JP2016053429A - Refrigeration machine - Google Patents

Refrigeration machine Download PDF

Info

Publication number
JP2016053429A
JP2016053429A JP2014178943A JP2014178943A JP2016053429A JP 2016053429 A JP2016053429 A JP 2016053429A JP 2014178943 A JP2014178943 A JP 2014178943A JP 2014178943 A JP2014178943 A JP 2014178943A JP 2016053429 A JP2016053429 A JP 2016053429A
Authority
JP
Japan
Prior art keywords
temperature
refrigerator
pressure
value
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014178943A
Other languages
Japanese (ja)
Inventor
内村 知行
Tomoyuki Uchimura
知行 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Refrigeration Equipment and Systems Co Ltd
Original Assignee
Ebara Refrigeration Equipment and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Refrigeration Equipment and Systems Co Ltd filed Critical Ebara Refrigeration Equipment and Systems Co Ltd
Priority to JP2014178943A priority Critical patent/JP2016053429A/en
Publication of JP2016053429A publication Critical patent/JP2016053429A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigeration machine that can improve accuracy of temperature control by quickly coping with temperature change of cold water (cooled fluid) and changing control output.SOLUTION: A refrigeration machine includes: an evaporator 3 that deprives cooled fluid of heat to evaporate refrigerant, and generates refrigerant gas; and a temperature control unit 14 that corrects output of the refrigeration machine with at least a value proportional to a value obtained by integrating the difference between a temperature of cooled fluid and a target temperature along a time axis. The temperature control unit 14 further uses a value proportional to the difference between a refrigerant pressure in the evaporator 3 and a reference pressure and/or a value proportional to a change rate of the refrigerant pressure in the evaporator 3, thereby correcting the output of the refrigeration machine.SELECTED DRAWING: Figure 1

Description

本発明は,被冷却流体または被加熱流体の温度を目標の温度とするように出力を調整する冷凍機(ヒートポンプ)に関するもので、特に温度の安定性に優れた冷凍機に関する。   The present invention relates to a refrigerator (heat pump) that adjusts an output so that the temperature of a fluid to be cooled or a fluid to be heated becomes a target temperature, and particularly relates to a refrigerator that is excellent in temperature stability.

冷水等を冷却する冷凍機、あるいは温水等を加熱する冷凍機(ヒートポンプ)は、冷水あるいは温水の温度制御機能を有しているのが一般的である。温度制御は、サーモスタット等により冷凍機をオンオフ制御する単純なものから、測温抵抗体等により正確な温度を検出し、制御工学理論に基づいてインバータを用いて無段階制御で省エネルギー化を図るものまで多種多様である。大型の冷凍機ではPI制御と呼ばれる制御方法が一般的である。   A refrigerator that cools cold water or the like, or a refrigerator (heat pump) that heats hot water or the like generally has a temperature control function of cold water or hot water. Temperature control is a simple one that turns the refrigerator on and off with a thermostat, etc., detects the accurate temperature with a resistance temperature detector, etc., and saves energy by stepless control using an inverter based on the theory of control engineering It is a great variety. In a large refrigerator, a control method called PI control is common.

PI制御とは、目標温度と現在の温度との差に比例する比例項(P項)と、温度差を時間で積分する積分項(I項)との和により、制御出力を決定するものである。   In PI control, the control output is determined by the sum of a proportional term (P term) proportional to the difference between the target temperature and the current temperature and an integral term (I term) that integrates the temperature difference with time. is there.

特開2006−234320号公報JP 2006-234320 A

PI制御は安定性にすぐれ、広く使われているが、目標温度と現在の温度の差に比例して出力を決定するため、原理的に温度偏差が生じやすい。すなわち、温度差が生じて初めて出力の増減が行われるので、ある程度の温度差が生じなければ制御出力が変化しない。温度差に対する制御出力の比例定数を大きくすると、温度偏差は小さくなるが制御が不安定となり、いわゆるハンチングと呼ばれる温度変動が発生することが知られている。   PI control is excellent in stability and widely used. However, since the output is determined in proportion to the difference between the target temperature and the current temperature, a temperature deviation tends to occur in principle. That is, since the output is increased or decreased only when a temperature difference occurs, the control output does not change unless a certain temperature difference occurs. It is known that when the proportionality constant of the control output with respect to the temperature difference is increased, the temperature deviation is reduced but the control becomes unstable, and a temperature fluctuation called so-called hunting occurs.

このような偏差を小さくする方法としては、PID制御と呼ばれる方法が知られている。これは前述のPI制御に、温度の変化率に比例する微分項(D項)を加えたものである。一般に、PID制御は次の式に従って制御出力を決定する。
制御出力(操作量)=比例項(P項)+積分項(I項)+微分項(D項)
=K×差+K×差の積分値+K×変化率 ・・・(1)
ここで、K、K、Kは予め定められた定数(または係数)である。
As a method for reducing such deviation, a method called PID control is known. This is obtained by adding a differential term (D term) proportional to the rate of change of temperature to the aforementioned PI control. In general, PID control determines a control output according to the following equation.
Control output (operation amount) = proportional term (P term) + integral term (I term) + derivative term (D term)
= K P × difference + K I × integral value of difference + K D × change rate (1)
Here, K P , K I , and K D are predetermined constants (or coefficients).

PID制御によれば、冷水等の温度が変化するとその変化率に応じて制御出力が増減し、温度変化を抑制する。この場合、現在の温度と目標温度との温度差が小さくても、温度変化が急激であれば速やかに冷凍機の出力(冷却能力)が増減するので、温度差を小さく抑えることが可能である。   According to PID control, when the temperature of cold water or the like changes, the control output increases or decreases according to the rate of change, and the temperature change is suppressed. In this case, even if the temperature difference between the current temperature and the target temperature is small, the output (cooling capacity) of the refrigerator quickly increases / decreases if the temperature change is abrupt, so that the temperature difference can be kept small. .

しかしながら、実際にはPID制御は冷凍機の温度制御としてはあまり使用されていない。
第一の理由は、冷凍機の温度検出精度に限界があることである。すなわち、冷水等の温度変化の範囲は目標温度に対して±0.2℃程度(より厳格には±0.1程度)に抑えることが求められるが、このような温度制御を行うためには0.01℃程度の精度で温度を検出する必要がある。しかしながら、冷凍機に一般的に使用されている測温抵抗体やサーミスタといった温度検出器の精度は0.1℃程度であり、検出温度が実質的に段階的に変化するため、温度の変化率を正しく取得できない。このため、PID制御を冷凍機で使用すると、かえって温度制御を不安定化させることになる。また、検出精度の高い温度センサを冷凍機に装備することは、大きなコスト負担となるので現実的ではない。
In practice, however, PID control is not often used as temperature control for refrigerators.
The first reason is that the temperature detection accuracy of the refrigerator is limited. That is, the range of temperature change such as cold water is required to be suppressed to about ± 0.2 ° C. (more strictly, about ± 0.1) with respect to the target temperature, but in order to perform such temperature control, It is necessary to detect the temperature with an accuracy of about 0.01 ° C. However, the accuracy of temperature detectors such as resistance temperature detectors and thermistors generally used in refrigerators is about 0.1 ° C., and the detected temperature changes in a stepwise manner. Cannot be obtained correctly. For this reason, if PID control is used with a refrigerator, temperature control will be destabilized on the contrary. In addition, it is not realistic to equip the refrigerator with a temperature sensor with high detection accuracy, because it is a large cost burden.

第二の理由は、温度の変化とその検出には若干の時間遅れが生じることである。すなわち、前述したような温度検出器は保護管と呼ばれる短管に入れて冷水等の配管に挿入される。配管内には冷水等が流速1m〜5m程度で流れているため、保護管は水流に耐えうる強度が求められる。その結果、保護管の伝熱は必ずしも良くない。このため、冷水等の温度変化と検出された温度の変化には時間の遅れ(いわゆる一次遅れ)が生じる。一次遅れが生じると、PID制御は不安定となる。このため、一般に冷凍機の温度制御としては、PI制御か、D項をごく小さくしたPID制御とすることが多い。   The second reason is that there is a slight time delay in the temperature change and its detection. That is, the temperature detector as described above is inserted into a pipe such as cold water in a short pipe called a protective pipe. Since cold water or the like flows in the pipe at a flow rate of about 1 m to 5 m, the protective tube is required to have a strength that can withstand the water flow. As a result, the heat transfer of the protective tube is not always good. For this reason, a time delay (so-called primary delay) occurs between the temperature change of the cold water and the detected temperature change. When a first-order lag occurs, PID control becomes unstable. For this reason, generally, as temperature control of a refrigerator, PI control or PID control with a very small D term is often used.

本発明は、上述の事情に鑑みなされたもので、冷水(被冷却流体)の温度変化に速やかに応じて制御出力を変化させることで、温度制御の精度を向上させることができる冷凍機を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a refrigerator capable of improving the accuracy of temperature control by changing a control output in response to a temperature change of cold water (a fluid to be cooled). The purpose is to do.

上述した目的を達成するために、本発明の一態様は、被冷却流体または被加熱流体の温度を目標の温度に維持するように動作する冷凍機であって、被冷却流体から熱を奪って冷媒が蒸発し、冷媒ガスを発生させる蒸発器と、前記冷媒ガスを被加熱流体で冷却して凝縮させる凝縮器と、冷凍機の出力を、前記被冷却流体の温度と目標温度との差を時間軸に沿って積分した値に比例した値を少なくとも用いて補正する温度制御部とを備え、前記温度制御部は、前記蒸発器内の冷媒の圧力と基準圧力との差に比例した値、および/または前記蒸発器内の冷媒の圧力の変化率に比例した値をさらに使用して前記冷凍機の出力を補正することを特徴とする。   In order to achieve the above-described object, one embodiment of the present invention is a refrigerator that operates to maintain a temperature of a fluid to be cooled or a fluid to be heated at a target temperature, and takes heat from the fluid to be cooled. The evaporator that evaporates the refrigerant and generates the refrigerant gas, the condenser that cools and condenses the refrigerant gas with the heated fluid, and the output of the refrigerator, the difference between the temperature of the cooled fluid and the target temperature A temperature control unit that corrects using at least a value proportional to the value integrated along the time axis, the temperature control unit is a value proportional to the difference between the pressure of the refrigerant in the evaporator and a reference pressure, Further, the output of the refrigerator is corrected by further using a value proportional to the change rate of the pressure of the refrigerant in the evaporator.

本発明の好ましい態様は、前記温度制御部は、前記蒸発器内の圧力の変化率を時間軸に沿って積分した値に比例した値をさらに使用して前記冷凍機の出力を補正することを特徴とする。
本発明の好ましい態様は、前記蒸発器にて発生した前記冷媒ガスを圧縮して前記凝縮器に送る圧縮機をさらに備え、前記冷凍機の出力の補正は、前記圧縮機の回転速度の補正であることを特徴とする。
In a preferred aspect of the present invention, the temperature control unit further corrects the output of the refrigerator using a value proportional to a value obtained by integrating the rate of change of the pressure in the evaporator along the time axis. Features.
A preferable aspect of the present invention further includes a compressor that compresses the refrigerant gas generated in the evaporator and sends the refrigerant gas to the condenser, and the correction of the output of the refrigerator is correction of the rotation speed of the compressor. It is characterized by being.

第一の方法として、圧力の変動率に比例した値である圧力微分項を制御出力に加える。このようにすると、圧力の変化率がPID制御のD項の働きをなし、冷水等の温度を安定させることができる。   As a first method, a pressure differential term, which is a value proportional to the pressure fluctuation rate, is added to the control output. If it does in this way, the rate of change of pressure will serve as D term of PID control, and the temperature of cold water etc. can be stabilized.

第二の方法として、設定された基準圧力と現在の圧力との差に比例した値である圧力変動補正値を制御出力に加える。このようにすると、冷水の温度変化による圧力変化に応じた出力、すなわち温度の変動に略比例した値を制御出力に加えることになる。この圧力変動補正値は、PI制御またはPID制御のP項に相当し、これを代替、あるいは補助することになる。基準圧力は演算上必要なだけであり、その値自身には大きな意味はなく、運転中の蒸発器の定格圧力等を設定しておけばよく、あるいは圧力自身を圧力差として取り扱っても実質的な不都合はない。原理的にはこの補正を行う場合、冷水温度に基づく制御はP項をなくしたI制御のみでも良い。   As a second method, a pressure fluctuation correction value that is a value proportional to the difference between the set reference pressure and the current pressure is added to the control output. If it does in this way, the output according to the pressure change by the temperature change of cold water, ie, the value substantially proportional to the fluctuation | variation of temperature, will be added to a control output. This pressure fluctuation correction value corresponds to the P term of PI control or PID control, and is substituted or supplemented. The reference pressure is only necessary for calculation, and the value itself is not significant, and it is sufficient to set the rated pressure of the evaporator during operation, or even if the pressure itself is handled as a pressure difference There is no inconvenience. In principle, when this correction is performed, the control based on the cold water temperature may be only the I control without the P term.

第三の方法として、圧力の変動率に比例した値を時間で積分(積算)した圧力変動補正値を制御出力に加える。このようにすると、変動率を積分した値は、すなわち変化量であるので、第二の方法と同様の効果を得ることができる。   As a third method, a pressure fluctuation correction value obtained by integrating (integrating) a value proportional to the pressure fluctuation rate with time is added to the control output. In this way, since the value obtained by integrating the fluctuation rate is the amount of change, the same effect as the second method can be obtained.

本発明では、制御出力は基本的には従来どおり冷水温度に基づくPI制御によるが、制御出力を熱交換器内の圧力、および圧力変化で補正することとした。冷凍機の熱交換器内の圧力は、冷水温度の変化に対して非常に早く追従する。例えば、冷水温度が低下すると、伝熱管を介して接している冷媒の蒸発圧力はただちに低下する。また、圧力センサは一般にダイアフラムのたわみなど機械的な原理に基づくため、微小な圧力変動も鋭敏に検出できる。したがって、圧力の変化を温度の変化を代替するものとし、圧力の変化に応じて制御出力を補正することで、温度制御の精度を向上させることができる。   In the present invention, the control output is basically based on PI control based on the cold water temperature as in the past, but the control output is corrected by the pressure in the heat exchanger and the pressure change. The pressure in the heat exchanger of the refrigerator follows very quickly to changes in the cold water temperature. For example, when the chilled water temperature decreases, the evaporation pressure of the refrigerant in contact with the heat transfer tube immediately decreases. Moreover, since the pressure sensor is generally based on a mechanical principle such as a diaphragm deflection, minute pressure fluctuations can be detected with high sensitivity. Therefore, it is possible to improve the temperature control accuracy by substituting the change in temperature for the change in pressure and correcting the control output in accordance with the change in pressure.

本発明の一実施形態に係る冷凍機を示す模式図である。It is a mimetic diagram showing a refrigerator concerning one embodiment of the present invention. 温度制御部の模式図(ブロックダイヤグラム)である。It is a schematic diagram (block diagram) of a temperature control part. 従来のPI制御による温度制御を説明するグラフである。It is a graph explaining the temperature control by the conventional PI control. PI演算値と圧力微分値との和を制御出力値として用いた温度制御を説明するグラフである。It is a graph explaining temperature control using the sum of PI operation value and pressure differential value as a control output value. 本発明の別の実施例に係る温度制御部を示すブロックダイヤグラムである。It is a block diagram which shows the temperature control part which concerns on another Example of this invention. 本発明のさらに別の実施例に係る温度制御部を示すブロックダイヤグラムである。It is a block diagram which shows the temperature control part which concerns on another Example of this invention. 本発明のさらに別の実施例における温度変動を示すグラフである。It is a graph which shows the temperature fluctuation in another Example of this invention.

本発明を、冷凍機の冷水温度制御を例に詳細に説明する。
図1は、本発明の一実施形態に係る冷凍機を示す模式図である。図1に示すように、冷凍機は、冷媒ガスを圧縮する圧縮機1と、圧縮された冷媒ガスを温水(被加熱流体)で冷却して凝縮させる凝縮器2と、凝縮された冷媒を減圧させる膨張弁4と、冷水(被冷却流体)から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器3とを備えている。膨張弁4は、凝縮器2と蒸発器3との間に配置される。図1に示す冷凍機は、圧縮機1を備えた圧縮式冷凍機である。圧縮機1としては、多段羽根車を有したターボ圧縮機を使用することができる。
The present invention will be described in detail by taking cold water temperature control of a refrigerator as an example.
FIG. 1 is a schematic diagram showing a refrigerator according to an embodiment of the present invention. As shown in FIG. 1, the refrigerator includes a compressor 1 that compresses refrigerant gas, a condenser 2 that cools and compresses the compressed refrigerant gas with hot water (a fluid to be heated), and decompresses the condensed refrigerant. And an evaporator 3 that takes heat from cold water (a fluid to be cooled) and evaporates the refrigerant to exert a refrigeration effect. The expansion valve 4 is disposed between the condenser 2 and the evaporator 3. The refrigerator shown in FIG. 1 is a compression refrigerator provided with a compressor 1. As the compressor 1, a turbo compressor having a multistage impeller can be used.

圧縮機1、凝縮器2、膨張弁4、および蒸発器3は、冷媒が循環する冷媒配管5A,5B,5C,5Dによって連結されている。より具体的には、圧縮機1と凝縮器2とは冷媒配管5Aによって連結され、凝縮器2と膨張弁4とは冷媒配管5Bによって連結され、膨張弁4と蒸発器3とは冷媒配管5Cによって連結され、蒸発器3と圧縮機1とは冷媒配管5Dによって連結されている。   The compressor 1, the condenser 2, the expansion valve 4, and the evaporator 3 are connected by refrigerant pipes 5A, 5B, 5C, and 5D through which the refrigerant circulates. More specifically, the compressor 1 and the condenser 2 are connected by a refrigerant pipe 5A, the condenser 2 and the expansion valve 4 are connected by a refrigerant pipe 5B, and the expansion valve 4 and the evaporator 3 are connected by a refrigerant pipe 5C. The evaporator 3 and the compressor 1 are connected by a refrigerant pipe 5D.

図1に示すように構成された圧縮式冷凍機の冷凍サイクルでは、圧縮機1と凝縮器2と膨張弁4と蒸発器3とを冷媒が循環し、蒸発器3で得られる冷熱源で冷水が製造されて負荷に対応し、冷凍サイクル内に取り込まれた蒸発器3からの熱量および圧縮機1の仕事に相当する熱量が凝縮器2に供給される温水に放出される。   In the refrigeration cycle of the compression refrigerator configured as shown in FIG. 1, the refrigerant circulates through the compressor 1, the condenser 2, the expansion valve 4, and the evaporator 3, and cold water is generated by a cold heat source obtained by the evaporator 3. Is produced and corresponds to the load, and the amount of heat from the evaporator 3 taken into the refrigeration cycle and the amount of heat corresponding to the work of the compressor 1 are released to the hot water supplied to the condenser 2.

蒸発器3には、その内部の冷媒ガスの圧力を測定する圧力センサ10が設けられている。また、蒸発器3から出た冷水の温度(出口温度)を測定する温度センサ11が冷水配管(被冷却流体配管)に取り付けられている。温度センサ11は、保護管に収容された状態で、冷水配管内に配置されている。冷凍機は、その出力を制御する温度制御部14をさらに備えている。温度制御部14は、冷水(被冷却流体)の温度と目標温度との差を時間軸に沿って積分した値に比例した値を少なくとも用いて冷凍機の出力を補正するように構成されている。圧力センサ10および温度センサ11は、温度制御部14に接続されており、これら圧力センサ10および温度センサ11によって測定された蒸発器3内の蒸気圧力および冷水の出口温度は温度制御部14に送られるようになっている。   The evaporator 3 is provided with a pressure sensor 10 for measuring the pressure of the refrigerant gas inside. Moreover, the temperature sensor 11 which measures the temperature (outlet temperature) of the cold water which came out of the evaporator 3 is attached to the cold water piping (cooled fluid piping). The temperature sensor 11 is disposed in the cold water pipe while being accommodated in the protective tube. The refrigerator further includes a temperature control unit 14 that controls its output. The temperature control unit 14 is configured to correct the output of the refrigerator using at least a value proportional to a value obtained by integrating the difference between the temperature of the cold water (cooled fluid) and the target temperature along the time axis. . The pressure sensor 10 and the temperature sensor 11 are connected to the temperature control unit 14, and the vapor pressure and the outlet temperature of the cold water measured by the pressure sensor 10 and the temperature sensor 11 are sent to the temperature control unit 14. It is supposed to be.

図2は、温度制御部14の模式図(ブロックダイヤグラム)であり、前述の第一の方法を用いたものである。本発明では、従来の方法と同様に冷水温度を検出し、PI演算を行って冷水温度によるPI値(冷水PI演算値)を求める。一般に、市販のマイクロコントローラにはPID演算器が内蔵されているため、PI演算値を得ることは容易である。その一方で、蒸発器3内の圧力を圧力センサ10で検出し、温度制御部14はこの圧力の変化率を演算して圧力微分値を取得する。変化率の演算は、電気的な微分回路により変化率を演算してもよいし、予め設定された時間ごとに蒸発器3内の圧力の変化量を計算し、これを変化率としてもよい。温度制御部14は、冷水PI演算値と圧力微分値との和を制御出力値として用いて、冷凍機の出力を調整する。   FIG. 2 is a schematic diagram (block diagram) of the temperature control unit 14 and uses the first method described above. In the present invention, the chilled water temperature is detected as in the conventional method, and PI calculation is performed to obtain the PI value (cold water PI calculated value) based on the chilled water temperature. In general, since a commercially available microcontroller has a built-in PID calculator, it is easy to obtain a PI calculation value. On the other hand, the pressure in the evaporator 3 is detected by the pressure sensor 10, and the temperature control unit 14 calculates the rate of change of the pressure to obtain a pressure differential value. The change rate may be calculated by an electrical differentiating circuit, or the amount of change in the pressure in the evaporator 3 may be calculated every preset time and used as the change rate. The temperature control unit 14 adjusts the output of the refrigerator using the sum of the cold water PI calculation value and the pressure differential value as a control output value.

冷凍機の出力は、冷凍機の冷却能力であり、熱量として表される。冷凍機の冷凍能力は、(冷水入口温度−冷水出口温度)×冷水質量流量×比熱で、求められる。圧縮機1の回転速度を変化させることで、冷凍機の出力が変化する。   The output of the refrigerator is the cooling capacity of the refrigerator and is expressed as the amount of heat. The refrigeration capacity of the refrigerator is obtained by (cold water inlet temperature−cold water outlet temperature) × cold water mass flow rate × specific heat. Changing the rotation speed of the compressor 1 changes the output of the refrigerator.

従来のPI制御による温度制御を説明するグラフを図3に示す。このPI制御では、冷水の目標温度と現在の温度との差に比例したP値と、これを積分したI値との和が、制御出力である。図3では、実線は冷水温度の実際の温度を表し、点線は温度センサ11が示す温度を表している。前述のとおり、温度センサ11は丈夫な保護管に収められているため、検出される冷水温度(点線)の変動は、実際の温度(実線)の変動に比べて若干の遅れが生じる。   A graph for explaining temperature control by conventional PI control is shown in FIG. In this PI control, the sum of the P value proportional to the difference between the target temperature of the cold water and the current temperature and the I value obtained by integrating the P value is the control output. In FIG. 3, the solid line represents the actual cold water temperature, and the dotted line represents the temperature indicated by the temperature sensor 11. As described above, since the temperature sensor 11 is housed in a strong protective tube, the detected change in the chilled water temperature (dotted line) is slightly delayed as compared to the actual temperature (solid line).

PI制御では、負荷が上昇しても制御出力はその時点では変化しない。負荷が増えたことにより冷水温度が徐々に上昇すると、冷水温度と目標温度との差に応じてP値が徐々に増える。ただし、P値は、温度センサ11の温度検出動作の遅延に起因して、実際の冷水温度の上昇よりはやや遅れて上昇を始める。制御出力はP項とI項の和であるので、制御出力も徐々に上昇する。制御出力が十分に上昇すると冷水温度は上昇から下降へと転じ、P値も徐々に低下するとともにI項の上昇も緩やかとなり、やがて制御出力も徐々に下がり始める。冷水温度が目標温度まで戻ると、P値も元に戻り、I値も増加しなくなり、負荷と制御出力がつりあい冷水温度は安定する。   In PI control, even if the load increases, the control output does not change at that time. When the chilled water temperature gradually increases due to an increase in load, the P value gradually increases according to the difference between the chilled water temperature and the target temperature. However, the P value starts to rise slightly later than the actual rise of the cold water temperature due to the delay of the temperature detection operation of the temperature sensor 11. Since the control output is the sum of the P term and the I term, the control output gradually increases. When the control output increases sufficiently, the chilled water temperature changes from increasing to decreasing, the P value gradually decreases, and the increase in the I term becomes gradual, and the control output gradually begins to gradually decrease. When the chilled water temperature returns to the target temperature, the P value also returns to the original value, the I value does not increase, and the load and the control output are balanced to stabilize the chilled water temperature.

しかし、冷水温度変化の検出が実際の温度変化から遅れることと、冷水温度が目標温度から一旦逸脱してからこれを徐々に補正するというPI制御の基本動作のため、冷水温度の最大の逸脱量はどうしても大きくなる。   However, the detection of the change in the chilled water temperature is delayed from the actual temperature change, and the basic operation of the PI control in which the chilled water temperature once deviates from the target temperature and then gradually corrects this, so the maximum amount of deviation of the chilled water temperature Inevitably grows.

次に、PI演算値と圧力微分値との和を制御出力値として用いた本発明の場合の温度制御を図4に示す。本発明の場合、負荷が上昇して冷水温度が上昇しはじめると、それに連れて蒸発器3内の圧力が、温度変化に比べると直ちに上昇し、圧力微分値もやはり直ちに上昇する。本実施例では、冷水PI値にこの圧力微分値を加えているため、制御出力が速やかに上昇し、冷水温度の上昇は従来方式に比べて緩やかとなる。やがて、冷水温度の上昇によりI値が上昇して制御出力も上昇し、冷水温度は上昇から下降へと転じ、冷水温度は目標温度に戻る。   Next, FIG. 4 shows temperature control in the case of the present invention using the sum of the PI calculation value and the pressure differential value as the control output value. In the case of the present invention, when the load increases and the cold water temperature starts to rise, the pressure in the evaporator 3 immediately rises as compared with the temperature change, and the pressure differential value also rises immediately. In this embodiment, since this pressure differential value is added to the chilled water PI value, the control output rises quickly, and the chilled water temperature rises more slowly than in the conventional method. Eventually, as the chilled water temperature rises, the I value rises and the control output also rises, the chilled water temperature turns from rising to falling, and the chilled water temperature returns to the target temperature.

温度制御部14は、このようにして得られた制御出力(すなわち、圧縮機1の操作量)に従って圧縮機1の回転速度を変化させることで、冷凍機の出力、すなわち冷凍機の冷却能力を変化させる。圧縮機1の回転速度を変化させることに代えて、冷媒ガスの流量を調整する流量調整機構を操作することで、冷凍機の冷凍能力を変化させてもよい。例えば、ターボ圧縮機1の場合は、羽根車の吸込側に配置されたサクションベーンを操作してもよいし、ターボ圧縮機1に代えてスクリュー圧縮機が使用される場合は、冷媒ガスの圧縮容量を調整するスライド弁を操作してもよい。   The temperature control unit 14 changes the rotation speed of the compressor 1 in accordance with the control output (that is, the operation amount of the compressor 1) obtained in this way, thereby changing the output of the refrigerator, that is, the cooling capacity of the refrigerator. Change. Instead of changing the rotation speed of the compressor 1, the refrigeration capacity of the refrigerator may be changed by operating a flow rate adjusting mechanism that adjusts the flow rate of the refrigerant gas. For example, in the case of the turbo compressor 1, a suction vane arranged on the suction side of the impeller may be operated. When a screw compressor is used instead of the turbo compressor 1, the refrigerant gas is compressed. A slide valve that adjusts the volume may be operated.

図3に示す従来の方法と図4に示す本発明による方法とを比較すると、従来の方法では冷水温度が目標温度から乖離して差分が大きくなるまであまり制御出力が上昇しないのに対し、本発明では冷水温度が上昇を始めた時点で制御出力が速やかに上昇する。そのため、冷水温度の上昇は従来方式に比べて緩やかとなり、温度偏差も抑えることができる。これにより冷水温度の変動を抑えて冷水温度を安定させることができる。   Comparing the conventional method shown in FIG. 3 with the method according to the present invention shown in FIG. 4, the conventional method does not increase the control output until the chilled water temperature deviates from the target temperature and the difference becomes large. In the present invention, the control output rapidly increases when the cold water temperature starts to increase. Therefore, the rise in the chilled water temperature is moderate as compared with the conventional method, and the temperature deviation can be suppressed. Thereby, the fluctuation | variation of cold water temperature can be suppressed and cold water temperature can be stabilized.

図5は、本発明の別の実施例である。本実施例では、先の実施例のPI演算に代えて、温度をもとにI値のみを演算し、先の実施例と同じく圧力微分値を演算するとともに、蒸発器3内の圧力と基準圧力との差を求め、これを圧力変動補正値とした上で、これらの和を制御出力としている。   FIG. 5 is another embodiment of the present invention. In this embodiment, instead of the PI calculation of the previous embodiment, only the I value is calculated based on the temperature, the pressure differential value is calculated as in the previous embodiment, and the pressure in the evaporator 3 and the reference The difference between the pressure and the pressure fluctuation correction value is obtained, and the sum of these is used as the control output.

I値の演算は、前述のようにPID演算器を用いても良いが、予め設定された時間ごとに目標温度と現在の冷水温度との差を積算するなど、比較的容易な方法で得ることもできる。また、圧力微分値と圧力変動補正値の和は、蒸発器3内の圧力に対する、基準圧力を目標温度とするPD演算により求めることもできる。この場合、このPD演算値にI値を加えたものを制御出力とする。実務的には、このやり方のほうが演算として容易である。この場合のブロックダイアグラムを図6に示す。   As described above, the P value calculator may be used to calculate the I value, but it can be obtained by a relatively easy method such as integrating the difference between the target temperature and the current chilled water temperature for each preset time. You can also. The sum of the pressure differential value and the pressure fluctuation correction value can also be obtained by PD calculation with the reference pressure as the target temperature for the pressure in the evaporator 3. In this case, the PD output value plus the I value is used as the control output. In practice, this method is easier as an operation. A block diagram in this case is shown in FIG.

なお、基準圧力は、圧力変動補正値を求めるために便宜的に設けた圧力であり、実際の運転中の圧力に近ければよい。なぜなら、圧力変動補正値の大小はI値によって補償されるからである。   Note that the reference pressure is a pressure provided for convenience in order to obtain a pressure fluctuation correction value, and may be close to the pressure during actual operation. This is because the magnitude of the pressure fluctuation correction value is compensated by the I value.

圧力変動補正値は、基準圧力と現在の圧力の差を用いるほか、前述の第三の方法に示したように圧力微分値(圧力の変化率)を時間で積分して補正値としてもよい。図7は、この実施例の温度変動を示すグラフである。第一の実施例と同じく、本実施例でも冷水温度の変化が速やかに制御出力に反映され、冷水温度を安定化することができる。   In addition to using the difference between the reference pressure and the current pressure, the pressure fluctuation correction value may be a correction value obtained by integrating the pressure differential value (pressure change rate) with time as shown in the third method. FIG. 7 is a graph showing temperature fluctuations in this example. As in the first embodiment, in this embodiment, the change in the chilled water temperature is immediately reflected in the control output, and the chilled water temperature can be stabilized.

なお、特に実施例は示さないが、温度のP値、I値、圧力のP値、D値の定数(上記式(1)参照)、あるいはそれぞれの値を使う、使わないなどのバリエーションは多数ある。本発明は、冷凍機の温度制御に、少なくとも制御の目的となる温度のI値を用い、さらに圧力のP値もしくはD値のうち少なくとも一方を用いることが本質である。このようにすることで、本発明は上記のように、冷凍機の出力を精密かつ安定的に制御できる。   Although no specific examples are shown, there are many variations such as temperature P value, I value, pressure P value, D value constant (refer to the above formula (1)), or use or not use each value. is there. The essence of the present invention is that at least the I value of the temperature that is the object of control is used for the temperature control of the refrigerator, and at least one of the P value or D value of the pressure is used. By doing in this way, this invention can control the output of a refrigerator precisely and stably as mentioned above.

上述した実施例では、本発明を圧縮式冷凍機に適用した例を説明しているが、本発明は吸収式冷凍機にも適用することができる。   In the embodiment described above, an example in which the present invention is applied to a compression refrigerator has been described. However, the present invention can also be applied to an absorption refrigerator.

これまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術思想の範囲内において、種々の異なる形態で実施されてよいことは勿論である。   Although the embodiment of the present invention has been described so far, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention may be implemented in various different forms within the scope of the technical idea.

1 圧縮機
2 凝縮器
3 蒸発器
4 膨張弁
5 冷媒配管
10 圧力センサ
11 温度センサ
14 温度制御部
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Evaporator 4 Expansion valve 5 Refrigerant piping 10 Pressure sensor 11 Temperature sensor 14 Temperature control part

Claims (3)

被冷却流体または被加熱流体の温度を目標の温度に維持するように動作する冷凍機であって、
被冷却流体から熱を奪って冷媒が蒸発し、冷媒ガスを発生させる蒸発器と、
前記冷媒ガスを被加熱流体で冷却して凝縮させる凝縮器と、
冷凍機の出力を、前記被冷却流体の温度と目標温度との差を時間軸に沿って積分した値に比例した値を少なくとも用いて補正する温度制御部とを備え、
前記温度制御部は、前記蒸発器内の冷媒の圧力と基準圧力との差に比例した値、および/または前記蒸発器内の冷媒の圧力の変化率に比例した値をさらに使用して前記冷凍機の出力を補正することを特徴とする冷凍機。
A refrigerator that operates to maintain a temperature of a fluid to be cooled or a fluid to be heated at a target temperature,
An evaporator that draws heat from the fluid to be cooled, evaporates the refrigerant, and generates refrigerant gas;
A condenser that cools and condenses the refrigerant gas with a heated fluid;
A temperature control unit that corrects the output of the refrigerator using at least a value proportional to a value obtained by integrating the difference between the temperature of the fluid to be cooled and the target temperature along the time axis;
The temperature control unit further uses the value proportional to the difference between the refrigerant pressure in the evaporator and a reference pressure and / or the value proportional to the rate of change of the refrigerant pressure in the evaporator to further reduce the refrigeration. A refrigerator that corrects the output of the machine.
請求項1に記載の冷凍機であって、前記温度制御部は、前記蒸発器内の圧力の変化率を時間軸に沿って積分した値に比例した値をさらに使用して前記冷凍機の出力を補正することを特徴とする冷凍機。   2. The refrigerator according to claim 1, wherein the temperature control unit further uses a value proportional to a value obtained by integrating a rate of change in pressure in the evaporator along a time axis to output the refrigerator. A refrigeration machine characterized by correcting the above. 請求項1または2に記載の冷凍機であって、
前記蒸発器にて発生した前記冷媒ガスを圧縮して前記凝縮器に送る圧縮機をさらに備え、
前記冷凍機の出力の補正は、前記圧縮機の回転速度の補正であることを特徴とする冷凍機。
The refrigerator according to claim 1 or 2,
A compressor for compressing the refrigerant gas generated in the evaporator and sending it to the condenser;
Correction of the output of the said refrigerator is correction | amendment of the rotational speed of the said compressor, The refrigerator characterized by the above-mentioned.
JP2014178943A 2014-09-03 2014-09-03 Refrigeration machine Pending JP2016053429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014178943A JP2016053429A (en) 2014-09-03 2014-09-03 Refrigeration machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014178943A JP2016053429A (en) 2014-09-03 2014-09-03 Refrigeration machine

Publications (1)

Publication Number Publication Date
JP2016053429A true JP2016053429A (en) 2016-04-14

Family

ID=55745017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014178943A Pending JP2016053429A (en) 2014-09-03 2014-09-03 Refrigeration machine

Country Status (1)

Country Link
JP (1) JP2016053429A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211682A1 (en) * 2017-05-19 2018-11-22 三菱電機株式会社 Chilling unit and water-circulating temperature-adjustment system
CN113915114A (en) * 2021-09-27 2022-01-11 岚图汽车科技有限公司 Protection method and protection system for electric compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005300008A (en) * 2004-04-12 2005-10-27 Matsushita Electric Ind Co Ltd Heat pump hot water supply device
JP2012052719A (en) * 2010-08-31 2012-03-15 Ebara Refrigeration Equipment & Systems Co Ltd Turbo freezing machine
JP2012229916A (en) * 2012-08-30 2012-11-22 Mitsubishi Electric Corp Refrigerating air conditioner
JP2013100976A (en) * 2011-11-10 2013-05-23 Miura Co Ltd Water supply warming system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005300008A (en) * 2004-04-12 2005-10-27 Matsushita Electric Ind Co Ltd Heat pump hot water supply device
JP2012052719A (en) * 2010-08-31 2012-03-15 Ebara Refrigeration Equipment & Systems Co Ltd Turbo freezing machine
JP2013100976A (en) * 2011-11-10 2013-05-23 Miura Co Ltd Water supply warming system
JP2012229916A (en) * 2012-08-30 2012-11-22 Mitsubishi Electric Corp Refrigerating air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211682A1 (en) * 2017-05-19 2018-11-22 三菱電機株式会社 Chilling unit and water-circulating temperature-adjustment system
JPWO2018211682A1 (en) * 2017-05-19 2019-12-12 三菱電機株式会社 Chilling unit and water circulation temperature control system
US11181304B2 (en) 2017-05-19 2021-11-23 Mitsubishi Electric Corporation Chilling unit and temperature control system using water circulation
CN113915114A (en) * 2021-09-27 2022-01-11 岚图汽车科技有限公司 Protection method and protection system for electric compressor

Similar Documents

Publication Publication Date Title
CN107407506B (en) Control device for refrigeration cycle device, and control method for refrigeration cycle device
US8812263B2 (en) Centrifugal chiller performance evaluation system
KR101867207B1 (en) Turbo refrigerator, control device therefor, and control method therefor
WO2012132944A1 (en) Expansion valve control device, heat source machine, and expansion valve control method
JP5642448B2 (en) Flow rate estimation device, heat source unit, and flow rate estimation method
WO2012057263A1 (en) Heat source apparatus
US9395112B2 (en) Method for controlling operation of a vapour compression system in a subcritical and a supercritical mode
JP6234507B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
JP2018004097A5 (en)
JP6395549B2 (en) Oil separator, refrigeration cycle apparatus, and control method of oil return amount
JP4711852B2 (en) Temperature adjusting device and refrigeration cycle
JP2016053429A (en) Refrigeration machine
JP2010054094A (en) Air conditioning device
JP5956326B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
KR100802623B1 (en) Apparatus and method for controlling electronic expansion apparatus of air conditioning system
JP7374691B2 (en) Cooling device and cooling device control method
JP2005016754A (en) Refrigeration cycle device
JP5787106B2 (en) Control apparatus and control method for refrigeration apparatus, and refrigeration apparatus including the control apparatus
JP7151262B2 (en) Heat pump device and refrigerant flow rate calculation method
WO2022208717A1 (en) Refrigeration cycle device and refrigeration cycle method
JP2013002801A (en) Refrigeration cycle device, and hot-water heater including the same
JP2011089714A (en) Refrigerating device
JP2002286301A (en) Refrigerating cycle
JP2016044826A (en) Refrigeration cycle device
JP2022015253A (en) Binary refrigeration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180807