives pressure information and temperature information of the refrigerant, pressure information and temperature information of the heat medium, and the like from the plurality of sensors described above.
  • the control device 50 performs operation control based on these information acquired from each sensor, preset setting information, a command input by the user, and the like.
  • the control device 50 controls the operation, stop, and rotation speed of the compressor 1, adjusts the opening of the decompression device, controls the switching of the first flow path switching device 2 and the second flow path switching device 8, and Then, rotation control and the like of a blower provided in the first air side heat exchanger 3 and the second air side heat exchanger 4 are performed.
  • the control device 50 controls the frequency of the circulation pump 31 and adjusts the flow rate of the heat medium supplied to the heat medium side heat exchanger 7.
  • the control device 50 includes an operation control unit 51 and a load determination unit 52.
  • the operation control unit 51 calculates an optimum operating condition for setting the heat medium to the target outlet temperature from the preset target outlet temperature of the heat medium and the current temperature and differential pressure of the heat medium at the inlet and outlet. Outputs operation instructions to each actuator. Further, the operation control unit 51 switches between the heating operation and the cooling operation by switching the first flow path switching device 2 and switches the second flow path switching device 8 when performing start / stop avoidance control. Moreover, the operation control part 51 acquires the result of the determination which the load determination part 52 performs, and performs control according to the acquired determination result.
  • the load determination unit 52 acquires information on the current load on the load side device from the operation control unit 51, and determines the load. Specifically, it is determined whether or not the load has decreased, whether or not the load is less than or equal to the minimum capacity of the compressor 1, or whether or not there is no load.
  • the load determination unit 52 notifies the operation control unit 51 of the determination result.
  • the current load of the load side device may be obtained by the operation control unit 51 by calculation based on information acquired from the load side device, or setting information, control information of each actuator, and information of various sensors.
  • an alternate long and short dash line arrow along the heat medium circuit 30 represents the flow of the heat medium
  • a solid line arrow and a broken line arrow along the refrigerant circuit 10 represent the refrigerant flow in the normal control cooling operation or heating operation.
  • the refrigerant sucked into the compressor 1 is compressed and discharged as a high-temperature and high-pressure gas refrigerant.
  • the gas refrigerant discharged from the compressor 1 is divided into the refrigerant pipe 13 and the refrigerant pipe 14 via the first flow path switching device 2, and the first air-side heat exchanger 3 and the second air-side heat serving as a condenser.
  • the refrigerant flows into the exchanger 4 and is cooled while dissipating heat to the surrounding air, and becomes a high-pressure medium-temperature refrigerant.
  • the second flow path switching device 8 provided in the refrigerant pipe 14 is in a connected state during normal control.
  • the three-way valve 8a connects the first flow path switching device 2 and the second air side heat exchanger 4, and the three-way valve 8b connects the second air side heat exchanger 4 and the pressure reducing device.
  • the high-pressure and medium-temperature refrigerant merges, is decompressed by the expansion valve 5 of the decompression device, becomes a low-pressure two-phase state, and flows into the heat medium side heat exchanger 7 that is an evaporator.
  • the sub-expansion valve 6 is closed, and the refrigerant does not flow into the bypass circuit.
  • the low-pressure two-phase refrigerant absorbs heat from the heat medium flowing through the heat medium circuit 30 in the heat medium side heat exchanger 7 and is evaporated by heating to become a low-pressure and low-temperature gas refrigerant.
  • the gas refrigerant flowing out of the heat medium side heat exchanger 7 passes through the first flow path switching device 2 and then is sucked into the compressor 1 again.
  • the heat medium whose temperature has decreased in the heat medium side heat exchanger 7 is sent from the chilling unit 100 to the load side device.
  • the refrigerant sucked into the compressor 1 is compressed and discharged as a high-temperature and high-pressure gas refrigerant.
  • the gas refrigerant discharged from the compressor 1 flows through the first flow path switching device 2 into the heat medium side heat exchanger 7 serving as a condenser, and releases heat to the heat medium flowing through the heat medium circuit 30. It is cooled and becomes a high-pressure medium-temperature refrigerant. Thereafter, the high-pressure and medium-temperature refrigerant is decompressed by the expansion valve 5 of the decompression device, and becomes a low-pressure two-phase state.
  • the sub-expansion valve 6 is closed, and the second flow path switching device 8 provided in the refrigerant pipe 14 is in a connected state during normal control. Therefore, the refrigerant does not flow in the bypass circuit, and the low-pressure two-phase refrigerant is divided into the refrigerant pipe 13 and the refrigerant pipe 14, and the first air-side heat exchanger 3 and the second air-side heat exchanger 4 serving as an evaporator. Flows into each. Then, the low-pressure two-phase refrigerant is heated and evaporated while absorbing heat from the surrounding air in the first air-side heat exchanger 3 or the second air-side heat exchanger 4, and becomes a low-pressure and low-temperature gas refrigerant.
  • the low-pressure and low-temperature gas refrigerants merge and pass through the first flow path switching device 2 and are sucked into the compressor 1 again.
  • the heat medium whose temperature has increased in the heat medium side heat exchanger 7 is sent from the chilling unit 100 to the load side device.
  • the control device 50 determines the capacity of the compressor 1, the capacity of the circulation pump 31, the opening degree of the expansion valve 5 and the like necessary for setting the heat medium to the target outlet temperature. is doing. Thereby, for example, the compressor 1 is controlled to increase the operation capacity when the load on the load side device is large, and is controlled to decrease the operation capacity when the load on the load side device is small. .
  • FIG. 3 is a circuit diagram showing a refrigerant flow during the cooling operation of the chilling unit according to Embodiment 1 of the present invention.
  • the solid line arrow represents the refrigerant flow during the cooling operation in the normal control
  • the broken line arrow represents the refrigerant flow during the cooling operation in the start / stop avoidance control.
  • start / stop avoidance control When the load of the load side device becomes a low load equal to or lower than the minimum capacity of the compressor 1 during the normal control operation, start / stop avoidance control is performed, and the connection state of the second flow path switching device 8 is switched. At this time, the three-way valve 8a connects the second air-side heat exchanger 4 and the second bypass pipe 17, and the three-way valve 8b connects the first bypass pipe 16 and the second air-side heat exchanger 4. . That is, the parallel connection between the first air side heat exchanger 3 and the second air side heat exchanger 4 is released, and the second air side heat exchanger 4 and the heat medium side heat exchanger 7 are connected in parallel. As shown in FIG.
  • the direction of the refrigerant flow in the second air-side heat exchanger 4 is opposite to that during normal control during start / stop avoidance control.
  • the sub-expansion valve 6 is opened, and the opening degrees of the expansion valve 5 and the sub-expansion valve 6 are adjusted.
  • the low-temperature and low-pressure refrigerant sucked into the compressor 1 is compressed and discharged as a high-temperature and high-pressure gas refrigerant.
  • the gas refrigerant discharged from the compressor 1 flows into the first air-side heat exchanger 3 on the refrigerant pipe 13 through the first flow path switching device 2.
  • the first air-side heat exchanger 3 functions as a condenser, and the gas refrigerant is cooled while dissipating heat to the surrounding air, and becomes a high-pressure medium-temperature refrigerant.
  • the low-pressure two-phase refrigerant flowing into the heat medium side heat exchanger 7 absorbs heat from the heat medium flowing through the heat medium circuit 30 and is evaporated by heating to become a low-pressure and low-temperature gas refrigerant.
  • the low-pressure two-phase refrigerant flowing into the second air-side heat exchanger 4 absorbs heat from the surrounding air and is evaporated by heating to become a low-pressure and low-temperature gas refrigerant.
  • the amount of refrigerant flowing through the heat medium side heat exchanger 7 and the amount of refrigerant flowing through the bypass circuit are adjusted by the opening degree of the expansion valve 5 and the sub expansion valve 6.
  • the gas refrigerant that has flowed out of the heat medium side heat exchanger 7 and the gas refrigerant that has flowed out of the second air side heat exchanger 4 merge, and are sucked into the compressor 1 again via the first flow path switching device 2. Is done.
  • the heat medium whose temperature has decreased in the heat medium side heat exchanger 7 is sent from the chilling unit 100 to the load side device.
  • the chilling unit 100 can be controlled to further reduce the amount of heat exchange between the refrigerant and the heat medium, and can cope with a low load.
  • FIG. 4 is a flowchart showing the control performed by the chilling unit control apparatus according to Embodiment 1 of the present invention when the load side device is under low load.
  • the operation control unit 51 obtains the load of the load side device and controls each actuator according to the load.
  • the load determination unit 52 acquires load information from the operation control unit 51, and determines whether or not the load on the load side device has decreased (step ST101). At this time, the load determination unit 52 compares the information of the load acquired this time with the information of the load acquired last time, or averages the load for a predetermined time and compares the current average with the previous average. The load reduction determination in step ST101 may be performed. When the load decreases (step ST101; YES), the load determination unit 52 further determines whether or not the load on the load side device is a low load equal to or lower than the minimum capacity of the compressor 1 (step ST102). .
  • step ST102 When determining that the load is low (step ST102; YES), the load determination unit 52 notifies the operation control unit 51 of the determination result. Then, start / stop avoidance control is performed by the operation control unit 51. On the other hand, when it is determined that the load has not decreased in the load decrease determination (step ST101; NO), or when it is determined that the load is not low in the low load determination in step ST102 (step ST102). NO), the load determination unit 52 notifies the operation control unit 51 of the determination result. Then, the normal control is continued by the operation control unit 51. During operation, the load determination unit 52 acquires the load information of the load side device from the operation control unit 51, repeats the determinations of step ST101 and step ST102, and monitors the decrease in load.
  • the operation control unit 51 keeps the second flow path switching device 8 from the normal control connection state in order to consume the surplus heating or cooling capacity while maintaining the minimum capacity operation of the compressor 1.
  • the connection state of start / stop avoidance control is switched (step ST103).
  • the operation control unit 51 adjusts the opening degree of the expansion valve 5 and the sub-expansion valve 6 so that the amount of heat exchanged by the heat medium side heat exchanger 7 becomes the amount of heat commensurate with the load of the load side device ( Step ST104).
  • Operation control part 51 should just control so that the amount of refrigerant which flows into heat carrier side heat exchanger 7 may decrease, so that the opening of expansion valve 5 is made small, so that the load of load side equipment is small.
  • the load determination unit 52 determines whether or not the load on the load side device is 0 (step ST105). If the load on the load side device is not 0 (step ST105; NO), the operation control unit 51 repeatedly adjusts the opening degrees of the expansion valve 5 and the sub-expansion valve 6 (step ST104). On the other hand, when the load of the load side device is 0 (step ST105; YES), the operation control unit 51 fully closes the expansion valve 5 (step ST106). When the expansion valve 5 is fully closed, all of the refrigerant going to the heat medium side heat exchanger 7 flows to the bypass circuit, and is exchanged with the atmosphere by the second air side heat exchanger 4.
  • the first air side heat exchanger 3 and the second air side heat exchanger 4 are: It is desirable that the same heat exchange capability can be exhibited.
  • the opening degree of the expansion valve 5 is adjusted so as to maintain the refrigerant temperature (for example, 0 ° C. or higher) at which the heat medium side heat exchanger 7 does not freeze. Yes.
  • the chilling unit 100 can also make the flow rate of the heat medium extremely low based on the pressure difference between the pressure sensors 33 and 35 in the heat medium circuit 30. The power of the circulation pump 31 can be reduced.
  • the chilling unit 100 includes the compressor 1, a pair of air side heat exchangers (for example, the first air side heat exchanger 3 and the second air side heat exchanger 4), and expansion.
  • a refrigerant circuit 10 having a valve 5 and a heat medium side heat exchanger 7, a pipe through which the heat medium flows, a flow path switching device (second flow path switching device 8), a control device 50, and the like are provided. .
  • control device 50 switches the flow path switching device (second flow path switching device 8) in a state where the minimum capacity operation of the compressor 1 is maintained when the load side device becomes a low load, and a pair of air One side heat exchanger (second air side heat exchanger 4) and the heat medium side heat exchanger 7 are connected in parallel.
  • the chilling unit 100 maintains the minimum capacity operation of the compressor 1 and the surplus heating capacity or cooling capacity in the second air side heat exchanger 4. Can be consumed. Therefore, the chilling unit 100 can suppress the thermal start / stop of the compressor 1 and supply a heat medium having a stable temperature to the load side device even at a low load.
  • One of the pair of air side heat exchangers (second air side heat exchanger 4) and the other (first air side heat exchanger 3) are connected in parallel.
  • the device (second flow path switching device 8) is switched, the parallel connection between one and the other of the pair of air-side heat exchangers is released.
  • the second air-side heat exchanger 4 assists the first air-side heat exchanger 3 in the normal control and the heat medium in the start / stop avoidance control by the second flow path switching device 8 that switches the circulation path of the refrigerant.
  • the side heat exchanger 7 can be assisted to consume the excess heating or cooling capacity.
  • the expansion valve 5 is provided in the refrigerant pipe 15 between the pair of air side heat exchangers (the first air side heat exchanger 3 and the second air side heat exchanger 4) and the heat medium side heat exchanger 7.
  • the control device 50 fully closes the expansion valve 5 when the load on the load side device becomes zero.
  • the second flow path switching device 8 is switched to start / stop avoidance control while the minimum capacity operation of the compressor 1 is maintained, and when the load becomes zero, the expansion valve 5 is fully closed. .
  • the chilling unit 100 can suppress the thermal start / stop of the compressor 1 and supply a heat medium having a stable temperature to the load side.
  • the chilling unit 100 further includes an inverter-type circulation pump 31 that makes the flow rate of the heat medium variable, and the control device 50 has a low load on the load side device in the cooling operation for cooling the heat medium. Moreover, the opening degree of the expansion valve 5 is controlled so that the refrigerant temperature at which the heat medium side heat exchanger 7 is not frozen is maintained.
  • the chilling unit 100 has a load on the load side device. The amount of heat can be adjusted according to the load even in a low load state where there is little. Thereby, the chilling unit 100 can reduce the power of the circulation pump 31.
  • FIG. A chilling unit 200 according to the second embodiment will be described with reference to FIGS. 5 and 6.
  • FIG. 5 is a schematic configuration diagram showing the configuration of the chilling unit according to Embodiment 2 of the present invention.
  • FIG. 6 is a flowchart showing the control performed by the chilling unit control apparatus according to Embodiment 2 of the present invention when the load side device is under low load.
  • the chilling unit 200 of the second embodiment a configuration different from the case of the first embodiment will be described, and the description of the corresponding configuration will be omitted.
  • the chilling unit 200 has two refrigerant circuits.
  • Each refrigerant circuit 210a, 210b includes compressors 1a, 1b, first flow path switching devices 2a, 2b, air side heat exchangers 3a, 3b, expansion valves 5a, 5b, and heat medium side heat exchanger 7a. , 7b and the like. That is, the chilling unit 200 of the second embodiment is not provided with the second air side heat exchanger 4, the second flow path switching device 8, the bypass circuit, and the sub expansion valve 6 of the first embodiment.
  • FIG. 5 shows a case where the heat medium side heat exchangers 7 a and 7 b of the refrigerant circuits 210 a and 210 b are connected in parallel in the heat medium circuit 230.
  • the circulation pump 31 is provided upstream of the heat medium side heat exchanger 7a and the heat medium side heat exchanger 7b in the heat medium circuit 230.
  • the temperature sensors 32 and 34 and the pressure sensors 33 and 35 are provided for each of the heat medium side heat exchangers 7a and 7b, and for each of the heat medium side heat exchangers 7a and 7b, the temperature of the heat medium at the inlet / outlet, and The differential pressure of the heat medium at the inlet / outlet is measured.
  • each refrigerant circuit 210a, 210b has a low-pressure sensor that detects the suction pressure of the compressors 1a, 1b and a high-pressure that detects the discharge pressure of the compressors 1a, 1b, as in the first embodiment.
  • a pressure sensor or the like is installed.
  • the dashed-dotted arrow along the heat medium circuit 230 represents the flow of the heat medium.
  • the broken line arrow along the refrigerant circuit 210a represents the flow of the refrigerant when performing the heating operation
  • the solid line arrow along the refrigerant circuit 210b represents the flow of the refrigerant when performing the cooling operation.
  • the refrigerant sucked into the compressor 1b is compressed and discharged as a high-temperature and high-pressure gas refrigerant.
  • the gas refrigerant discharged from the compressor 1b passes through the first flow path switching device 2b, flows into the air-side heat exchanger 3b serving as a condenser, radiates heat to the surrounding air, and becomes a high-pressure medium-temperature refrigerant.
  • the high-pressure medium-temperature refrigerant that has flowed out of the air-side heat exchanger 3b is decompressed by the expansion valve 5b, becomes a low-pressure two-phase state, and flows into the heat medium-side heat exchanger 7b that is an evaporator.
  • the low-pressure two-phase refrigerant absorbs heat from the heat medium flowing through the heat medium circuit 230 and is evaporated by heating to become a low-pressure and low-temperature gas refrigerant.
  • the gas refrigerant that has flowed out of the heat medium side heat exchanger 7b passes through the first flow path switching device 2b and then is sucked into the compressor 1b again.
  • the heat medium that releases heat in the heat medium side heat exchanger 7b and the temperature is lowered is sent from the chilling unit 200 to the load side device.
  • the refrigerant sucked into the compressor 1a is compressed and discharged as a high-temperature and high-pressure gas refrigerant.
  • the gas refrigerant discharged from the compressor 1a flows into the heat medium side heat exchanger 7a serving as a condenser via the first flow path switching device 2a, and releases heat to the heat medium flowing through the heat medium circuit 30, It becomes a high pressure and medium temperature refrigerant.
  • the high-pressure medium-temperature refrigerant that has flowed out of the heat medium side heat exchanger 7a is decompressed by the expansion valve 5a to be in a low-pressure two-phase state, and flows into the air-side heat exchanger 3a.
  • the low-pressure two-phase refrigerant is heated and evaporated while absorbing heat from the surrounding air, and becomes a low-pressure and low-temperature gas refrigerant.
  • the low-pressure and low-temperature refrigerant that has flowed out of the air-side heat exchanger 3a passes through the first flow path switching device 2a and is again sucked into the compressor 1a.
  • the heat medium that has absorbed heat in the heat medium side heat exchanger 7a and whose temperature has risen is sent from the chilling unit 200 to the load side device.
  • the control device 250 determines the capacity of the compressor 1, the capacity of the circulation pump 31, the opening degree of the expansion valve 5, and the like necessary for setting the heat medium to the target outlet temperature. is doing.
  • the chilling unit 200 since the chilling unit 200 has two refrigerant circuits, by sharing the load, it is possible to cope with a larger load than the chilling unit 100 configured by one circuit.
  • the chilling unit 200 performs a cooling operation under normal control by two refrigerant circuits 210a and 210, and the compressors 1a and 1b are operated at a minimum capacity.
  • the operation control unit 51 obtains the load of the load side device and controls each actuator according to the load.
  • the load determination unit 52 acquires load information from the operation control unit 51, and determines whether or not the load on the load side device has decreased (step ST201). At this time, the load determination unit 52 compares the information of the load acquired this time with the information of the load acquired last time, or averages the load for a predetermined time and compares the current average with the previous average. The load reduction determination in step ST201 may be performed. When the load decreases (step ST201; YES), the load determination unit 52 further determines whether or not the load on the load side device is a low load equal to or less than the minimum capacity of the compressors 1a and 1b (step ST201).
  • step ST202 When determining that the load is low (step ST202; YES), the load determination unit 52 notifies the operation control unit 51 of the determination result. Then, start / stop avoidance control is performed by the operation control unit 51. On the other hand, when it is determined that the load has not decreased in the load decrease determination (step ST201; NO), or when it is determined that the load is not low in the low load determination in step ST202 (step ST202). NO), the load determination unit 52 notifies the operation control unit 51 of the determination result. Then, the normal control is continued by the operation control unit 51. During operation, the load determination unit 52 acquires information on the load of the load side device from the operation control unit 51, repeats the determinations of step ST201 and step ST202, and monitors the decrease in load.
  • the operation control unit 51 consumes the excess cooling capacity while maintaining the minimum capacity operation of the compressors 1a and 1b. Is switched to the connection state of the heating operation (step ST203). Further, the operation control unit 51 adjusts the operation capacities of the compressors 1a and 1b so that the amount of heat exchanged by the heat medium side heat exchangers 7a and 7b becomes the amount of heat commensurate with the load of the load side equipment (step). ST204). For example, the operation control unit 51 may control the compressors 1a and 1b so that the difference between the cooling capacity of the refrigerant circuit 210b and the heating capacity of the refrigerant circuit 210a becomes smaller as the load on the load side device is smaller.
  • the heat medium is heated by one refrigerant circuit 210a and the heat medium is cooled by the other refrigerant circuit 210b.
  • the total amount of heat exchanged between them can be made smaller than in normal control.
  • the load determination unit 52 determines whether or not the load on the load side device is 0 (step ST205).
  • the operation control unit 51 repeatedly adjusts the operation capacities of the compressors 1a and 1b (step ST204).
  • the operation capacity of the compressors 1a and 1b is adjusted by the operation control unit 51 (step ST206). Specifically, at least one of the compressor 1a and the compressor 1b is adjusted so that the cooling capacity of the refrigerant circuit 210b performing the cooling operation is equal to the heating capacity of the refrigerant circuit 210a performing the heating operation. Is done. For this reason, the total amount of heat exchanged between the refrigerant circuit 210a and the refrigerant circuit 210b and the heat medium circuit 230 is offset.
  • the expansion valve 5b may be adjusted so that the refrigerant temperature (for example, 0 ° C. or higher) at which the heat medium side heat exchanger 7b on the cooling operation side does not freeze is maintained. .
  • the chilling unit 100 can also make the flow rate of the heat medium extremely low based on the pressure difference between the pressure sensors 33 and 35 in the heat medium circuit 230. The power of the circulation pump 31 can be reduced.
  • the heat medium side heat exchanger 7a and the heat medium side heat exchanger 7b are connected in parallel in the heat medium circuit 230 .
  • the heat medium side heat exchanger 7a and the heat medium side heat exchanger 7a may be connected in series.
  • FIG. 7 is a schematic configuration diagram showing another configuration of the chilling unit according to Embodiment 2 of the present invention.
  • the heat medium side heat exchanger 7 a and the heat medium side heat exchanger 7 b are connected in series in the heat medium circuit 330.
  • the heat medium side heat exchanger switches the first flow path switching device 2a of the refrigerant circuit 210a on the upstream side of the flow of the heat medium to the heating side to heat the heat medium, and the refrigerant circuit 210b on the downstream side That is, the heat medium is cooled by the refrigerant circuit 210b during the cooling operation.
  • the chilling unit 300 can realize heating or cooling according to the load without freezing even when the heat medium is set to an extremely low flow rate at the time of low load.
  • the chilling units 200 and 300 include the compressors 1a and 1b, the flow path switching devices (first flow path switching devices 2a and 2b), the air side heat exchangers 3a and 3b, and the expansion.
  • Two sets of refrigerant circuits 210a and 210b, to which the valves 5a and 5b and the heat medium side heat exchangers 7a and 7b are connected by piping, a pipe through which the heat medium flows, a control device 250, and the like are provided.
  • the flow path switching device (first flow path switching devices 2a and 2b) includes a heating-side flow path in which the heat medium side heat exchangers 7a and 7b serve as condensers and a cooling-side flow path as the evaporator. Switch.
  • control device 250 maintains the minimum capacity operation of the compressors 1a and 1b and the flow of one of the two refrigerant circuits (for example, the refrigerant circuit 210a).
  • the path switching device (first flow path switching device 2a) is switched.
  • the chilling units 200 and 300 can heat or cool the entire unit by a combination of the operation of the two refrigerant circuits 210a and 210b while the compressors 1a and 1b are operated when the load-side equipment becomes a low load. A surplus of capacity can be consumed. Therefore, the chilling units 200 and 300 can suppress the thermal start / stop of the compressors 1a and 1b and supply a heat medium having a stable temperature to the load side even when the load side device has a low load.
  • the control device 250 determines that the heating capacity of the refrigerant circuit 210a that performs the heating operation and the cooling capacity of the refrigerant circuit 210b that performs the cooling operation.
  • the operating capacities of the compressors 1a and 1b of at least one of the two refrigerant circuits 210a and 210b are controlled so as to be equal.
  • the chilling units 200 and 300 can suppress the thermal start / stop of the compressors 1a and 1b and supply a heat medium having a stable temperature to the load side device even when there is no load on the load side device.
  • the chilling units 200 and 300 further include an inverter-type circulation pump 31 that makes the flow rate of the heat medium variable.
  • the control device 250 has a low load on the load side device in the cooling operation for cooling the heat medium.
  • the opening degree of the expansion valve 5b of the refrigerant circuit 210b is set so that the heat medium side heat exchanger 7b of the refrigerant circuit (for example, the refrigerant circuit 210b) performing the cooling operation maintains a refrigerant temperature that does not freeze. Control.
  • the chilling units 200 and 300 can reduce the power of the circulation pump 31.
  • the heat medium side heat exchangers 7a and 7b of the two sets of refrigerant circuits are connected in series in the heat medium circuit 330, and the controller 250 reduces the load on the load side device in the cooling operation for cooling the heat medium.
  • the flow path switching device (first flow path switching device 2a) of the refrigerant circuit for example, the refrigerant circuit 210a
  • the heat medium side heat exchangers 7a and 7b are arranged on the upstream side is heated. Switch to the side.
  • the heat medium circuit 330 the heat medium cooled by the downstream refrigerant circuit 210b is mixed with the heat medium heated by the upstream refrigerant circuit 210a, so that the temperature of the heat medium does not drop significantly. . For this reason, it is possible to provide the chilling unit 300 that does not freeze even when the heat medium is at a very low flow rate at the time of low load.
  • the operation of one refrigerant circuit 210a is switched from the state where both the compressor 1a and the compressor 1b are operating at the minimum capacity operation, but it can cope with a low load.
  • Any control can be used.
  • the control device 250 first stops the operation of one refrigerant circuit 210a when the load is lower than a set value, and then stops when the load is less than the minimum capacity of the compressor 1b.
  • the refrigerant circuit 210a that has been used may be controlled to operate with a refrigerant flow in a direction opposite to that of the refrigerant circuit 210b.
  • FIG. 8 is a schematic configuration diagram of a temperature control system according to Embodiment 3 of the present invention. As shown in FIG. 8, the water circulation temperature control system 500 is configured by using a plurality of chilling units 100 of the first embodiment for one water circuit 530.
  • the water circulation temperature control system 500 includes a plurality of chilling units 100a, 100b, and 100c, a plurality of load-side devices 90a, 90b, and 90c, a header pipe 540a, a header pipe 540b, and the like.
  • chilling unit 100 when it is not necessary to particularly distinguish the chilling unit 100a, the chilling unit 100b, and the chilling unit 100c, each will be described as the chilling unit 100.
  • the load side device 90a, the load side device 90b, and the load side device 90c each will be described as the load side device 90.
  • the plurality of load-side devices 90a, 90b, 90c and the pipes through which the heat medium flows in the plurality of chilling units 100a, 100b, 100c are connected via the header pipe 540a and the header pipe 54, so that the heat medium A water circuit 530 in which certain water circulates is configured.
  • the water circulation temperature control system 500 includes a system control device 510, and the system control device 510 is connected to the control device 50 of each chilling unit 100 and each load side device 90 so as to be communicable.
  • the system control device 510 When the load on the load-side device 90 is reduced, the system control device 510 reduces the number of operating chilling units 100 according to the load, and finally only one chilling unit 100 is operating. To. When the load on the load-side device 90 further decreases to a low load equal to or lower than the minimum capacity of the compressor 1, the system control device 510 sends the chilling unit 100 (for example, the chilling unit 100a) in operation to The start / stop avoidance control as described above is performed.
  • the chilling unit 100 for example, the chilling unit 100a
  • the water circulation temperature control system 500 may use a plurality of chilling units 200 or chilling units 300 according to the second embodiment instead of using a plurality of chilling units 100 according to the first embodiment. In this case, two of the plurality of chilling units 200 and 300 are operated at a low load.
  • the water circulation temperature control system 500 uses the chilling units 100, 200, and 300 according to the first embodiment or the second embodiment, so that even when the load on the load side device 90 is reduced, It is possible to cope with water flow with extremely low flow rate by suppressing the start and stop of the thermo. And the water circulation temperature control system 500 can adjust the calorie
  • the water circulation temperature control system 500 includes the chilling units 100, 200, 300, and a plurality of units arranged with respect to one heat medium circuit (water circuit 530). Header piping 540a and 540b to which the piping of the chilling unit is connected.
  • the water circulation temperature control system 500 can suppress the occurrence of an abnormal stop to make the heat medium have an extremely low flow rate, and can adjust the heat amount of the chilling unit 100 according to the load even in a low load state. Therefore, the water circulation temperature control system 500 does not need to install a bypass pipe and a cushion tank in the water circuit 530 on the load side, can cope with a low amount of water, and can simplify the system configuration.
  • the embodiment of the present invention is not limited to the above embodiment, and various changes can be made.
  • the above description is about an air-cooled chilling unit in which the compressor does not start and stop even at low loads, but it goes without saying that it can also be used for other water-cooled chilling units, direct expansion refrigeration units, and air conditioners. Yes.
  • a two refrigerant circuit is taken as an example, but a unit having three refrigerant circuits, four refrigerant circuits, or more refrigerant circuits can be applied in consideration of the balance between cooling and heating. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A chilling unit and a water-circulating temperature-adjustment system are provided with: a refrigerant circuit including a compressor, a pair of air-side heat exchangers, an expansion valve, and a heat medium-side heat exchanger which are connected by piping to circulate refrigerant; piping for circulating heat medium; a flow passageway switching device for switching the circulation path of refrigerant; a temperature sensor; pressure sensors; and a control device. The control device controls the compressor on the basis of a target exit temperature that is set in advance, a heat medium temperature measured by means of the temperature sensor, and a pressure difference of the heat medium measured by means of the pressure sensors. If the load of a load-side apparatus becomes a low load less than or equal to a lowest capacity of the compressor, start-stop avoidance control is implemented in a state in which the lowest capacity operation of the compressor is maintained, and one of the pair of air-side heat exchangers and the heat medium-side heat exchanger are connected in parallel by means of the flow passageway switching device.

Description

チリングユニット及び水循環温調システムChilling unit and water circulation temperature control system
 本発明は、冷凍サイクルを備えたチリングユニット及び水循環温調システムに関し、特に、低負荷時においても供給水温を安定させる構造を有するものである。 The present invention relates to a chilling unit equipped with a refrigeration cycle and a water circulation temperature control system, and in particular, has a structure that stabilizes the supply water temperature even at low loads.
 従来、チリングユニットは、水循環温調システムの熱源等として使用されている。水循環温調システムは、ビル又は大規模商業施設の建物内に水を循環させ、負荷側機器であるファンコイルユニット又はエアハンドリングユニット等を介してその熱を冷暖房に使用する。また水循環温調システムは、産業用途にも用いられ、工場内に水を循環させて設備の冷却又は温調を行う。水循環温調システムでは、一つの水循環回路に対して、冷媒回路を備えたチリングユニットが複数台使用されることが一般的である。そして、各チリングユニットの水配管はヘッダ配管を介して接続され、水循環ポンプにより水循環回路内を水が循環している。 Conventionally, chilling units have been used as heat sources for water circulation temperature control systems. The water circulation temperature control system circulates water in a building or a building of a large-scale commercial facility, and uses the heat for cooling and heating via a fan coil unit or an air handling unit that is a load side device. The water circulation temperature control system is also used for industrial purposes, and circulates water in a factory to cool or adjust the temperature of equipment. In the water circulation temperature control system, a plurality of chilling units including a refrigerant circuit are generally used for one water circulation circuit. And the water piping of each chilling unit is connected via header piping, and the water circulates in the water circulation circuit by the water circulation pump.
 チリングユニットを開示したものに、特許文献1がある。特許文献1には、4系統の冷媒回路にそれぞれ配置した水熱交換器の水回路を、2系統ずつ並列に接続し、その並列にした水回路を直列に接続したシステムが開示されている。また、特許文献1には、複数の冷媒回路の運転状況に応じて、水が流通する水配管の組み合わせを変更する技術が記載されている。 Patent Document 1 discloses a chilling unit. Patent Document 1 discloses a system in which two water circuits of water heat exchangers arranged in four refrigerant circuits are connected in parallel, and the parallel water circuits are connected in series. Patent Document 1 describes a technique for changing the combination of water pipes through which water flows according to the operating conditions of a plurality of refrigerant circuits.
 一般に、チリングシステム及び水循環温調システムにおいて供給水温を安定させるためには、インバータに対応した圧縮機及び水循環ポンプを使用することが有効である。そして、それらのインバータ制御のために、水熱交換器前後の水温及び水圧等が測定され、負荷に対して最適な制御が構築されている。また、複数のチリングユニットを有する水循環温調システムにおいては、インバータ制御だけでなくチリングユニットの運転台数を制御することで低負荷に対応している。 Generally, in order to stabilize the supply water temperature in the chilling system and the water circulation temperature control system, it is effective to use a compressor and a water circulation pump corresponding to the inverter. And for those inverter controls, the water temperature and the water pressure before and after the water heat exchanger are measured, and the optimum control for the load is constructed. Moreover, in the water circulation temperature control system having a plurality of chilling units, not only the inverter control but also the number of operating chilling units is controlled to cope with a low load.
国際公開第2016/088262号International Publication No. 2016/088822
 しかしながら、上記のような従来のチリングユニットは、負荷側熱量が圧縮機の最低容量以下に低下した場合に、圧縮機を発停させて負荷に見合った熱量に調整する。このため、目標水温付近でチリングユニットが頻繁に発停を繰り返し、供給水温が安定しない場合があった。また、圧縮機の頻繁な発停は、冷媒回路内の低圧圧力を低下させるため、冷却運転時には、チリングユニットが水熱交換器内の水の凍結を回避するための異常停止に至る原因となっていた。さらに、このように頻繁に発停がなされると、圧縮機の寿命を低下させる。 However, in the conventional chilling unit as described above, when the heat amount on the load side falls below the minimum capacity of the compressor, the compressor is started and stopped to adjust the heat amount to match the load. For this reason, the chilling unit frequently starts and stops near the target water temperature, and the supply water temperature may not be stable. Also, frequent start / stop of the compressor reduces the low pressure in the refrigerant circuit, which causes the chilling unit to stop abnormally to avoid freezing of water in the water heat exchanger during cooling operation. It was. Furthermore, if the start and stop are frequently performed in this manner, the life of the compressor is reduced.
 本発明は、上記のような課題を解決するためになされたもので、低負荷時でも安定した供給水温を実現できるチリングユニット及び水循環温調システムを提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a chilling unit and a water circulation temperature control system that can realize a stable supply water temperature even at a low load.
 本発明に係るチリングユニットは、圧縮機、一対の空気側熱交換器、膨張弁及び熱媒体側熱交換器を有し、これらが配管接続されて冷媒を循環する冷媒回路と、負荷側機器に接続され、前記熱媒体側熱交換器において前記冷媒と熱交換する熱媒体が流通する配管と、前記負荷側機器の負荷が設定値以下の場合に実施される発停回避制御において、前記冷媒の循環経路を切り替える流路切替装置と、前記熱媒体側熱交換器の出入口における前記熱媒体の温度を測定する温度センサと、前記熱媒体側熱交換器の出入口における前記熱媒体の差圧を測定する圧力センサと、前記圧縮機、前記膨張弁及び前記流路切替装置を制御する制御装置とを備え、前記制御装置は、予め設定された目標出口温度と、前記温度センサにより測定された熱媒体の温度と、前記圧力センサにより測定された熱媒体の差圧とに基づいて前記圧縮機を制御し、前記負荷側機器の負荷が前記圧縮機の最低容量以下の低負荷になった場合に、前記圧縮機の最低容量運転を維持した状態で、前記発停回避制御を実施し、前記流路切替装置によって前記一対の空気側熱交換器の一方と前記熱媒体側熱交換器とを並列接続させるものである。
 また、本発明に係るチリングユニットは、圧縮機、流路切替装置、空気側熱交換器、膨張弁及び熱媒体側熱交換器を有し、これらが配管接続されて冷媒を循環する、2組の冷媒回路と、負荷側機器に接続され、前記2組の冷媒回路の熱媒体側熱交換器においてそれぞれの前記冷媒と熱交換する熱媒体が流通する配管と、前記2組の冷媒回路の熱媒体側熱交換器のそれぞれについて、出入口の前記熱媒体の温度を測定する複数の温度センサと、前記2組の冷媒回路の熱媒体側熱交換器のそれぞれについて、出入口の前記熱媒体の差圧を測定する複数の圧力センサと、前記2組の冷媒回路のそれぞれの前記圧縮機、前記流路切替装置及び前記膨張弁を制御する制御装置とを備え、前記2組の冷媒回路のそれぞれの前記流路切替装置は、前記熱媒体側熱交換器が凝縮器となる加熱側の流路と蒸発器となる冷却側の流路とを切り替えるものであり、前記制御装置は、予め設定された目標出口温度と、前記複数の温度センサにより測定された熱媒体の温度と、前記複数の圧力センサにより測定された熱媒体の差圧とに基づいて前記圧縮機を制御し、前記負荷側機器の負荷が前記圧縮機の最低容量以下の低負荷になった場合に、前記圧縮機の最低容量運転を維持した状態で、前記2組の冷媒回路の一方の前記流路切替装置を切り替えるものである。
A chilling unit according to the present invention includes a compressor, a pair of air-side heat exchangers, an expansion valve, and a heat medium-side heat exchanger. In the connected and connected piping through which the heat medium that exchanges heat with the refrigerant flows in the heat medium side heat exchanger, and the start / stop avoidance control that is performed when the load of the load side device is equal to or lower than a set value, A flow path switching device for switching the circulation path, a temperature sensor for measuring the temperature of the heat medium at the inlet / outlet of the heat medium side heat exchanger, and a differential pressure of the heat medium at the inlet / outlet of the heat medium side heat exchanger And a control device that controls the compressor, the expansion valve, and the flow path switching device. The control device includes a preset target outlet temperature and a heat medium measured by the temperature sensor. Temperature The compressor is controlled based on the differential pressure of the heat medium measured by the pressure sensor, and when the load of the load side device becomes a low load equal to or lower than the minimum capacity of the compressor, the compressor The start / stop avoidance control is performed in a state where the minimum capacity operation is maintained, and one of the pair of air side heat exchangers and the heat medium side heat exchanger are connected in parallel by the flow path switching device. is there.
Further, the chilling unit according to the present invention includes a compressor, a flow path switching device, an air side heat exchanger, an expansion valve, and a heat medium side heat exchanger, and these are connected by piping to circulate the refrigerant. A refrigerant circuit, a pipe connected to a load-side device and through which a heat medium that exchanges heat with each of the refrigerant in a heat medium side heat exchanger of the two sets of refrigerant circuits, and heat of the two sets of refrigerant circuits For each of the medium side heat exchangers, a plurality of temperature sensors for measuring the temperature of the heat medium at the inlet / outlet, and for each of the heat medium side heat exchangers of the two sets of refrigerant circuits, the differential pressure of the heat medium at the inlet / outlet A plurality of pressure sensors for measuring the pressure, and a control device for controlling the compressor, the flow path switching device, and the expansion valve of each of the two sets of refrigerant circuits, and each of the two sets of refrigerant circuits The flow path switching device includes the heat medium. The heat exchanger switches between a heating-side flow path serving as a condenser and a cooling-side flow path serving as an evaporator, and the control device includes a preset target outlet temperature and a plurality of temperature sensors. The compressor is controlled based on the measured temperature of the heat medium and the differential pressure of the heat medium measured by the plurality of pressure sensors, and the load on the load side device is low enough to be less than the minimum capacity of the compressor. When a load is applied, one of the flow path switching devices of the two sets of refrigerant circuits is switched while maintaining the minimum capacity operation of the compressor.
 本発明のチリングユニット及び水循環温調システムによれば、負荷側機器が低負荷になった場合に、流路切替装置が切り替えられる。これにより、圧縮機の最低容量運転が維持されたまま、チリングユニットの複数の空気側熱交換器の一部で加熱能力又は冷却能力の余剰分が消費される。この結果、チリングユニット及び水循環温調システムは、負荷側機器が低負荷の場合でも、圧縮機のサーモ発停を抑え、安定した温度の熱媒体を負荷側機器に供給することができる。 According to the chilling unit and the water circulation temperature control system of the present invention, the flow path switching device is switched when the load side device becomes a low load. As a result, a surplus of the heating capacity or the cooling capacity is consumed in a part of the plurality of air-side heat exchangers of the chilling unit while the minimum capacity operation of the compressor is maintained. As a result, the chilling unit and the water circulation temperature control system can suppress the thermal start / stop of the compressor and supply a heat medium having a stable temperature to the load-side device even when the load-side device has a low load.
本発明の実施の形態1に係るチリングユニットの構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the chilling unit which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るチリングユニットの制御装置の機能を示すブロック図である。It is a block diagram which shows the function of the control apparatus of the chilling unit which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るチリングユニットの冷却運転時の冷媒流れを示す回路図である。It is a circuit diagram which shows the refrigerant | coolant flow at the time of the cooling operation of the chilling unit which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るチリングユニットの制御装置が負荷側機器の低負荷時に行う制御を示すフローチャートである。It is a flowchart which shows the control which the control apparatus of the chilling unit which concerns on Embodiment 1 of this invention performs at the time of low load of a load side apparatus. 本発明の実施の形態2に係るチリングユニットの構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the chilling unit which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係るチリングユニットの制御装置が負荷側機器の低負荷時に行う制御を示すフローチャートである。It is a flowchart which shows the control which the control apparatus of the chilling unit which concerns on Embodiment 2 of this invention performs at the time of low load of a load side apparatus. 本発明の実施の形態2に係るチリングユニットの別の構成を示す概略構成図である。It is a schematic block diagram which shows another structure of the chilling unit which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る温調システムの概略構成図である。It is a schematic block diagram of the temperature control system which concerns on Embodiment 3 of this invention.
実施の形態1.
 図1及び図2に基づき、チリングユニットの構成について説明する。図1は、本発明の実施の形態1に係るチリングユニットの構成を示す概略構成図である。図2は、本発明の実施の形態1に係るチリングユニットの制御装置の機能を示すブロック図である。
Embodiment 1 FIG.
Based on FIG.1 and FIG.2, the structure of a chilling unit is demonstrated. FIG. 1 is a schematic configuration diagram showing a configuration of a chilling unit according to Embodiment 1 of the present invention. FIG. 2 is a block diagram illustrating functions of the control device for the chilling unit according to Embodiment 1 of the present invention.
 チリングユニット100では、冷媒回路10の冷媒配管を流れる冷媒によって、熱媒体回路30の配管を流れる熱媒体の加熱又は冷却が行なわれる。チリングユニット100にて加熱又は冷却された熱媒体は、熱媒体回路30を介して負荷側機器に送られ、その熱が空調等に利用される。冷媒及び熱媒体の種類はどのようなものであってもよいが、冷媒として例えばフロンが使用され、熱媒体として水又はブライン等が使用される。 In the chilling unit 100, the heat medium flowing through the pipe of the heat medium circuit 30 is heated or cooled by the refrigerant flowing through the refrigerant pipe of the refrigerant circuit 10. The heat medium heated or cooled by the chilling unit 100 is sent to the load side device via the heat medium circuit 30, and the heat is used for air conditioning or the like. Any type of refrigerant and heat medium may be used, but for example, chlorofluorocarbon is used as the refrigerant, and water, brine, or the like is used as the heat medium.
(チリングユニット100の構成)
 実施の形態1において、チリングユニット100は、冷媒が循環する1つの冷媒回路10と、熱媒体が流れる熱媒体回路30の配管等から構成される。冷媒回路10は、圧縮機1と、第1流路切替装置2と、一対の空気側熱交換器と、第2流路切替装置8と、減圧装置と、熱媒体側熱交換器7等とを有し、これらは冷媒配管を介して接続されている。またチリングユニット100は、熱媒体回路30の一部を含み、熱媒体回路30の一部には、循環ポンプ31と、上記の熱媒体側熱交換器7と、これらを接続する配管等とが含まれる。
(Configuration of chilling unit 100)
In the first embodiment, the chilling unit 100 includes one refrigerant circuit 10 in which a refrigerant circulates and piping of a heat medium circuit 30 in which a heat medium flows. The refrigerant circuit 10 includes a compressor 1, a first flow switching device 2, a pair of air side heat exchangers, a second flow switching device 8, a decompression device, a heat medium side heat exchanger 7, and the like. These are connected via a refrigerant pipe. The chilling unit 100 includes a part of the heat medium circuit 30, and a part of the heat medium circuit 30 includes a circulation pump 31, the heat medium side heat exchanger 7, and a pipe that connects them. included.
 圧縮機1は、低温低圧の冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にして吐出し、冷媒を循環させるものである。圧縮機1は、容量制御可能なインバータ圧縮機で構成される。第1流路切替装置2は、例えば四方弁等で構成され、冷却運転と加熱運転とで冷媒の流れを切り替えるものである。第1流路切替装置2は、圧縮機1の吐出側に設けられており、圧縮機1から吐出される高温高圧の冷媒の送り先を、一対に空気側熱交換器、又は熱媒体側熱交換器7に切り替える。 The compressor 1 sucks low-temperature and low-pressure refrigerant, compresses the refrigerant, discharges it in a high-temperature and high-pressure state, and circulates the refrigerant. The compressor 1 is composed of an inverter compressor capable of capacity control. The 1st flow-path switching apparatus 2 is comprised, for example with a four-way valve etc., and switches the flow of a refrigerant | coolant by cooling operation and heating operation. The first flow path switching device 2 is provided on the discharge side of the compressor 1, and the destination of the high-temperature and high-pressure refrigerant discharged from the compressor 1 is a pair of air-side heat exchanger or heat medium-side heat exchange. Switch to vessel 7.
 減圧装置は、電子膨張弁等で構成され、冷媒を減圧して膨張させるものである。減圧装置は、膨張弁5及び副膨張弁6で構成される。膨張弁5は、第1空気側熱交換器3及び第2空気側熱交換器4と、熱媒体側熱交換器7との間の冷媒配管15に設けられ、副膨張弁6は、後述する第1バイパス管16に設けられている。 The decompression device is composed of an electronic expansion valve or the like, and decompresses the refrigerant to expand it. The decompression device includes an expansion valve 5 and a sub-expansion valve 6. The expansion valve 5 is provided in the refrigerant pipe 15 between the first air side heat exchanger 3 and the second air side heat exchanger 4 and the heat medium side heat exchanger 7, and the sub expansion valve 6 will be described later. The first bypass pipe 16 is provided.
 一対の空気側熱交換器は、並列接続された第1空気側熱交換器3と第2空気側熱交換器4とで構成され、空気と冷媒との間で熱交換を行い、大気の熱を吸収、あるいは大気に熱を放出する。第1空気側熱交換器3及び第2空気側熱交換器4は、通常制御において、加熱運転時には蒸発器として機能し、冷却運転時には凝縮器として機能する。また、第1空気側熱交換器3及び第2空気側熱交換器4には、プロペラファン等で構成される送風機がそれぞれ付設されており、送風機によって空気が供給される。 The pair of air-side heat exchangers includes a first air-side heat exchanger 3 and a second air-side heat exchanger 4 that are connected in parallel, exchange heat between the air and the refrigerant, and heat the atmosphere. Absorbs or releases heat to the atmosphere. In the normal control, the first air side heat exchanger 3 and the second air side heat exchanger 4 function as an evaporator during a heating operation and function as a condenser during a cooling operation. Moreover, the 1st air side heat exchanger 3 and the 2nd air side heat exchanger 4 are each attached with the air blower comprised with a propeller fan etc., and air is supplied by an air blower.
 図1において、第1空気側熱交換器3と第2空気側熱交換器4とは、並列に接続されている。以下、第1空気側熱交換器3が設けられる冷媒配管を13とし、第2空気側熱交換器4が設けられる冷媒配管を14とする。 1, the first air side heat exchanger 3 and the second air side heat exchanger 4 are connected in parallel. Hereinafter, the refrigerant pipe provided with the first air side heat exchanger 3 is referred to as 13, and the refrigerant pipe provided with the second air side heat exchanger 4 is referred to as 14.
 熱媒体側熱交換器7は、冷媒と熱媒体とを熱交換させるものであり、冷媒の熱で熱媒体を目的の温度に加熱又は冷却する。熱媒体側熱交換器7は、加熱運転時には、高温高圧の冷媒と熱媒体とを熱交換させて熱媒体の温度を上昇させ、冷却運転時には、低温低圧の冷媒と熱媒体とを熱交換させて熱媒体の温度を低下させる。 The heat medium side heat exchanger 7 exchanges heat between the refrigerant and the heat medium, and heats or cools the heat medium to a target temperature with the heat of the refrigerant. The heat medium side heat exchanger 7 exchanges heat between the high-temperature and high-pressure refrigerant and the heat medium during the heating operation to increase the temperature of the heat medium, and causes heat exchange between the low-temperature and low-pressure refrigerant and the heat medium during the cooling operation. To lower the temperature of the heating medium.
 第2流路切替装置8は、通常制御と、後述する発停回避制御とで、冷媒循環経路を切り替えるものである。第2流路切替装置8は、例えば2つの三方弁8a,8bで構成される。2つの三方弁8a,8bは、冷媒配管14上に第2空気側熱交換器4を挟むように配置され、第2空気側熱交換器4における冷媒流れを切り替える。三方弁8aは、第1流路切替装置2と第2空気側熱交換器4との間に設けられ、三方弁8bは、第2空気側熱交換器4と膨張弁5との間に設けられている。 The second flow path switching device 8 switches the refrigerant circulation path between normal control and start / stop avoidance control described later. The second flow path switching device 8 is composed of, for example, two three- way valves 8a and 8b. The two three- way valves 8a and 8b are arranged on the refrigerant pipe 14 so as to sandwich the second air-side heat exchanger 4, and switch the refrigerant flow in the second air-side heat exchanger 4. The three-way valve 8a is provided between the first flow switching device 2 and the second air side heat exchanger 4, and the three-way valve 8b is provided between the second air side heat exchanger 4 and the expansion valve 5. It has been.
 また冷媒回路10は、熱媒体側熱交換器7をバイパスするバイパス回路を有している。バイパス回路は、第1バイパス管16と、第2バイパス管17と、上述した冷媒配管14のうち三方弁8aと三方弁8bとの間の配管等とから構成される。第1バイパス管16は、第1空気側熱交換器3及び第2空気側熱交換器4と、膨張弁5との間の冷媒配管と、三方弁8bとを接続する。第2バイパス管17は、熱媒体側熱交換器7と第1流路切替装置2との間の冷媒配管19と、三方弁8aとを接続する。冷媒回路10では、第2流路切替装置8の接続状態が切り替わることにより、メインの冷媒回路において熱媒体側熱交換器7へ向かう冷媒の一部あるいは全部がバイパス回路に流れ、通常制御と発停回避制御とで冷媒の循環経路を切り替えることができる。 The refrigerant circuit 10 has a bypass circuit that bypasses the heat medium side heat exchanger 7. The bypass circuit includes a first bypass pipe 16, a second bypass pipe 17, and a pipe between the three-way valve 8a and the three-way valve 8b in the refrigerant pipe 14 described above. The first bypass pipe 16 connects the refrigerant pipe between the first air side heat exchanger 3 and the second air side heat exchanger 4 and the expansion valve 5 and the three-way valve 8b. The second bypass pipe 17 connects the refrigerant pipe 19 between the heat medium side heat exchanger 7 and the first flow path switching device 2 and the three-way valve 8a. In the refrigerant circuit 10, when the connection state of the second flow path switching device 8 is switched, a part or all of the refrigerant directed to the heat medium side heat exchanger 7 in the main refrigerant circuit flows to the bypass circuit, and normal control and generation are performed. The refrigerant circulation path can be switched by the stop avoidance control.
 ここで、発停回避制御は、熱媒体回路30に接続されている負荷側装置が低負荷になった場合に、冷媒回路10の圧縮機1が発進と停止とを繰り返す不安定な状態になることを回避するために実施される制御である。バイパス回路上の第2空気側熱交換器4には、第2流路切替装置8が通常制御の接続状態であるとき、第1空気側熱交換器3と同じ方向に冷媒が流れ、第2流路切替装置8が発停回避制御の接続状態であるとき、熱媒体側熱交換器7と同じ方向に冷媒が流れる。 Here, the start / stop avoidance control becomes an unstable state in which the compressor 1 of the refrigerant circuit 10 repeats start and stop when the load side device connected to the heat medium circuit 30 becomes a low load. This control is performed to avoid this. When the second flow switching device 8 is in the normal control connection state, the refrigerant flows in the second air side heat exchanger 4 on the bypass circuit in the same direction as the first air side heat exchanger 3, and the second When the flow path switching device 8 is in the connected state for start / stop avoidance control, the refrigerant flows in the same direction as the heat medium side heat exchanger 7.
 循環ポンプ31は、熱媒体回路30に熱媒体を循環させるものであり、これにより、配管を介して環状に接続された負荷側装置と熱媒体側熱交換器7との間を熱媒体が流れる。循環ポンプ31は、インバータ式のポンプで構成され、熱媒体の流量を多段階にあるいは連続して可変にする。循環ポンプ31は、後述する制御装置50から、負荷に応じた流量にするための制御信号を受信し、制御信号に応じてモータの周波数を駆動することで、循環する熱媒体の流量を調整している。 The circulation pump 31 circulates the heat medium in the heat medium circuit 30, so that the heat medium flows between the load-side device and the heat medium-side heat exchanger 7 that are annularly connected via the pipe. . The circulation pump 31 is composed of an inverter type pump, and makes the flow rate of the heat medium variable in multiple stages or continuously. The circulation pump 31 receives a control signal for adjusting the flow rate according to the load from the control device 50 described later, and adjusts the flow rate of the circulating heat medium by driving the frequency of the motor according to the control signal. ing.
 また、チリングユニット100は、温度センサ及び圧力センサ等の複数のセンサを備えている。熱媒体回路30には、熱媒体側熱交換器7の出入口の配管に、温度センサ32,34及び圧力センサ33,35が配置されている。温度センサ32及び温度センサ34は、熱媒体側熱交換器7の出入口における熱媒体の温度を測定し、圧力センサ33及び圧力センサ35は、熱媒体側熱交換器7の出入口における熱媒体の差圧を測定する。また、図示していないが、冷媒回路10には、圧縮機1の吸入管に冷媒の吸入圧力を検出する低圧圧力センサが設置され、圧縮機1の吐出管に冷媒の吐出圧力を検出する高圧圧力センサが設置されている。 In addition, the chilling unit 100 includes a plurality of sensors such as a temperature sensor and a pressure sensor. In the heat medium circuit 30, temperature sensors 32, 34 and pressure sensors 33, 35 are arranged in the piping at the entrance / exit of the heat medium side heat exchanger 7. The temperature sensor 32 and the temperature sensor 34 measure the temperature of the heat medium at the inlet / outlet of the heat medium side heat exchanger 7, and the pressure sensor 33 and the pressure sensor 35 are the difference of the heat medium at the inlet / outlet of the heat medium side heat exchanger 7. Measure the pressure. Although not shown, the refrigerant circuit 10 is provided with a low pressure sensor for detecting the refrigerant suction pressure in the suction pipe of the compressor 1, and a high pressure for detecting the refrigerant discharge pressure in the discharge pipe of the compressor 1. A pressure sensor is installed.
 制御装置50は、例えばマイコン等で構成され、チリングユニット100の各アクチュエータの制御を行う。制御装置50は、上述した複数のセンサから、冷媒の圧力情報及び温度情報、並びに熱媒体の圧力情報及び温度情報等を受信する。制御装置50は、各センサから取得したこれらの情報、予め設定された設定情報、及び利用者によって入力された指令等に基づき、運転制御を行う。具体的には、制御装置50は、圧縮機1の運転、停止及び回転数の制御、減圧装置の開度調整、第1流路切替装置2及び第2流路切替装置8の切り替え制御、並びに、第1空気側熱交換器3及び第2空気側熱交換器4に併設された送風機の回転制御等を行う。また制御装置50は、循環ポンプ31の周波数を制御し、熱媒体側熱交換器7に供給される熱媒体の流量を調整する。 The control device 50 is composed of, for example, a microcomputer and controls each actuator of the chilling unit 100. The control device 50 receives pressure information and temperature information of the refrigerant, pressure information and temperature information of the heat medium, and the like from the plurality of sensors described above. The control device 50 performs operation control based on these information acquired from each sensor, preset setting information, a command input by the user, and the like. Specifically, the control device 50 controls the operation, stop, and rotation speed of the compressor 1, adjusts the opening of the decompression device, controls the switching of the first flow path switching device 2 and the second flow path switching device 8, and Then, rotation control and the like of a blower provided in the first air side heat exchanger 3 and the second air side heat exchanger 4 are performed. The control device 50 controls the frequency of the circulation pump 31 and adjusts the flow rate of the heat medium supplied to the heat medium side heat exchanger 7.
 次に、図2に基づき、制御装置50の機能構成について説明する。制御装置50は、運転制御部51と、負荷判定部52とを有する。運転制御部51は、予め設定された熱媒体の目標出口温度と、出入口における現在の熱媒体の温度と差圧とから、熱媒体を目標出口温度にするために最適な運転条件を演算して各アクチュエータに運転指示を出力する。また運転制御部51は、第1流路切替装置2を切り替えることで加熱運転と冷却運転を切り替え、発停回避制御を行うときに第2流路切替装置8を切り替える。また、運転制御部51は、負荷判定部52が行う判定の結果を取得し、取得した判定結果に応じて制御を行う。 Next, the functional configuration of the control device 50 will be described with reference to FIG. The control device 50 includes an operation control unit 51 and a load determination unit 52. The operation control unit 51 calculates an optimum operating condition for setting the heat medium to the target outlet temperature from the preset target outlet temperature of the heat medium and the current temperature and differential pressure of the heat medium at the inlet and outlet. Outputs operation instructions to each actuator. Further, the operation control unit 51 switches between the heating operation and the cooling operation by switching the first flow path switching device 2 and switches the second flow path switching device 8 when performing start / stop avoidance control. Moreover, the operation control part 51 acquires the result of the determination which the load determination part 52 performs, and performs control according to the acquired determination result.
 負荷判定部52は、運転制御部51から、現在の負荷側機器の負荷の情報を取得し、負荷についての判定を行う。具体的には、負荷が低下したか否か、負荷が圧縮機1の最低容量以下であるか否か、あるいは、負荷がない状態であるか否かを判定する。また、負荷判定部52は、判定結果を運転制御部51に通知する。ここで、現在の負荷側機器の負荷は、負荷側機器から取得する情報、又は、設定情報、各アクチュエータの制御情報及び各種センサの情報により、運転制御部51が演算により求めてもよい。 The load determination unit 52 acquires information on the current load on the load side device from the operation control unit 51, and determines the load. Specifically, it is determined whether or not the load has decreased, whether or not the load is less than or equal to the minimum capacity of the compressor 1, or whether or not there is no load. The load determination unit 52 notifies the operation control unit 51 of the determination result. Here, the current load of the load side device may be obtained by the operation control unit 51 by calculation based on information acquired from the load side device, or setting information, control information of each actuator, and information of various sensors.
 まず、チリングユニット100の通常制御時の動作について説明する。図1中、熱媒体回路30に沿う一点鎖線の矢印は熱媒体の流れを表し、冷媒回路10に沿う実線矢印及び破線矢印は、通常制御の冷却運転又は加熱運転における冷媒の流れを表している。 First, the operation of the chilling unit 100 during normal control will be described. In FIG. 1, an alternate long and short dash line arrow along the heat medium circuit 30 represents the flow of the heat medium, and a solid line arrow and a broken line arrow along the refrigerant circuit 10 represent the refrigerant flow in the normal control cooling operation or heating operation. .
(通常制御)
 冷却運転において、圧縮機1に吸入された冷媒は圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機1から吐出されたガス冷媒は、第1流路切替装置2を経て冷媒配管13と冷媒配管14とに分流し、凝縮器となる第1空気側熱交換器3と第2空気側熱交換器4にそれぞれ流入して周囲の空気に放熱しながら冷却され、高圧中温の冷媒となる。このとき、冷媒配管14に設けられた第2流路切替装置8は通常制御時の接続状態となっている。つまり、三方弁8aは、第1流路切替装置2と第2空気側熱交換器4とを接続し、三方弁8bは、第2空気側熱交換器4と減圧装置とを接続している。その後、高圧中温の冷媒は、合流し、減圧装置の膨張弁5で減圧されて低圧二相の状態になり、蒸発器である熱媒体側熱交換器7に流入する。このとき、副膨張弁6は閉となっており、バイパス回路に冷媒は流れない。そして、低圧二相の冷媒は、熱媒体側熱交換器7において、熱媒体回路30を流れる熱媒体から熱を吸収して加熱蒸発され、低圧低温のガス冷媒となる。熱媒体側熱交換器7から流出したガス冷媒は、第1流路切替装置2を経た後、再度圧縮機1に吸入される。一方、熱媒体側熱交換器7において温度が低下した熱媒体は、チリングユニット100から負荷側機器に送られる。
(Normal control)
In the cooling operation, the refrigerant sucked into the compressor 1 is compressed and discharged as a high-temperature and high-pressure gas refrigerant. The gas refrigerant discharged from the compressor 1 is divided into the refrigerant pipe 13 and the refrigerant pipe 14 via the first flow path switching device 2, and the first air-side heat exchanger 3 and the second air-side heat serving as a condenser. The refrigerant flows into the exchanger 4 and is cooled while dissipating heat to the surrounding air, and becomes a high-pressure medium-temperature refrigerant. At this time, the second flow path switching device 8 provided in the refrigerant pipe 14 is in a connected state during normal control. That is, the three-way valve 8a connects the first flow path switching device 2 and the second air side heat exchanger 4, and the three-way valve 8b connects the second air side heat exchanger 4 and the pressure reducing device. . Thereafter, the high-pressure and medium-temperature refrigerant merges, is decompressed by the expansion valve 5 of the decompression device, becomes a low-pressure two-phase state, and flows into the heat medium side heat exchanger 7 that is an evaporator. At this time, the sub-expansion valve 6 is closed, and the refrigerant does not flow into the bypass circuit. The low-pressure two-phase refrigerant absorbs heat from the heat medium flowing through the heat medium circuit 30 in the heat medium side heat exchanger 7 and is evaporated by heating to become a low-pressure and low-temperature gas refrigerant. The gas refrigerant flowing out of the heat medium side heat exchanger 7 passes through the first flow path switching device 2 and then is sucked into the compressor 1 again. On the other hand, the heat medium whose temperature has decreased in the heat medium side heat exchanger 7 is sent from the chilling unit 100 to the load side device.
 加熱運転において、圧縮機1に吸入された冷媒は圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機1から吐出されたガス冷媒は、第1流路切替装置2を経て、凝縮器となる熱媒体側熱交換器7に流入し、熱媒体回路30を流れる熱媒体へ熱を放出して冷却され、高圧中温の冷媒となる。その後、高圧中温の冷媒は、減圧装置の膨張弁5で減圧されて低圧二相の状態になる。このとき、副膨張弁6は閉となっており、また、冷媒配管14に設けられた第2流路切替装置8は通常制御時の接続状態となっている。そのため、バイパス回路に冷媒は流れず、低圧二相の冷媒は、冷媒配管13と冷媒配管14とに分流し、蒸発器となる第1空気側熱交換器3と第2空気側熱交換器4にそれぞれ流入する。そして、低圧二相の冷媒は、第1空気側熱交換器3又は第2空気側熱交換器4において周囲の空気から熱を吸収しながら加熱蒸発され、低圧低温のガス冷媒となる。その後、低圧低温のガス冷媒は、合流して第1流路切替装置2を通り、再度圧縮機1に吸入される。一方、熱媒体側熱交換器7において温度が上昇した熱媒体は、チリングユニット100から負荷側機器に送られる。 In the heating operation, the refrigerant sucked into the compressor 1 is compressed and discharged as a high-temperature and high-pressure gas refrigerant. The gas refrigerant discharged from the compressor 1 flows through the first flow path switching device 2 into the heat medium side heat exchanger 7 serving as a condenser, and releases heat to the heat medium flowing through the heat medium circuit 30. It is cooled and becomes a high-pressure medium-temperature refrigerant. Thereafter, the high-pressure and medium-temperature refrigerant is decompressed by the expansion valve 5 of the decompression device, and becomes a low-pressure two-phase state. At this time, the sub-expansion valve 6 is closed, and the second flow path switching device 8 provided in the refrigerant pipe 14 is in a connected state during normal control. Therefore, the refrigerant does not flow in the bypass circuit, and the low-pressure two-phase refrigerant is divided into the refrigerant pipe 13 and the refrigerant pipe 14, and the first air-side heat exchanger 3 and the second air-side heat exchanger 4 serving as an evaporator. Flows into each. Then, the low-pressure two-phase refrigerant is heated and evaporated while absorbing heat from the surrounding air in the first air-side heat exchanger 3 or the second air-side heat exchanger 4, and becomes a low-pressure and low-temperature gas refrigerant. Thereafter, the low-pressure and low-temperature gas refrigerants merge and pass through the first flow path switching device 2 and are sucked into the compressor 1 again. On the other hand, the heat medium whose temperature has increased in the heat medium side heat exchanger 7 is sent from the chilling unit 100 to the load side device.
 また、冷却運転中及び加熱運転中に、制御装置50は、熱媒体を目標出口温度にするために必要な圧縮機1の容量、循環ポンプ31の容量、及び膨張弁5の開度等を決定している。これにより、例えば、圧縮機1は、負荷側機器の負荷が大きい場合には運転容量を大きくするように制御され、負荷側機器の負荷が小さい場合には運転容量を小さくするように制御される。 Further, during the cooling operation and the heating operation, the control device 50 determines the capacity of the compressor 1, the capacity of the circulation pump 31, the opening degree of the expansion valve 5 and the like necessary for setting the heat medium to the target outlet temperature. is doing. Thereby, for example, the compressor 1 is controlled to increase the operation capacity when the load on the load side device is large, and is controlled to decrease the operation capacity when the load on the load side device is small. .
 次に、図3に基づき、チリングユニット100の発停回避制御時の動作について説明する。図3は、本発明の実施の形態1に係るチリングユニットの冷却運転時の冷媒流れを示す回路図である。図中、実線矢印は通常制御における冷却運転時の冷媒流れを表し、破線矢印は発停回避制御における冷却運転時の冷媒流れを表している。 Next, the operation of the chilling unit 100 during start / stop avoidance control will be described with reference to FIG. FIG. 3 is a circuit diagram showing a refrigerant flow during the cooling operation of the chilling unit according to Embodiment 1 of the present invention. In the figure, the solid line arrow represents the refrigerant flow during the cooling operation in the normal control, and the broken line arrow represents the refrigerant flow during the cooling operation in the start / stop avoidance control.
(発停回避制御)
 通常制御の運転時に、負荷側機器の負荷が圧縮機1の最低容量以下の低負荷になると、発停回避制御が実施され、第2流路切替装置8の接続状態が切り替えられる。このとき、三方弁8aは、第2空気側熱交換器4と第2バイパス管17とを接続し、三方弁8bは、第1バイパス管16と第2空気側熱交換器4とを接続する。つまり、第1空気側熱交換器3と第2空気側熱交換器4との並列接続は解除され、第2空気側熱交換器4と熱媒体側熱交換器7とが並列接続される。図3に示すように、第2空気側熱交換器4の冷媒流れの方向は、発停回避制御時には通常制御時とは逆方向となる。またこのとき、副膨張弁6は開とされ、膨張弁5及び副膨張弁6の開度がそれぞれ調整される。
(Start / stop avoidance control)
When the load of the load side device becomes a low load equal to or lower than the minimum capacity of the compressor 1 during the normal control operation, start / stop avoidance control is performed, and the connection state of the second flow path switching device 8 is switched. At this time, the three-way valve 8a connects the second air-side heat exchanger 4 and the second bypass pipe 17, and the three-way valve 8b connects the first bypass pipe 16 and the second air-side heat exchanger 4. . That is, the parallel connection between the first air side heat exchanger 3 and the second air side heat exchanger 4 is released, and the second air side heat exchanger 4 and the heat medium side heat exchanger 7 are connected in parallel. As shown in FIG. 3, the direction of the refrigerant flow in the second air-side heat exchanger 4 is opposite to that during normal control during start / stop avoidance control. At this time, the sub-expansion valve 6 is opened, and the opening degrees of the expansion valve 5 and the sub-expansion valve 6 are adjusted.
 冷却運転において、圧縮機1に吸入された低温低圧の冷媒は、圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機1から吐出されたガス冷媒は、第1流路切替装置2を経て冷媒配管13上の第1空気側熱交換器3に流入する。第1空気側熱交換器3は凝縮器として機能し、ガス冷媒は周囲の空気に放熱しながら冷却され、高圧中温の冷媒となる。第1空気側熱交換器3を流出した高圧中温の冷媒のうち、一部は、膨張弁5で減圧され、低圧二相の状態になって熱媒体側熱交換器7に流入し、残りの冷媒は、副膨張弁6で減圧され、低圧二相の状態になって第2空気側熱交換器4に流入する。発停回避制御の冷却運転時には、熱媒体側熱交換器7及び第2空気側熱交換器4の双方が、蒸発器として機能する。熱媒体側熱交換器7に流入した低圧二相の冷媒は、熱媒体回路30を流れる熱媒体から熱を吸収して加熱蒸発され、低圧低温のガス冷媒となる。また、第2空気側熱交換器4に流入した低圧二相の冷媒は、周囲の空気から熱を吸収して加熱蒸発され、低圧低温のガス冷媒となる。熱媒体側熱交換器7に流れる冷媒量とバイパス回路に流れる冷媒量は、膨張弁5と副膨張弁6の開度により調整される。そして、熱媒体側熱交換器7から流出したガス冷媒と、第2空気側熱交換器4から流出したガス冷媒とは合流し、第1流路切替装置2を経て、再度圧縮機1に吸入される。一方、熱媒体側熱交換器7において温度が低下した熱媒体は、チリングユニット100から負荷側機器に送られる。 In the cooling operation, the low-temperature and low-pressure refrigerant sucked into the compressor 1 is compressed and discharged as a high-temperature and high-pressure gas refrigerant. The gas refrigerant discharged from the compressor 1 flows into the first air-side heat exchanger 3 on the refrigerant pipe 13 through the first flow path switching device 2. The first air-side heat exchanger 3 functions as a condenser, and the gas refrigerant is cooled while dissipating heat to the surrounding air, and becomes a high-pressure medium-temperature refrigerant. Part of the high-pressure medium-temperature refrigerant that has flowed out of the first air-side heat exchanger 3 is decompressed by the expansion valve 5, enters a low-pressure two-phase state, flows into the heat medium-side heat exchanger 7, and the rest The refrigerant is depressurized by the sub-expansion valve 6, becomes a low-pressure two-phase state, and flows into the second air-side heat exchanger 4. During the cooling operation in the start / stop avoidance control, both the heat medium side heat exchanger 7 and the second air side heat exchanger 4 function as an evaporator. The low-pressure two-phase refrigerant flowing into the heat medium side heat exchanger 7 absorbs heat from the heat medium flowing through the heat medium circuit 30 and is evaporated by heating to become a low-pressure and low-temperature gas refrigerant. The low-pressure two-phase refrigerant flowing into the second air-side heat exchanger 4 absorbs heat from the surrounding air and is evaporated by heating to become a low-pressure and low-temperature gas refrigerant. The amount of refrigerant flowing through the heat medium side heat exchanger 7 and the amount of refrigerant flowing through the bypass circuit are adjusted by the opening degree of the expansion valve 5 and the sub expansion valve 6. Then, the gas refrigerant that has flowed out of the heat medium side heat exchanger 7 and the gas refrigerant that has flowed out of the second air side heat exchanger 4 merge, and are sucked into the compressor 1 again via the first flow path switching device 2. Is done. On the other hand, the heat medium whose temperature has decreased in the heat medium side heat exchanger 7 is sent from the chilling unit 100 to the load side device.
 このように発停回避制御が行われると、熱媒体側熱交換器7に流れる冷媒量が調整できるようになる。このため、チリングユニット100は、圧縮機1の運転容量が最低容量であっても、冷媒と熱媒体との間の熱交換量をさらに小さくするように制御でき、低負荷に対応できる。 When the start / stop avoidance control is performed in this way, the amount of refrigerant flowing through the heat medium side heat exchanger 7 can be adjusted. For this reason, even if the operating capacity of the compressor 1 is the minimum capacity, the chilling unit 100 can be controlled to further reduce the amount of heat exchange between the refrigerant and the heat medium, and can cope with a low load.
 図4は、本発明の実施の形態1に係るチリングユニットの制御装置が負荷側機器の低負荷時に行う制御を示すフローチャートである。 FIG. 4 is a flowchart showing the control performed by the chilling unit control apparatus according to Embodiment 1 of the present invention when the load side device is under low load.
 チリングユニットの運転中、運転制御部51は、負荷側機器の負荷を求め、負荷に応じて各アクチュエータを制御している。負荷判定部52は、運転制御部51から負荷の情報を取得し、負荷側機器の負荷が低下したか否かを判定する(ステップST101)。このとき、負荷判定部52は、今回取得した負荷の情報と前回取得した負荷の情報とを比較する、あるいは、所定時間の負荷を平均して今回の平均と前回の平均とを比較することで、上記ステップST101の負荷低下判定を行ってもよい。負荷が低下した場合には(ステップST101;YES)、負荷判定部52は、さらに、負荷側機器の負荷が圧縮機1の最低容量以下の低負荷であるか否かを判定する(ステップST102)。負荷判定部52は、低負荷と判定した場合には(ステップST102;YES)、その判定結果を運転制御部51に通知する。そして、運転制御部51により発停回避制御が実施される。一方、負荷低下判定にて負荷が低下していないと判定された場合(ステップST101;NO)、あるいは、上記ステップST102の低負荷判定にて低負荷ではないと判定された場合には(ステップST102;NO)、負荷判定部52は、運転制御部51にその判定結果を通知する。そして、運転制御部51により通常制御が続行される。負荷判定部52は、運転中、運転制御部51から負荷側機器の負荷の情報を取得し、ステップST101及びステップST102の判定を繰り返し、負荷の低下を監視する。 During operation of the chilling unit, the operation control unit 51 obtains the load of the load side device and controls each actuator according to the load. The load determination unit 52 acquires load information from the operation control unit 51, and determines whether or not the load on the load side device has decreased (step ST101). At this time, the load determination unit 52 compares the information of the load acquired this time with the information of the load acquired last time, or averages the load for a predetermined time and compares the current average with the previous average. The load reduction determination in step ST101 may be performed. When the load decreases (step ST101; YES), the load determination unit 52 further determines whether or not the load on the load side device is a low load equal to or lower than the minimum capacity of the compressor 1 (step ST102). . When determining that the load is low (step ST102; YES), the load determination unit 52 notifies the operation control unit 51 of the determination result. Then, start / stop avoidance control is performed by the operation control unit 51. On the other hand, when it is determined that the load has not decreased in the load decrease determination (step ST101; NO), or when it is determined that the load is not low in the low load determination in step ST102 (step ST102). NO), the load determination unit 52 notifies the operation control unit 51 of the determination result. Then, the normal control is continued by the operation control unit 51. During operation, the load determination unit 52 acquires the load information of the load side device from the operation control unit 51, repeats the determinations of step ST101 and step ST102, and monitors the decrease in load.
 運転制御部51は、発停回避制御において、圧縮機1の最低容量運転を維持したまま、加熱又は冷却能力の余剰分を消費するために第2流路切替装置8を通常制御の接続状態から発停回避制御の接続状態に切り替える(ステップST103)。例えば、冷却運転中に発停回避制御が実施された場合には、第1空気側熱交換器3は凝縮器となり第2空気側熱交換器4は蒸発器となり、それぞれ冷媒と大気との間で熱交換を行う。また運転制御部51は、熱媒体側熱交換器7で熱交換される熱量が負荷側機器の負荷に見合った熱量となるように、膨張弁5及び副膨張弁6の開度を調整する(ステップST104)。運転制御部51は、負荷側機器の負荷が小さいほど膨張弁5の開度を小さくし、熱媒体側熱交換器7に流れる冷媒量が少なくするように制御すればよい。 In the start / stop avoidance control, the operation control unit 51 keeps the second flow path switching device 8 from the normal control connection state in order to consume the surplus heating or cooling capacity while maintaining the minimum capacity operation of the compressor 1. The connection state of start / stop avoidance control is switched (step ST103). For example, when start / stop avoidance control is performed during the cooling operation, the first air-side heat exchanger 3 serves as a condenser and the second air-side heat exchanger 4 serves as an evaporator. Perform heat exchange at. Further, the operation control unit 51 adjusts the opening degree of the expansion valve 5 and the sub-expansion valve 6 so that the amount of heat exchanged by the heat medium side heat exchanger 7 becomes the amount of heat commensurate with the load of the load side device ( Step ST104). Operation control part 51 should just control so that the amount of refrigerant which flows into heat carrier side heat exchanger 7 may decrease, so that the opening of expansion valve 5 is made small, so that the load of load side equipment is small.
 次に、負荷判定部52は、負荷側機器の負荷が0であるか否かを判定する(ステップST105)。負荷側機器の負荷が0でない場合には(ステップST105;NO)、運転制御部51により、膨張弁5と副膨張弁6の開度の調整が繰り返される(ステップST104)。一方、負荷側機器の負荷が0である場合には(ステップST105;YES)、運転制御部51により、膨張弁5が全閉される(ステップST106)。膨張弁5が全閉されると、熱媒体側熱交換器7へ向かおうとする冷媒は全てバイパス回路へ流れ、第2空気側熱交換器4により大気と熱交換される。 Next, the load determination unit 52 determines whether or not the load on the load side device is 0 (step ST105). If the load on the load side device is not 0 (step ST105; NO), the operation control unit 51 repeatedly adjusts the opening degrees of the expansion valve 5 and the sub-expansion valve 6 (step ST104). On the other hand, when the load of the load side device is 0 (step ST105; YES), the operation control unit 51 fully closes the expansion valve 5 (step ST106). When the expansion valve 5 is fully closed, all of the refrigerant going to the heat medium side heat exchanger 7 flows to the bypass circuit, and is exchanged with the atmosphere by the second air side heat exchanger 4.
 このように、負荷がないときにも、加熱又は冷却能力の余剰分は、第1空気側熱交換器3及び第2空気側熱交換器4がそれぞれ大気と熱交換することにより相殺される。ここで、熱媒体回路30側に負荷がない場合に、冷媒回路10で能力の余剰分を相殺するためには、第1空気側熱交換器3と第2空気側熱交換器4とは、同等の熱交換能力が発揮できるものであることが望ましい。 Thus, even when there is no load, the excess of the heating or cooling capacity is offset by the first air-side heat exchanger 3 and the second air-side heat exchanger 4 exchanging heat with the atmosphere. Here, when there is no load on the heat medium circuit 30 side, in order to offset the surplus capacity in the refrigerant circuit 10, the first air side heat exchanger 3 and the second air side heat exchanger 4 are: It is desirable that the same heat exchange capability can be exhibited.
 また、冷却運転において負荷側機器が低負荷である場合には、熱媒体側熱交換器7が凍結しない冷媒温度(例えば、0℃以上)を維持するように膨張弁5の開度を調整するとい。このように膨張弁5を調整することで、チリングユニット100は、熱媒体回路30においても、圧力センサ33,35の差圧に基づいて熱媒体の流量を極低流量にすることが可能となり、循環ポンプ31の動力を削減することができる。 In addition, when the load side device is low in the cooling operation, the opening degree of the expansion valve 5 is adjusted so as to maintain the refrigerant temperature (for example, 0 ° C. or higher) at which the heat medium side heat exchanger 7 does not freeze. Yes. By adjusting the expansion valve 5 in this way, the chilling unit 100 can also make the flow rate of the heat medium extremely low based on the pressure difference between the pressure sensors 33 and 35 in the heat medium circuit 30. The power of the circulation pump 31 can be reduced.
 なお、第1空気側熱交換器3と第2空気側熱交換器4とが並列に接続される場合を例に説明したが、特にこれに限定されない。第2空気側熱交換器4が通常制御と発停回避制御とで上述したように機能し、また、発停回避制御において熱媒体側熱交換器7に流れる冷媒量が調整できる構成であれば、どのような回路構成であってもよい。 In addition, although the case where the 1st air side heat exchanger 3 and the 2nd air side heat exchanger 4 were connected in parallel was demonstrated to the example, it is not limited to this in particular. If the second air side heat exchanger 4 functions as described above in the normal control and the start / stop avoidance control, and the amount of refrigerant flowing through the heat medium side heat exchanger 7 can be adjusted in the start / stop avoidance control, Any circuit configuration may be used.
 以上のように、実施の形態1において、チリングユニット100は、圧縮機1、一対の空気側熱交換器(例えば、第1空気側熱交換器3及び第2空気側熱交換器4)、膨張弁5及び熱媒体側熱交換器7を有す冷媒回路10と、熱媒体が流通する配管と、流路切替装置(第2流路切替装置8)と、制御装置50等とを備えている。そして、制御装置50は、負荷側機器が低負荷になった場合に、圧縮機1の最低容量運転を維持した状態で流路切替装置(第2流路切替装置8)を切り替え、一対の空気側熱交換器の一方(第2空気側熱交換器4)と熱媒体側熱交換器7とを並列接続させる。 As described above, in the first embodiment, the chilling unit 100 includes the compressor 1, a pair of air side heat exchangers (for example, the first air side heat exchanger 3 and the second air side heat exchanger 4), and expansion. A refrigerant circuit 10 having a valve 5 and a heat medium side heat exchanger 7, a pipe through which the heat medium flows, a flow path switching device (second flow path switching device 8), a control device 50, and the like are provided. . Then, the control device 50 switches the flow path switching device (second flow path switching device 8) in a state where the minimum capacity operation of the compressor 1 is maintained when the load side device becomes a low load, and a pair of air One side heat exchanger (second air side heat exchanger 4) and the heat medium side heat exchanger 7 are connected in parallel.
 これにより、チリングユニット100は、負荷側機器が低負荷になった場合に、圧縮機1の最低容量運転を維持したまま、第2空気側熱交換器4にて加熱能力又は冷却能力の余剰分を消費することができる。したがって、チリングユニット100は、低負荷時でも、圧縮機1のサーモ発停を抑え、安定した温度の熱媒体を負荷側機器に供給することができる。 Thereby, when the load side apparatus becomes low load, the chilling unit 100 maintains the minimum capacity operation of the compressor 1 and the surplus heating capacity or cooling capacity in the second air side heat exchanger 4. Can be consumed. Therefore, the chilling unit 100 can suppress the thermal start / stop of the compressor 1 and supply a heat medium having a stable temperature to the load side device even at a low load.
 また、一対の空気側熱交換器の一方(第2空気側熱交換器4)と他方(第1空気側熱交換器3)とは並列接続されており、発停回避制御において、流路切替装置(第2流路切替装置8)が切り替えられると、一対の空気側熱交換器の一方と他方との並列接続が解除される。 One of the pair of air side heat exchangers (second air side heat exchanger 4) and the other (first air side heat exchanger 3) are connected in parallel. When the device (second flow path switching device 8) is switched, the parallel connection between one and the other of the pair of air-side heat exchangers is released.
 これにより、第2空気側熱交換器4は、冷媒の循環経路を切り替える第2流路切替装置8によって、通常制御では第1空気側熱交換器3を補助し、発停回避制御では熱媒体側熱交換器7を補助して加熱又は冷却能力の余剰分を消費することができる。 Thus, the second air-side heat exchanger 4 assists the first air-side heat exchanger 3 in the normal control and the heat medium in the start / stop avoidance control by the second flow path switching device 8 that switches the circulation path of the refrigerant. The side heat exchanger 7 can be assisted to consume the excess heating or cooling capacity.
 また、膨張弁5は、一対の空気側熱交換器(第1空気側熱交換器3及び第2空気側熱交換器4)と熱媒体側熱交換器7との間の冷媒配管15に設けられ、制御装置50は、負荷側機器の負荷が0になった場合に、膨張弁5を全閉するものである。 The expansion valve 5 is provided in the refrigerant pipe 15 between the pair of air side heat exchangers (the first air side heat exchanger 3 and the second air side heat exchanger 4) and the heat medium side heat exchanger 7. The control device 50 fully closes the expansion valve 5 when the load on the load side device becomes zero.
 これにより、低負荷時に、圧縮機1の最低容量運転が維持されたまま第2流路切替装置8が発停回避制御に切り替えられ、さらに、負荷が0になると膨張弁5が全閉される。このため、負荷がないときに、熱媒体側熱交換器7での熱交換は行われず、加熱又は冷却能力の余剰分は第2空気側熱交換器4が空気と熱交換することで相殺される。したがって、チリングユニット100は、負荷がない場合においても、圧縮機1のサーモ発停を抑え、安定した温度の熱媒体を負荷側に供給することができる。 Thereby, at the time of low load, the second flow path switching device 8 is switched to start / stop avoidance control while the minimum capacity operation of the compressor 1 is maintained, and when the load becomes zero, the expansion valve 5 is fully closed. . For this reason, when there is no load, heat exchange in the heat medium side heat exchanger 7 is not performed, and the surplus of the heating or cooling capacity is offset by the second air side heat exchanger 4 exchanging heat with air. The Therefore, even when there is no load, the chilling unit 100 can suppress the thermal start / stop of the compressor 1 and supply a heat medium having a stable temperature to the load side.
 また、チリングユニット100は、熱媒体の流量を可変にするインバータ式の循環ポンプ31をさらに備え、制御装置50は、熱媒体を冷却する冷却運転において、負荷側機器の負荷が低負荷である場合に、熱媒体側熱交換器7が凍結しない冷媒温度を維持するように膨張弁5の開度を制御する。 Further, the chilling unit 100 further includes an inverter-type circulation pump 31 that makes the flow rate of the heat medium variable, and the control device 50 has a low load on the load side device in the cooling operation for cooling the heat medium. Moreover, the opening degree of the expansion valve 5 is controlled so that the refrigerant temperature at which the heat medium side heat exchanger 7 is not frozen is maintained.
 これにより、低負荷時であっても、圧縮機1を発停させない制御により低圧圧力が安定し、冷媒温度が安定する。その結果、低負荷時でも異常停止等を生じることなく熱媒体の流量を極低流量にすることができるようになる。また、流量可変な循環ポンプ31と開度可変な膨張弁5とにより、熱媒体側熱交換器7に流れる熱媒体又は冷媒の流量を調整できるため、チリングユニット100は、負荷側機器の負荷がほとんどない低負荷状態でも熱量を負荷に合わせて調整することができる。また、これにより、チリングユニット100は、循環ポンプ31の動力を削減することができる。 Thereby, even at the time of low load, the low pressure is stabilized and the refrigerant temperature is stabilized by the control that does not start and stop the compressor 1. As a result, the flow rate of the heat medium can be made extremely low without causing an abnormal stop or the like even at a low load. Further, since the flow rate of the heat medium or the refrigerant flowing through the heat medium side heat exchanger 7 can be adjusted by the flow rate variable circulation pump 31 and the variable opening degree expansion valve 5, the chilling unit 100 has a load on the load side device. The amount of heat can be adjusted according to the load even in a low load state where there is little. Thereby, the chilling unit 100 can reduce the power of the circulation pump 31.
実施の形態2.
 図5及び図6に基づき、実施の形態2のチリングユニット200について説明する。図5は、本発明の実施の形態2に係るチリングユニットの構成を示す概略構成図である。図6は、本発明の実施の形態2に係るチリングユニットの制御装置が負荷側機器の低負荷時に行う制御を示すフローチャートである。以下、実施の形態2のチリングユニット200において、実施の形態1の場合と異なる構成について説明し、相当する構成については説明を省略するものとする。
Embodiment 2. FIG.
A chilling unit 200 according to the second embodiment will be described with reference to FIGS. 5 and 6. FIG. 5 is a schematic configuration diagram showing the configuration of the chilling unit according to Embodiment 2 of the present invention. FIG. 6 is a flowchart showing the control performed by the chilling unit control apparatus according to Embodiment 2 of the present invention when the load side device is under low load. Hereinafter, in the chilling unit 200 of the second embodiment, a configuration different from the case of the first embodiment will be described, and the description of the corresponding configuration will be omitted.
 実施の形態2において、チリングユニット200は、冷媒回路を2回路有している。各冷媒回路210a,210bは、圧縮機1a,1bと、第1流路切替装置2a,2bと、空気側熱交換器3a,3bと、膨張弁5a,5bと、熱媒体側熱交換器7a,7b等とから構成される。つまり、実施の形態2のチリングユニット200には、実施の形態1の第2空気側熱交換器4、第2流路切替装置8、バイパス回路及び副膨張弁6は設けられていない。図5には、各冷媒回路210a,210bの熱媒体側熱交換器7a,7bが、熱媒体回路230において並列に接続されている場合が示されている。 In Embodiment 2, the chilling unit 200 has two refrigerant circuits. Each refrigerant circuit 210a, 210b includes compressors 1a, 1b, first flow path switching devices 2a, 2b, air side heat exchangers 3a, 3b, expansion valves 5a, 5b, and heat medium side heat exchanger 7a. , 7b and the like. That is, the chilling unit 200 of the second embodiment is not provided with the second air side heat exchanger 4, the second flow path switching device 8, the bypass circuit, and the sub expansion valve 6 of the first embodiment. FIG. 5 shows a case where the heat medium side heat exchangers 7 a and 7 b of the refrigerant circuits 210 a and 210 b are connected in parallel in the heat medium circuit 230.
 また、実施の形態2において、循環ポンプ31は、熱媒体回路230において熱媒体側熱交換器7a及び熱媒体側熱交換器7bよりも上流側に設けられている。また、温度センサ32,34及び圧力センサ33,35は、各熱媒体側熱交換器7a,7bごとに設けられ、各熱媒体側熱交換器7a,7bについて、出入口における熱媒体の温度、並びに、出入口における熱媒体の差圧が測定される。さらに、各冷媒回路210a,210bにはそれぞれ、実施の形態1の場合と同様に、圧縮機1a,1bの吸入圧力を検出する低圧圧力センサと、圧縮機1a,1bの吐出圧力を検出する高圧圧力センサ等が設置されている。 In the second embodiment, the circulation pump 31 is provided upstream of the heat medium side heat exchanger 7a and the heat medium side heat exchanger 7b in the heat medium circuit 230. Moreover, the temperature sensors 32 and 34 and the pressure sensors 33 and 35 are provided for each of the heat medium side heat exchangers 7a and 7b, and for each of the heat medium side heat exchangers 7a and 7b, the temperature of the heat medium at the inlet / outlet, and The differential pressure of the heat medium at the inlet / outlet is measured. Further, each refrigerant circuit 210a, 210b has a low-pressure sensor that detects the suction pressure of the compressors 1a, 1b and a high-pressure that detects the discharge pressure of the compressors 1a, 1b, as in the first embodiment. A pressure sensor or the like is installed.
 まず、チリングユニット200の通常制御時の動作について説明する。図5中、熱媒体回路230に沿う一点鎖線の矢印は熱媒体の流れを表している。また、冷媒回路210aに沿う破線矢印は、加熱運転を行うときの冷媒の流れを表し、冷媒回路210bに沿う実線矢印は、冷却運転を行うときの冷媒の流れを表している。 First, the operation during normal control of the chilling unit 200 will be described. In FIG. 5, the dashed-dotted arrow along the heat medium circuit 230 represents the flow of the heat medium. Moreover, the broken line arrow along the refrigerant circuit 210a represents the flow of the refrigerant when performing the heating operation, and the solid line arrow along the refrigerant circuit 210b represents the flow of the refrigerant when performing the cooling operation.
(通常制御)
 冷却運転において、圧縮機1bに吸入された冷媒は圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機1bから吐出されたガス冷媒は、第1流路切替装置2bを経て、凝縮器となる空気側熱交換器3bに流入して周囲の空気に放熱し、高圧中温の冷媒となる。空気側熱交換器3bを流出した高圧中温の冷媒は、膨張弁5bで減圧されて低圧二相の状態になり、蒸発器である熱媒体側熱交換器7bに流入する。熱媒体側熱交換器7bにおいて、低圧二相の冷媒は、熱媒体回路230を流れる熱媒体から熱を吸収して加熱蒸発され、低圧低温のガス冷媒となる。熱媒体側熱交換器7bから流出したガス冷媒は、第1流路切替装置2bを経た後、再度圧縮機1bに吸入される。一方、熱媒体側熱交換器7bにおいて熱を放出し、温度が低下した熱媒体は、チリングユニット200から負荷側機器に送られる。
(Normal control)
In the cooling operation, the refrigerant sucked into the compressor 1b is compressed and discharged as a high-temperature and high-pressure gas refrigerant. The gas refrigerant discharged from the compressor 1b passes through the first flow path switching device 2b, flows into the air-side heat exchanger 3b serving as a condenser, radiates heat to the surrounding air, and becomes a high-pressure medium-temperature refrigerant. The high-pressure medium-temperature refrigerant that has flowed out of the air-side heat exchanger 3b is decompressed by the expansion valve 5b, becomes a low-pressure two-phase state, and flows into the heat medium-side heat exchanger 7b that is an evaporator. In the heat medium side heat exchanger 7b, the low-pressure two-phase refrigerant absorbs heat from the heat medium flowing through the heat medium circuit 230 and is evaporated by heating to become a low-pressure and low-temperature gas refrigerant. The gas refrigerant that has flowed out of the heat medium side heat exchanger 7b passes through the first flow path switching device 2b and then is sucked into the compressor 1b again. On the other hand, the heat medium that releases heat in the heat medium side heat exchanger 7b and the temperature is lowered is sent from the chilling unit 200 to the load side device.
 加熱運転において、圧縮機1aに吸入された冷媒は圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機1aから吐出されたガス冷媒は、第1流路切替装置2aを経て、凝縮器となる熱媒体側熱交換器7aに流入し、熱媒体回路30を流れる熱媒体へ熱を放出し、高圧中温の冷媒となる。熱媒体側熱交換器7aを流出した高圧中温の冷媒は、膨張弁5aで減圧されて低圧二相の状態になり、空気側熱交換器3aに流入する。空気側熱交換器3aにおいて、低圧二相の冷媒は、周囲の空気から熱を吸収しながら加熱蒸発され、低圧低温のガス冷媒となる。空気側熱交換器3aを流出した低圧低温の冷媒は、第1流路切替装置2aを経て、再度圧縮機1aに吸入される。一方、熱媒体側熱交換器7aにおいて熱を吸収し、温度が上昇した熱媒体は、チリングユニット200から負荷側機器に送られる。 In the heating operation, the refrigerant sucked into the compressor 1a is compressed and discharged as a high-temperature and high-pressure gas refrigerant. The gas refrigerant discharged from the compressor 1a flows into the heat medium side heat exchanger 7a serving as a condenser via the first flow path switching device 2a, and releases heat to the heat medium flowing through the heat medium circuit 30, It becomes a high pressure and medium temperature refrigerant. The high-pressure medium-temperature refrigerant that has flowed out of the heat medium side heat exchanger 7a is decompressed by the expansion valve 5a to be in a low-pressure two-phase state, and flows into the air-side heat exchanger 3a. In the air-side heat exchanger 3a, the low-pressure two-phase refrigerant is heated and evaporated while absorbing heat from the surrounding air, and becomes a low-pressure and low-temperature gas refrigerant. The low-pressure and low-temperature refrigerant that has flowed out of the air-side heat exchanger 3a passes through the first flow path switching device 2a and is again sucked into the compressor 1a. On the other hand, the heat medium that has absorbed heat in the heat medium side heat exchanger 7a and whose temperature has risen is sent from the chilling unit 200 to the load side device.
 また、冷却運転中及び加熱運転中に、制御装置250は、熱媒体を目標出口温度にするために必要な圧縮機1の容量、循環ポンプ31の容量、及び膨張弁5の開度等を決定している。実施の形態2において、チリングユニット200は冷媒回路を2回路有しているため、負荷を分担することで、1回路で構成するチリングユニット100に比べて大きな負荷に対応することができる。 Further, during the cooling operation and the heating operation, the control device 250 determines the capacity of the compressor 1, the capacity of the circulation pump 31, the opening degree of the expansion valve 5, and the like necessary for setting the heat medium to the target outlet temperature. is doing. In the second embodiment, since the chilling unit 200 has two refrigerant circuits, by sharing the load, it is possible to cope with a larger load than the chilling unit 100 configured by one circuit.
 次に、図6に基づき、制御装置250が行う低負荷時の制御について説明する。ここで、チリングユニット200は、2つの冷媒回路210a,210により、通常制御の冷却運転を行っており、圧縮機1a,1bは最低容量で運転しているものとする。 Next, the control at the time of low load performed by the control device 250 will be described based on FIG. Here, it is assumed that the chilling unit 200 performs a cooling operation under normal control by two refrigerant circuits 210a and 210, and the compressors 1a and 1b are operated at a minimum capacity.
 チリングユニットの運転中、運転制御部51は、負荷側機器の負荷を求め、負荷に応じて各アクチュエータを制御している。負荷判定部52は、運転制御部51から負荷の情報を取得し、負荷側機器の負荷が低下したか否かを判定する(ステップST201)。このとき、負荷判定部52は、今回取得した負荷の情報と前回取得した負荷の情報とを比較する、あるいは、所定時間の負荷を平均して今回の平均と前回の平均とを比較することで、上記ステップST201の負荷低下判定を行ってもよい。負荷が低下した場合には(ステップST201;YES)、負荷判定部52は、さらに、負荷側機器の負荷が圧縮機1a,1bの最低容量以下の低負荷であるか否かを判定する(ステップST202)。負荷判定部52は、低負荷と判定した場合には(ステップST202;YES)、その判定結果を運転制御部51に通知する。そして、運転制御部51により発停回避制御が実施される。一方、負荷低下判定にて負荷が低下していないと判定された場合(ステップST201;NO)、あるいは、上記ステップST202の低負荷判定にて低負荷ではないと判定された場合には(ステップST202;NO)、負荷判定部52は、運転制御部51にその判定結果を通知する。そして、運転制御部51により通常制御が続行される。負荷判定部52は、運転中、運転制御部51から負荷側機器の負荷の情報を取得し、ステップST201及びステップST202の判定を繰り返し、負荷の低下を監視する。 During operation of the chilling unit, the operation control unit 51 obtains the load of the load side device and controls each actuator according to the load. The load determination unit 52 acquires load information from the operation control unit 51, and determines whether or not the load on the load side device has decreased (step ST201). At this time, the load determination unit 52 compares the information of the load acquired this time with the information of the load acquired last time, or averages the load for a predetermined time and compares the current average with the previous average. The load reduction determination in step ST201 may be performed. When the load decreases (step ST201; YES), the load determination unit 52 further determines whether or not the load on the load side device is a low load equal to or less than the minimum capacity of the compressors 1a and 1b (step ST201). ST202). When determining that the load is low (step ST202; YES), the load determination unit 52 notifies the operation control unit 51 of the determination result. Then, start / stop avoidance control is performed by the operation control unit 51. On the other hand, when it is determined that the load has not decreased in the load decrease determination (step ST201; NO), or when it is determined that the load is not low in the low load determination in step ST202 (step ST202). NO), the load determination unit 52 notifies the operation control unit 51 of the determination result. Then, the normal control is continued by the operation control unit 51. During operation, the load determination unit 52 acquires information on the load of the load side device from the operation control unit 51, repeats the determinations of step ST201 and step ST202, and monitors the decrease in load.
 運転制御部51は、発停回避制御において、圧縮機1a,1bの最低容量運転を維持したまま、冷却能力の余剰分を消費するために、一方の冷媒回路210aの第1流路切替装置2aを加熱運転の接続状態に切り替える(ステップST203)。また運転制御部51は、熱媒体側熱交換器7a,7bで熱交換される熱量が負荷側機器の負荷に見合った熱量となるように、圧縮機1a,1bの運転容量を調整する(ステップST204)。例えば、運転制御部51は、負荷側機器の負荷が小さいほど冷媒回路210bの冷却能力と冷媒回路210aの加熱能力との差が小さくなるように圧縮機1a,1bを制御すればよい。このように、冷却運転中に上記の発停回避制御が実施されると、一方の冷媒回路210aにより熱媒体が加熱され、他方の冷媒回路210bで熱媒体が冷却されるので、熱媒体との間で熱交換される合計の熱量を通常制御のときよりも小さくすることができる。 In the start / stop avoidance control, the operation control unit 51 consumes the excess cooling capacity while maintaining the minimum capacity operation of the compressors 1a and 1b. Is switched to the connection state of the heating operation (step ST203). Further, the operation control unit 51 adjusts the operation capacities of the compressors 1a and 1b so that the amount of heat exchanged by the heat medium side heat exchangers 7a and 7b becomes the amount of heat commensurate with the load of the load side equipment (step). ST204). For example, the operation control unit 51 may control the compressors 1a and 1b so that the difference between the cooling capacity of the refrigerant circuit 210b and the heating capacity of the refrigerant circuit 210a becomes smaller as the load on the load side device is smaller. As described above, when the start / stop avoidance control is performed during the cooling operation, the heat medium is heated by one refrigerant circuit 210a and the heat medium is cooled by the other refrigerant circuit 210b. The total amount of heat exchanged between them can be made smaller than in normal control.
 次に、負荷判定部52は、負荷側機器の負荷が0であるか否かを判定する(ステップST205)。負荷側機器の負荷が0でない場合には(ステップST205;NO)、運転制御部51により、圧縮機1a,1bの運転容量の調整が繰り返される(ステップST204)。一方、負荷側機器の負荷が0である場合には(ステップST205;YES)、運転制御部51により、圧縮機1a,1bの運転容量が調整される(ステップST206)。具体的には、冷却運転を行っている冷媒回路210bの冷却能力と、加熱運転を行っている冷媒回路210aの加熱能力とが等しくなるように、圧縮機1a及び圧縮機1bの少なくとも一方が調整される。このため、冷媒回路210a及び冷媒回路210bと、熱媒体回路230との間で熱交換される合計の熱量が相殺される。 Next, the load determination unit 52 determines whether or not the load on the load side device is 0 (step ST205). When the load on the load side device is not 0 (step ST205; NO), the operation control unit 51 repeatedly adjusts the operation capacities of the compressors 1a and 1b (step ST204). On the other hand, when the load on the load side device is 0 (step ST205; YES), the operation capacity of the compressors 1a and 1b is adjusted by the operation control unit 51 (step ST206). Specifically, at least one of the compressor 1a and the compressor 1b is adjusted so that the cooling capacity of the refrigerant circuit 210b performing the cooling operation is equal to the heating capacity of the refrigerant circuit 210a performing the heating operation. Is done. For this reason, the total amount of heat exchanged between the refrigerant circuit 210a and the refrigerant circuit 210b and the heat medium circuit 230 is offset.
 また、冷却運転で負荷側機器が低負荷の場合は、冷却運転側の熱媒体側熱交換器7bが凍結しない冷媒温度(例えば、0℃以上)を維持するように膨張弁5bを調整するとよい。このように膨張弁5bを調整することで、チリングユニット100は、熱媒体回路230においても、圧力センサ33,35の差圧に基づいて熱媒体の流量を極低流量にすることが可能となり、循環ポンプ31の動力を削減することができる。 Further, when the load side device is low in the cooling operation, the expansion valve 5b may be adjusted so that the refrigerant temperature (for example, 0 ° C. or higher) at which the heat medium side heat exchanger 7b on the cooling operation side does not freeze is maintained. . By adjusting the expansion valve 5b in this way, the chilling unit 100 can also make the flow rate of the heat medium extremely low based on the pressure difference between the pressure sensors 33 and 35 in the heat medium circuit 230. The power of the circulation pump 31 can be reduced.
 なお、実施の形態2において、熱媒体側熱交換器7aと熱媒体側熱交換器7bとが、熱媒体回路230において並列に接続される場合について説明したが、熱媒体側熱交換器7aと熱媒体側熱交換器7bとは直列に接続されていてもよい。 In the second embodiment, the case where the heat medium side heat exchanger 7a and the heat medium side heat exchanger 7b are connected in parallel in the heat medium circuit 230 has been described. However, the heat medium side heat exchanger 7a and the heat medium side heat exchanger 7a The heat medium side heat exchanger 7b may be connected in series.
 図7は、本発明の実施の形態2に係るチリングユニットの別の構成を示す概略構成図である。図7に示すチリングユニット300では、熱媒体回路330において熱媒体側熱交換器7aと熱媒体側熱交換器7bとが直列に接続されている。そして、熱媒体側熱交換器が熱媒体の流れの上流となる方の冷媒回路210aの第1流路切替装置2aを加熱側に切替えて熱媒体を加熱し、下流となる方の冷媒回路210bすなわち冷却運転中の冷媒回路210bで熱媒体を冷却する。 FIG. 7 is a schematic configuration diagram showing another configuration of the chilling unit according to Embodiment 2 of the present invention. In the chilling unit 300 shown in FIG. 7, the heat medium side heat exchanger 7 a and the heat medium side heat exchanger 7 b are connected in series in the heat medium circuit 330. Then, the heat medium side heat exchanger switches the first flow path switching device 2a of the refrigerant circuit 210a on the upstream side of the flow of the heat medium to the heating side to heat the heat medium, and the refrigerant circuit 210b on the downstream side That is, the heat medium is cooled by the refrigerant circuit 210b during the cooling operation.
 これにより、熱媒体回路330では、上流の熱媒体側熱交換器7aで加熱された熱媒体を、下流の熱媒体側熱交換器7bで冷却するため、熱媒体を冷却した後に加熱する場合に比べて、大幅に熱媒体の温度が低下するのを回避することができる。したがって、チリングユニット300は、低負荷時に熱媒体を極低流量にする場合であっても、凍結せずに負荷に応じた加熱又は冷却を実現することができる。 Thereby, in the heat medium circuit 330, the heat medium heated by the upstream heat medium side heat exchanger 7a is cooled by the downstream heat medium side heat exchanger 7b. In comparison, it is possible to avoid a significant decrease in the temperature of the heat medium. Accordingly, the chilling unit 300 can realize heating or cooling according to the load without freezing even when the heat medium is set to an extremely low flow rate at the time of low load.
 以上のように、実施の形態2において、チリングユニット200,300は、圧縮機1a,1b、流路切替装置(第1流路切替装置2a,2b)、空気側熱交換器3a,3b、膨張弁5a,5b及び熱媒体側熱交換器7a,7bが配管接続された、2組の冷媒回路210a,210bと、熱媒体が流通する配管と、制御装置250等とを備えている。そして、流路切替装置(第1流路切替装置2a,2b)は、熱媒体側熱交換器7a,7bが凝縮器となる加熱側の流路と蒸発器となる冷却側の流路とを切り替える。また、制御装置250は、負荷側機器が低負荷になった場合に、圧縮機1a,1bの最低容量運転を維持した状態で、2組の冷媒回路の一方(例えば、冷媒回路210a)の流路切替装置(第1流路切替装置2a)を切り替える。 As described above, in the second embodiment, the chilling units 200 and 300 include the compressors 1a and 1b, the flow path switching devices (first flow path switching devices 2a and 2b), the air side heat exchangers 3a and 3b, and the expansion. Two sets of refrigerant circuits 210a and 210b, to which the valves 5a and 5b and the heat medium side heat exchangers 7a and 7b are connected by piping, a pipe through which the heat medium flows, a control device 250, and the like are provided. The flow path switching device (first flow path switching devices 2a and 2b) includes a heating-side flow path in which the heat medium side heat exchangers 7a and 7b serve as condensers and a cooling-side flow path as the evaporator. Switch. In addition, when the load-side equipment becomes a low load, the control device 250 maintains the minimum capacity operation of the compressors 1a and 1b and the flow of one of the two refrigerant circuits (for example, the refrigerant circuit 210a). The path switching device (first flow path switching device 2a) is switched.
 これより、チリングユニット200,300は、負荷側機器が低負荷になった場合に、圧縮機1a,1bを運転したまま、2つの冷媒回路210a,210bの運転の組み合わせによりユニット全体の加熱又は冷却能力の余剰分を消費することができる。したがって、チリングユニット200,300は、負荷側機器が低負荷のときでも、圧縮機1a,1bのサーモ発停を抑え、安定した温度の熱媒体を負荷側に供給することができる。 Accordingly, the chilling units 200 and 300 can heat or cool the entire unit by a combination of the operation of the two refrigerant circuits 210a and 210b while the compressors 1a and 1b are operated when the load-side equipment becomes a low load. A surplus of capacity can be consumed. Therefore, the chilling units 200 and 300 can suppress the thermal start / stop of the compressors 1a and 1b and supply a heat medium having a stable temperature to the load side even when the load side device has a low load.
 また、制御装置250は、負荷側機器の負荷が0になった場合に、加熱運転を実施している冷媒回路210aの加熱能力と、冷却運転を実施している冷媒回路210bの冷却能力とが等しくなるように、2組の冷媒回路210a,210bの少なくとも一方の冷媒回路の圧縮機1a,1bの運転容量を制御する。 In addition, when the load on the load side device becomes zero, the control device 250 determines that the heating capacity of the refrigerant circuit 210a that performs the heating operation and the cooling capacity of the refrigerant circuit 210b that performs the cooling operation. The operating capacities of the compressors 1a and 1b of at least one of the two refrigerant circuits 210a and 210b are controlled so as to be equal.
 これにより、負荷が低負荷になった場合に、圧縮機1a,1bが運転した状態で一方の冷媒回路の冷媒流れが切り替えられ、さらに、負荷が0になると、加熱能力と冷却能力とが同等になるように圧縮機1a,1bの運転容量が制御される。このため、熱媒体側熱交換器7a及び熱媒体側熱交換器7bで熱交換される熱量が相殺される。したがって、チリングユニット200,300は、負荷側機器の負荷が無い場合でも、圧縮機1a,1bのサーモ発停を抑え、安定した温度の熱媒体を負荷側機器に供給することができる。 Thereby, when the load becomes low, the refrigerant flow of one refrigerant circuit is switched in a state where the compressors 1a and 1b are operated, and when the load becomes zero, the heating capacity and the cooling capacity are equal. The operating capacities of the compressors 1a and 1b are controlled so that For this reason, the amount of heat exchanged by the heat medium side heat exchanger 7a and the heat medium side heat exchanger 7b is offset. Therefore, the chilling units 200 and 300 can suppress the thermal start / stop of the compressors 1a and 1b and supply a heat medium having a stable temperature to the load side device even when there is no load on the load side device.
 また、チリングユニット200,300は、熱媒体の流量を可変にするインバータ式の循環ポンプ31をさらに備え、制御装置250は、熱媒体を冷却する冷却運転において、負荷側機器の負荷が低負荷である場合に、冷却運転を実施している冷媒回路(例えば、冷媒回路210b)の熱媒体側熱交換器7bが凍結しない冷媒温度を維持するように、冷媒回路210bの膨張弁5bの開度を制御する。 Further, the chilling units 200 and 300 further include an inverter-type circulation pump 31 that makes the flow rate of the heat medium variable. The control device 250 has a low load on the load side device in the cooling operation for cooling the heat medium. In some cases, the opening degree of the expansion valve 5b of the refrigerant circuit 210b is set so that the heat medium side heat exchanger 7b of the refrigerant circuit (for example, the refrigerant circuit 210b) performing the cooling operation maintains a refrigerant temperature that does not freeze. Control.
 これにより、負荷側機器が低負荷の場合でも、圧縮機1a,1bを発停させない制御により低圧圧力が安定し、冷媒温度が安定することで、異常停止等を生じることなく熱媒体の流量を極低流量にすることができるようになる。また、流量可変な循環ポンプ31と開度可変な各膨張弁5a,5bとにより、熱媒体側熱交換器7a,7bに流れる熱媒体又は冷媒の流量を調整できるため、チリングユニット200,300は、負荷側機器の負荷がほとんどない低負荷状態でも熱量を負荷に合わせて調整することができる。また、これにより、チリングユニット200,300は、循環ポンプ31の動力を削減することができる。 As a result, even when the load-side equipment is lightly loaded, the low-pressure pressure is stabilized by the control that does not start and stop the compressors 1a and 1b, and the refrigerant temperature is stabilized, so that the flow rate of the heat medium can be reduced without causing an abnormal stop or the like. An extremely low flow rate can be achieved. Further, since the flow rate of the heat medium or the refrigerant flowing through the heat medium side heat exchangers 7a and 7b can be adjusted by the flow rate variable circulation pump 31 and the variable opening degree expansion valves 5a and 5b, the chilling units 200 and 300 The amount of heat can be adjusted according to the load even in a low load state in which there is almost no load on the load side device. Thereby, the chilling units 200 and 300 can reduce the power of the circulation pump 31.
 また、2組の冷媒回路の熱媒体側熱交換器7a,7bは、熱媒体回路330において直列に接続され、制御装置250は、熱媒体を冷却する冷却運転において、負荷側機器の負荷が低負荷である場合に、熱媒体側熱交換器7a,7bが上流側に配置されている方の冷媒回路(例えば、冷媒回路210a)の流路切替装置(第1流路切替装置2a)を加熱側に切り替える。 In addition, the heat medium side heat exchangers 7a and 7b of the two sets of refrigerant circuits are connected in series in the heat medium circuit 330, and the controller 250 reduces the load on the load side device in the cooling operation for cooling the heat medium. When it is a load, the flow path switching device (first flow path switching device 2a) of the refrigerant circuit (for example, the refrigerant circuit 210a) in which the heat medium side heat exchangers 7a and 7b are arranged on the upstream side is heated. Switch to the side.
 これにより、熱媒体回路330では、上流の冷媒回路210aで加熱した熱媒体に、下流の冷媒回路210bで冷却された熱媒体が混合されるので、大幅に熱媒体の温度が低下することがない。このため、低負荷時に熱媒体を極低流量にしても凍結しないチリングユニット300が提供できる。 Thereby, in the heat medium circuit 330, the heat medium cooled by the downstream refrigerant circuit 210b is mixed with the heat medium heated by the upstream refrigerant circuit 210a, so that the temperature of the heat medium does not drop significantly. . For this reason, it is possible to provide the chilling unit 300 that does not freeze even when the heat medium is at a very low flow rate at the time of low load.
 なお、上記の発停回避制御は、圧縮機1a及び圧縮機1bの双方が最低容量運転で運転している状態から一方の冷媒回路210aの運転を切り替えるものであったが、低負荷に対応できる制御であればどのようなものでもよい。例えば、制御装置250は、負荷が設定値よりも低下した場合に、まず一方の冷媒回路210aの運転を停止し、その後、さらに負荷が圧縮機1bの最低容量以下となった場合に、停止していた冷媒回路210aを、冷媒回路210bとは逆方向の冷媒流れで運転するように制御してもよい。 In the above-described start / stop avoidance control, the operation of one refrigerant circuit 210a is switched from the state where both the compressor 1a and the compressor 1b are operating at the minimum capacity operation, but it can cope with a low load. Any control can be used. For example, the control device 250 first stops the operation of one refrigerant circuit 210a when the load is lower than a set value, and then stops when the load is less than the minimum capacity of the compressor 1b. The refrigerant circuit 210a that has been used may be controlled to operate with a refrigerant flow in a direction opposite to that of the refrigerant circuit 210b.
実施の形態3.
 図8は、本発明の実施の形態3に係る温調システムの概略構成図である。図8に示すように、水循環温調システム500は、実施の形態1のチリングユニット100を一つの水回路530に対して複数台使用して構成される。
Embodiment 3 FIG.
FIG. 8 is a schematic configuration diagram of a temperature control system according to Embodiment 3 of the present invention. As shown in FIG. 8, the water circulation temperature control system 500 is configured by using a plurality of chilling units 100 of the first embodiment for one water circuit 530.
 水循環温調システム500は、複数のチリングユニット100a,100b,100cと、複数の負荷側機器90a,90b,90cと、ヘッダ配管540a及びヘッダ配管540b等とを備える。以下、チリングユニット100aとチリングユニット100bとチリングユニット100cとを特に区別する必要がない場合には、それぞれをチリングユニット100として説明する。また、負荷側機器90aと負荷側機器90bと負荷側機器90cとを特に区別する必要がない場合には、それぞれを負荷側機器90として説明する。 The water circulation temperature control system 500 includes a plurality of chilling units 100a, 100b, and 100c, a plurality of load- side devices 90a, 90b, and 90c, a header pipe 540a, a header pipe 540b, and the like. Hereinafter, when it is not necessary to particularly distinguish the chilling unit 100a, the chilling unit 100b, and the chilling unit 100c, each will be described as the chilling unit 100. In addition, when there is no need to particularly distinguish the load side device 90a, the load side device 90b, and the load side device 90c, each will be described as the load side device 90.
 複数の負荷側機器90a,90b,90cと、複数のチリングユニット100a,100b,100cにおいて熱媒体が流通するそれぞれの配管とが、ヘッダ配管540a及びヘッダ配管54を介して接続されて、熱媒体である水が循環する水回路530を構成している。また水循環温調システム500は、システム制御装置510を備えており、システム制御装置510は、各チリングユニット100の制御装置50及び各負荷側機器90のそれぞれと、通信可能に接続されている。 The plurality of load- side devices 90a, 90b, 90c and the pipes through which the heat medium flows in the plurality of chilling units 100a, 100b, 100c are connected via the header pipe 540a and the header pipe 54, so that the heat medium A water circuit 530 in which certain water circulates is configured. Further, the water circulation temperature control system 500 includes a system control device 510, and the system control device 510 is connected to the control device 50 of each chilling unit 100 and each load side device 90 so as to be communicable.
 システム制御装置510は、負荷側機器90の負荷が低下した場合に、負荷に応じてチリングユニット100の運転台数を減らしてゆき、最終的には1台のチリングユニット100のみが運転している状態にする。そして、負荷側機器90の負荷がさらに低下して圧縮機1の最低容量以下の低負荷となった場合に、システム制御装置510は、運転しているチリングユニット100(例えばチリングユニット100a)に、前述したような発停回避制御を実施させる。 When the load on the load-side device 90 is reduced, the system control device 510 reduces the number of operating chilling units 100 according to the load, and finally only one chilling unit 100 is operating. To. When the load on the load-side device 90 further decreases to a low load equal to or lower than the minimum capacity of the compressor 1, the system control device 510 sends the chilling unit 100 (for example, the chilling unit 100a) in operation to The start / stop avoidance control as described above is performed.
 なお、水循環温調システム500は、実施の形態1のチリングユニット100を複数台使用する代わりに、実施の形態2のチリングユニット200又はチリングユニット300を複数台使用するものであってもよい。この場合、低負荷時には複数のチリングユニット200,300のうち2台が運転される。 The water circulation temperature control system 500 may use a plurality of chilling units 200 or chilling units 300 according to the second embodiment instead of using a plurality of chilling units 100 according to the first embodiment. In this case, two of the plurality of chilling units 200 and 300 are operated at a low load.
 このように、水循環温調システム500は、実施の形態1又は実施の形態2のチリングユニット100,200,300を使用することで、負荷側機器90の負荷が低下した場合でも、圧縮機1のサーモ発停を抑えて極低流量の水量で対応することができる。そして、水循環温調システム500は、負荷側機器90の負荷がほとんどない低負荷状態でもチリングユニットの熱量を負荷に合わせて調整できる。このため、水循環温調システム500では、従来の水循環温調システムが備える、ヘッダ配管540aとヘッダ配管540bとの間のバイパス配管、あるいはクッションタンク等を設置する必要がない。 As described above, the water circulation temperature control system 500 uses the chilling units 100, 200, and 300 according to the first embodiment or the second embodiment, so that even when the load on the load side device 90 is reduced, It is possible to cope with water flow with extremely low flow rate by suppressing the start and stop of the thermo. And the water circulation temperature control system 500 can adjust the calorie | heat amount of a chilling unit according to a load also in the low load state with little load of the load side apparatus 90. FIG. For this reason, in the water circulation temperature control system 500, there is no need to install a bypass pipe between the header pipe 540a and the header pipe 540b, a cushion tank, or the like provided in the conventional water circulation temperature control system.
 以上のように、実施の形態3において、水循環温調システム500は、一つの熱媒体回路(水回路530)に対して複数台配置された、上記のチリングユニット100,200,300と、複数台のチリングユニットの配管が接続されるヘッダ配管540a,540bとを備える。 As described above, in the third embodiment, the water circulation temperature control system 500 includes the chilling units 100, 200, 300, and a plurality of units arranged with respect to one heat medium circuit (water circuit 530). Header piping 540a and 540b to which the piping of the chilling unit is connected.
 これにより、複数のチリングユニット100a,100b,100cでは、前述したように、負荷側機器90の負荷が圧縮機1の最低容量以下である場合でも、圧縮機1を発停させない制御により低圧圧力が安定し、冷媒温度が安定する。このため、水循環温調システム500は、異常停止の発生を抑えて熱媒体を極低流量にすることができ、低負荷状態においても、チリングユニット100の熱量を負荷に合わせて調整できる。したがって、水循環温調システム500は、負荷側の水回路530内に、バイパス配管及びクッションタンク等を設置する必要なくなり、低水量に対応できるとともに、システム構成を簡素化することができる。 Accordingly, in the plurality of chilling units 100a, 100b, and 100c, as described above, even when the load of the load-side device 90 is equal to or less than the minimum capacity of the compressor 1, the low-pressure pressure is controlled by the control that does not start and stop the compressor 1. Stable and the refrigerant temperature is stable. For this reason, the water circulation temperature control system 500 can suppress the occurrence of an abnormal stop to make the heat medium have an extremely low flow rate, and can adjust the heat amount of the chilling unit 100 according to the load even in a low load state. Therefore, the water circulation temperature control system 500 does not need to install a bypass pipe and a cushion tank in the water circuit 530 on the load side, can cope with a low amount of water, and can simplify the system configuration.
 なお、本発明の実施の形態は上記実施の形態に限定されず、種々の変更を行うことができる。例えば、上記説明は、低負荷時でも圧縮機がサーモ発停しない空冷式のチリングユニットについてのものであるが、その他水冷式のチリングユニット、直膨式の冷凍、空調装置にも利用できることは言うまでもない。 The embodiment of the present invention is not limited to the above embodiment, and various changes can be made. For example, the above description is about an air-cooled chilling unit in which the compressor does not start and stop even at low loads, but it goes without saying that it can also be used for other water-cooled chilling units, direct expansion refrigeration units, and air conditioners. Yes.
 また、複数の冷媒回路の説明として2冷媒回路を例に挙げているが、冷却と加熱のバランスを考慮することで3冷媒回路、4冷媒回路、あるいはそれ以上の冷媒回路を有するユニットも応用可能である。 In addition, as an explanation of a plurality of refrigerant circuits, a two refrigerant circuit is taken as an example, but a unit having three refrigerant circuits, four refrigerant circuits, or more refrigerant circuits can be applied in consideration of the balance between cooling and heating. It is.
 1,1a,1b 圧縮機、2,2a,2b 第1流路切替装置、3 第1空気側熱交換器、3a,3b 空気側熱交換器、4 第2空気側熱交換器、5,5a,5b 膨張弁、6 副膨張弁、7,7a,7b 熱媒体側熱交換器、8 第2流路切替装置、8a,8b 三方弁、10,210a,210b 冷媒回路、13,14,15,19 冷媒配管、16 第1バイパス管、17 第2バイパス管、30,230,330 熱媒体回路、31 循環ポンプ、32,34 温度センサ、33,35 圧力センサ、50,250 制御装置、51 運転制御部、52 負荷判定部、90(90a,90b,90c) 負荷側機器、100,100a,100b,100c,200 チリングユニット、500 水循環温調システム、510 システム制御装置、530 水回路、540a,540b ヘッダ配管。 1, 1a, 1b compressor, 2, 2a, 2b, first flow switching device, 3, first air side heat exchanger, 3a, 3b, air side heat exchanger, 4, second air side heat exchanger, 5, 5a , 5b expansion valve, 6 sub-expansion valve, 7, 7a, 7b heat medium side heat exchanger, 8 second flow path switching device, 8a, 8b three-way valve, 10, 210a, 210b refrigerant circuit, 13, 14, 15, 19 refrigerant piping, 16 first bypass pipe, 17 second bypass pipe, 30, 230, 330 heat medium circuit, 31 circulation pump, 32, 34 temperature sensor, 33, 35 pressure sensor, 50, 250 control device, 51 operation control Part, 52 load judgment part, 90 (90a, 90b, 90c) load side equipment, 100, 100a, 100b, 100c, 200 chilling unit, 500 water circulation temperature control system, 510 System controller, 530 water circuit, 540a, 540b header pipe.

Claims (9)

  1.  圧縮機、一対の空気側熱交換器、膨張弁及び熱媒体側熱交換器を有し、これらが配管接続されて冷媒を循環する冷媒回路と、
     負荷側機器に接続され、前記熱媒体側熱交換器において前記冷媒と熱交換する熱媒体が流通する配管と、
     前記負荷側機器の負荷が設定値以下の場合に実施される発停回避制御において、前記冷媒の循環経路を切り替える流路切替装置と、
     前記熱媒体側熱交換器の出入口における前記熱媒体の温度を測定する温度センサと、
     前記熱媒体側熱交換器の出入口における前記熱媒体の差圧を測定する圧力センサと、
     前記圧縮機、前記膨張弁及び前記流路切替装置を制御する制御装置と
    を備え、
     前記制御装置は、
     予め設定された目標出口温度と、前記温度センサにより測定された熱媒体の温度と、前記圧力センサにより測定された熱媒体の差圧とに基づいて前記圧縮機を制御し、
     前記負荷側機器の負荷が前記圧縮機の最低容量以下の低負荷になった場合に、前記圧縮機の最低容量運転を維持した状態で、前記発停回避制御を実施し、前記流路切替装置によって前記一対の空気側熱交換器の一方と前記熱媒体側熱交換器とを並列接続させる
     チリングユニット。
    A refrigerant circuit having a compressor, a pair of air-side heat exchangers, an expansion valve, and a heat medium-side heat exchanger, these being connected by piping and circulating the refrigerant;
    A pipe connected to a load side device, through which a heat medium that exchanges heat with the refrigerant in the heat medium side heat exchanger flows;
    In the start / stop avoidance control that is performed when the load of the load side device is equal to or less than a set value, a flow path switching device that switches a circulation path of the refrigerant
    A temperature sensor for measuring the temperature of the heat medium at the inlet / outlet of the heat medium side heat exchanger;
    A pressure sensor for measuring a differential pressure of the heat medium at an inlet / outlet of the heat medium side heat exchanger;
    A controller for controlling the compressor, the expansion valve, and the flow path switching device;
    The control device includes:
    Controlling the compressor based on a preset target outlet temperature, a temperature of the heat medium measured by the temperature sensor, and a pressure difference of the heat medium measured by the pressure sensor,
    When the load of the load side device becomes a low load equal to or lower than the minimum capacity of the compressor, the start / stop avoidance control is performed while maintaining the minimum capacity operation of the compressor, and the flow path switching device A chilling unit that connects one of the pair of air side heat exchangers and the heat medium side heat exchanger in parallel.
  2.  前記一対の空気側熱交換器の前記一方と他方とは並列接続されており、前記発停回避制御において、前記流路切替装置が切り替えられると、前記一対の空気側熱交換器の前記一方と前記他方との並列接続が解除される
     請求項1に記載のチリングユニット。
    The one and the other of the pair of air side heat exchangers are connected in parallel, and in the start / stop avoidance control, when the flow path switching device is switched, the one of the pair of air side heat exchangers and The chilling unit according to claim 1, wherein the parallel connection with the other is released.
  3.  前記膨張弁は、前記一対の空気側熱交換器と前記熱媒体側熱交換器との間の冷媒配管に設けられ、
     前記制御装置は、前記負荷側機器の負荷が0になった場合に、前記膨張弁を全閉する
     請求項1又は2に記載のチリングユニット。
    The expansion valve is provided in a refrigerant pipe between the pair of air side heat exchangers and the heat medium side heat exchanger,
    The chilling unit according to claim 1, wherein the control device fully closes the expansion valve when the load of the load side device becomes zero.
  4.  前記熱媒体の流量を可変にするインバータ式の循環ポンプをさらに備え、
     前記制御装置は、前記熱媒体を冷却する冷却運転において、前記負荷側機器の負荷が低負荷である場合に、前記熱媒体側熱交換器が凍結しない冷媒温度を維持するように前記膨張弁の開度を制御する
     請求項1~3のいずれか一項に記載のチリングユニット。
    An inverter-type circulation pump that makes the flow rate of the heat medium variable;
    In the cooling operation for cooling the heat medium, the control device controls the expansion valve so as to maintain a refrigerant temperature at which the heat medium side heat exchanger does not freeze when the load on the load side device is low. The chilling unit according to any one of claims 1 to 3, wherein the opening is controlled.
  5.  圧縮機、流路切替装置、空気側熱交換器、膨張弁及び熱媒体側熱交換器を有し、これらが配管接続されて冷媒を循環する、2組の冷媒回路と、
     負荷側機器に接続され、前記2組の冷媒回路の熱媒体側熱交換器においてそれぞれの前記冷媒と熱交換する熱媒体が流通する配管と、
     前記2組の冷媒回路の熱媒体側熱交換器のそれぞれについて、出入口の前記熱媒体の温度を測定する複数の温度センサと、
     前記2組の冷媒回路の熱媒体側熱交換器のそれぞれについて、出入口の前記熱媒体の差圧を測定する複数の圧力センサと、
     前記2組の冷媒回路のそれぞれの前記圧縮機、前記流路切替装置及び前記膨張弁を制御する制御装置と
    を備え、
     前記2組の冷媒回路のそれぞれの前記流路切替装置は、前記熱媒体側熱交換器が凝縮器となる加熱側の流路と蒸発器となる冷却側の流路とを切り替えるものであり、
     前記制御装置は、
     予め設定された目標出口温度と、前記複数の温度センサにより測定された熱媒体の温度と、前記複数の圧力センサにより測定された熱媒体の差圧とに基づいて前記圧縮機を制御し、
     前記負荷側機器の負荷が前記圧縮機の最低容量以下の低負荷になった場合に、前記圧縮機の最低容量運転を維持した状態で、前記2組の冷媒回路の一方の前記流路切替装置を切り替える
     チリングユニット。
    A compressor, a flow path switching device, an air-side heat exchanger, an expansion valve, and a heat medium-side heat exchanger, and two sets of refrigerant circuits that are connected by piping to circulate the refrigerant;
    A pipe connected to a load side device, through which a heat medium that exchanges heat with the respective refrigerant in the heat medium side heat exchanger of the two sets of refrigerant circuits, and
    For each of the heat medium side heat exchangers of the two sets of refrigerant circuits, a plurality of temperature sensors that measure the temperature of the heat medium at the entrance and exit,
    For each of the heat medium side heat exchangers of the two sets of refrigerant circuits, a plurality of pressure sensors that measure the differential pressure of the heat medium at the inlet and outlet;
    A controller for controlling the compressor, the flow path switching device and the expansion valve of each of the two sets of refrigerant circuits;
    Each of the flow path switching devices of the two sets of refrigerant circuits switches between a heating side flow path in which the heat medium side heat exchanger serves as a condenser and a cooling side flow path as an evaporator,
    The control device includes:
    Controlling the compressor based on a preset target outlet temperature, the temperature of the heat medium measured by the plurality of temperature sensors, and the pressure difference of the heat medium measured by the plurality of pressure sensors,
    When the load on the load side device is a low load equal to or lower than the minimum capacity of the compressor, the flow path switching device of one of the two sets of refrigerant circuits is maintained in a state where the minimum capacity operation of the compressor is maintained. Switch chilling unit.
  6.  前記制御装置は、前記負荷側機器の負荷が0になった場合に、加熱運転を実施している冷媒回路の加熱能力と、冷却運転を実施している冷媒回路の冷却能力とが等しくなるように、前記2組の冷媒回路の少なくとも一方の前記圧縮機の運転容量を制御する
     請求項5に記載のチリングユニット。
    When the load on the load side device becomes zero, the control device makes the heating capacity of the refrigerant circuit performing the heating operation equal to the cooling capacity of the refrigerant circuit performing the cooling operation. The chilling unit according to claim 5, wherein an operation capacity of the compressor of at least one of the two sets of refrigerant circuits is controlled.
  7.  前記熱媒体の流量を可変にするインバータ式の循環ポンプをさらに備え、
     前記制御装置は、前記熱媒体を冷却する冷却運転において、前記負荷側機器の負荷が低負荷である場合に、冷却運転を実施している冷媒回路の前記熱媒体側熱交換器が凍結しない冷媒温度を維持するように、当該冷媒回路の前記膨張弁の開度を制御する
     請求項5又は6に記載のチリングユニット。
    An inverter-type circulation pump that makes the flow rate of the heat medium variable;
    In the cooling operation for cooling the heat medium, the control device is a refrigerant in which the heat medium side heat exchanger of the refrigerant circuit performing the cooling operation does not freeze when the load on the load side device is a low load. The chilling unit according to claim 5 or 6, wherein the opening degree of the expansion valve of the refrigerant circuit is controlled so as to maintain the temperature.
  8.  前記2組の冷媒回路の前記熱媒体側熱交換器は、前記配管が構成する熱媒体回路において直列に接続され、
     前記制御装置は、前記熱媒体を冷却する冷却運転において、前記負荷側機器の負荷が低負荷である場合に、前記熱媒体側熱交換器が上流に配置されている方の冷媒回路の前記流路切替装置を加熱側に切り替える
     請求項5~7のいずれか一項に記載のチリングユニット。
    The heat medium side heat exchangers of the two sets of refrigerant circuits are connected in series in the heat medium circuit formed by the piping,
    In the cooling operation for cooling the heat medium, when the load on the load-side device is a low load, the control device performs the flow of the refrigerant circuit in which the heat medium-side heat exchanger is arranged upstream. The chilling unit according to any one of claims 5 to 7, wherein the path switching device is switched to the heating side.
  9.  一つの熱媒体回路に対して複数台配置された請求項1~8のいずれか一項に記載のチリングユニットと、
     複数台の前記チリングユニットのそれぞれの前記配管が接続されるヘッダ配管と
    を備える
     水循環温調システム。
    A chilling unit according to any one of claims 1 to 8, wherein a plurality of units are arranged for one heat medium circuit;
    A water circulation temperature control system comprising: a header pipe to which each of the pipes of the plurality of chilling units is connected.
PCT/JP2017/018815 2017-05-19 2017-05-19 Chilling unit and water-circulating temperature-adjustment system WO2018211682A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB1913959.1A GB2578373B (en) 2017-05-19 2017-05-19 Chilling unit and temperature control system using water circulation
PCT/JP2017/018815 WO2018211682A1 (en) 2017-05-19 2017-05-19 Chilling unit and water-circulating temperature-adjustment system
US16/487,891 US11181304B2 (en) 2017-05-19 2017-05-19 Chilling unit and temperature control system using water circulation
JP2019518713A JP6707192B2 (en) 2017-05-19 2017-05-19 Chilling unit and water circulation temperature control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/018815 WO2018211682A1 (en) 2017-05-19 2017-05-19 Chilling unit and water-circulating temperature-adjustment system

Publications (1)

Publication Number Publication Date
WO2018211682A1 true WO2018211682A1 (en) 2018-11-22

Family

ID=64273635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018815 WO2018211682A1 (en) 2017-05-19 2017-05-19 Chilling unit and water-circulating temperature-adjustment system

Country Status (4)

Country Link
US (1) US11181304B2 (en)
JP (1) JP6707192B2 (en)
GB (1) GB2578373B (en)
WO (1) WO2018211682A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021214931A1 (en) * 2020-04-23 2021-10-28 日立ジョンソンコントロールズ空調株式会社 Air conditioning system and control method
EP4012299A4 (en) * 2019-08-07 2022-08-10 Mitsubishi Electric Corporation Chilling unit and air conditioning system
CN115167558A (en) * 2022-06-23 2022-10-11 北京京仪自动化装备技术股份有限公司 Control method and control system of temperature control system and temperature control system
WO2024036593A1 (en) * 2022-08-19 2024-02-22 广东颐柏流体技术有限公司 Air energy refrigeration and variable flow control system and method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019008664A1 (en) * 2017-07-04 2019-01-10 三菱電機株式会社 Refrigeration cycle device
KR101940287B1 (en) * 2018-02-08 2019-01-18 (주)테키스트 Temperature regulation device for manufacturing semiconductor
CN113031481A (en) * 2021-03-10 2021-06-25 合肥天鹅制冷科技有限公司 Multi-load parallel start and shift operation intelligent control device
TWI752876B (en) * 2021-05-03 2022-01-11 奇鼎科技股份有限公司 Hot and cold circulation system
NL2031964B1 (en) 2022-05-23 2023-11-28 Intergas Verwarming B V Heat pump comprising a heating circuit and a buffer circuit
CN115183487B (en) * 2022-07-05 2023-12-19 西安交通大学 High-speed rail transcritical carbon dioxide heat pump air conditioning system and control method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637314B2 (en) * 1982-08-11 1988-02-16 Tokyo Shibaura Electric Co
JPH07120089A (en) * 1993-10-20 1995-05-12 Matsushita Refrig Co Ltd Multi-room type air conditioner
JP2014159923A (en) * 2013-02-20 2014-09-04 Ebara Refrigeration Equipment & Systems Co Ltd Turbo refrigerator
JP2016053429A (en) * 2014-09-03 2016-04-14 荏原冷熱システム株式会社 Refrigeration machine
WO2016088262A1 (en) * 2014-12-05 2016-06-09 三菱電機株式会社 Refrigeration cycle apparatus
WO2017068631A1 (en) * 2015-10-19 2017-04-27 三菱電機株式会社 Heat source system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637314A (en) * 1986-06-26 1988-01-13 Nisshin Steel Co Ltd Blowing method for desiliconizing agent
JP5761960B2 (en) * 2010-10-29 2015-08-12 三菱重工業株式会社 Heat source equipment
JP2015053429A (en) * 2013-09-09 2015-03-19 株式会社島津製作所 Manufacturing method of electronic device
CN107709900B (en) * 2015-07-06 2020-04-24 三菱电机株式会社 Refrigeration cycle device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637314B2 (en) * 1982-08-11 1988-02-16 Tokyo Shibaura Electric Co
JPH07120089A (en) * 1993-10-20 1995-05-12 Matsushita Refrig Co Ltd Multi-room type air conditioner
JP2014159923A (en) * 2013-02-20 2014-09-04 Ebara Refrigeration Equipment & Systems Co Ltd Turbo refrigerator
JP2016053429A (en) * 2014-09-03 2016-04-14 荏原冷熱システム株式会社 Refrigeration machine
WO2016088262A1 (en) * 2014-12-05 2016-06-09 三菱電機株式会社 Refrigeration cycle apparatus
WO2017068631A1 (en) * 2015-10-19 2017-04-27 三菱電機株式会社 Heat source system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4012299A4 (en) * 2019-08-07 2022-08-10 Mitsubishi Electric Corporation Chilling unit and air conditioning system
WO2021214931A1 (en) * 2020-04-23 2021-10-28 日立ジョンソンコントロールズ空調株式会社 Air conditioning system and control method
CN115167558A (en) * 2022-06-23 2022-10-11 北京京仪自动化装备技术股份有限公司 Control method and control system of temperature control system and temperature control system
CN115167558B (en) * 2022-06-23 2023-11-17 北京京仪自动化装备技术股份有限公司 Control method and control system of temperature control system and temperature control system
WO2024036593A1 (en) * 2022-08-19 2024-02-22 广东颐柏流体技术有限公司 Air energy refrigeration and variable flow control system and method

Also Published As

Publication number Publication date
GB2578373B (en) 2021-02-24
GB201913959D0 (en) 2019-11-13
GB2578373A (en) 2020-05-06
JPWO2018211682A1 (en) 2019-12-12
US11181304B2 (en) 2021-11-23
JP6707192B2 (en) 2020-06-10
US20200064031A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
JP6707192B2 (en) Chilling unit and water circulation temperature control system
JP3972860B2 (en) Refrigeration equipment
JP5045524B2 (en) Refrigeration equipment
US8984904B2 (en) Refrigerating device
EP1712854A2 (en) Wide temperature range heat pump
JP5341622B2 (en) Air conditioner
WO2016194098A1 (en) Air-conditioning device and operation control device
WO2019082372A1 (en) Refrigeration cycle device
JP5481838B2 (en) Heat pump cycle equipment
JP2011174639A (en) Air conditioner
CN108076653B (en) Liquid temperature adjusting device and temperature control system
JP2007292351A (en) Operation control method of circulation type water cooler
JPWO2017094118A1 (en) Waste heat recovery system
JP2014214954A (en) Cold/hot water supply system and air conditioner
WO2017068631A1 (en) Heat source system
US11408656B2 (en) Heat source device and refrigeration cycle device
US11221166B2 (en) Refrigerator system
JP2017166773A (en) Heat pump type cold/hot water supply system
WO2019026234A1 (en) Refrigeration cycle device
WO2021224962A1 (en) Air conditioning device
CN111380169B (en) Fluid control for variable flow fluid circuit in HVACR system
JP2011174686A (en) Refrigerating machine for transportation
JP2013124843A (en) Refrigeration cycle system
JP5843630B2 (en) Cooling system
WO2020208805A1 (en) Air-conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910426

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019518713

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201913959

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170519

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910426

Country of ref document: EP

Kind code of ref document: A1