WO2016088262A1 - Refrigeration cycle apparatus - Google Patents

Refrigeration cycle apparatus Download PDF

Info

Publication number
WO2016088262A1
WO2016088262A1 PCT/JP2014/082295 JP2014082295W WO2016088262A1 WO 2016088262 A1 WO2016088262 A1 WO 2016088262A1 JP 2014082295 W JP2014082295 W JP 2014082295W WO 2016088262 A1 WO2016088262 A1 WO 2016088262A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
heat exchanger
side heat
heat medium
refrigeration cycle
Prior art date
Application number
PCT/JP2014/082295
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 伊藤
和之 石田
靖 大越
昂仁 彦根
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016562178A priority Critical patent/JP6410839B2/en
Priority to PCT/JP2014/082295 priority patent/WO2016088262A1/en
Priority to EP14907314.0A priority patent/EP3228951B1/en
Publication of WO2016088262A1 publication Critical patent/WO2016088262A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/004Outdoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel

Definitions

  • the present invention relates to a refrigeration cycle apparatus.
  • Patent Document 1 when a plurality of refrigerant circuits are connected to one plate heat exchanger, if one refrigerant circuit fails, other normal refrigerant circuits cannot be operated. There is a problem.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a refrigeration cycle apparatus that can continue operation even if any of a plurality of refrigerant circuits fails. .
  • a refrigeration cycle apparatus includes a plurality of refrigeration units in which a compressor, a refrigerant flow switching device, an air side heat exchanger, a pressure reducing device, and a heat medium side heat exchanger are sequentially connected via a refrigerant pipe and the refrigerant circulates.
  • a heat medium side heat exchanger wherein the heat medium side heat exchanger exchanges heat between the heat medium and the refrigerant, and the heat medium side heat exchanger of one or more of the refrigeration cycles is connected to the first heat medium
  • a second heat medium flow path in which the heat medium side heat exchangers of two or more of the refrigeration cycles are connected in series along the flow of the heat medium, the first heat The medium flow path and the second heat medium flow path are arranged in parallel.
  • the refrigeration cycle apparatus by connecting a plurality of refrigeration cycles in parallel and in series, the operation of the refrigeration cycle apparatus can be continued even if any refrigeration cycle fails.
  • Embodiment 1 is a schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. It is a flowchart which shows operation
  • FIG. 1 is a schematic configuration diagram showing an example of a part of the configuration of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • refrigeration cycles 2 a, 2 b, 2 c, 2 d and a heat source unit controller 11 having the same circuit configuration and the same specifications are mounted in a heat source unit 1 that is a part of the refrigeration cycle unit.
  • what has a plurality of identical devices such as the refrigeration cycles 2a, 2b, 2c, and 2d may be collectively described as the refrigeration cycle 2.
  • a compressor 3a In the refrigeration cycle 2a, a compressor 3a, a refrigerant flow switching device 4a such as a four-way valve, an air side heat exchanger 5a, a main expansion valve 7a, and a water side heat exchanger 8a are connected in a ring shape through a refrigerant pipe. Yes.
  • An air-side heat exchanger blower 6a is installed in the vicinity of the air-side heat exchanger 5a.
  • the refrigeration cycles 2b, 2c and 2d have the same configuration as the refrigeration cycle 2a.
  • the compressors 3a, 3b, 3c, and 3d suck low-temperature and low-pressure refrigerant and compress the refrigerant into a high-temperature and high-pressure state.
  • a plurality of identical devices such as the compressors 3 a, 3 b, 3 c, and 3 d may be collectively described as the compressor 3.
  • the refrigerant flow switching devices 4a, 4b, 4c and 4d are for switching between the refrigerant flow during the cooling operation and the refrigerant flow during the heating operation.
  • what has a plurality of identical devices such as the refrigerant flow switching devices 4a, 4b, 4c, and 4d may be collectively described as the refrigerant flow switching device 4.
  • the air-side heat exchangers 5a, 5b, 5c, and 5d function as condensers during the cooling operation, and function as evaporators during the heating operation.
  • the air-side heat exchanger blowers 6a, 6b, 6c, and 6d such as fans. Heat exchange is performed between the air supplied from the refrigerant and the refrigerant.
  • air side heat exchanger 5a, 5b, 5c, and 5d it may describe collectively like the air side heat exchanger 5.
  • FIG. Similarly, a plurality of identical devices such as air-side heat exchanger blowers 6a, 6b, 6c and 6d may be collectively described as an air-side heat exchanger blower 6.
  • the main expansion valves 7a, 7b, 7c and 7d have a function as a pressure reducing valve or an expansion valve, expand the refrigerant by decompressing it, and can control the opening degree variably, for example, an electronic expansion valve Etc.
  • main expansion valve 7a, 7b, 7c, and 7d may be described collectively like the main expansion valve 7.
  • the heat source apparatus control device 11 receives the pressure and temperature of the refrigerant in the refrigeration cycle 2 and the temperature data of water serving as a heat medium from various sensors (not shown), and operates the heat source apparatus 1 and uses the refrigeration cycle apparatus. Based on the operation content instructed by the operator, the compressor 3 is operated and stopped or the rotational speed is controlled, the opening degree of the main expansion valve 7 is controlled, and the rotation control of the air-side heat exchanger blower 6 is performed. Control each actuator.
  • the water-side heat exchangers 8a, 8b, 8c, and 8d exchange heat between the refrigerant that flows through the refrigeration cycle 2 and water that is a heat medium.
  • the water inlet side of the water side heat exchanger 8a and the water side heat exchanger 8b is connected in parallel by a water pipe 9a.
  • the water outlet side of the water side heat exchanger 8c and the water side heat exchanger 8d is connected in parallel by a water pipe 9b.
  • the water outlet side of the water side heat exchanger 8a and the water inlet side of the water side heat exchanger 8c are connected in series by a water pipe 9c.
  • the water outlet side of the water side heat exchanger 8b and the water inlet side of the water side heat exchanger 8d are connected in series by a water pipe 9d.
  • the water side heat exchangers 8a, 8b, 8c and 8d correspond to the “heat medium side heat exchanger” in the present invention.
  • the water pipes 9c and 9d correspond to the “first heat medium flow path” and the “second heat medium flow path” in the present invention, respectively.
  • a plurality of identical devices such as the water-side heat exchangers 8a, 8b, 8c, and 8d may be collectively described as the water-side heat exchanger 8.
  • the refrigerant flow switching device 4a switches between the refrigerant flow during the cooling operation and the refrigerant flow during the heating operation.
  • the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 3a flows into the water-side heat exchanger 8a, performs heat exchange with water as a heat medium, and condenses and liquefies. Accordingly, the temperature of water as the heat medium rises and becomes hot water.
  • the high-pressure liquid refrigerant exiting the water-side heat exchanger 8a is decompressed by the main expansion valve 7a and becomes a gas-liquid two-phase refrigerant. And while evaporating and gasifying with the air side heat exchanger 5a used as an evaporator, it draws heat from the surrounding air and becomes a low-temperature and low-pressure refrigerant. The low-temperature and low-pressure refrigerant that has left the air-side heat exchanger 5a is sucked into the compressor 3a.
  • the refrigerant flow switching device 4 is switched so that the refrigerant flows during the cooling operation, and the compressor 3 is operated. And there exists a method of defrosting the air side heat exchanger 5 using the heat source of the water which passes the water side heat exchanger 8.
  • FIG. Here, if heating operation is performed in a plurality of refrigeration cycles 2, if one or more refrigeration cycles 2 perform a defrosting operation, water heated during the heating operation is cooled, A decrease in the temperature of the heat medium, water, occurs.
  • FIG. 2 is a flowchart showing the operation of the heat source device control device 11 during the defrosting operation according to Embodiment 1 of the present invention.
  • the control operation of the heat source machine control device 11 will be described based on the steps of FIG. 2 with reference to FIG.
  • Step S1 The heat source machine control device 11 determines whether the four refrigeration cycles 2a, 2b, 2c, and 2d are set to perform the defrosting operation at the same time. If the four refrigeration cycles 2a, 2b, 2c, and 2d are set to perform the defrosting operation at the same time, the process proceeds to step S2, and otherwise, the process proceeds to step S4.
  • Step S2 The heat source device control device 11 determines whether at least one of the four refrigeration cycles 2a, 2b, 2c, and 2d performs a defrosting operation. If at least one performs the defrosting operation, the process proceeds to step S3, and otherwise, the process proceeds to step S1.
  • Step S3 The heat source device control device 11 simultaneously defrosts the four refrigeration cycles 2a, 2b, 2c and 2d. Thereafter, the process proceeds to step S1.
  • Step S4 The heat source device control device 11 determines whether any one of the four refrigeration cycles 2a, 2b, 2c, and 2d performs the defrosting operation. If even one defrosting operation is performed, the process proceeds to step S5, and otherwise, the process proceeds to step S1.
  • Step S5 The heat source machine control device 11 determines whether another refrigeration cycle 2 is performing a defrosting operation. If the other refrigeration cycle 2 is not defrosting, the process proceeds to step S6, and otherwise, the process proceeds to step S1.
  • Step S6 The heat source machine control device 11 performs a defrosting operation of the target refrigeration cycle 2. Thereafter, the process proceeds to step S1.
  • the water side heat exchanger 8 provided in the refrigeration cycle 2 is independent.
  • the other refrigeration cycles 2 can be operated quickly.
  • the heat source device 1 includes four refrigeration cycles 2 in the first embodiment.
  • the present invention is not limited to this, and it is sufficient that three or more refrigeration cycles 2 are provided. The same applies to Embodiments 3 and 4 described later.
  • FIG. 3 is a schematic configuration diagram showing an example in which the circuit configuration of the refrigeration cycle apparatus according to Embodiment 1 of the present invention is changed.
  • the combination of the water pipes 9 can be changed.
  • the refrigeration cycle apparatus shows an example in which the combination of the water pipes 9 is changed.
  • the water inlet side of the water side heat exchanger 8a is connected by a water pipe 9h.
  • the water outlet side of the water side heat exchanger 8a and the water inlet side of the water side heat exchanger 8b are connected in series by a water pipe 9i.
  • the water outlet side of the water side heat exchanger 8b and the water inlet side of the water side heat exchanger 8d are connected in series by a water pipe 9j.
  • the water outlet side of the water side heat exchanger 8d and the water inlet side of the water side heat exchanger 8c are connected in series by a water pipe 9k.
  • the water exit side of the water side heat exchanger 8c is connected by the water piping 9l.
  • the water side heat exchangers 8a, 8b, 8d, and 8c are sequentially connected in series.
  • the chilled water pump 10 conveys water, which is a heat medium, as shown by a dotted arrow in FIG. 3, passes through the water pipe 9 h, and flows into the water-side heat exchanger 8 a.
  • the water that has flowed out of the water-side heat exchanger 8a passes through the water pipe 9i and flows into the water-side heat exchanger 8b.
  • the water that has flowed out of the water-side heat exchanger 8b passes through the water pipe 9j and flows into the water-side heat exchanger 8d.
  • the water that has flowed out of the water-side heat exchanger 8d passes through the water pipe 9k and flows into the water-side heat exchanger 8c.
  • the water exiting the water-side heat exchanger 8c passes through the water pipe 9l and is conveyed outside the heat source unit 1.
  • the range of use of the flow rate of the water flowing through the heat source unit 1 is determined by freezing of the water-side heat exchanger 8, performance deterioration, or vibration restrictions due to pulsation. Comparing the heat source unit 1 in the first embodiment and the heat source unit 1 in the third embodiment, the heat source unit 1 in the first embodiment branches water at the water pipe 9a, so the maximum flow rate and the minimum flow rate of water are It becomes larger (see FIG. 1). On the other hand, since the heat source unit 1 in the third embodiment does not branch water through the water pipe 9h, the maximum flow rate and the minimum flow rate of water are small (see FIG. 3).
  • the configuration of the water pipe 9 in the heat source unit 1 in the first embodiment and the heat source unit 1 in the third embodiment can be made only by changing the rearrangement of the water pipe 9. Thereby, when it is desired to change the maximum flow rate and the minimum flow rate of the water flowing through the water pipe 9, it is possible only by changing the combination of the water pipes 9.
  • the flow range can be easily changed by changing the combination of the water pipes 9 without constructing the refrigerant pipe of the heat source unit 1. It is possible to obtain the heat source device 1 that performs the above.
  • the water inlet side of the water side heat exchanger 8a and the water side heat exchanger 8b is connected in parallel by a water pipe 9e.
  • the water outlet side of the water side heat exchanger 8c and the water side heat exchanger 8d is connected in parallel by a water pipe 9f.
  • the water outlet side of the water side heat exchanger 8a and the water outlet side of the water side heat exchanger 8b are connected in parallel by a water pipe 9g, and the water outlet side and the water side of the water side heat exchanger 8c are connected.
  • the water outlet side of the heat exchanger 8d is connected in parallel by a water pipe 9g.
  • the water piping 9g has connected the water side heat exchanger 8a and the water side heat exchanger 8b which were connected in parallel, the water side heat exchanger 8c, and the water side heat exchanger 8d in series.
  • the water pipes 9e, 9f, and 9g correspond to the “heat medium flow path” in the present invention.
  • the chilled water pump 10 conveys water as a heat medium, passes through the water pipe 9e, and branches into the water side heat exchanger 8a and the water side heat exchanger 8b.
  • the water that has flowed into the water-side heat exchanger 8a and the water-side heat exchanger 8b joins through the water pipe 9g.
  • the joined water branches downstream of the water pipe 9g and flows into the water side heat exchanger 8c and the water side heat exchanger 8d. Thereafter, the water that has exited the water-side heat exchanger 8c and the water-side heat exchanger 8d merges through the water pipe 9f and is transported outside the heat source unit 1.
  • the refrigeration cycle 2 performing the defrosting operation can suppress the influence on the refrigeration cycle 2 performing the other heating operation, a stable heating operation can be performed.
  • the refrigeration cycle 2a or the refrigeration cycle 2b performs the defrosting operation
  • the water that has flowed out of the refrigeration cycle 2a and the refrigeration cycle 2b is once merged in the water pipe 9g, and therefore, to the refrigeration cycle 2c and the refrigeration cycle 2d.
  • the drop in the temperature of the incoming water is reduced. For this reason, the heating operation in the refrigeration cycle 2c and the refrigeration cycle 2d is stabilized.
  • water outlet side of the water side heat exchanger 8a and the water inlet side of the water side heat exchanger 8b are connected in series by a water pipe 9q.
  • the water outlet side of the water side heat exchanger 8d and the water inlet side of the water side heat exchanger 8c are connected in series by a water pipe 9r.
  • the valve 12 installed on the water pipe 9 will be described.
  • the water pipe 9m is provided with a branching portion 13a that branches into the water-side heat exchanger 8a and the water-side heat exchanger 8b.
  • a valve 12a is installed between the branch portion 13a and the refrigerant inlet side of the water-side heat exchanger 8b.
  • the water pipe 9n is provided with a branch portion 13b that branches to the water side heat exchanger 8c and the water side heat exchanger 8d.
  • a valve 12b is installed between the branch portion 13b and the refrigerant outlet side of the water side heat exchanger 8d.
  • Valves 12c, 12d and 12e are installed on the water pipe 9q, the water pipe 9r and the water pipe 9o, respectively.
  • the valve 12 may be an electromagnetic valve that can block the flow of water, or may be a flow rate adjusting valve that can be variably controlled in opening.
  • the heat source device control device 11 can change the combination of the water pipes 9 through which water flows by switching the valve 12 according to the operation status of the heat source device 1. And the heat-source equipment control apparatus 11 can change the flow range of the water which distribute
  • the heat source device control device 11 can change the flow range of the water flowing through the heat source device 1 by changing the combination of the water pipes 9 through which the water flows by switching the valve 12. Thereby, remodeling work of the water pipe 9 becomes unnecessary, the flow rate of the water flowing through the heat source unit 1 is controlled by controlling the heat source unit control device 11 at the site, transmitting a signal to the valve 12, and operating the valve 12. The range can be changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

The purpose of the present invention is to obtain a refrigeration cycle apparatus which can continue operating even if there is a failure in any of a plurality of refrigerant circuits thereof and which is free of unstableness in the temperature of a medium being cooled when any of the refrigerant circuits are carrying out a defrosting operation while the plurality of refrigerant circuits are carrying out a heating operation. Water-side heat exchanger (8a) and water-side heat exchanger (8c) are connected in series via a water pipe, water-side heat exchanger (8b) and water-side heat exchanger (8d) are connected in series via a water pipe, and water-side heat exchanger (8a) and water-side heat exchanger (8c), which are connected in series with each other, are connected in parallel with water-side heat exchanger (8b) and water-side heat exchanger (8d), which are connected in series with each other, via a water pipe.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、冷凍サイクル装置に関するものである。 The present invention relates to a refrigeration cycle apparatus.
 従来から、複数の冷媒回路が接続される熱交換器において、水冷媒の凍結を防止する技術が提案されている。例えば、プレート式熱交換器を循環する被冷却媒体の入り側と出側の検出温度と、各冷凍回路の運転容量とを入力する。そして、各利用側熱交換器の水却媒の流路の出側の水冷媒の温度を演算により推定する温度推定手段を備えることで水冷媒の凍結を防止する冷凍装置が提案されている(例えば、特許文献1参照)。 Conventionally, in a heat exchanger to which a plurality of refrigerant circuits are connected, a technique for preventing water refrigerant from freezing has been proposed. For example, the input temperature and the detection temperature of the cooling medium circulating through the plate heat exchanger and the operating capacity of each refrigeration circuit are input. And the freezing apparatus which prevents the freezing of a water refrigerant | coolant by providing the temperature estimation means which estimates the temperature of the water refrigerant | coolant of the exit side of the flow path of the water rejection medium of each utilization side heat exchanger by calculation is proposed ( For example, see Patent Document 1).
特開2007-187353号公報(請求項1)JP 2007-187353 A (Claim 1)
 しかし、特許文献1に開示されている技術では、複数の冷媒回路を1つのプレート式熱交換器に接続した場合、1つの冷媒回路が故障すると、他の正常な冷媒回路も運転できなくなってしまう問題点がある。 However, in the technique disclosed in Patent Document 1, when a plurality of refrigerant circuits are connected to one plate heat exchanger, if one refrigerant circuit fails, other normal refrigerant circuits cannot be operated. There is a problem.
 本発明は、上記のような問題点を解決するためになされたもので、複数の冷媒回路のいずれかが故障をしても運転を継続することができる冷凍サイクル装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a refrigeration cycle apparatus that can continue operation even if any of a plurality of refrigerant circuits fails. .
 本発明に係る冷凍サイクル装置は、圧縮機、冷媒流路切替装置、空気側熱交換器、減圧装置及び熱媒体側熱交換器が冷媒配管を介して順次接続され、冷媒が循環する複数の冷凍サイクルを備え、前記熱媒体側熱交換器は、前記熱媒体と前記冷媒とで熱交換を行い、1つ以上の前記冷凍サイクルの前記熱媒体側熱交換器が接続された第一の熱媒体流路と、2つ以上の前記冷凍サイクルの前記熱媒体側熱交換器が前記熱媒体の流れに沿って直列に接続された第二の熱媒体流路と、を備え、前記第一の熱媒体流路と、前記第二の熱媒体流路とが、並列に配置されたものである。 A refrigeration cycle apparatus according to the present invention includes a plurality of refrigeration units in which a compressor, a refrigerant flow switching device, an air side heat exchanger, a pressure reducing device, and a heat medium side heat exchanger are sequentially connected via a refrigerant pipe and the refrigerant circulates. A heat medium side heat exchanger, wherein the heat medium side heat exchanger exchanges heat between the heat medium and the refrigerant, and the heat medium side heat exchanger of one or more of the refrigeration cycles is connected to the first heat medium And a second heat medium flow path in which the heat medium side heat exchangers of two or more of the refrigeration cycles are connected in series along the flow of the heat medium, the first heat The medium flow path and the second heat medium flow path are arranged in parallel.
 本発明に係る冷凍サイクル装置によれば、複数の冷凍サイクルを並列及び直列に接続させることで、いずれかの冷凍サイクルが故障をしても、冷凍サイクル装置の運転を継続させることができる。 According to the refrigeration cycle apparatus according to the present invention, by connecting a plurality of refrigeration cycles in parallel and in series, the operation of the refrigeration cycle apparatus can be continued even if any refrigeration cycle fails.
本発明の実施の形態1に係る冷凍サイクル装置の概略構成図である。1 is a schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る除霜運転時における熱源機制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the heat-source equipment control apparatus at the time of the defrost operation which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の回路構成を変更した一例を示す概略構成図である。It is a schematic block diagram which shows an example which changed the circuit structure of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍サイクル装置の概略構成図である。It is a schematic block diagram of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷凍サイクル装置の概略構成図である。It is a schematic block diagram of the refrigerating-cycle apparatus which concerns on Embodiment 3 of this invention.
 以下、本発明の冷凍サイクル装置の実施の形態について、図面を参照して説明する。なお、図面の形態は一例であり、本発明を限定するものではない。また、各図において同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。さらに、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the refrigeration cycle apparatus of the present invention will be described with reference to the drawings. In addition, the form of drawing is an example and does not limit this invention. Moreover, what attached | subjected the same code | symbol in each figure is the same or it corresponds, and this is common in the whole text of a specification. Furthermore, in the following drawings, the relationship between the sizes of the constituent members may be different from the actual one.
実施の形態1.
 [熱源機1の構成]
 図1は、本発明の実施の形態1における冷凍サイクル装置の構成の一部の一例を示す概略構成図である。図1に示されるように冷凍サイクル装置の一部である熱源機1内には、同一の回路構成で、かつ同一仕様の冷凍サイクル2a、2b、2c、2d及び熱源機制御装置11が搭載されている。なお、冷凍サイクル2a、2b、2c、2dのように同一の装置等が複数存在するものに関しては、冷凍サイクル2のようにまとめて表記することもある。
Embodiment 1 FIG.
[Configuration of heat source machine 1]
FIG. 1 is a schematic configuration diagram showing an example of a part of the configuration of the refrigeration cycle apparatus according to Embodiment 1 of the present invention. As shown in FIG. 1, refrigeration cycles 2 a, 2 b, 2 c, 2 d and a heat source unit controller 11 having the same circuit configuration and the same specifications are mounted in a heat source unit 1 that is a part of the refrigeration cycle unit. ing. In addition, what has a plurality of identical devices such as the refrigeration cycles 2a, 2b, 2c, and 2d may be collectively described as the refrigeration cycle 2.
 冷凍サイクル2aには、圧縮機3a、四方弁等の冷媒流路切替装置4a、空気側熱交換器5a、主膨張弁7a及び水側熱交換器8aが冷媒配管を介して環状に接続されている。また、空気側熱交換器5aの付近には空気側熱交換器用送風機6aが設置されている。冷凍サイクル2b、2c及び2dも冷凍サイクル2aと同様の構成となっている。 In the refrigeration cycle 2a, a compressor 3a, a refrigerant flow switching device 4a such as a four-way valve, an air side heat exchanger 5a, a main expansion valve 7a, and a water side heat exchanger 8a are connected in a ring shape through a refrigerant pipe. Yes. An air-side heat exchanger blower 6a is installed in the vicinity of the air-side heat exchanger 5a. The refrigeration cycles 2b, 2c and 2d have the same configuration as the refrigeration cycle 2a.
 圧縮機3a、3b、3c及び3dは、低温低圧の冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にするものであり、たとえば容量制御可能なインバータ圧縮機等で構成するとよい。なお、圧縮機3a、3b、3c及び3dのように同一の装置等が複数存在するものに関しては、圧縮機3のようにまとめて表記することもある。 The compressors 3a, 3b, 3c, and 3d suck low-temperature and low-pressure refrigerant and compress the refrigerant into a high-temperature and high-pressure state. Note that a plurality of identical devices such as the compressors 3 a, 3 b, 3 c, and 3 d may be collectively described as the compressor 3.
 冷媒流路切替装置4a、4b、4c及び4dは、冷房運転時における冷媒の流れと暖房運転時における冷媒の流れとを切り替えるものである。なお、冷媒流路切替装置4a、4b、4c及び4dのように同一の装置等が複数存在するものに関しては、冷媒流路切替装置4のようにまとめて表記することもある。 The refrigerant flow switching devices 4a, 4b, 4c and 4d are for switching between the refrigerant flow during the cooling operation and the refrigerant flow during the heating operation. In addition, what has a plurality of identical devices such as the refrigerant flow switching devices 4a, 4b, 4c, and 4d may be collectively described as the refrigerant flow switching device 4.
 空気側熱交換器5a、5b、5c及び5dは、冷房運転時には凝縮器として機能し、暖房運転時には蒸発器として機能し、例えば、ファン等の空気側熱交換器用送風機6a、6b、6c及び6dから供給される空気と冷媒との間で熱交換を行なうものである。なお、空気側熱交換器5a、5b、5c及び5dのように同一の装置等が複数存在するものに関しては、空気側熱交換器5のようにまとめて表記することもある。同様に、空気側熱交換器用送風機6a、6b、6c及び6dのように同一の装置等が複数存在するものに関しては、空気側熱交換器用送風機6のようにまとめて表記することもある。 The air- side heat exchangers 5a, 5b, 5c, and 5d function as condensers during the cooling operation, and function as evaporators during the heating operation. For example, the air-side heat exchanger blowers 6a, 6b, 6c, and 6d such as fans. Heat exchange is performed between the air supplied from the refrigerant and the refrigerant. In addition, about what has the same apparatus etc. exist like air side heat exchanger 5a, 5b, 5c, and 5d, it may describe collectively like the air side heat exchanger 5. FIG. Similarly, a plurality of identical devices such as air-side heat exchanger blowers 6a, 6b, 6c and 6d may be collectively described as an air-side heat exchanger blower 6.
 主膨張弁7a、7b、7c及び7dは、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものであり、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成する。なお、主膨張弁7a、7b、7c及び7dのように同一の装置等が複数存在するものに関しては、主膨張弁7のようにまとめて表記することもある。 The main expansion valves 7a, 7b, 7c and 7d have a function as a pressure reducing valve or an expansion valve, expand the refrigerant by decompressing it, and can control the opening degree variably, for example, an electronic expansion valve Etc. In addition, what has the same apparatus etc., such as main expansion valve 7a, 7b, 7c, and 7d, may be described collectively like the main expansion valve 7.
 熱源機制御装置11は、冷凍サイクル2の冷媒の圧力や温度及び熱媒体となる水の温度データ等を各種センサ(図示せず)から受信し、熱源機1の運転情報や冷凍サイクル装置の使用者から指示される運転内容に基づいて、圧縮機3の運転及び停止又は回転数の制御を行うと共に、主膨張弁7の開度の制御や空気側熱交換器用送風機6の回転制御を行うなど、各アクチュエータを制御する。 The heat source apparatus control device 11 receives the pressure and temperature of the refrigerant in the refrigeration cycle 2 and the temperature data of water serving as a heat medium from various sensors (not shown), and operates the heat source apparatus 1 and uses the refrigeration cycle apparatus. Based on the operation content instructed by the operator, the compressor 3 is operated and stopped or the rotational speed is controlled, the opening degree of the main expansion valve 7 is controlled, and the rotation control of the air-side heat exchanger blower 6 is performed. Control each actuator.
 [水配管9の構成]
 水側熱交換器8a、8b、8c及び8dは、冷凍サイクル2を流れる冷媒と、熱媒体である水との間で熱交換を行う。水側熱交換器8a及び水側熱交換器8bの水の入口側は、水配管9aによって並列に接続されている。同様に水側熱交換器8c及び水側熱交換器8dの水の出口側は、水配管9bによって並列に接続されている。また、水側熱交換器8aの水の出口側と水側熱交換器8cの水の入口側は、水配管9cによって直列に接続されている。同様に、水側熱交換器8bの水の出口側と水側熱交換器8dの水の入口側は、水配管9dによって直列に接続されている。なお、水側熱交換器8a、8b、8c及び8dは、本発明における「熱媒体側熱交換器」に相当する。また、水配管9c及び9dは、それぞれ本発明における「第一の熱媒体流路」及び「第二の熱媒体流路」に相当する。また、水側熱交換器8a、8b、8c及び8dのように同一の装置等が複数存在するものに関しては、水側熱交換器8のようにまとめて表記することもある。
[Configuration of water pipe 9]
The water- side heat exchangers 8a, 8b, 8c, and 8d exchange heat between the refrigerant that flows through the refrigeration cycle 2 and water that is a heat medium. The water inlet side of the water side heat exchanger 8a and the water side heat exchanger 8b is connected in parallel by a water pipe 9a. Similarly, the water outlet side of the water side heat exchanger 8c and the water side heat exchanger 8d is connected in parallel by a water pipe 9b. The water outlet side of the water side heat exchanger 8a and the water inlet side of the water side heat exchanger 8c are connected in series by a water pipe 9c. Similarly, the water outlet side of the water side heat exchanger 8b and the water inlet side of the water side heat exchanger 8d are connected in series by a water pipe 9d. The water side heat exchangers 8a, 8b, 8c and 8d correspond to the “heat medium side heat exchanger” in the present invention. The water pipes 9c and 9d correspond to the “first heat medium flow path” and the “second heat medium flow path” in the present invention, respectively. In addition, a plurality of identical devices such as the water- side heat exchangers 8a, 8b, 8c, and 8d may be collectively described as the water-side heat exchanger 8.
 次に、熱媒体である水の流れについて説明する。熱源機1の外側の水配管9a上には、冷水ポンプ10が設置されている。冷水ポンプ10は、図1の点線矢印で示すように、熱媒体である水を搬送し、水配管9aを通り、水側熱交換器8a及び水側熱交換器8bに分岐して流入させる。水側熱交換器8aに流入した水は、水配管9cを通り、水側熱交換器8cに流入する。また、水側熱交換器8bに流入した水は、水配管9dを通り、水側熱交換器8dに流入する。その後、水側熱交換器8c及び水側熱交換器8dを出た水は、水配管9bによって合流して、熱源機1の外に搬送される。なお、本実施の形態1では、冷水ポンプ10が熱源機1の外側に設置されている例を示したが、本発明はこれに限定されず、熱源機1の内部に設けても良い。 Next, the flow of water as a heat medium will be described. A cold water pump 10 is installed on the water pipe 9 a outside the heat source device 1. As shown by the dotted arrow in FIG. 1, the cold water pump 10 conveys water, which is a heat medium, passes through the water pipe 9a, and branches into the water side heat exchanger 8a and the water side heat exchanger 8b. The water flowing into the water side heat exchanger 8a passes through the water pipe 9c and flows into the water side heat exchanger 8c. Further, the water that has flowed into the water-side heat exchanger 8b passes through the water pipe 9d and flows into the water-side heat exchanger 8d. Thereafter, the water that has exited the water-side heat exchanger 8c and the water-side heat exchanger 8d merges through the water pipe 9b and is transported outside the heat source unit 1. In addition, in this Embodiment 1, although the cold water pump 10 showed the example installed in the outer side of the heat source apparatus 1, this invention is not limited to this, You may provide in the inside of the heat source apparatus 1. FIG.
 [冷凍サイクル装置の冷房運転の運転動作]
 冷凍サイクル装置の冷房運転の運転動作について説明する。冷凍サイクル2aにおいて、圧縮機3aで圧縮されて吐出された高温高圧のガス冷媒は、空気側熱交換器5aに流入し、空気側熱交換器用送風機6aから供給される空気と熱交換を行ない、凝縮し液化する。空気側熱交換器5aを出た高圧の液冷媒は、主膨張弁7aにて減圧され気液二相状態の冷媒となる。そして、蒸発器となる水側熱交換器8aで蒸発しガス化しながら、熱媒体である水から吸熱することで冷却水を生成する。水側熱交換器8aを出た低温低圧の冷媒は、圧縮機3aに吸入される。
[Operation of refrigeration cycle equipment for cooling operation]
The operation of the cooling operation of the refrigeration cycle apparatus will be described. In the refrigeration cycle 2a, the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 3a flows into the air-side heat exchanger 5a, exchanges heat with the air supplied from the air-side heat exchanger blower 6a, Condensed and liquefied. The high-pressure liquid refrigerant that has exited the air-side heat exchanger 5a is decompressed by the main expansion valve 7a to become a gas-liquid two-phase refrigerant. And while evaporating and gasifying with the water side heat exchanger 8a used as an evaporator, cooling water is produced | generated by absorbing heat from the water which is a heat medium. The low-temperature and low-pressure refrigerant that has exited the water-side heat exchanger 8a is sucked into the compressor 3a.
 なお、冷房運転の運転動作について冷凍サイクル2aを例に説明したが、冷凍サイクル2b、2c及び2dも冷凍サイクル2aと同様の冷房運転の運転動作を行う。このことは、後述する除霜運転及び暖房運転の運転動作についても同様である。 In addition, although the refrigerating cycle 2a was demonstrated to the example about the operation | movement operation | movement of air_conditionaing | cooling operation, the refrigerating cycle 2b, 2c, and 2d perform the operation operation of air_conditionaing | cooling operation similar to the refrigerating cycle 2a. This also applies to the defrosting operation and heating operation described later.
 [冷凍サイクル装置の暖房運転の運転動作]
 冷凍サイクル装置の暖房運転の運転動作について説明する。暖房運転時には、冷媒流路切替装置4aは、冷房運転時における冷媒の流れと暖房運転時における冷媒の流れとを切り替える。冷凍サイクル2aにおいて、圧縮機3aで圧縮されて吐出された高温高圧のガス冷媒は、水側熱交換器8aに流入し、熱媒体である水と熱交換を行ない、凝縮し液化する。従って、熱媒体である水の温度は上昇し、温水となる。水側熱交換器8aを出た高圧の液冷媒は、主膨張弁7aにて減圧され気液2相状態の冷媒となる。そして、蒸発器となる空気側熱交換器5aで蒸発しガス化しながら、周囲の空気から熱を奪い低温低圧の冷媒となる。空気側熱交換器5aを出た低温低圧の冷媒は、圧縮機3aに吸入される。
[Operation of heating operation of refrigeration cycle equipment]
The operation of heating operation of the refrigeration cycle apparatus will be described. During the heating operation, the refrigerant flow switching device 4a switches between the refrigerant flow during the cooling operation and the refrigerant flow during the heating operation. In the refrigeration cycle 2a, the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 3a flows into the water-side heat exchanger 8a, performs heat exchange with water as a heat medium, and condenses and liquefies. Accordingly, the temperature of water as the heat medium rises and becomes hot water. The high-pressure liquid refrigerant exiting the water-side heat exchanger 8a is decompressed by the main expansion valve 7a and becomes a gas-liquid two-phase refrigerant. And while evaporating and gasifying with the air side heat exchanger 5a used as an evaporator, it draws heat from the surrounding air and becomes a low-temperature and low-pressure refrigerant. The low-temperature and low-pressure refrigerant that has left the air-side heat exchanger 5a is sucked into the compressor 3a.
 冷凍サイクル装置の暖房運転時において、空気中の湿度が高くなり、空気側熱交換器5の伝熱面が零度以下になると伝熱面に空気中の水分が凝縮・氷結し霜が生じる。空気側熱交換器5に霜が生じると、空気側熱交換器5の通風抵抗が大きくなり、十分な性能が発揮できなくなる。したがって、空気側熱交換器5についた霜を融かす除霜運転が必要となるが、除霜運転を行うには霜を融かすための熱源が必要となる。 During the heating operation of the refrigeration cycle apparatus, when the humidity in the air becomes high and the heat transfer surface of the air-side heat exchanger 5 becomes less than zero degrees, moisture in the air condenses and freezes on the heat transfer surface, resulting in frost formation. If frost is generated in the air-side heat exchanger 5, the ventilation resistance of the air-side heat exchanger 5 increases, and sufficient performance cannot be exhibited. Therefore, although the defrosting operation | movement which melts the frost attached to the air side heat exchanger 5 is needed, in order to perform a defrosting operation, the heat source for melting a frost is needed.
 一般的な除霜方法として、冷媒流路切替装置4を冷房運転時における冷媒の流れになるように切り替えて、圧縮機3を運転する。そして、水側熱交換器8を通る水の熱源を利用して、空気側熱交換器5の除霜を行う方法がある。ここで、仮に複数の冷凍サイクル2で暖房運転をしている際に、1つ以上の冷凍サイクル2が除霜運転を行うと、暖房運転中で暖められた水が冷却されることになり、熱媒体である水の温度の低下が発生する。しかし、本実施の形態1においては、以下の対策により、熱媒体である水の温度の低下を抑制することができる。 As a general defrosting method, the refrigerant flow switching device 4 is switched so that the refrigerant flows during the cooling operation, and the compressor 3 is operated. And there exists a method of defrosting the air side heat exchanger 5 using the heat source of the water which passes the water side heat exchanger 8. FIG. Here, if heating operation is performed in a plurality of refrigeration cycles 2, if one or more refrigeration cycles 2 perform a defrosting operation, water heated during the heating operation is cooled, A decrease in the temperature of the heat medium, water, occurs. However, in the first embodiment, it is possible to suppress a decrease in the temperature of water as a heat medium by the following measures.
 [冷凍サイクル装置の除霜運転の運転動作]
 冷凍サイクル装置の除霜運転の運転動作について説明する。冷房運転と除霜運転の差異は、除霜運転時には空気側熱交換器用送風機6aを停止させていることである。冷凍サイクル2aにおいて、圧縮機3aで圧縮されて吐出された高温高圧のガス冷媒は、空気側熱交換器5aに流入し、空気側熱交換器5aに着霜した霜と熱交換を行ない、凝縮し液化する。空気側熱交換器5aを出た高圧の液冷媒は、主膨張弁7aにて減圧され気液2相状態の冷媒となる。そして、蒸発器となる水側熱交換器8aで蒸発しガス化しながら、熱媒体である水から吸熱することで冷却水を生成する。水側熱交換器8aを出た低温低圧の冷媒は、圧縮機3aに吸入される。
[Operation of defrosting operation of refrigeration cycle equipment]
The operation of the defrosting operation of the refrigeration cycle apparatus will be described. The difference between the cooling operation and the defrosting operation is that the air-side heat exchanger blower 6a is stopped during the defrosting operation. In the refrigeration cycle 2a, the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 3a flows into the air-side heat exchanger 5a, exchanges heat with frost formed on the air-side heat exchanger 5a, and condenses. Liquefied. The high-pressure liquid refrigerant exiting the air-side heat exchanger 5a is decompressed by the main expansion valve 7a and becomes a gas-liquid two-phase refrigerant. And while evaporating and gasifying with the water side heat exchanger 8a used as an evaporator, cooling water is produced | generated by absorbing heat from the water which is a heat medium. The low-temperature and low-pressure refrigerant that has exited the water-side heat exchanger 8a is sucked into the compressor 3a.
 [熱源機制御装置11の制御動作]
 本実施の形態1における熱源機1は、4つの冷凍サイクル2a、2b、2c及び2dを搭載している。このため、水の温度の低下を抑制するために、独立した4つの冷凍サイクル2a、2b、2c及び2dが、同時に除霜運転とならないように、熱源機制御装置11にて制御を行うことが可能である。一方で、熱媒体である水の温度の低下度を抑制させることよりも、熱媒体である水の温度が低下する時間を短縮するために4つの冷凍サイクル2a、2b、2c及び2dを同時に除霜運転することも可能である。これらの制御については、熱源機制御装置11にあらかじめ制御動作を設定することで、どちらの動作を行うか選択することが可能である。
[Control Operation of Heat Source Unit Control Device 11]
The heat source device 1 according to the first embodiment is equipped with four refrigeration cycles 2a, 2b, 2c and 2d. For this reason, in order to suppress the fall of the temperature of water, it can control by the heat-source equipment control apparatus 11 so that four independent refrigeration cycles 2a, 2b, 2c, and 2d may not become a defrosting operation simultaneously. Is possible. On the other hand, the four refrigeration cycles 2a, 2b, 2c, and 2d are removed at the same time in order to shorten the time during which the temperature of the water that is the heat medium is lowered, rather than to suppress the degree of decrease in the temperature of the water that is the heat medium. Frost operation is also possible. About these controls, it is possible to select which operation is performed by setting a control operation in the heat source apparatus control device 11 in advance.
 図2は、本発明の実施の形態1に係る除霜運転時における熱源機制御装置11の動作を示すフローチャートである。以下、図1を参照しながら図2の各ステップに基づいて熱源機制御装置11の制御動作について説明する。 FIG. 2 is a flowchart showing the operation of the heat source device control device 11 during the defrosting operation according to Embodiment 1 of the present invention. Hereinafter, the control operation of the heat source machine control device 11 will be described based on the steps of FIG. 2 with reference to FIG.
 (ステップS1)
 熱源機制御装置11は、4つの冷凍サイクル2a、2b、2c及び2dが同時に除霜運転を行う設定となっているか判定する。4つの冷凍サイクル2a、2b、2c及び2dが、同時に除霜運転を行う設定となっている場合はステップS2へ移行し、それ以外の場合は、ステップS4へ移行する。
 (ステップS2)
 熱源機制御装置11は、4つの冷凍サイクル2a、2b、2c及び2dの少なくとも1つが除霜運転をするかを判定する。少なくとも1つが除霜運転を行う場合にはステップS3へ移行し、それ以外の場合は、ステップS1へ移行する。
 (ステップS3)
 熱源機制御装置11は、4つの冷凍サイクル2a、2b、2c及び2dを同時に除霜運転する。その後、ステップS1へ移行する。
(Step S1)
The heat source machine control device 11 determines whether the four refrigeration cycles 2a, 2b, 2c, and 2d are set to perform the defrosting operation at the same time. If the four refrigeration cycles 2a, 2b, 2c, and 2d are set to perform the defrosting operation at the same time, the process proceeds to step S2, and otherwise, the process proceeds to step S4.
(Step S2)
The heat source device control device 11 determines whether at least one of the four refrigeration cycles 2a, 2b, 2c, and 2d performs a defrosting operation. If at least one performs the defrosting operation, the process proceeds to step S3, and otherwise, the process proceeds to step S1.
(Step S3)
The heat source device control device 11 simultaneously defrosts the four refrigeration cycles 2a, 2b, 2c and 2d. Thereafter, the process proceeds to step S1.
 (ステップS4)
 熱源機制御装置11は、4つの冷凍サイクル2a、2b、2c及び2dのうち、いずれか1つでも除霜運転を行うかを判定する。1つでも除霜運転する場合は、ステップS5へ移行し、それ以外の場合は、ステップS1へ移行する。
 (ステップS5)
 熱源機制御装置11は、他の冷凍サイクル2が除霜運転しているか判定する。他の冷凍サイクル2が除霜運転していない場合は、ステップS6へ移行し、それ以外の場合はステップS1へ移行する。
 (ステップS6)
 熱源機制御装置11は、対象となる冷凍サイクル2の除霜運転を行う。その後、ステップS1へ移行する。
(Step S4)
The heat source device control device 11 determines whether any one of the four refrigeration cycles 2a, 2b, 2c, and 2d performs the defrosting operation. If even one defrosting operation is performed, the process proceeds to step S5, and otherwise, the process proceeds to step S1.
(Step S5)
The heat source machine control device 11 determines whether another refrigeration cycle 2 is performing a defrosting operation. If the other refrigeration cycle 2 is not defrosting, the process proceeds to step S6, and otherwise, the process proceeds to step S1.
(Step S6)
The heat source machine control device 11 performs a defrosting operation of the target refrigeration cycle 2. Thereafter, the process proceeds to step S1.
 以上のことから、仮に水側熱交換器8において水の凍結によって、凍結パンク等の故障が発生した場合でも、冷凍サイクル2に設けられた水側熱交換器8が独立になっているため、それ以外の冷凍サイクル2は応急的に運転が可能である。 From the above, even if a failure such as freezing puncture occurs due to freezing of water in the water side heat exchanger 8, the water side heat exchanger 8 provided in the refrigeration cycle 2 is independent. The other refrigeration cycles 2 can be operated quickly.
 また、従来の技術では、1つの水側熱交換器8に2つの冷凍サイクル2が接続されており、2つの冷凍サイクル2が暖房運転をしている場合、片側の冷凍サイクル2が除霜運転を行うと、水側熱交換器8内の水温が変動する。このため、もう一方の暖房運転を行っている冷凍サイクル2の運転状態が変化し、水温が不安定となる。しかし、本実施の形態1における水側熱交換器8は、冷凍サイクル2a、2b、2c及び2dごとに独立して設置されている。このため、除霜運転を行っている冷凍サイクル2が、他の暖房運転を行っている冷凍サイクル2へ与える影響を抑制することができるため、安定した暖房運転が可能となる。 In the conventional technique, when two refrigeration cycles 2 are connected to one water-side heat exchanger 8 and the two refrigeration cycles 2 are in heating operation, the refrigeration cycle 2 on one side is in defrosting operation. If it performs, the water temperature in the water side heat exchanger 8 will fluctuate. For this reason, the driving | running state of the refrigerating cycle 2 which is performing the other heating operation changes, and water temperature becomes unstable. However, the water-side heat exchanger 8 in Embodiment 1 is installed independently for each of the refrigeration cycles 2a, 2b, 2c, and 2d. For this reason, since the refrigerating cycle 2 which is performing defrosting operation can suppress the influence which it has on the refrigerating cycle 2 which is performing other heating operation, the stable heating operation is attained.
 なお、本実施の形態1では、熱源機1が冷凍サイクル2を4つ備えた例を示したが、本発明はこれに限定されず、冷凍サイクル2が3つ以上備わっていれば良い。このことは、後述する実施の形態3及び4についても同様である。 In the first embodiment, an example in which the heat source device 1 includes four refrigeration cycles 2 is shown. However, the present invention is not limited to this, and it is sufficient that three or more refrigeration cycles 2 are provided. The same applies to Embodiments 3 and 4 described later.
 図3は、本発明の実施の形態1に係る冷凍サイクル装置の回路構成を変更した一例を示す概略構成図である。実施形態1に係る冷凍サイクル装置は水配管9の組み合わせの変更が可能である。以下、冷凍サイクル装置は水配管9の組み合わせを変更した例を示す。 FIG. 3 is a schematic configuration diagram showing an example in which the circuit configuration of the refrigeration cycle apparatus according to Embodiment 1 of the present invention is changed. In the refrigeration cycle apparatus according to the first embodiment, the combination of the water pipes 9 can be changed. Hereinafter, the refrigeration cycle apparatus shows an example in which the combination of the water pipes 9 is changed.
 [水配管9の構成]
 図3に示されるように、水側熱交換器8aの水の入口側は、水配管9hによって接続されている。水側熱交換器8aの水の出口側と水側熱交換器8bの水の入口側は、水配管9iによって直列に接続されている。水側熱交換器8bの水の出口側と水側熱交換器8dの水の入口側は、水配管9jによって直列に接続されている。水側熱交換器8dの水の出口側と水側熱交換器8cの水の入口側は、水配管9kによって直列に接続されている。そして、水側熱交換器8cの水の出口側は、水配管9lによって接続されている。このように、水側熱交換器8a、8b、8d及び8cは順次、直列に接続されている。
[Configuration of water pipe 9]
As shown in FIG. 3, the water inlet side of the water side heat exchanger 8a is connected by a water pipe 9h. The water outlet side of the water side heat exchanger 8a and the water inlet side of the water side heat exchanger 8b are connected in series by a water pipe 9i. The water outlet side of the water side heat exchanger 8b and the water inlet side of the water side heat exchanger 8d are connected in series by a water pipe 9j. The water outlet side of the water side heat exchanger 8d and the water inlet side of the water side heat exchanger 8c are connected in series by a water pipe 9k. And the water exit side of the water side heat exchanger 8c is connected by the water piping 9l. Thus, the water side heat exchangers 8a, 8b, 8d, and 8c are sequentially connected in series.
 次に、熱媒体である水の流れについて説明する。冷水ポンプ10は、図3の点線矢印で示すように、熱媒体である水を搬送し、水配管9hを通り、水側熱交換器8a流入させる。水側熱交換器8aを流出した水は、水配管9iを通り、水側熱交換器8bに流入する。水側熱交換器8bを流出した水は、水配管9jを通り、水側熱交換器8dに流入する。水側熱交換器8dを流出した水は、水配管9kを通り、水側熱交換器8cに流入する。水側熱交換器8cを出た水は、水配管9lを通り、熱源機1の外に搬送される。 Next, the flow of water as a heat medium will be described. The chilled water pump 10 conveys water, which is a heat medium, as shown by a dotted arrow in FIG. 3, passes through the water pipe 9 h, and flows into the water-side heat exchanger 8 a. The water that has flowed out of the water-side heat exchanger 8a passes through the water pipe 9i and flows into the water-side heat exchanger 8b. The water that has flowed out of the water-side heat exchanger 8b passes through the water pipe 9j and flows into the water-side heat exchanger 8d. The water that has flowed out of the water-side heat exchanger 8d passes through the water pipe 9k and flows into the water-side heat exchanger 8c. The water exiting the water-side heat exchanger 8c passes through the water pipe 9l and is conveyed outside the heat source unit 1.
 熱源機1を流れる水の流量の使用範囲は、水側熱交換器8の凍結、性能低下又は脈動による振動の制約により決定される。実施の形態1における熱源機1と、実施の形態3における熱源機1を比較すると、実施の形態1における熱源機1は、水配管9aで水を分岐するため、水の最大流量及び最小流量は大きくなる(図1参照)。一方で、実施の形態3における熱源機1は、水配管9hで水を分岐しないため、水の最大流量及び最小流量は小さくなる(図3参照)。 The range of use of the flow rate of the water flowing through the heat source unit 1 is determined by freezing of the water-side heat exchanger 8, performance deterioration, or vibration restrictions due to pulsation. Comparing the heat source unit 1 in the first embodiment and the heat source unit 1 in the third embodiment, the heat source unit 1 in the first embodiment branches water at the water pipe 9a, so the maximum flow rate and the minimum flow rate of water are It becomes larger (see FIG. 1). On the other hand, since the heat source unit 1 in the third embodiment does not branch water through the water pipe 9h, the maximum flow rate and the minimum flow rate of water are small (see FIG. 3).
 熱源機1の設置後の冷媒配管の工事は、高圧ガス回路の改造を伴うため、冷媒回収等の作業、その他の改造作業又は手続き等の作業量が多くなる。しかし、水側熱交換器8は、各冷凍サイクル2にそれぞれ設置されていることから、例えば、実施の形態1における熱源機1内の水配管9の構成と、実施の形態3における熱源機1内の水配管9の構成との変更は、水配管9の組み替えの変更のみで可能となる。これにより、水配管9を流通する水の最大流量及び最小流量を変更したい場合は、水配管9の組み合わせを変更するのみで可能となる。 Since the construction of the refrigerant piping after the installation of the heat source unit 1 involves modification of the high-pressure gas circuit, the amount of work such as refrigerant recovery and other modifications or procedures increases. However, since the water side heat exchanger 8 is installed in each refrigeration cycle 2, for example, the configuration of the water pipe 9 in the heat source unit 1 in the first embodiment and the heat source unit 1 in the third embodiment. The change to the configuration of the water pipe 9 can be made only by changing the rearrangement of the water pipe 9. Thereby, when it is desired to change the maximum flow rate and the minimum flow rate of the water flowing through the water pipe 9, it is possible only by changing the combination of the water pipes 9.
 以上のことから、水配管9を流通する最大流量及び最小流量を変更する場合、熱源機1の冷媒配管を工事することなく、水配管9の組み合わせを変更することで、容易に流量範囲の変更を行う熱源機1を得ることができる。 From the above, when changing the maximum flow and the minimum flow through the water pipe 9, the flow range can be easily changed by changing the combination of the water pipes 9 without constructing the refrigerant pipe of the heat source unit 1. It is possible to obtain the heat source device 1 that performs the above.
実施の形態2.
 図4は、本発明の実施の形態2に係る冷凍サイクル装置の概略構成図である。本実施の形態2における熱源機1の基本的な構成は実施の形態1における熱源機1と同様であるため、以下、実施の形態1との相違点を中心に本実施の形態2を説明する。実施の形態1と実施の形態2との相違点は、水配管9の組み合わせが異なっている点である。
Embodiment 2. FIG.
FIG. 4 is a schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 2 of the present invention. Since the basic configuration of the heat source apparatus 1 in the second embodiment is the same as that of the heat source apparatus 1 in the first embodiment, the second embodiment will be described below with a focus on differences from the first embodiment. . The difference between the first embodiment and the second embodiment is that the combination of the water pipes 9 is different.
 [水配管9の構成]
 図4に示されるように、水側熱交換器8a及び水側熱交換器8bの水の入口側は、水配管9eによって並列に接続されている。同様に水側熱交換器8c及び水側熱交換器8dの水の出口側は、水配管9fによって並列に接続されている。また、水側熱交換器8aの水の出口側と水側熱交換器8bの水の出口側は、水配管9gによって並列に接続され、水側熱交換器8cの水の出口側と水側熱交換器8dの水の出口側は、水配管9gによって並列に接続されている。そして、水配管9gは、並列に接続された水側熱交換器8a及び水側熱交換器8bと、水側熱交換器8c及び水側熱交換器8dとを直列に接続している。なお、水配管9e、9f及び9gは、本発明における「熱媒体流路」に相当する。
[Configuration of water pipe 9]
As shown in FIG. 4, the water inlet side of the water side heat exchanger 8a and the water side heat exchanger 8b is connected in parallel by a water pipe 9e. Similarly, the water outlet side of the water side heat exchanger 8c and the water side heat exchanger 8d is connected in parallel by a water pipe 9f. Further, the water outlet side of the water side heat exchanger 8a and the water outlet side of the water side heat exchanger 8b are connected in parallel by a water pipe 9g, and the water outlet side and the water side of the water side heat exchanger 8c are connected. The water outlet side of the heat exchanger 8d is connected in parallel by a water pipe 9g. And the water piping 9g has connected the water side heat exchanger 8a and the water side heat exchanger 8b which were connected in parallel, the water side heat exchanger 8c, and the water side heat exchanger 8d in series. The water pipes 9e, 9f, and 9g correspond to the “heat medium flow path” in the present invention.
 次に、熱媒体である水の流れについて説明する。冷水ポンプ10は、図4の点線矢印で示すように、熱媒体である水を搬送し、水配管9eを通り、水側熱交換器8a及び水側熱交換器8bに分岐して流入させる。水側熱交換器8a及び水側熱交換器8bに流入した水は、水配管9gによって合流する。合流した水は、水配管9gの下流で分岐し、水側熱交換器8c及び水側熱交換器8dに流入する。その後、水側熱交換器8c及び水側熱交換器8dを出た水は、水配管9fによって合流して、熱源機1の外に搬送される。 Next, the flow of water as a heat medium will be described. As shown by the dotted arrows in FIG. 4, the chilled water pump 10 conveys water as a heat medium, passes through the water pipe 9e, and branches into the water side heat exchanger 8a and the water side heat exchanger 8b. The water that has flowed into the water-side heat exchanger 8a and the water-side heat exchanger 8b joins through the water pipe 9g. The joined water branches downstream of the water pipe 9g and flows into the water side heat exchanger 8c and the water side heat exchanger 8d. Thereafter, the water that has exited the water-side heat exchanger 8c and the water-side heat exchanger 8d merges through the water pipe 9f and is transported outside the heat source unit 1.
 以上のことから、本実施の形態2における水側熱交換器8は、冷凍サイクル2a、2b、2c及び2dごとに独立して設置されている。このため、仮に水側熱交換器8において水の凍結によって、凍結パンク等の故障が発生した場合でも、水側熱交換器8が独立になっているため、それ以外の冷凍サイクル2は応急的に運転が可能である。 From the above, the water-side heat exchanger 8 in the second embodiment is installed independently for each of the refrigeration cycles 2a, 2b, 2c, and 2d. For this reason, even if a failure such as freezing puncture occurs due to freezing of water in the water-side heat exchanger 8, the water-side heat exchanger 8 is independent, so that the other refrigeration cycles 2 are emergency. It is possible to drive.
 また、除霜運転を行っている冷凍サイクル2が、他の暖房運転を行っている冷凍サイクル2へ与える影響を抑制することができるため、安定した暖房運転が可能となる。 Further, since the refrigeration cycle 2 performing the defrosting operation can suppress the influence on the refrigeration cycle 2 performing the other heating operation, a stable heating operation can be performed.
 さらに、冷凍サイクル2a又は冷凍サイクル2bが、除霜運転を行った場合において、冷凍サイクル2a及び冷凍サイクル2bから流出した水が一度、水配管9gで合流するため、冷凍サイクル2c及び冷凍サイクル2dへ流入する水の温度の低下が小さくなる。このため、冷凍サイクル2c及び冷凍サイクル2dでの暖房運転が安定する。 Furthermore, when the refrigeration cycle 2a or the refrigeration cycle 2b performs the defrosting operation, the water that has flowed out of the refrigeration cycle 2a and the refrigeration cycle 2b is once merged in the water pipe 9g, and therefore, to the refrigeration cycle 2c and the refrigeration cycle 2d. The drop in the temperature of the incoming water is reduced. For this reason, the heating operation in the refrigeration cycle 2c and the refrigeration cycle 2d is stabilized.
 なお、本実施の形態2では、熱源機1が冷凍サイクル2を4つ備えた例を示したが、本発明はこれに限定されず、冷凍サイクル2が4つ以上備わっていれば良い。 In addition, in this Embodiment 2, although the heat source machine 1 showed the example provided with the four refrigeration cycles 2, this invention is not limited to this, The four refrigeration cycles 2 should just be provided.
実施の形態3.
 図5は、本発明の実施の形態3に係る冷凍サイクル装置の概略構成図である。本実施の形態4における熱源機1の基本的な構成は実施の形態1における熱源機1と同様であるため、以下、実施の形態1との相違点を中心に本実施の形態2を説明する。実施の形態1と実施の形態4との相違点は、水配管9の組み合わせが異なっている点と、水配管9上にバルブ12を設置している点である。
Embodiment 3 FIG.
FIG. 5 is a schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 3 of the present invention. Since the basic configuration of the heat source machine 1 in the fourth embodiment is the same as that of the heat source machine 1 in the first embodiment, the second embodiment will be described below with a focus on differences from the first embodiment. . The difference between the first embodiment and the fourth embodiment is that the combination of the water pipes 9 is different and a valve 12 is provided on the water pipe 9.
 [水配管9の構成]
 図5に示されるように、水側熱交換器8a及び水側熱交換器8bの水の入口側は、水配管9mによって並列に接続されている。同様に水側熱交換器8c及び水側熱交換器8dの水の出口側は、水配管9nによって並列に接続されている。また、水側熱交換器8aの水の出口側と水側熱交換器8cの水の入口側は、水配管9oによって直列に接続されている。同様に、水側熱交換器8bの水の出口側と水側熱交換器8dの水の入口側は、水配管9pによって直列に接続されている。また、水側熱交換器8aの水の出口側と水側熱交換器8bの水の入口側は、水配管9qによって直列に接続されている。水側熱交換器8dの水の出口側と水側熱交換器8cの水の入口側は、水配管9rによって直列に接続されている。
[Configuration of water pipe 9]
As shown in FIG. 5, the water inlet side of the water side heat exchanger 8a and the water side heat exchanger 8b is connected in parallel by a water pipe 9m. Similarly, the water outlet side of the water side heat exchanger 8c and the water side heat exchanger 8d is connected in parallel by a water pipe 9n. The water outlet side of the water side heat exchanger 8a and the water inlet side of the water side heat exchanger 8c are connected in series by a water pipe 9o. Similarly, the water outlet side of the water side heat exchanger 8b and the water inlet side of the water side heat exchanger 8d are connected in series by a water pipe 9p. Further, the water outlet side of the water side heat exchanger 8a and the water inlet side of the water side heat exchanger 8b are connected in series by a water pipe 9q. The water outlet side of the water side heat exchanger 8d and the water inlet side of the water side heat exchanger 8c are connected in series by a water pipe 9r.
 次に、水配管9上に設置されるバルブ12について説明する。図5に示されるように、水配管9mには、水側熱交換器8aと水側熱交換器8bへ分岐させる分岐部13aが設けられている。分岐部13aと水側熱交換器8bの冷媒の入口側の間には、バルブ12aが設置されている。同様に、水配管9nには、水側熱交換器8cと水側熱交換器8dへ分岐させる分岐部13bが設けられている。分岐部13bと水側熱交換器8dの冷媒の出口側の間には、バルブ12bが設置されている。また、水配管9q、水配管9r及び水配管9o上にはそれぞれバルブ12c、12d及び12eが設置されている。なお、バルブ12は、水の流れを遮断できるような電磁弁でも良いし、開度が可変に制御可能な流量調整弁等で構成しても良い。 Next, the valve 12 installed on the water pipe 9 will be described. As shown in FIG. 5, the water pipe 9m is provided with a branching portion 13a that branches into the water-side heat exchanger 8a and the water-side heat exchanger 8b. A valve 12a is installed between the branch portion 13a and the refrigerant inlet side of the water-side heat exchanger 8b. Similarly, the water pipe 9n is provided with a branch portion 13b that branches to the water side heat exchanger 8c and the water side heat exchanger 8d. A valve 12b is installed between the branch portion 13b and the refrigerant outlet side of the water side heat exchanger 8d. Valves 12c, 12d and 12e are installed on the water pipe 9q, the water pipe 9r and the water pipe 9o, respectively. The valve 12 may be an electromagnetic valve that can block the flow of water, or may be a flow rate adjusting valve that can be variably controlled in opening.
 熱源機制御装置11は、熱源機1の運転状況に応じてバルブ12を切り替えることにより、水が流通する水配管9の組み合わせを変更することができる。そして、熱源機制御装置11は、熱源機1を流通する水の流量範囲の変更を行うことができる。 The heat source device control device 11 can change the combination of the water pipes 9 through which water flows by switching the valve 12 according to the operation status of the heat source device 1. And the heat-source equipment control apparatus 11 can change the flow range of the water which distribute | circulates the heat-source equipment 1. FIG.
 以上のことから、熱源機制御装置11は、バルブ12を切り替えることにより、水が流通する水配管9の組み合わせを変更し、熱源機1を流通する水の流量範囲の変更を行うことができる。これにより、水配管9の改造作業が不要となり、現地にて熱源機制御装置11を制御し、バルブ12へ信号を送信し、バルブ12を操作することで、熱源機1を流通する水の流量範囲の変更が可能となる。 From the above, the heat source device control device 11 can change the flow range of the water flowing through the heat source device 1 by changing the combination of the water pipes 9 through which the water flows by switching the valve 12. Thereby, remodeling work of the water pipe 9 becomes unnecessary, the flow rate of the water flowing through the heat source unit 1 is controlled by controlling the heat source unit control device 11 at the site, transmitting a signal to the valve 12, and operating the valve 12. The range can be changed.
 1 熱源機、2 冷凍サイクル、2a~2d 冷凍サイクル、3 圧縮機、3a~3d 圧縮機、4 冷媒流路切替装置、4a~4d 冷媒流路切替装置、5 空気側熱交換器、5a~5d 空気側熱交換器、6 空気側熱交換器用送風機、6a~6d 空気側熱交換器用送風機、7 主膨張弁、7a~7d 主膨張弁、8 水側熱交換器、8a~8d 水側熱交換器、9 水配管、9a~9r 水配管、10 冷水ポンプ、11 熱源機制御装置、12 バルブ、12a~12d バルブ、13a 分岐部、13b 分岐部。 1 heat source machine, 2 refrigeration cycle, 2a to 2d refrigeration cycle, 3 compressor, 3a to 3d compressor, 4 refrigerant flow switching device, 4a to 4d refrigerant flow switching device, 5 air side heat exchanger, 5a to 5d Air side heat exchanger, 6 Air side heat exchanger blower, 6a to 6d Air side heat exchanger blower, 7 Main expansion valve, 7a to 7d main expansion valve, 8 Water side heat exchanger, 8a to 8d Water side heat exchange 9 water pipe, 9a-9r water pipe, 10 cold water pump, 11 heat source machine control device, 12 valve, 12a-12d valve, 13a branch part, 13b branch part.

Claims (6)

  1.  圧縮機、冷媒流路切替装置、空気側熱交換器、減圧装置及び熱媒体側熱交換器が冷媒配管を介して順次接続され、冷媒が循環する複数の冷凍サイクルを備え、
     前記熱媒体側熱交換器は、前記熱媒体と前記冷媒とで熱交換を行い、
     1つ以上の前記冷凍サイクルの前記熱媒体側熱交換器が接続された第一の熱媒体流路と、
     2つ以上の前記冷凍サイクルの前記熱媒体側熱交換器が前記熱媒体の流れに沿って直列に接続された第二の熱媒体流路と、を備え、
     前記第一の熱媒体流路と、前記第二の熱媒体流路とが、並列に配置された
     冷凍サイクル装置。
    A compressor, a refrigerant flow switching device, an air-side heat exchanger, a decompression device, and a heat medium-side heat exchanger are sequentially connected via a refrigerant pipe, and include a plurality of refrigeration cycles in which the refrigerant circulates.
    The heat medium side heat exchanger performs heat exchange between the heat medium and the refrigerant,
    A first heat medium flow path to which the heat medium side heat exchanger of one or more of the refrigeration cycles is connected;
    A second heat medium flow path in which the heat medium side heat exchangers of two or more of the refrigeration cycles are connected in series along the flow of the heat medium,
    The refrigeration cycle apparatus in which the first heat medium flow path and the second heat medium flow path are arranged in parallel.
  2.  圧縮機、冷媒流路切替装置、空気側熱交換器、減圧装置及び熱媒体側熱交換器が冷媒配管を介して順次接続され、冷媒が循環する複数の冷凍サイクルを備え、
     前記熱媒体側熱交換器は、前記熱媒体と前記冷媒とで熱交換を行い、
     2つ以上の前記熱媒体側熱交換器が並列に接続された熱媒体流路が、2組以上直列に接続された
     冷凍サイクル装置。
    A compressor, a refrigerant flow switching device, an air-side heat exchanger, a decompression device, and a heat medium-side heat exchanger are sequentially connected via a refrigerant pipe, and include a plurality of refrigeration cycles in which the refrigerant circulates.
    The heat medium side heat exchanger performs heat exchange between the heat medium and the refrigerant,
    A refrigeration cycle apparatus in which two or more sets of heat medium flow paths in which two or more heat medium side heat exchangers are connected in parallel are connected in series.
  3.  前記圧縮機、前記冷媒流路切替装置、前記減圧装置及び空気側熱交換器用送風機を制御する熱源機制御装置を備え、
     前記熱源機制御装置は、前記冷凍サイクルに対して、除霜運転を行うか否かを選択する
     請求項1又は2のいずれか一項に記載の冷凍サイクル装置。
    A heat source device control device for controlling the compressor, the refrigerant flow switching device, the pressure reducing device, and the air-side heat exchanger fan;
    The refrigeration cycle apparatus according to claim 1, wherein the heat source device control device selects whether or not to perform a defrosting operation on the refrigeration cycle.
  4.  前記熱源機制御装置は、除霜運転を行う際に、同時に前記複数の冷凍サイクルの除霜運転が可能である場合は、全ての前記冷凍サイクルの除霜運転を実施し、同時に前記複数の冷凍サイクルの除霜運転が可能でない場合は、除霜対象となる前記冷凍サイクルの除霜運転を行う
     請求項3に記載の冷凍サイクル装置。 
    When the defrosting operation of the plurality of refrigeration cycles is possible at the same time when performing the defrosting operation, the heat source device control device performs the defrosting operation of all the refrigeration cycles and simultaneously performs the plurality of refrigeration cycles. The refrigeration cycle apparatus according to claim 3, wherein when the cycle defrost operation is not possible, the defrost operation of the refrigeration cycle to be defrosted is performed.
  5.  前記第一の熱媒体流路及び前記第二の熱媒体流路は組み替えることが可能な
     請求項1、3及び4のいずれか一項に記載の冷凍サイクル装置。
    The refrigeration cycle apparatus according to any one of claims 1, 3, and 4, wherein the first heat medium flow path and the second heat medium flow path can be rearranged.
  6.  前記熱媒体の流れを切り替えるバルブを複数備えた
     請求項1~5のいずれか一項に記載の冷凍サイクル装置。
    The refrigeration cycle apparatus according to any one of claims 1 to 5, comprising a plurality of valves for switching the flow of the heat medium.
PCT/JP2014/082295 2014-12-05 2014-12-05 Refrigeration cycle apparatus WO2016088262A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016562178A JP6410839B2 (en) 2014-12-05 2014-12-05 Refrigeration cycle equipment
PCT/JP2014/082295 WO2016088262A1 (en) 2014-12-05 2014-12-05 Refrigeration cycle apparatus
EP14907314.0A EP3228951B1 (en) 2014-12-05 2014-12-05 Refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/082295 WO2016088262A1 (en) 2014-12-05 2014-12-05 Refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2016088262A1 true WO2016088262A1 (en) 2016-06-09

Family

ID=56091233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082295 WO2016088262A1 (en) 2014-12-05 2014-12-05 Refrigeration cycle apparatus

Country Status (3)

Country Link
EP (1) EP3228951B1 (en)
JP (1) JP6410839B2 (en)
WO (1) WO2016088262A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211682A1 (en) * 2017-05-19 2018-11-22 三菱電機株式会社 Chilling unit and water-circulating temperature-adjustment system
WO2019026234A1 (en) * 2017-08-03 2019-02-07 三菱電機株式会社 Refrigeration cycle device
WO2019167250A1 (en) * 2018-03-02 2019-09-06 三菱電機株式会社 Air conditioner
WO2019171486A1 (en) * 2018-03-07 2019-09-12 三菱電機株式会社 Heat source device and refrigeration cycle system
CN110617644A (en) * 2019-10-18 2019-12-27 珠海格力节能环保制冷技术研究中心有限公司 Heat exchange system, air conditioner and control method of air conditioner
JP2021135018A (en) * 2020-02-28 2021-09-13 住友重機械工業株式会社 Compressor system for cryogenic refrigerator and auxiliary cooling device
WO2024180660A1 (en) * 2023-02-28 2024-09-06 三菱電機株式会社 Hot water supply system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024404A1 (en) * 2019-08-07 2021-02-11 三菱電機株式会社 Chilling unit and air conditioning system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07127954A (en) * 1993-06-15 1995-05-19 Daikin Ind Ltd Refrigerating apparatus
JPH07332817A (en) * 1994-06-08 1995-12-22 Daikin Ind Ltd Heat pump refrigerator
JPH09196490A (en) * 1996-01-18 1997-07-31 Matsushita Seiko Co Ltd Multiple chamber type air-conditioning device
JPH10267494A (en) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp Cooler
JP2002048359A (en) * 2000-08-04 2002-02-15 Hitachi Ltd Air conditioner
JP2002195609A (en) * 2000-12-26 2002-07-10 Matsushita Electric Ind Co Ltd Deep freezer
WO2013021762A1 (en) * 2011-08-05 2013-02-14 東芝キヤリア株式会社 Heating system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2697376B2 (en) * 1991-07-11 1998-01-14 ダイキン工業株式会社 Defrost device for cooling system with binary refrigeration cycle
JPH05322265A (en) * 1992-05-28 1993-12-07 Toshiba Corp Air conditioner
JP2006170505A (en) * 2004-12-15 2006-06-29 Matsushita Electric Ind Co Ltd Air conditioner
JP5247853B2 (en) * 2011-07-04 2013-07-24 三菱電機株式会社 Air conditioning system
JP5809872B2 (en) * 2011-08-08 2015-11-11 東芝キヤリア株式会社 Heating device
JP5931412B2 (en) * 2011-11-22 2016-06-08 三菱重工業株式会社 Heat pump system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07127954A (en) * 1993-06-15 1995-05-19 Daikin Ind Ltd Refrigerating apparatus
JPH07332817A (en) * 1994-06-08 1995-12-22 Daikin Ind Ltd Heat pump refrigerator
JPH09196490A (en) * 1996-01-18 1997-07-31 Matsushita Seiko Co Ltd Multiple chamber type air-conditioning device
JPH10267494A (en) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp Cooler
JP2002048359A (en) * 2000-08-04 2002-02-15 Hitachi Ltd Air conditioner
JP2002195609A (en) * 2000-12-26 2002-07-10 Matsushita Electric Ind Co Ltd Deep freezer
WO2013021762A1 (en) * 2011-08-05 2013-02-14 東芝キヤリア株式会社 Heating system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2578373B (en) * 2017-05-19 2021-02-24 Mitsubishi Electric Corp Chilling unit and temperature control system using water circulation
US11181304B2 (en) 2017-05-19 2021-11-23 Mitsubishi Electric Corporation Chilling unit and temperature control system using water circulation
JPWO2018211682A1 (en) * 2017-05-19 2019-12-12 三菱電機株式会社 Chilling unit and water circulation temperature control system
GB2578373A (en) * 2017-05-19 2020-05-06 Mitsubishi Electric Corp Chilling unit and water-circulating temperature-adjustment system
WO2018211682A1 (en) * 2017-05-19 2018-11-22 三菱電機株式会社 Chilling unit and water-circulating temperature-adjustment system
WO2019026234A1 (en) * 2017-08-03 2019-02-07 三菱電機株式会社 Refrigeration cycle device
GB2578533B (en) * 2017-08-03 2021-07-28 Mitsubishi Electric Corp Refrigeration cycle apparatus
JPWO2019026234A1 (en) * 2017-08-03 2020-02-27 三菱電機株式会社 Refrigeration cycle device
GB2578533A (en) * 2017-08-03 2020-05-13 Mitsubishi Electric Corp Refrigeration cycle device
WO2019167250A1 (en) * 2018-03-02 2019-09-06 三菱電機株式会社 Air conditioner
JPWO2019167250A1 (en) * 2018-03-02 2020-10-22 三菱電機株式会社 Air conditioner
US20210048216A1 (en) * 2018-03-02 2021-02-18 Mitsubishi Electric Corporation Air-conditioning apparatus
JPWO2019171486A1 (en) * 2018-03-07 2020-12-10 三菱電機株式会社 Heat source equipment and refrigeration cycle equipment
WO2019171486A1 (en) * 2018-03-07 2019-09-12 三菱電機株式会社 Heat source device and refrigeration cycle system
JP7034251B2 (en) 2018-03-07 2022-03-11 三菱電機株式会社 Heat source equipment and refrigeration cycle equipment
US11408656B2 (en) 2018-03-07 2022-08-09 Mitsubishi Electric Corporation Heat source device and refrigeration cycle device
CN110617644A (en) * 2019-10-18 2019-12-27 珠海格力节能环保制冷技术研究中心有限公司 Heat exchange system, air conditioner and control method of air conditioner
JP2021135018A (en) * 2020-02-28 2021-09-13 住友重機械工業株式会社 Compressor system for cryogenic refrigerator and auxiliary cooling device
JP7414586B2 (en) 2020-02-28 2024-01-16 住友重機械工業株式会社 Compressor system and auxiliary cooling equipment for cryogenic refrigerators
WO2024180660A1 (en) * 2023-02-28 2024-09-06 三菱電機株式会社 Hot water supply system

Also Published As

Publication number Publication date
JPWO2016088262A1 (en) 2017-04-27
EP3228951A1 (en) 2017-10-11
EP3228951B1 (en) 2021-01-27
JP6410839B2 (en) 2018-10-24
EP3228951A4 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
JP6410839B2 (en) Refrigeration cycle equipment
WO2019146070A1 (en) Refrigeration cycle device
JP6138711B2 (en) Air conditioner
JPWO2018002983A1 (en) Refrigeration cycle equipment
JP6987234B2 (en) Refrigeration cycle device
WO2016113850A1 (en) Air-conditioning device
JP6878612B2 (en) Refrigeration cycle equipment
JP6880204B2 (en) Air conditioner
JP2008157557A (en) Air-conditioning system
WO2015140951A1 (en) Air conditioner
JP2007271094A (en) Air conditioner
JP6415701B2 (en) Refrigeration cycle equipment
JP2011174639A (en) Air conditioner
JP2016090092A (en) Air conditioner
JP6415709B2 (en) Air conditioner and indoor unit
CN115038917A (en) Air conditioner
JP5523296B2 (en) Air conditioner
JPWO2017037891A1 (en) Refrigeration cycle equipment
JP2014126310A (en) Air conditioner
JP2016020784A (en) Air conditioning device
JP2015117847A (en) Air conditioner
US20210048216A1 (en) Air-conditioning apparatus
JP2019113246A (en) Air conditioner
JP2009133557A (en) Air-conditioning system
JP5496161B2 (en) Refrigeration cycle system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907314

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016562178

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014907314

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE