JP2018004097A5 - - Google Patents

Download PDF

Info

Publication number
JP2018004097A5
JP2018004097A5 JP2016126827A JP2016126827A JP2018004097A5 JP 2018004097 A5 JP2018004097 A5 JP 2018004097A5 JP 2016126827 A JP2016126827 A JP 2016126827A JP 2016126827 A JP2016126827 A JP 2016126827A JP 2018004097 A5 JP2018004097 A5 JP 2018004097A5
Authority
JP
Japan
Prior art keywords
cooling water
flow rate
outlet temperature
heat source
water outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016126827A
Other languages
Japanese (ja)
Other versions
JP6618860B2 (en
JP2018004097A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2016126827A priority Critical patent/JP6618860B2/en
Priority claimed from JP2016126827A external-priority patent/JP6618860B2/en
Priority to CN201710432144.8A priority patent/CN107543345A/en
Publication of JP2018004097A publication Critical patent/JP2018004097A/en
Publication of JP2018004097A5 publication Critical patent/JP2018004097A5/ja
Application granted granted Critical
Publication of JP6618860B2 publication Critical patent/JP6618860B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明の好ましい態様によれば、前記合計電力(P)が最も小さい冷却水流量(F)と、冷却水流量が定格流量時の熱源システムの消費電力に対する削減電力(Pr)との関係を規定するテーブル又は関係式Cを用いて、前記冷却水流量の測定値(f)より削減電力(Pr)を求めることを特徴とする。 According to a preferred aspect of the present invention, the relationship between the cooling water flow rate (F) having the smallest total power (P) and the reduced power (Pr) with respect to the power consumption of the heat source system when the cooling water flow rate is the rated flow rate is defined. The reduced power (Pr) is obtained from the measured value (f) of the cooling water flow rate using the table or the relational expression C.

図1は、本発明に係る熱源システムの基本構成を示す模式図である。FIG. 1 is a schematic diagram showing a basic configuration of a heat source system according to the present invention. 図2(a),(b),(c)は、冷凍能力と冷却水出口温度により定まる冷凍機の消費電力を規定するテーブル又は関係式Aを示す図である。2A, 2B, and 2C are diagrams illustrating a table or a relational expression A that defines power consumption of the refrigerator determined by the refrigerating capacity and the cooling water outlet temperature. 図3は、冷却水流量と冷却水ポンプの消費電力との関係を規定するテーブル又は関係式Bを示す図である。FIG. 3 is a diagram showing a table or a relational expression B that defines the relationship between the cooling water flow rate and the power consumption of the cooling water pump. 図4(a)は、複数の冷却水流量仮定値(fa)に対応する複数の冷凍機の消費電力(p1)と複数の冷却水ポンプの消費電力(p2)とを示すグラフであり、図4(b)は、図4(a)に示すグラフに冷凍機の消費電力(p1)と冷却水ポンプの消費電力(p2)とを合算した合計電力(P)を加えたグラフである。FIG. 4A is a graph showing the power consumption (p1) of a plurality of refrigerators and the power consumption (p2) of a plurality of cooling water pumps corresponding to a plurality of assumed coolant flow rates (fa). 4 (b) is a graph obtained by adding the total power (P) obtained by adding the power consumption (p1) of the refrigerator and the power consumption (p2) of the cooling water pump to the graph shown in FIG. 4 (a). 図5は、各測定値(a),(b),(c),(d),(e),(f)と複数の冷却水流量仮定値(fa)より冷却水流量(F)を求める手順を示すフローチャートである。FIG. 5 shows the cooling water flow rate (F) from the measured values (a), (b), (c), (d), (e), (f) and a plurality of cooling water flow rate assumption values (fa). It is a flowchart which shows a procedure. 図6は、電力計により測定した冷却水ポンプの電力測定値(g)と流量計により測定した冷却水流量の測定値(f)とを用いて前記テーブル又は関係式Bを補正する方法を示すグラフである。FIG. 6 shows a method of correcting the table or the relational expression B using the measured power value (g) of the cooling water pump measured by the power meter and the measured value (f) of the cooling water flow rate measured by the flow meter. It is a graph. 図7は、冷却水流量仮定値(fa)の選択範囲を示すグラフである。FIG. 7 is a graph showing the selection range of the assumed coolant flow rate (fa). 図8(a)〜(f)は、冷凍能力と冷却水出口温度により定まる冷凍機の消費電力を規定する、2つのテーブル又は関係式を示す図である。FIGS. 8A to 8F are diagrams showing two tables or relational expressions that define the power consumption of the refrigerator determined by the refrigerating capacity and the cooling water outlet temperature. 図9(a),(b),(c)は、前記テーブル又は関係式Aを冷水出口温度測定値(b)に基づいて補正する方法を示すグラフである。FIGS. 9A, 9B and 9C are graphs showing a method of correcting the table or the relational expression A based on the measured value of the cold water outlet temperature (b). 図10は、冷却水流量の出力設定値が所定の変化率であることを示すグラフである。FIG. 10 is a graph showing that the output set value of the cooling water flow rate has a predetermined rate of change. 図11は、測定している凝縮器圧力が凝縮器上限圧力に到達した時の冷却水流量の制御方法を示すグラフである。FIG. 11 is a graph showing a cooling water flow rate control method when the measured condenser pressure reaches the condenser upper limit pressure. 図12は、凝縮器上限圧力が冷凍能力に応じて設定された複数の上限圧力であることを示すグラフである。FIG. 12 is a graph showing that the condenser upper limit pressure is a plurality of upper limit pressures set in accordance with the refrigerating capacity. 図13は、測定している凝縮器圧力が凝縮器上限圧力から所定圧力を減じた値である解除圧力まで下がった時の冷却水流量の制御方法を示すグラフである。FIG. 13 is a graph showing a cooling water flow rate control method when the measured condenser pressure is reduced to a release pressure that is a value obtained by subtracting a predetermined pressure from the condenser upper limit pressure. 図14は、冷却水出口温度に上限温度を設定して冷却水流量を制御する方法を示すグラフである。FIG. 14 is a graph showing a method of controlling the coolant flow rate by setting the upper limit temperature to the coolant outlet temperature. 図15は、冷却水出口上限温度と冷凍能力との関係を示すグラフである。FIG. 15 is a graph showing the relationship between the cooling water outlet upper limit temperature and the refrigerating capacity. 図16は、冷却水出口温度に下限温度を設定して冷却水流量を制御する方法を示すグラフである。FIG. 16 is a graph showing a method of controlling the coolant flow rate by setting the lower limit temperature to the coolant outlet temperature. 図17は、冷却水出口下限温度と冷凍能力との関係を示すグラフである。FIG. 17 is a graph showing the relationship between the cooling water outlet lower limit temperature and the refrigerating capacity. 図18は、合計電力(P)が最も小さい冷却水流量(F)となるように冷却水流量を制御することによる、冷却水流量が定格流量時の熱源システムの消費電力に対する削減電力(Pr)を示すグラフである。FIG. 18 shows the power reduction (Pr) with respect to the power consumption of the heat source system when the cooling water flow rate is the rated flow rate by controlling the cooling water flow rate so that the total power (P) becomes the smallest cooling water flow rate (F). It is a graph which shows. 図19は、前記合計電力(P)が最も小さい冷却水流量(F)と、冷却水流量が定格流量時の熱源システムの消費電力に対する削減電力(Pr)との関係を示すグラフである。FIG. 19 is a graph showing the relationship between the cooling water flow rate (F) having the smallest total power (P) and the reduced power (Pr) with respect to the power consumption of the heat source system when the cooling water flow rate is the rated flow rate . 図20は、冷却水変流量制御中の冷却水流量の測定値(f)と削減電力(Pr)の経時変化を示すグラフである。FIG. 20 is a graph showing changes over time in the measured value (f) of the cooling water flow rate and the reduced power (Pr) during the cooling water variable flow rate control.

図7は、冷却水流量仮定値(fa)の選択範囲を示すグラフである。
i)設計で許容できる運転範囲上で、冷却水流量(F)が最も低くなる流量未満には冷却水流量を下げる必要がないため、その流量を制御の最低流量とする。その運転条件は、最低冷凍能力時、最低冷却水入口温度である。
ii)伝熱管内部流速が小さい程、伝熱管内部にスケールが付きやすいことから、設計で許容最低流速を定めており、許容最低流量も決まる。
iii)ポンプの機械的な最低周波数も定まっている。
上記i)ii)iii)のうち最も高い流量を最低流量とし、制御範囲はこの最低流量から定格流量までとする。図において、特定の範囲が上記最低流量から定格流量までの範囲である。
FIG. 7 is a graph showing the selection range of the assumed coolant flow rate (fa).
i) Since it is not necessary to lower the cooling water flow rate below the flow rate at which the cooling water flow rate (F) is the lowest within the allowable operating range in the design, the flow rate is set to the minimum flow rate for control. The operating condition is the minimum cooling water inlet temperature at the time of the minimum refrigerating capacity.
ii) The smaller the flow velocity inside the heat transfer tube, the easier the scale is attached to the inside of the heat transfer tube. Therefore, the allowable minimum flow rate is determined by design, and the allowable minimum flow rate is also determined.
iii) The minimum pump frequency is fixed.
Among the above i), ii) and iii), the highest flow rate is the minimum flow rate, and the control range is from this minimum flow rate to the rated flow rate. In FIG. 7 , the specific range is the range from the minimum flow rate to the rated flow rate.

図19は、冷凍機の消費電力(p1)と冷却水ポンプの消費電力(p2)とを合算した合計電力(P)が最も小さい冷却水流量(F)と、冷却水流量が定格流量時の熱源システムの消費電力に対する削減電力(Pr)との関係を示すグラフである。
図19に示すように、合計電力(P)が最も小さい冷却水流量(F)と削減電力(Pr)には相関関係がある。同一設備では、最も小さい冷却水流量(F)が定まれば、その時の運転条件によらず、削減電力(Pr)は特定されることが様々なシミュレーションにより確認された。冷却水流量の測定値(f)は最も小さい冷却水流量(F)に向かって動くため、冷却水流量の測定値(f)も削減電力(Pr)と相関関係がある。この相関関係をテーブル又は関係式Cとする。関係式Cは例えば3次式で表すことができる。係数をC3,C2,C1,C0とする。冷却水流量をxとすると、削減電力は、次式で表わすことができる。
Pr=C3x+C2x+C1x+C0
ただし上式の条件として、冷却水変流量制御中であることを満たす必要がある。
冷却水流量xが定格流量の時Pr=0である。冷却水流量xが小さくなると、Prは必ず大きくなる特徴がある。
このテーブル又は関係式Cを用いて、冷却水流量の測定値(f)の履歴または瞬時値から容易に削減電力(Pr)を求めることができる。この削減電力(Pr)を積算すると削減電力量になる。削減電力量から削減電気料金が見積もれる。冷却水変流量制御で運転していることが条件である。このテーブル又は関係式Cを管理者に開示することにより、管理者は削減電力の可視化ができる。また、過去のデータをさかのぼることによって、冷却水流量の記録だけを頼りに省エネルギー効果を整理することができる。
FIG. 19 shows the cooling water flow rate (F) having the smallest total power (P), which is the sum of the power consumption (p1) of the refrigerator and the power consumption (p2) of the cooling water pump, and the cooling water flow rate at the rated flow rate . It is a graph which shows the relationship with the reduction electric power (Pr) with respect to the power consumption of a heat-source system.
As shown in FIG. 19, there is a correlation between the coolant flow rate (F) with the smallest total power (P) and the reduced power (Pr). In the same equipment, it was confirmed by various simulations that if the smallest cooling water flow rate (F) is determined, the reduced power (Pr) is specified regardless of the operation condition at that time. Since the measured value (f) of the cooling water flow rate moves toward the smallest cooling water flow rate (F), the measured value (f) of the cooling water flow rate is also correlated with the reduced power (Pr). Let this correlation be a table or a relational expression C. The relational expression C can be expressed by a cubic expression, for example. The coefficients are C3, C2, C1, and C0. If the cooling water flow rate is x, the reduced power can be expressed by the following equation.
Pr = C3x 3 + C2x 2 + C1x + C0
However, it is necessary to satisfy that the cooling water variable flow rate control is being performed as a condition of the above equation.
When the cooling water flow rate x is the rated flow rate, Pr = 0. When the cooling water flow rate x decreases, Pr is necessarily increased.
Using this table or the relational expression C, the reduced power (Pr) can be easily obtained from the history or instantaneous value of the measured value (f) of the coolant flow rate. When this reduced power (Pr) is integrated, the amount of reduced power is obtained. Reduced electricity charges can be estimated from the reduced power consumption. It is a condition that it is operating with cooling water variable flow rate control. By disclosing this table or relational expression C to the administrator, the administrator can visualize the reduced power. In addition, by going back past data, it is possible to sort out the energy saving effect by relying solely on the record of the coolant flow rate.

Claims (24)

冷却塔と、圧縮式冷凍機と、その間を配管で接続して冷却水を循環させる冷却水ポンプから構成される冷却水系と、前記圧縮式冷凍機で冷却された冷水を冷水ポンプで負荷側に供給する冷水系と、前記各機器を制御する制御装置とを備えた熱源システムにおいて、
冷水入口温度測定値(a)を求める手段と、
冷水出口温度測定値(b)を求める手段と、
冷水流量測定値(c)を求める手段と、
冷却水入口温度測定値(d)を求める手段と、
冷却水出口温度測定値(e)を求める手段と、
冷却水ポンプの流量である冷却水流量の測定値(f)を求める手段とを備え、
冷凍能力と冷却水出口温度により定まる冷凍機の消費電力を規定するテーブル又は関係式Aと、
冷却水流量と冷却水ポンプの消費電力との関係を規定するテーブル又は関係式Bと、
冷却水流量仮定値(fa)とを、前記制御装置に予め入力し、
前記制御装置は、前記各測定値(a),(b),(c),(d),(e),(f)と複数の冷却水流量仮定値(fa)とを用いて、前記テーブル又は関係式Aと前記テーブル又は関係式Bとにより複数の冷却水流量仮定値(fa)に対応する複数の冷凍機の消費電力(p1)と複数の冷却水ポンプの消費電力(p2)とを求め、
前記複数の冷却水流量仮定値(fa)に対応する、複数の冷凍機の消費電力(p1)と複数の冷却水ポンプの消費電力(p2)を合算して複数の合計電力(P)を算出し、合計電力(P)が最も小さい冷却水流量(F)となるように冷却水流量を制御することを特徴とする熱源システム。
A cooling water system composed of a cooling tower, a compression refrigerator, and a cooling water pump that circulates the cooling water by connecting between them with a pipe, and cold water cooled by the compression refrigerator is brought to the load side by the cold water pump In a heat source system comprising a chilled water system to be supplied and a control device for controlling each device,
Means for determining the cold water inlet temperature measurement (a);
Means for determining the cold water outlet temperature measurement (b);
Means for determining the cold water flow rate measurement (c);
Means for determining the cooling water inlet temperature measurement (d);
Means for determining the coolant outlet temperature measurement (e);
Means for obtaining a measured value (f) of the cooling water flow rate which is a flow rate of the cooling water pump,
A table or relational expression A that defines the power consumption of the refrigerator determined by the refrigeration capacity and the cooling water outlet temperature;
A table or a relational expression B that defines the relationship between the cooling water flow rate and the power consumption of the cooling water pump;
The cooling water flow rate assumption value (fa) is previously input to the control device,
The control device uses the measured values (a), (b), (c), (d), (e), (f) and a plurality of assumed coolant flow rates (fa) to generate the table. Alternatively, the power consumption (p1) of the plurality of refrigerators and the power consumption (p2) of the plurality of cooling water pumps corresponding to the plurality of cooling water flow rate assumption values (fa) according to the relational expression A and the table or the relational expression B. Seeking
The total power (P) is calculated by adding the power consumption (p1) of the plurality of refrigerators and the power consumption (p2) of the plurality of cooling water pumps corresponding to the plurality of cooling water flow rate assumption values (fa). And the cooling water flow rate is controlled so that the total power (P) is the smallest cooling water flow rate (F).
冷却水ポンプの電力測定値(g)を求める手段を備え、前記冷却水ポンプの電力測定値(g)と冷却水流量測定値(f)に基づき、前記テーブル又は関係式Bより冷却水ポンプの電力(ga)を算出し、電力測定値(g)と算出した電力(ga)との比率を求め、前記テーブル又は関係式Bに当該比率を乗じることにより前記テーブル又は関係式Bを補正することを特徴とする請求項1記載の熱源システム。   Means for determining the measured power value (g) of the cooling water pump, and based on the measured power value (g) of the cooling water pump and the measured value of the cooling water flow rate (f), Calculating power (ga), obtaining a ratio between the measured power value (g) and the calculated power (ga), and multiplying the table or relational expression B by the ratio to correct the table or relational expression B The heat source system according to claim 1. 前記冷却水流量仮定値(fa)は、前記合計電力(P)の削減に効果のある特定の範囲であることを特徴とする請求項1または2記載の熱源システム。   The heat source system according to claim 1 or 2, wherein the cooling water flow rate assumption value (fa) is in a specific range effective in reducing the total power (P). 冷水出口温度毎に前記テーブル又は関係式Aを複数持ち、冷水出口温度測定値(b)に応じて複数の前記テーブル又は関係式Aから1つを選択することを特徴とする請求項1乃至3のいずれか一項に記載の熱源システム。   A plurality of the tables or relational expressions A are provided for each cold water outlet temperature, and one of the plurality of tables or relational expressions A is selected according to the measured value (b) of the cold water outlet temperature. The heat source system according to any one of the above. 前記テーブル又は関係式Aを冷水出口温度測定値(b)に基づいて補正することを特徴とする請求項1乃至3のいずれか一項に記載の熱源システム。   The heat source system according to any one of claims 1 to 3, wherein the table or the relational expression A is corrected based on a measured value (b) of a cold water outlet temperature. 前記冷却水流量の出力設定値は、所定の変化率であることを特徴とする請求項1乃至5のいずれか一項に記載の熱源システム。   The heat source system according to any one of claims 1 to 5, wherein the output set value of the cooling water flow rate is a predetermined rate of change. 測定している凝縮器圧力が凝縮器上限圧力に到達した時に、前記冷却水流量を増加させることを特徴とする請求項1乃至6のいずれか一項に記載の熱源システム。   The heat source system according to any one of claims 1 to 6, wherein the cooling water flow rate is increased when a measured condenser pressure reaches a condenser upper limit pressure. 前記凝縮器上限圧力は、冷凍能力に応じて設定された複数の上限圧力であることを特徴とする請求項7記載の熱源システム。   The heat source system according to claim 7, wherein the upper limit pressure of the condenser is a plurality of upper limit pressures set in accordance with a refrigerating capacity. 測定している凝縮器圧力が凝縮器上限圧力から所定圧力を減じた値である解除圧力まで下がった時に、前記冷却水流量制御を最適な変流量制御に復帰させることを特徴とする請求項7または8記載の熱源システム。   8. The cooling water flow rate control is returned to the optimum variable flow rate control when the measured condenser pressure falls to a release pressure that is a value obtained by subtracting a predetermined pressure from the condenser upper limit pressure. Or the heat source system of 8. 冷却水出口温度の上限を定め、前記冷却水流量を、前記冷却水出口温度の上限を越えない範囲で該上限に近い流量に制御することを特徴とする請求項1乃至9のいずれか一項に記載の熱源システム。   The upper limit of the cooling water outlet temperature is set, and the cooling water flow rate is controlled to a flow rate close to the upper limit within a range not exceeding the upper limit of the cooling water outlet temperature. Heat source system as described in. 前記冷却水出口温度の上限は、冷凍能力に応じて設定された複数の上限温度であることを特徴とする請求項10記載の熱源システム。   The heat source system according to claim 10, wherein the upper limit of the cooling water outlet temperature is a plurality of upper limit temperatures set in accordance with the refrigerating capacity. 冷却水出口温度の下限を定め、前記冷却水流量を、前記冷却水出口温度の下限を下回らない範囲で該下限に近い流量に制御することを特徴とする請求項1乃至11のいずれか一項に記載の熱源システム。   The lower limit of the cooling water outlet temperature is set, and the cooling water flow rate is controlled to a flow rate close to the lower limit within a range not lower than the lower limit of the cooling water outlet temperature. Heat source system as described in. 前記冷却水出口温度の下限は、冷凍能力に応じて設定された複数の下限温度であることを特徴とする請求項12記載の熱源システム。   The heat source system according to claim 12, wherein the lower limit of the cooling water outlet temperature is a plurality of lower limit temperatures set in accordance with the refrigerating capacity. 前記制御装置は、冷却水流量が定格流量時の熱源システムの消費電力に対する削減電力(Pr)を演算し、外部へ信号出力あるいは表示をすることができることを特徴とする請求項1乃至13のいずれか一項に記載の熱源システム。   14. The control device according to claim 1, wherein the control device can calculate a reduction power (Pr) with respect to power consumption of the heat source system when the cooling water flow rate is a rated flow rate, and can output or display a signal to the outside. The heat source system according to claim 1. 冷凍能力と冷却水出口温度により定まる冷凍機の消費電力を規定する前記テーブル又は関係式Aにおいて、冷却水出口温度に代えて、前記圧縮式冷凍機における凝縮器圧力を用いることを特徴とする請求項1記載の熱源システム。   In the table or the relational expression A that defines the power consumption of the refrigerator determined by the refrigerating capacity and the cooling water outlet temperature, the condenser pressure in the compression type refrigerator is used instead of the cooling water outlet temperature. Item 2. The heat source system according to Item 1. 冷凍能力と冷却水出口温度により定まる冷凍機の消費電力を規定する前記テーブル又は関係式Aにおいて、冷却水出口温度に代えて、前記圧縮式冷凍機における凝縮温度を用いることを特徴とする請求項1記載の熱源システム。   The condensing temperature in the compression refrigerator is used instead of the cooling water outlet temperature in the table or the relational expression A that defines the power consumption of the refrigerator determined by the refrigerating capacity and the cooling water outlet temperature. The heat source system according to 1. 冷水出口温度毎に前記テーブル又は関係式Aを複数持ち、冷水出口温度測定値(b)に応じて複数の前記テーブル又は関係式Aから1つを選択することにおいて、冷水出口温度に代えて蒸発器圧力を用い、冷水出口温度測定値(b)に代えて蒸発器圧力測定値を用いることを特徴とする請求項4記載の熱源システム。   Evaporating instead of the chilled water outlet temperature by having a plurality of the tables or relational expressions A for each chilled water outlet temperature and selecting one of the plurality of tables or relational expressions A according to the chilled water outlet temperature measured value (b) The heat source system according to claim 4, wherein an evaporator pressure is used and an evaporator pressure measurement value is used instead of the cold water outlet temperature measurement value (b). 冷水出口温度毎に前記テーブル又は関係式Aを複数持ち、冷水出口温度測定値(b)に応じて複数の前記テーブル又は関係式Aから1つを選択することにおいて、冷水出口温度に代えて蒸発温度を用い、冷水出口温度測定値(b)に代えて蒸発温度測定値を用いることを特徴とする請求項4記載の熱源システム。   Evaporating instead of the chilled water outlet temperature by having a plurality of the tables or relational expressions A for each chilled water outlet temperature and selecting one of the plurality of tables or relational expressions A according to the chilled water outlet temperature measured value (b) 5. The heat source system according to claim 4, wherein a temperature is used, and an evaporation temperature measurement value is used instead of the cold water outlet temperature measurement value (b). 前記テーブル又は関係式Aを冷水出口温度測定値(b)に基づいて補正することにおいて、冷水出口温度測定値(b)に代えて蒸発器圧力測定値を用いることを特徴とする請求項5記載の熱源システム。   6. The evaporator pressure measurement value is used in place of the cold water outlet temperature measurement value (b) in correcting the table or the relational expression A based on the cold water outlet temperature measurement value (b). Heat source system. 前記テーブル又は関係式Aを冷水出口温度測定値(b)に基づいて補正することにおいて、冷水出口温度測定値(b)に代えて蒸発温度測定値を用いることを特徴とする請求項5記載の熱源システム。   The correction value of the table or the relational expression A based on the measured value (b) of the chilled water outlet uses a measured value of the evaporation temperature instead of the measured value of the chilled water outlet temperature (b). Heat source system. 前記制御装置は、変流量制御を実施するか否か設定可能であることを特徴とする請求項1乃至20のいずれか一項に記載の熱源システム。   The heat source system according to any one of claims 1 to 20, wherein the control device can set whether or not to perform variable flow rate control. 前記制御装置は、冷凍機の起動後、所定の冷水出口温度で変流量制御に切り替えることを特徴とする請求項1乃至21のいずれか一項に記載の熱源システム。   The heat source system according to any one of claims 1 to 21, wherein the control device switches to variable flow rate control at a predetermined cold water outlet temperature after starting the refrigerator. 冷却塔と、圧縮式冷凍機と、その間を配管で接続して冷却水を循環させる冷却水ポンプから構成される冷却水系と、前記圧縮式冷凍機で冷却された冷水を冷水ポンプで負荷側に供給する冷水系と、前記各機器を制御する制御装置とを備えた熱源システムの制御方法において、
冷水入口温度測定値(a)、冷水出口温度測定値(b)、冷水流量測定値(c)、冷却水入口温度測定値(d)、冷却水出口温度測定値(e)、冷却水ポンプの流量である冷却水流量の測定値(f)をそれぞれ取得し、
冷凍能力と冷却水出口温度により定まる冷凍機の消費電力を規定するテーブル又は関係式Aと、
冷却水流量と冷却水ポンプの消費電力との関係を規定するテーブル又は関係式Bと、
冷却水流量仮定値(fa)とを、予め求めておき、
前記各測定値(a),(b),(c),(d),(e),(f)と複数の冷却水流量仮定値(fa)とを用いて、前記テーブル又は関係式Aと前記テーブル又は関係式Bとにより複数の冷却水流量仮定値(fa)に対応する複数の冷凍機の消費電力(p1)と複数の冷却水ポンプの消費電力(p2)とを求め、
前記複数の冷却水流量仮定値(fa)に対応する、複数の冷凍機の消費電力(p1)と複数の冷却水ポンプの消費電力(p2)を合算して複数の合計電力(P)を算出し、合計電力(P)が最も小さい冷却水流量(F)となるように冷却水流量を制御することを特徴とする熱源システムの制御方法。
A cooling water system composed of a cooling tower, a compression refrigerator, and a cooling water pump that circulates the cooling water by connecting between them with a pipe, and cold water cooled by the compression refrigerator is brought to the load side by the cold water pump In a control method of a heat source system comprising a chilled water system to be supplied and a control device for controlling each device,
Chilled water inlet temperature measured value (a), chilled water outlet temperature measured value (b), chilled water flow rate measured value (c), cooling water inlet temperature measured value (d), cooling water outlet temperature measured value (e), cooling water pump Obtain the measured value (f) of the cooling water flow rate, which is the flow rate,
A table or relational expression A that defines the power consumption of the refrigerator determined by the refrigeration capacity and the cooling water outlet temperature;
A table or a relational expression B that defines the relationship between the cooling water flow rate and the power consumption of the cooling water pump;
The cooling water flow rate assumption value (fa) is obtained in advance,
Using the measured values (a), (b), (c), (d), (e), (f) and a plurality of assumed coolant flow rates (fa), the table or the relational expression A and The power consumption (p1) of the plurality of refrigerators and the power consumption (p2) of the plurality of cooling water pumps corresponding to the plurality of cooling water flow rate assumption values (fa) are obtained from the table or the relational expression B,
The total power (P) is calculated by adding the power consumption (p1) of the plurality of refrigerators and the power consumption (p2) of the plurality of cooling water pumps corresponding to the plurality of cooling water flow rate assumption values (fa). And controlling the cooling water flow rate so that the total power (P) is the smallest cooling water flow rate (F).
前記合計電力(P)が最も小さい冷却水流量(F)と、冷却水流量が定格流量時の熱源システムの消費電力に対する削減電力(Pr)との関係を規定するテーブル又は関係式Cを用いて、前記冷却水流量の測定値(f)より削減電力(Pr)を求めることを特徴とする請求項23記載の熱源システムの制御方法。 Using a table or relational expression C that defines the relationship between the cooling water flow rate (F) with the smallest total power (P) and the reduced power (Pr) with respect to the power consumption of the heat source system when the cooling water flow rate is the rated flow rate. 24. The method of controlling a heat source system according to claim 23, wherein a reduced power (Pr) is obtained from the measured value (f) of the cooling water flow rate.
JP2016126827A 2016-06-27 2016-06-27 Heat source system and control method thereof Active JP6618860B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016126827A JP6618860B2 (en) 2016-06-27 2016-06-27 Heat source system and control method thereof
CN201710432144.8A CN107543345A (en) 2016-06-27 2017-06-09 Heat source system and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016126827A JP6618860B2 (en) 2016-06-27 2016-06-27 Heat source system and control method thereof

Publications (3)

Publication Number Publication Date
JP2018004097A JP2018004097A (en) 2018-01-11
JP2018004097A5 true JP2018004097A5 (en) 2018-11-01
JP6618860B2 JP6618860B2 (en) 2019-12-11

Family

ID=60948916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016126827A Active JP6618860B2 (en) 2016-06-27 2016-06-27 Heat source system and control method thereof

Country Status (2)

Country Link
JP (1) JP6618860B2 (en)
CN (1) CN107543345A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6750980B2 (en) * 2016-08-25 2020-09-02 高砂熱学工業株式会社 Air conditioning system control device, control method, control program, and air conditioning system
JP6849345B2 (en) * 2016-08-25 2021-03-24 高砂熱学工業株式会社 Air conditioning system controls, control methods and control programs
JP7235460B2 (en) * 2018-09-13 2023-03-08 三菱重工サーマルシステムズ株式会社 Control device, heat source system, method for calculating lower limit of cooling water inlet temperature, control method and program
KR20210121850A (en) * 2020-03-31 2021-10-08 엘지전자 주식회사 Heat pump and method thereof
CN114623570B (en) * 2022-02-11 2023-07-21 武汉中电节能有限公司 Method for calculating instantaneous refrigeration power of air conditioner refrigeration host
CN114877421B (en) * 2022-04-21 2023-08-29 珠海格力机电工程有限公司 Air conditioner water system, control method and air conditioner unit

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161458A (en) * 1981-03-27 1982-10-05 Hitachi Ltd Chilled water supply controller for absorption type refrigerating machine
JPS5899811A (en) * 1981-12-09 1983-06-14 Hitachi Ltd Temperature controller of turbo-refrigerating machine
JPS6016272A (en) * 1983-07-07 1985-01-28 株式会社荏原製作所 Method of controlling flow rate of cooling water in refrigerator
JP2003090288A (en) * 1998-04-03 2003-03-28 Ebara Corp Diagnosing system for fluid machine
EP1072795A4 (en) * 1998-04-03 2006-10-18 Ebara Corp Diagnosing system for fluid machinery
JP3929204B2 (en) * 1999-06-09 2007-06-13 株式会社荏原製作所 Circulation pump unit
JP2001272115A (en) * 2000-03-27 2001-10-05 Tokyo Gas Co Ltd Method for controlling flow rate of cooling water used in heat exchanger
JP2004239513A (en) * 2003-02-05 2004-08-26 Mark Tec:Kk Energy saving amount calculating system and method
JP4028502B2 (en) * 2004-03-15 2007-12-26 東洋熱工業株式会社 Cooling water control method for refrigerator
JP2006078064A (en) * 2004-09-08 2006-03-23 Matsushita Electric Ind Co Ltd Freezing and refrigerating unit and refrigerator
JP2008134013A (en) * 2006-11-29 2008-06-12 Toyo Netsu Kogyo Kk Operation control method of cold source machine and cold source system using the same
JP4936961B2 (en) * 2007-04-04 2012-05-23 株式会社東芝 Air conditioning system controller
JP2012127573A (en) * 2010-12-15 2012-07-05 Hitachi Plant Technologies Ltd Heat source system
JP5840466B2 (en) * 2011-11-22 2016-01-06 三機工業株式会社 Variable flow rate control device for heat source pump
JP5927694B2 (en) * 2012-02-03 2016-06-01 株式会社日立製作所 HEAT SOURCE SYSTEM AND HEAT SOURCE SYSTEM CONTROL METHOD
JP2013164223A (en) * 2012-02-13 2013-08-22 Hitachi Appliances Inc Heat source system
CN103912966B (en) * 2014-03-31 2016-07-06 武汉科技大学 A kind of earth source heat pump refrigeration system optimal control method
JP6498411B2 (en) * 2014-10-10 2019-04-10 三菱重工サーマルシステムズ株式会社 HEAT SOURCE SYSTEM, COOLING WATER CONTROL DEVICE AND CONTROL METHOD THEREOF

Similar Documents

Publication Publication Date Title
JP2018004097A5 (en)
JP6618860B2 (en) Heat source system and control method thereof
JP5669402B2 (en) Heat pump and heat medium flow rate calculation method for heat pump
RU2660723C1 (en) Method for controlling ejector unit of variable capacity
US8812263B2 (en) Centrifugal chiller performance evaluation system
US10378794B2 (en) Apparatus and method for evaluating performance of centrifugal chiller
JP2015094560A (en) Heat source machine and control method of the same
Aprea et al. Determination of the compressor optimal working conditions
CN105378392B (en) Air-conditioning device
JP2007127321A (en) Cold water load factor controller for refrigerator
JP6016730B2 (en) Demand control apparatus and demand control method
US10107531B2 (en) Method for controlling a chiller system
JP6422590B2 (en) Heat source system
JPWO2017033240A1 (en) Data acquisition system, abnormality detection system, refrigeration cycle apparatus, data acquisition method, and abnormality detection method
JP2009236428A (en) Compression type refrigerating machine
AU2014411607B2 (en) Refrigerator and method of controlling flow rate of refrigerant
JP6548890B2 (en) Control device of refrigeration cycle, refrigeration cycle, and control method of refrigeration cycle
CN107339834B (en) The control method and device of natural cooling unit
JP2014085048A (en) Turbo refrigerator
JP2014070753A (en) Air conditioning equipment
JPWO2019058542A1 (en) Refrigeration equipment
JP2012242053A (en) Refrigeration air conditioning system
WO2016066298A1 (en) A method for estimating thermal capacity of foodstuff
US10670292B2 (en) Fluid pressure calibration in climate control system
JP2017003135A (en) Heat source facility and heat source facility control method