JP2014070753A - Air conditioning equipment - Google Patents

Air conditioning equipment Download PDF

Info

Publication number
JP2014070753A
JP2014070753A JP2012215455A JP2012215455A JP2014070753A JP 2014070753 A JP2014070753 A JP 2014070753A JP 2012215455 A JP2012215455 A JP 2012215455A JP 2012215455 A JP2012215455 A JP 2012215455A JP 2014070753 A JP2014070753 A JP 2014070753A
Authority
JP
Japan
Prior art keywords
superheat degree
evaporator
degree
pump
opening degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012215455A
Other languages
Japanese (ja)
Other versions
JP5927670B2 (en
Inventor
Kazuto Sekiba
和人 関場
Shuntaro Inoue
俊太郎 井上
Hajime Yasuda
源 安田
Yasuhiro Naito
靖浩 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2012215455A priority Critical patent/JP5927670B2/en
Publication of JP2014070753A publication Critical patent/JP2014070753A/en
Application granted granted Critical
Publication of JP5927670B2 publication Critical patent/JP5927670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0401Refrigeration circuit bypassing means for the compressor

Abstract

PROBLEM TO BE SOLVED: To provide air conditioning equipment performing both of a compressor cycle operation and a pump cycle operation, the air conditioning equipment achieving further improved efficiency in the pump cycle operation.SOLUTION: The air conditioning equipment includes calculating means for calculating an opening of an expansion valve 4 and a rotational frequency of a pump 3 to keep outlet-side superheat of an evaporator 5 to a first set superheat, the calculating means calculates the rotational frequency of the pump 3 as a lower limit rotational frequency, when the outlet-side superheat of the evaporator 5 can be kept at the first set superheat by setting the opening of the expansion valve 4 to a prescribed opening, when the outlet-side superheat of the evaporator 5 is the first set superheat or more. The calculating means further calculates the rotational frequency of the pump 3 to be a prescribed rotational frequency more than the lower limit rotational frequency, when the outlet-side superheat of the evaporator is the first set superheat or more even though the opening of the expansion valve 4 is kept at an upper limit opening, when the outlet-side superheat of the evaporator 5 is the first set superheat or more, and then a compressor cycle operation is switched to a pump cycle operation.

Description

本発明は、空気調和装置について、特に圧縮機による圧縮機サイクル運転とポンプによるポンプサイクル運転の双方の運転を行うものに関する。   The present invention relates to an air conditioner, and particularly to an apparatus that performs both a compressor cycle operation by a compressor and a pump cycle operation by a pump.

コンピュータネットワークを構築するには、各コンピュータから要求を受けて処理するために、コミュニケーション用、データベース用、ファイル管理用などのサーバーを必要とする。この種のサーバーは運営や管理の利便性から、サーバー機械室に設置されている。また複数台のサーバーはサーバーラックに格納され、サーバー機械室には複数のサーバーラックが設置される。サーバーは動作時の発熱が大きく、安定動作させるためサーバー機械室には空調装置を併設し運用する。   In order to construct a computer network, a server for communication, a database, a file management, etc. is required to receive and process a request from each computer. This type of server is installed in the server machine room for convenience of operation and management. A plurality of servers are stored in a server rack, and a plurality of server racks are installed in the server machine room. The server generates a large amount of heat during operation, and an air conditioner is installed in the server machine room for stable operation.

ここで、サーバー機械室全体の空調装置としては、一般に圧縮機、室外熱交換器(凝縮器)、膨張弁、室内熱交換器(蒸発器)を順次冷媒配管で接続して冷凍サイクルを構成する空調装置が利用される。   Here, as an air conditioner for the entire server machine room, in general, a compressor, an outdoor heat exchanger (condenser), an expansion valve, and an indoor heat exchanger (evaporator) are sequentially connected by a refrigerant pipe to constitute a refrigeration cycle. An air conditioner is used.

しかしサーバー機械室は、30℃程度で運用されるため、たとえば真冬の場合など外気温がそれよりも低ければ、圧縮機を使用するまでもなく単に冷媒を循環させることにより直接外気で冷媒を冷却できるため、冷房運転を行うことができる。ただし外気を直接取り込む方法は湿度調整や塵埃等不純物の除去が必要となるためサーバー機械室のような環境においては不向きである。そこで、外気の冷熱を空調機の熱交換器を介して輸送する、間接外気冷房方式という技術が注目されている。冷媒を室外熱交換機(凝縮器)にて外気で冷却し強制循環することで、前記圧縮機を使用せず冷房を行うことが出来る。冷媒の強制循環には、冷媒ポンプを使うことで圧縮機駆動時の消費電力よりも低消費電力で冷房運転をできることが知られている。   However, since the server machine room is operated at about 30 ° C, if the outside air temperature is lower than that, for example in the case of midwinter, the refrigerant is directly cooled by the outside air by simply circulating the refrigerant without using the compressor. Therefore, cooling operation can be performed. However, the method of directly taking outside air is not suitable in an environment such as a server machine room because humidity adjustment and removal of impurities such as dust are necessary. In view of this, a technique called an indirect outdoor air cooling system in which cold air from outside air is transported through a heat exchanger of an air conditioner has attracted attention. By cooling the refrigerant with outside air in an outdoor heat exchanger (condenser) and forcibly circulating the refrigerant, cooling can be performed without using the compressor. It is known that for forced circulation of the refrigerant, a cooling operation can be performed with lower power consumption than the power consumption when the compressor is driven by using a refrigerant pump.

この点について特許文献1には圧縮機、室外熱交換器(凝縮器)、膨張弁、室内熱交換器(蒸発器)を順次冷媒配管で接続した圧縮機サイクル運転を行い、室内空気温度より外気温の低い冬季や夜間などの条件下においては、冷媒ポンプ、室外熱交換器(凝縮器)、膨張弁、室内熱交換器(蒸発器)を順次冷媒配管で接続した冷媒ポンプサイクル運転し、両サイクルを運転条件によって切り替えることにより年間冷房を要する環境において効率のよい運転を行うことが記載されている。   In this regard, Patent Document 1 discloses a compressor cycle operation in which a compressor, an outdoor heat exchanger (condenser), an expansion valve, and an indoor heat exchanger (evaporator) are sequentially connected by a refrigerant pipe, and the outside of the room air temperature is exceeded. Under conditions such as winter and nighttime when the temperature is low, the refrigerant pump, the outdoor heat exchanger (condenser), the expansion valve, and the indoor heat exchanger (evaporator) are connected to the refrigerant pipe in sequence, It is described that efficient operation is performed in an environment that requires annual cooling by switching the cycle according to the operation conditions.

特許第4352604号公報Japanese Patent No. 4352604

特許文献1には、前記圧縮機、前記室外熱交換器(凝縮器)、前記膨張弁、前記室内熱交換器(蒸発器)を順次冷媒配管で接続した圧縮サイクルと、前記室外熱交換器(凝縮器)、前記冷媒ポンプ、前記膨張弁、前記室内熱交換器(蒸発器)を順次冷媒配管で接続した冷媒ポンプサイクルの二種類のサイクル構成を持ち合わせた空気調和装置は前記膨張弁の絞り開度の制御と前記冷媒ポンプ回転数を制御し、冷媒の循環量を調節することが記載されている。   Patent Document 1 discloses a compression cycle in which the compressor, the outdoor heat exchanger (condenser), the expansion valve, and the indoor heat exchanger (evaporator) are sequentially connected by a refrigerant pipe, and the outdoor heat exchanger ( The air conditioner having two types of cycle configurations of a refrigerant pump cycle in which a condenser), the refrigerant pump, the expansion valve, and the indoor heat exchanger (evaporator) are sequentially connected by refrigerant piping is used to open and close the expansion valve. It is described that the amount of refrigerant circulation is adjusted by controlling the degree and the rotational speed of the refrigerant pump.

ポンプによるポンプサイクル運転によれば、圧縮機による圧縮機サイクル運転に比べて大幅な省電力化が可能である。しかし、ポンプサイクル運転のポンプによる消費電力も無視できるものではなく、更なる省電力化が求められる。上記特許文献に記載の空気調和装置においては、この点についての更なる改善が必要である。   According to the pump cycle operation by the pump, significant power saving can be achieved as compared with the compressor cycle operation by the compressor. However, the power consumption by the pump in the pump cycle operation is not negligible, and further power saving is required. In the air conditioning apparatus described in the above-mentioned patent document, further improvement in this respect is necessary.

そこで、本発明の目的は圧縮機サイクル運転とポンプサイクル運転との双方を行う空気調和装置において、ポンプサイクル運転の更なる効率向上を図ることができる空気調和装置を提供することを目的とする。   Therefore, an object of the present invention is to provide an air conditioner that can further improve the efficiency of the pump cycle operation in the air conditioner that performs both the compressor cycle operation and the pump cycle operation.

上記目的を達成するために本発明は、「冷媒を循環させる圧縮機サイクル運転を行う圧縮機と、該圧縮機により圧縮された冷媒を凝縮する凝縮器と、該凝縮器により凝縮された冷媒を膨張させる膨張弁と、 該膨張弁により膨張された冷媒を蒸発させる蒸発器と、前記圧縮機が停止した状態で前記凝縮器から流れる液冷媒を前記膨張弁に送ることにより冷媒を循環させるポンプサイクル運転を行うポンプと、を備えた空気調和装置において、前記圧縮機サイクル運転から前記ポンプサイクル運転に切り替わる前に、前記蒸発器の出口側過熱度を第1設定過熱度とするための前記膨張弁の開度及び前記ポンプの回転数を算出する算出手段を備え、該算出手段は、前記蒸発器の出口側過熱度が前記第1設定過熱度以上の場合に前記膨張弁の開度を所定開度とすることで前記蒸発器の出口側過熱度を前記第1設定過熱度とすることができる場合には、前記ポンプの回転数は下限回転数として算出し、前記蒸発器の出口側過熱度が前記第1設定過熱度以上の場合に前記膨張弁の開度を上限開度としても前記蒸発器の出口側過熱度が前記第1設定過熱度以上の場合には、前記ポンプの回転数は前記下限回転数よりも大きい所定回転数となるように算出し、該算出手段により前記膨張弁の開度及び前記ポンプの回転数を算出した後に前記圧縮機サイクル運転から前記ポンプサイクル運転に切り替わること」を特徴とする。   In order to achieve the above-described object, the present invention provides a compressor that performs a compressor cycle operation for circulating a refrigerant, a condenser that condenses the refrigerant compressed by the compressor, and a refrigerant condensed by the condenser. An expansion valve that expands; an evaporator that evaporates the refrigerant expanded by the expansion valve; and a pump cycle that circulates the refrigerant by sending liquid refrigerant flowing from the condenser to the expansion valve while the compressor is stopped. An expansion valve for setting the outlet-side superheat degree of the evaporator to a first set superheat degree before switching from the compressor cycle operation to the pump cycle operation. And calculating means for calculating the opening degree of the expansion valve when the outlet side superheat degree of the evaporator is greater than or equal to the first set superheat degree. When the outlet side superheat degree of the evaporator can be set to the first set superheat degree by setting the constant opening degree, the rotation speed of the pump is calculated as a lower limit rotation speed, and the outlet side of the evaporator When the degree of superheat is equal to or higher than the first set superheat degree, even if the opening degree of the expansion valve is set as the upper limit opening degree, when the outlet side superheat degree of the evaporator is equal to or higher than the first set superheat degree, the rotation of the pump The number is calculated to be a predetermined number of rotations greater than the lower limit number of rotations, and after calculating the opening degree of the expansion valve and the number of rotations of the pump by the calculation means, the compressor cycle operation is changed to the pump cycle operation. It is characterized by “switching”.

上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明によれば、圧縮機サイクル運転とポンプサイクル運転との双方を行う空気調和装置において、ポンプサイクル運転の更なる効率向上を図ることができる空気調和装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the air conditioning apparatus which performs both a compressor cycle driving | operation and a pump cycle driving | operation, the air conditioning apparatus which can aim at the further efficiency improvement of a pump cycle driving | operation can be provided.

実施例1の冷凍サイクル構成図を示す。The refrigeration cycle block diagram of Example 1 is shown. 実施例1のポンプ回転数及び膨脹弁開度の算出方法を説明するフローチャートの例である。It is an example of the flowchart explaining the calculation method of the pump rotation speed and expansion valve opening degree of Example 1. FIG. 実施例2の冷凍サイクル構成図を示す。The refrigeration cycle block diagram of Example 2 is shown. 実施例2のポンプ回転数及び膨脹弁開度の算出方法を説明するフローチャートの例である。It is an example of the flowchart explaining the calculation method of the pump rotation speed and expansion valve opening degree of Example 2.

以下、本発明の実施例について図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

図1は、実施例1の空気調和装置の冷凍サイクル構成図を示す図である。本実施例の空気調和装置は、室外機筐体6、室内機筐体7からなり、各筐体の液阻止弁18間、ガス阻止弁19間を配管により連結させている。そして圧縮機1、凝縮器2、膨張弁4、蒸発器5を順次冷媒配管で接続して冷房運転を行う圧縮サイクル運転と、凝縮器2、強制冷媒循環ポンプ3、膨張弁4、蒸発器5を順次冷媒配管で接続して冷房運転するポンプサイクル運転との双方を行う。なお、両サイクルで凝縮器2、膨張弁4、蒸発器5を共有する。圧縮機1出口には、液冷媒が逆流することを避ける為、逆止弁20が接続されている。この逆止弁は、開止弁とし圧縮機運転に応じた開閉制御としても良い。   FIG. 1 is a diagram illustrating a configuration of a refrigeration cycle of the air-conditioning apparatus according to the first embodiment. The air conditioner according to the present embodiment includes an outdoor unit housing 6 and an indoor unit housing 7, and the liquid blocking valves 18 and the gas blocking valves 19 of each housing are connected by piping. Then, the compressor 1, the condenser 2, the expansion valve 4, and the evaporator 5 are sequentially connected by refrigerant piping to perform the cooling operation, the condenser 2, the forced refrigerant circulation pump 3, the expansion valve 4, and the evaporator 5 Are sequentially connected by refrigerant pipes, and both the pump cycle operation for cooling operation is performed. In both cycles, the condenser 2, the expansion valve 4, and the evaporator 5 are shared. A check valve 20 is connected to the outlet of the compressor 1 to prevent the liquid refrigerant from flowing backward. This check valve may be an open / close control according to the compressor operation.

強制冷媒循環ポンプ3は室外機筐体6内、もしくは別ユニット内に単体で設置され、凝縮器2との間に、余剰冷媒調整装置9を配し、強制冷媒循環ポンプ3入口側には、冷媒の過冷却度をモニタするための圧力センサ10、温度センサ11を配し、過冷却度に応じ、室外送風機8の周波数を制御する。   The forced refrigerant circulation pump 3 is installed alone in the outdoor unit housing 6 or in a separate unit, and an excess refrigerant adjusting device 9 is arranged between the condenser 2 and the inlet side of the forced refrigerant circulation pump 3 is A pressure sensor 10 and a temperature sensor 11 for monitoring the degree of supercooling of the refrigerant are arranged, and the frequency of the outdoor blower 8 is controlled according to the degree of supercooling.

室内機7側には、室内送風機17、膨張弁4、蒸発器5、圧縮機1が搭載される。膨張弁4、蒸発器5、圧縮機1は配管により順次接続されている。蒸発器5の出口側配管は圧縮機1の入口側配管と接続され、圧縮機サイクル運転の場合はこの配管を冷媒が流れることによりサイクルを形成する。蒸発器5の出口側配管から圧縮機1の入口側配管の間には圧縮機1をバイパスするための配管が接続されており、ポンプサイクル運転の場合にはこの配管を冷媒が流れることによりポンプサイクル運転が行われる。なお、圧縮機1をバイパスする配管には逆止弁12が接続されており、圧縮機サイクル運転時に圧縮機1から吐出された冷媒が蒸発器5の出口側配管に流れることを防止している。   On the indoor unit 7 side, an indoor blower 17, an expansion valve 4, an evaporator 5 and a compressor 1 are mounted. The expansion valve 4, the evaporator 5, and the compressor 1 are sequentially connected by piping. The outlet side piping of the evaporator 5 is connected to the inlet side piping of the compressor 1, and in the case of compressor cycle operation, the refrigerant flows through this piping to form a cycle. A pipe for bypassing the compressor 1 is connected between the outlet side pipe of the evaporator 5 and the inlet side pipe of the compressor 1, and in the case of pump cycle operation, the refrigerant flows through this pipe so that the pump flows. Cycle operation is performed. A check valve 12 is connected to the pipe bypassing the compressor 1 to prevent the refrigerant discharged from the compressor 1 during the compressor cycle operation from flowing to the outlet side pipe of the evaporator 5. .

圧縮機サイクル運転とポンプサイクル運転とは外気温度や運転状況により切り替わる。圧縮機サイクル運転中、室内温度と比較して室外温度が十分に低い場合に、冷房負荷がポンプサイクル運転により発揮可能な能力を下回った状態が継続した場合には、ポンプサイクル運転に切り替わる。ポンプサイクル運転中に冷房負荷が賄えなくなった場合や室外温度が高くなった状態が継続した場合には、圧縮機サイクル運転に切り替える。   The compressor cycle operation and the pump cycle operation are switched depending on the outside air temperature and the operation state. During the compressor cycle operation, when the outdoor temperature is sufficiently lower than the indoor temperature, if the cooling load continues to be less than the capacity that can be exhibited by the pump cycle operation, the operation is switched to the pump cycle operation. When the cooling load cannot be covered during the pump cycle operation or when the outdoor temperature continues to be high, the operation is switched to the compressor cycle operation.

ポンプサイクル運転時における冷媒循環量は、蒸発器5出口部の過熱度が設定値となるように強制冷媒循環ポンプ3の周波数または膨張弁4の開度にて調節する。過熱度は、蒸発器5出口部に配された圧力センサ14により得られた圧力の値からその圧力における冷媒の飽和温度を算出し、温度センサ13により得られた冷媒の温度との差により算出する。強制冷媒循環ポンプ3の入口・出口には、圧縮機サイクル運転時、強制冷媒循環ポンプ3をバイパスするよう逆止弁21を介したバイパス配管で接続される。   The refrigerant circulation amount during the pump cycle operation is adjusted by the frequency of the forced refrigerant circulation pump 3 or the opening degree of the expansion valve 4 so that the degree of superheat at the outlet of the evaporator 5 becomes a set value. The degree of superheat is calculated by calculating the saturation temperature of the refrigerant at that pressure from the pressure value obtained by the pressure sensor 14 disposed at the outlet of the evaporator 5 and calculating the difference from the temperature of the refrigerant obtained by the temperature sensor 13. To do. The inlet / outlet of the forced refrigerant circulation pump 3 is connected by a bypass pipe via a check valve 21 so as to bypass the forced refrigerant circulation pump 3 during the compressor cycle operation.

ここで蒸発器5の出口側過熱度には上限値SH2と下限値SH1が設定されており、この設定値と算出した蒸発器出口側過熱度SHeとを比較することで、冷媒循環量の調整を行う。   Here, an upper limit value SH2 and a lower limit value SH1 are set for the outlet side superheat degree of the evaporator 5, and the refrigerant circulation amount is adjusted by comparing the set value with the calculated evaporator outlet side superheat degree SHe. I do.

まず蒸発器出口側過熱度SHeが下限値SH1より低い場合について説明すると、この場合には冷媒循環量を下げる必要があるが、本実施例においては、このとき膨張弁4の開度を絞るのではなく、強制冷媒循環ポンプ3の周波数を段階的に下げることを行う。このように膨張弁4より先に強制冷媒循環ポンプ3の回転数を下げることにより、冷媒循環量を減らして所望の蒸発器出口側過熱度としつつ、なおかつ、強制冷媒循環ポンプ3による消費電力を低減することが可能である。また、強制冷媒循環ポンプ3の回転数を下げていき、下限周波数に達した場合に、それでも蒸発器出口側過熱度SHeが下限値SH1より低い場合には、さらに冷媒循環量を下げる必要があることから、膨張弁4の開度を絞るように徐々に制御して冷媒循環量を減らす。蒸発器出口側過熱度SHeが下限値SH1より低い状態が継続すれば、膨張弁4の開度が下限に達するまで開度制御を行う。   First, the case where the evaporator outlet side superheat degree SHe is lower than the lower limit value SH1 will be described. In this case, it is necessary to reduce the refrigerant circulation amount, but in this embodiment, the opening degree of the expansion valve 4 is reduced at this time. Instead, the frequency of the forced refrigerant circulation pump 3 is lowered stepwise. Thus, by reducing the rotational speed of the forced refrigerant circulation pump 3 before the expansion valve 4, while reducing the refrigerant circulation amount to the desired degree of superheat on the outlet side of the evaporator, the power consumption by the forced refrigerant circulation pump 3 is reduced. It is possible to reduce. Further, when the rotational speed of the forced refrigerant circulation pump 3 is decreased and the lower limit frequency is reached, if the evaporator outlet side superheating degree SHe is still lower than the lower limit value SH1, it is necessary to further reduce the refrigerant circulation amount. Therefore, the refrigerant circulation amount is reduced by gradually controlling the opening degree of the expansion valve 4 to be reduced. If the evaporator outlet side superheat degree SHe continues to be lower than the lower limit value SH1, the opening degree control is performed until the opening degree of the expansion valve 4 reaches the lower limit.

次に蒸発器出口側過熱度SHeが上限値SH2より高い場合について説明すると、この場合には冷媒循環量を上げる必要があるが、本実施例においては、このとき強制冷媒循環ポンプ3の周波数を上げるのではなく、まず膨張弁4の開度を大きくする開度制御を行う。なお、当然のことながら上限値SH2>下限値SH1の関係となっている。これにより冷媒循環量が増加するので、所望の蒸発器出口側過熱度としつつ、ポンプ3を駆動する必要がないことから、省電力にてこれを行うことが可能となる。また膨張弁4の開度が上限に達してもなお蒸発器出口側過熱度SHeが上限値SH2より高い状態が継続すると、このとき強制冷媒循環ポンプ3の周波数を下限周波数より徐々に高くしていき冷媒循環量を増やす。蒸発器出口側過熱度SHeが上限値SH2より高い状態が継続すれば、強制冷媒循環ポンプ3の周波数が上限に達するまで制御を行う。   Next, the case where the evaporator outlet side superheat degree SHe is higher than the upper limit value SH2 will be described. In this case, it is necessary to increase the amount of refrigerant circulation. In this embodiment, however, the frequency of the forced refrigerant circulation pump 3 is set at this time. Instead of increasing, first, the opening degree control for increasing the opening degree of the expansion valve 4 is performed. As a matter of course, the relationship is upper limit value SH2> lower limit value SH1. As a result, the amount of refrigerant circulating increases, so that it is not necessary to drive the pump 3 while maintaining the desired degree of superheat on the outlet side of the evaporator, and this can be done with low power consumption. If the evaporator outlet side superheat degree SHe continues to be higher than the upper limit value SH2 even when the opening degree of the expansion valve 4 reaches the upper limit, the frequency of the forced refrigerant circulation pump 3 is gradually increased from the lower limit frequency at this time. Increase the amount of refrigerant circulation. If the evaporator outlet side superheat degree SHe continues to be higher than the upper limit value SH2, control is performed until the frequency of the forced refrigerant circulation pump 3 reaches the upper limit.

ここで上記した制御により、ポンプサイクルに切り替えた後に強制冷媒循環ポンプ3の回転数と膨張弁4の開度を制御すると、その間、過渡的に負荷の温度変化が生じてしまうことがある。またこれにより、冷房負荷が賄えなくなることで圧縮機サイクル運転に切り替わってしまい、サイクル運転が安定しないことがある。   Here, when the rotational speed of the forced refrigerant circulation pump 3 and the opening degree of the expansion valve 4 are controlled after switching to the pump cycle by the above-described control, the temperature change of the load may occur transiently during that time. In addition, due to this, it becomes impossible to cover the cooling load, thereby switching to the compressor cycle operation, and the cycle operation may not be stable.

そのため、本実施例においては、圧縮機サイクル運転からポンプサイクル運転に切り替わる前に、蒸発器出口側過熱度SHeを所望の過熱度となるような強制冷媒循環ポンプ3の回転数と膨張弁4の開度を算出するものである。すなわち、本実施例の空気調和装置の制御部は圧縮機サイクル運転からポンプサイクル運転に切り替わる前に、蒸発器5の出口側過熱度を設定過熱度とするための膨張弁4の開度及び強制冷媒循環ポンプ3の回転数を算出する算出手段を備えている。これによりポンプサイクル運転切り換え後に目標能力へ移行するリードタイムがなくサイクルを安定させることが可能となる。   Therefore, in this embodiment, before switching from the compressor cycle operation to the pump cycle operation, the rotation speed of the forced refrigerant circulation pump 3 and the expansion valve 4 so that the evaporator outlet side superheat degree SHe becomes a desired superheat degree. The opening is calculated. That is, the control unit of the air conditioner of the present embodiment sets the opening degree and the forcing of the expansion valve 4 to set the outlet side superheat degree of the evaporator 5 to the set superheat degree before switching from the compressor cycle operation to the pump cycle operation. Calculation means for calculating the number of revolutions of the refrigerant circulation pump 3 is provided. As a result, there is no lead time for shifting to the target capacity after switching the pump cycle operation, and the cycle can be stabilized.

図2はこの算出手段によるポンプサイクル運転に切り替わる前の膨張弁4の開度及び強制冷媒循環ポンプ3の回転数の算出フローチャートを示している。上記した通り、蒸発器5の出口側過熱度には上限値SH2と下限値SH1が設定されている。   FIG. 2 shows a flowchart for calculating the opening degree of the expansion valve 4 and the rotational speed of the forced refrigerant circulation pump 3 before switching to the pump cycle operation by this calculating means. As described above, the upper limit value SH2 and the lower limit value SH1 are set for the outlet side superheat degree of the evaporator 5.

まず算出手段は、強制冷媒循環ポンプ3の回転数を下限回転数とすることができるか否か算出する。つまり、強制冷媒循環ポンプ3の回転数は可能な限り下限回転数として消費電力を下げるようにするものである。蒸発器5の出口側過熱度が第1設定値(上限値SH2)以上の場合には、強制冷媒循環ポンプ3の回転数を大きくすることで蒸発器5の出口側過熱度を下げることが可能であるが、その前に膨張弁4の開度の適正な開度を算出する。すなわち、強制冷媒循環ポンプ3の回転数を下限回転数としつつ、膨脹弁4の下限開度とすることにより蒸発器5の出口側過熱度を第1設定値(上限値SH2)とすることができるか、または適切な開度とすることで、あるいは上限開度とすることで蒸発器5の出口側過熱度を第1設定値(上限値SH2)とすることができるか否かを判定する。   First, the calculation means calculates whether or not the rotational speed of the forced refrigerant circulation pump 3 can be set to the lower limit rotational speed. That is, the rotational speed of the forced refrigerant circulation pump 3 is set to the lower limit rotational speed as much as possible to reduce the power consumption. When the degree of superheat on the outlet side of the evaporator 5 is equal to or higher than the first set value (upper limit SH2), the degree of superheat on the outlet side of the evaporator 5 can be lowered by increasing the rotational speed of the forced refrigerant circulation pump 3. However, an appropriate opening degree of the expansion valve 4 is calculated before that. That is, the outlet side superheat degree of the evaporator 5 is set to the first set value (upper limit SH2) by setting the lower limit opening of the expansion valve 4 while setting the rotation speed of the forced refrigerant circulation pump 3 to the lower limit rotation speed. It is possible to determine whether or not the outlet side superheat degree of the evaporator 5 can be set to the first set value (upper limit value SH2) by setting the opening degree to an appropriate opening degree or the upper limit opening degree. .

つまり、算出手段は蒸発器5の出口側過熱度SHeが第1設定過熱度(上限値SH2)以上の場合に膨張弁4の開度を所定開度とすることで蒸発器5の出口側過熱度を第1設定過熱度(上限値SH2)とすることができる場合には、強制冷媒循環ポンプ3の回転数は下限回転数として算出する。   In other words, the calculating means sets the opening degree of the expansion valve 4 to a predetermined opening degree when the outlet side superheat degree SHe of the evaporator 5 is equal to or higher than the first set superheat degree (upper limit SH2), so that the outlet side superheat degree of the evaporator 5 is set. When the degree can be set to the first set superheat degree (upper limit SH2), the rotational speed of the forced refrigerant circulation pump 3 is calculated as the lower limit rotational speed.

そして膨張弁4の開度を上限開度として算出しても出口側過熱度SHeが第1設定過熱度(上限値SH2)以上の場合に強制冷媒循環ポンプ3の回転数として適切な回転数を算出する。すなわち、算出手段は蒸発器5の出口側過熱度が第1設定過熱度(上限値SH2)以上の場合に膨張弁4の開度を上限開度としても蒸発器5の出口側過熱度が第1設定過熱度(上限値SH2)以上の場合には、強制冷媒循環ポンプ3の回転数は下限回転数よりも大きい所定回転数となるように算出する。そしてこのように算出手段により膨張弁4の開度及び強制冷媒循環ポンプ3の回転数を算出した後に圧縮機サイクル運転からポンプサイクル運転に切り替わる。これにより、所望の蒸発器出口側加熱度としつつ、なおかつ、強制冷媒循環ポンプ3による消費電力を低減することが可能である。そしてポンプサイクル運転切り換え後に目標能力へ移行するリードタイムがなくしサイクルを安定させることができる。   Even if the opening degree of the expansion valve 4 is calculated as the upper limit opening degree, when the outlet side superheat degree SHe is equal to or higher than the first set superheat degree (upper limit value SH2), an appropriate rotation speed is set as the rotation speed of the forced refrigerant circulation pump 3. calculate. In other words, the calculation means sets the outlet side superheat degree of the evaporator 5 as the upper limit opening degree when the outlet side superheat degree of the evaporator 5 is equal to or higher than the first set superheat degree (upper limit SH2). When it is equal to or greater than 1 set superheat (upper limit SH2), the rotational speed of the forced refrigerant circulation pump 3 is calculated to be a predetermined rotational speed that is greater than the lower limit rotational speed. And after calculating the opening degree of the expansion valve 4 and the rotation speed of the forced refrigerant circulation pump 3 by the calculation means in this way, the compressor cycle operation is switched to the pump cycle operation. Thereby, it is possible to reduce power consumption by the forced refrigerant circulation pump 3 while maintaining a desired degree of heating at the outlet side of the evaporator. The lead time for shifting to the target capacity after switching the pump cycle operation is eliminated, and the cycle can be stabilized.

また、蒸発器出口側過熱度SHeと上限値SH2と下限値SH1を比較し、膨張弁4の開度と強制冷媒循環ポンプ3の回転数を制御し、所望の蒸発器出口側過熱度SHeとする制御を行うことに比べ、上記したように切り替える前にそれぞれの開度及び回転数を算出することで、過渡温度変化を抑制でき、サイクル運転の信頼性を確保できる。さらに、所望の蒸発器出口側過熱度(上限値SH2、下限値SH1)となるまでの過渡温度変化により所望の蒸発器出口側過熱度SHeが変化し、圧縮機サイクル運転に戻ってしまうことを抑制でき、ポンプ運転を持続することで省電力を向上することが可能である。   Further, the evaporator outlet side superheat degree SHe, the upper limit value SH2 and the lower limit value SH1 are compared, the opening degree of the expansion valve 4 and the rotational speed of the forced refrigerant circulation pump 3 are controlled, and the desired evaporator outlet side superheat degree SHe Compared to the control to perform, by calculating the respective opening degree and rotation speed before switching as described above, transient temperature change can be suppressed, and the reliability of cycle operation can be ensured. Furthermore, the desired evaporator outlet side superheat degree She changes due to a transient temperature change until the desired evaporator outlet side superheat degree (upper limit SH2, lower limit value SH1) is reached, and the compressor cycle operation is resumed. It is possible to suppress the power consumption by maintaining the pump operation.

また、算出手段は、蒸発器5の出口側過熱度が第1設定過熱度(上限値SH2)よりも低い第2設定過熱度(下限値SH1)以下の場合に強制冷媒循環ポンプ3の回転数を所定回転数とすることで蒸発器5の出口側過熱度を第2設定過熱度(下限値SH1)とすることができる場合には、膨脹弁4の開度は上限開度として算出する。つまり、算出手段は、蒸発器5の出口側過熱度を上げる必要がある場合に、膨脹弁4の開度は上限開度としつつ、まずは強制冷媒循環ポンプ3の回転数を下げるようにして算出するようにするものである。   Further, the calculation means calculates the rotational speed of the forced refrigerant circulation pump 3 when the outlet-side superheat degree of the evaporator 5 is equal to or lower than the second set superheat degree (lower limit value SH1) lower than the first set superheat degree (upper limit value SH2). When the outlet side superheat degree of the evaporator 5 can be set to the second set superheat degree (lower limit value SH1) by setting the rotation speed to a predetermined rotational speed, the opening degree of the expansion valve 4 is calculated as the upper limit opening degree. In other words, the calculating means calculates when the degree of superheat on the outlet side of the evaporator 5 needs to be increased, with the opening degree of the expansion valve 4 being set to the upper limit opening degree and firstly reducing the rotational speed of the forced refrigerant circulation pump 3. It is what you want to do.

そして、蒸発器5の出口側過熱度が第2設定過熱度(下限値SH1)以下の場合に強制冷媒循環ポンプ3の回転数を下限回転数としても蒸発器5の出口側過熱度が第2設定過熱度(下限値SH1)以下の場合には、膨脹弁4の開度は上限開度よりも小さい所定開度となるように算出する。つまり、算出手段は、蒸発器5の出口側過熱度を上げる必要がある場合に、強制冷媒循環ポンプ3の回転数を下限回転数としてもなお、上げる必要があった場合に膨脹弁4の開度を適正開度として算出するようにするものである。そしてこのように算出手段により膨張弁4の開度及び強制冷媒循環ポンプ3の回転数を算出した後に圧縮機サイクル運転からポンプサイクル運転に切り替わることで、上記したのと同様の効果を奏することが可能となる。   When the outlet-side superheat degree of the evaporator 5 is equal to or lower than the second set superheat degree (lower limit value SH1), the outlet-side superheat degree of the evaporator 5 is the second even if the rotational speed of the forced refrigerant circulation pump 3 is set to the lower limit rotational speed. When the degree of superheat (lower limit SH1) or less is set, the opening degree of the expansion valve 4 is calculated to be a predetermined opening degree that is smaller than the upper limit opening degree. In other words, the calculation means opens the expansion valve 4 when it is necessary to increase the outlet side superheat degree of the evaporator 5 and the rotational speed of the forced refrigerant circulation pump 3 is still the lower limit rotational speed. The degree is calculated as an appropriate opening degree. Then, after calculating the opening degree of the expansion valve 4 and the rotational speed of the forced refrigerant circulation pump 3 by the calculation means in this way, the same effect as described above can be obtained by switching from the compressor cycle operation to the pump cycle operation. It becomes possible.

図3は、実施例2の空気調和装置の冷凍サイクル構成図を示す図である。本実施例の空気調和装置は、圧縮機サイクル運転とポンプサイクル運転を切り替えて制御されるものであり、ポンプサイクル運転時に蒸発器5において冷媒量の循環量が過多となると、圧縮機1付近に液冷媒が溜まり、必要十分な冷媒が強制冷媒循環ポンプ3に流れず冷凍サイクル効率が悪くなる虞がある。   FIG. 3 is a diagram illustrating a configuration of the refrigeration cycle of the air-conditioning apparatus according to the second embodiment. The air conditioner according to the present embodiment is controlled by switching between the compressor cycle operation and the pump cycle operation. If the circulation amount of the refrigerant amount is excessive in the evaporator 5 during the pump cycle operation, the air conditioner is located near the compressor 1. Liquid refrigerant accumulates, and necessary and sufficient refrigerant does not flow to the forced refrigerant circulation pump 3, which may deteriorate the refrigeration cycle efficiency.

たとえば実施例1のように膨張弁4一つのみの開度制御により冷媒流量制御するのであれば、膨張弁4の開度を絞った際、少ない冷媒流量条件であった場合に蒸発器5の入口のパス配管に入る冷媒量が必ずしも均一でないので、蒸発器5内に流れる冷媒に偏った流量分布ができてしまう可能性がある。蒸発器5内部を通る冷媒に偏りのある流量分布が生じれば適切な熱交換量能力が得られない場合があるため過熱度のオーダーに信頼性がもてなくなる。また、圧縮機1に液冷媒が溜まれば圧縮機サイクル運転に切り替わった場合に、圧縮機吸入側に液冷媒が流れ、液圧縮が起こることで圧縮機の故障原因ともなり得る。   For example, if the refrigerant flow rate control is performed by controlling the opening degree of only one expansion valve 4 as in the first embodiment, when the opening degree of the expansion valve 4 is narrowed, the evaporator 5 Since the amount of refrigerant entering the inlet path pipe is not necessarily uniform, there is a possibility that a flow rate distribution that is biased toward the refrigerant flowing in the evaporator 5 may be formed. If an uneven flow distribution is generated in the refrigerant passing through the evaporator 5, an appropriate heat exchange capacity may not be obtained, and reliability in the order of the superheat degree is lost. Further, if liquid refrigerant accumulates in the compressor 1, when switching to the compressor cycle operation, the liquid refrigerant flows to the compressor suction side, and liquid compression occurs, which may cause a failure of the compressor.

そこで図3においては、図1と異なり、蒸発器5を複数の室内熱交換器(5−1、5−2、5−3)により構成し、冷媒循環量をより精度良く調整できるようにしたものである。またそれぞれの室内熱交換器(5−1、5−2、5−3)には、それぞれの冷媒循環量を制御するための膨張弁(4−1、4−2、4−3)を設置し、さらに各室内熱交換器毎に出口側の冷媒過熱度を算出するための温度センサ15、及び圧力センサ16をそれぞれの室内熱交換器毎に設けている。   Therefore, in FIG. 3, unlike FIG. 1, the evaporator 5 is constituted by a plurality of indoor heat exchangers (5-1, 5-2, 5-3) so that the refrigerant circulation amount can be adjusted more accurately. Is. Each indoor heat exchanger (5-1, 5-2, 5-3) is provided with an expansion valve (4-1, 4-2, 4-3) for controlling the refrigerant circulation amount. Furthermore, a temperature sensor 15 and a pressure sensor 16 for calculating the degree of refrigerant superheating on the outlet side are provided for each indoor heat exchanger for each indoor heat exchanger.

さらに全体の蒸発器5としての出口側過熱度を算出するために図1と同様に出口側に温度センサ13、圧力センサ14を設けている。それぞれの室内熱交換器(5−1、5−2、5−3)には目標出口側過熱度が設定され、この目標出口側過熱度は、これらが合わせて蒸発器全体としての目標出口側過熱度となるように決められる。なお、この目標出口過熱度は実施例1と同様に上限値と下限値とから決められる一定の範囲で設定され、その範囲内に出口側過熱度が収まるように制御を行うものである。   Further, a temperature sensor 13 and a pressure sensor 14 are provided on the outlet side in the same manner as in FIG. 1 in order to calculate the outlet side superheat degree of the entire evaporator 5. A target outlet side superheat degree is set for each indoor heat exchanger (5-1, 5-2, 5-3), and this target outlet side superheat degree is a target outlet side as a whole of the evaporator. It is determined to be the degree of superheat. The target outlet superheat degree is set in a certain range determined from the upper limit value and the lower limit value as in the first embodiment, and control is performed so that the outlet side superheat degree falls within the range.

次に具体的なそれぞれの室内熱交換器(5−1、5−2、5−3)の冷媒循環量制御について説明する。
本実施例では実施例1と同様に強制冷媒循環ポンプ3の回転速度が下限の場合に膨張弁(4−1、4−2、4−3)を制御し、膨張弁(4−1、4−2、4−3)の開度が上限の場合に強制冷媒循環ポンプ3の回転速度を制御してポンプサイクル運転に切り替える。
Next, the refrigerant | coolant circulation amount control of each specific indoor heat exchanger (5-1, 5-2, 5-3) is demonstrated.
In the present embodiment, as in the first embodiment, when the rotational speed of the forced refrigerant circulation pump 3 is the lower limit, the expansion valves (4-1, 4-2, 4-3) are controlled, and the expansion valves (4-1, 4, 4) are controlled. -2, 4-3) When the opening degree is the upper limit, the rotational speed of the forced refrigerant circulation pump 3 is controlled to switch to the pump cycle operation.

ここで、それぞれの室内熱交換器(5−1、5−2、5−3)には上記したように目標出口側過熱度が設定されており、それぞれに設置された温度センサ15、及び圧力センサ16から出口側過熱度が算出できることから、出口側過熱度が設定された下限値より低くなっている室内熱交換器(たとえば5−1)の膨張弁(4−1)を絞る制御を行う。このように複数の室内熱交換器(5−1、5−2、5−3)で蒸発器5が構成され、それぞれの膨張弁(4−1、4−2、4−3)により制御を行うため、蒸発器内の能力むらを抑制でき、より精度良く冷媒循環量の調整を行うことができる。   Here, as described above, the target outlet side superheat degree is set in each of the indoor heat exchangers (5-1, 5-2, 5-3), and the temperature sensor 15 and the pressure installed in each of the indoor heat exchangers (5-1, 5-2, 5-3). Since the outlet side superheat degree can be calculated from the sensor 16, control is performed to throttle the expansion valve (4-1) of the indoor heat exchanger (for example, 5-1) in which the outlet side superheat degree is lower than the set lower limit value. . Thus, the evaporator 5 is comprised by several indoor heat exchangers (5-1, 5-2, 5-3), and control is carried out by each expansion valve (4-1, 4-2, 4-3). Therefore, it is possible to suppress the uneven performance in the evaporator and adjust the refrigerant circulation amount with higher accuracy.

以上に説明したように、本実施例の冷媒循環量制御では、蒸発器5を複数の室内熱交換器(5−1、5−2、5−3)で構成し、さらにそれぞれの膨張弁(4−1、4−2、4−3)の開度制御を行うことで能力むらを抑制でき、より精度良く冷媒循環量の調整を行うことができる。これにより、ポンプサイクル運転時に圧縮機1付近に液冷媒が溜ることを防止し、必要十分な冷媒が強制冷媒循環ポンプ3に流すことができるため、冷凍サイクル効率が悪くなることを防止することができる。また、圧縮機1に液冷媒が溜まることで液圧縮が起こることがないようにし、圧縮機の信頼性向上を図ることができる。   As described above, in the refrigerant circulation amount control according to the present embodiment, the evaporator 5 is configured by a plurality of indoor heat exchangers (5-1, 5-2, 5-3), and each expansion valve ( By performing the opening control of (4-1, 4-2, 4-3), it is possible to suppress unevenness in performance and adjust the refrigerant circulation amount with higher accuracy. As a result, liquid refrigerant can be prevented from accumulating near the compressor 1 during pump cycle operation, and necessary and sufficient refrigerant can flow to the forced refrigerant circulation pump 3, thereby preventing deterioration in refrigeration cycle efficiency. it can. Further, the liquid refrigerant does not accumulate due to the liquid refrigerant accumulating in the compressor 1, and the reliability of the compressor can be improved.

ここで、図4は蒸発器5の全体としての出口側過熱度、すなわち温度センサ13及び圧力センサ14により算出される出口側過熱度SHeを目標過熱度とするためにポンプサイクルに切り替わる前の強制冷媒循環ポンプ3の回転速度とそれぞれの膨張弁(4−1、4−2、4−3)開度の算出方法を説明したものである。ここで得られる効果は実施例1で説明したものと同様である。   Here, FIG. 4 shows the entire outlet side superheat degree of the evaporator 5, that is, the forced before switching to the pump cycle in order to set the outlet side superheat degree SHe calculated by the temperature sensor 13 and the pressure sensor 14 to the target superheat degree. The calculation method of the rotational speed of the refrigerant | coolant circulation pump 3 and each expansion valve (4-1, 4-2, 4-3) opening degree is demonstrated. The effects obtained here are the same as those described in the first embodiment.

つまり、本実施例の空気調和装置の制御部が備える算出手段は、蒸発器5の出口側過熱度が第1設定過熱度(上限値SH2)以上の場合に複数の膨張弁(4−1、4−2、4−3)のうち、室内熱交換器(5−1、5−2、5−3)の出口側過熱度が該熱交換器の設定過熱度以上となっているものの開度を所定開度とすることで蒸発器5の出口側過熱度を第1設定過熱度(上限値SH2)とすることができる場合には、強制冷媒循環ポンプ3の回転数は前記下限回転数として算出する。   That is, the calculation means provided in the control unit of the air conditioner of the present embodiment has a plurality of expansion valves (4-1, 4) when the outlet-side superheat degree of the evaporator 5 is equal to or higher than the first set superheat degree (upper limit SH2). 4-2, 4-3), the degree of opening of the indoor heat exchanger (5-1, 5-2, 5-3) whose outlet side superheat degree is equal to or higher than the set superheat degree of the heat exchanger Is set to the predetermined opening, the outlet side superheat degree of the evaporator 5 can be set to the first set superheat degree (upper limit SH2), and the rotational speed of the forced refrigerant circulation pump 3 is set as the lower limit rotational speed. calculate.

また、蒸発器5の出口側過熱度が第1設定過熱度(上限値SH2)以上の場合に複数の膨張弁(4−1、4−2、4−3)の開度を上限開度としても蒸発器5の出口側過熱度が第1設定過熱度(上限値SH2)以上の場合には、強制冷媒循環ポンプ3の回転数は下限回転数よりも大きい所定回転数となるように算出する。   Moreover, when the outlet side superheat degree of the evaporator 5 is more than 1st setting superheat degree (upper limit SH2), the opening degree of a some expansion valve (4-1, 4-2, 4-3) is made into upper limit opening degree. In the case where the superheat degree on the outlet side of the evaporator 5 is equal to or higher than the first set superheat degree (upper limit SH2), the rotational speed of the forced refrigerant circulation pump 3 is calculated to be a predetermined rotational speed larger than the lower limit rotational speed. .

また算出手段は、蒸発器5の出口側過熱度が第2設定過熱度以下の場合に強制冷媒循環ポンプ3の回転数を所定回転数とすることで蒸発器5の出口側過熱度を前記第2設定過熱度(下限値SH1)とすることができる場合には、複数の膨張弁(4−1、4−2、4−3)の開度を前記上限開度として算出する。   Further, the calculation means sets the outlet side superheat degree of the evaporator 5 by setting the rotational speed of the forced refrigerant circulation pump 3 to a predetermined rotational speed when the outlet side superheat degree of the evaporator 5 is equal to or less than the second set superheat degree. When it can be set to 2 setting superheat degree (lower limit SH1), the opening degree of a plurality of expansion valves (4-1, 4-2, 4-3) is calculated as the upper limit opening degree.

また強制冷媒循環ポンプ3の回転数を下限回転数としても蒸発器5の出口側過熱度が第2設定過熱度(下限値SH1)以下の場合には、複数の膨張弁(4−1、4−2、4−3)のうち、室内熱交換器(5−1、5−2、5−3)の出口側過熱度が該熱交換器の設定過熱度以下となっているものの開度を所定開度となるように算出する。   Further, even when the rotational speed of the forced refrigerant circulation pump 3 is set to the lower limit rotational speed, when the outlet side superheat degree of the evaporator 5 is equal to or lower than the second set superheat degree (lower limit value SH1), a plurality of expansion valves (4-1, 4 -2, 4-3), the degree of opening of the indoor heat exchanger (5-1, 5-2, 5-3) whose outlet side superheat is equal to or less than the set superheat of the heat exchanger It calculates so that it may become a predetermined opening degree.

そしてこのように算出手段により膨張弁4の開度及び強制冷媒循環ポンプ3の回転数を算出した後に圧縮機サイクル運転からポンプサイクル運転に切り替わることで、実施例1と同様の効果を奏することが可能となる。   Then, after calculating the opening degree of the expansion valve 4 and the rotational speed of the forced refrigerant circulation pump 3 by the calculation means in this way, the same effect as that of the first embodiment can be obtained by switching from the compressor cycle operation to the pump cycle operation. It becomes possible.

1:圧縮機
2:室外熱交換器(凝縮器)
3:強制冷媒循環ポンプ
4、4−1、4−2、4−3:膨張弁
5、5−1、5−2、5−3:室内熱交換器(蒸発器)
6:室外機筐体
7:室内機筐体
8:室外送風機
9:余剰冷媒装置
10、14、16:圧力センサ
11、13、15:温度センサ
12、20、21:逆止弁
17:室内送風機
18:液阻止弁
19:ガス阻止弁
1: Compressor 2: Outdoor heat exchanger (condenser)
3: Forced refrigerant circulation pump 4, 4-1, 4-2, 4-3: Expansion valves 5, 5-1, 5-2, 5-3: Indoor heat exchanger (evaporator)
6: Outdoor unit casing 7: Indoor unit casing 8: Outdoor blower 9: Excess refrigerant device 10, 14, 16: Pressure sensor 11, 13, 15: Temperature sensor 12, 20, 21: Check valve 17: Indoor blower 18: Liquid blocking valve 19: Gas blocking valve

Claims (4)

冷媒を循環させる圧縮機サイクル運転を行う圧縮機と、
該圧縮機により圧縮された冷媒を凝縮する凝縮器と、
該凝縮器により凝縮された冷媒を膨張させる膨張弁と、
該膨張弁により膨張された冷媒を蒸発させる蒸発器と、
前記圧縮機が停止した状態で前記凝縮器から流れる液冷媒を前記膨張弁に送ることにより冷媒を循環させるポンプサイクル運転を行うポンプと、を備えた空気調和装置において、
前記圧縮機サイクル運転から前記ポンプサイクル運転に切り替わる前に、前記蒸発器の出口側過熱度を第1設定過熱度とするための前記膨張弁の開度及び前記ポンプの回転数を算出する算出手段を備え、
該算出手段は、前記蒸発器の出口側過熱度が前記第1設定過熱度以上の場合に前記膨張弁の開度を所定開度とすることで前記蒸発器の出口側過熱度を前記第1設定過熱度とすることができる場合には、前記ポンプの回転数は下限回転数として算出し、
前記蒸発器の出口側過熱度が前記第1設定過熱度以上の場合に前記膨張弁の開度を上限開度としても前記蒸発器の出口側過熱度が前記第1設定過熱度以上の場合には、前記ポンプの回転数は前記下限回転数よりも大きい所定回転数となるように算出し、
該算出手段により前記膨張弁の開度及び前記ポンプの回転数を算出した後に前記圧縮機サイクル運転から前記ポンプサイクル運転に切り替わることを特徴とする空気調和装置。
A compressor that performs a compressor cycle operation for circulating the refrigerant;
A condenser for condensing the refrigerant compressed by the compressor;
An expansion valve for expanding the refrigerant condensed by the condenser;
An evaporator for evaporating the refrigerant expanded by the expansion valve;
In an air conditioner comprising: a pump that performs a pump cycle operation of circulating a refrigerant by sending liquid refrigerant flowing from the condenser to the expansion valve in a state where the compressor is stopped.
Calculation means for calculating the opening degree of the expansion valve and the rotation speed of the pump for setting the outlet-side superheat degree of the evaporator to the first set superheat degree before switching from the compressor cycle operation to the pump cycle operation. With
The calculating means sets the opening degree of the outlet side of the evaporator to the first opening degree by setting the opening degree of the expansion valve to a predetermined opening degree when the outlet side superheating degree of the evaporator is equal to or higher than the first set superheating degree. When the set superheat degree can be set, the rotation speed of the pump is calculated as the lower limit rotation speed,
When the outlet side superheat degree of the evaporator is equal to or higher than the first set superheat degree, and the opening degree of the expansion valve is set to the upper limit opening degree, the outlet side superheat degree of the evaporator is equal to or higher than the first set superheat degree. Is calculated so that the rotation speed of the pump is a predetermined rotation speed larger than the lower limit rotation speed,
The air conditioner switching from the compressor cycle operation to the pump cycle operation after calculating the opening degree of the expansion valve and the rotation speed of the pump by the calculating means.
請求項1に記載の空気調和装置において、
前記算出手段は、前記蒸発器の出口側過熱度が前記第1設定過熱度よりも低い第2設定過熱度以下の場合に前記ポンプの回転数を所定回転数とすることで前記蒸発器の出口側過熱度を前記第2設定過熱度とすることができる場合には、前記膨脹弁の開度は前記上限開度として算出し、
前記蒸発器の出口側過熱度が前記第2設定過熱度以下の場合に前記ポンプの回転数を前記下限回転数としても前記蒸発器の出口側過熱度が前記第2設定過熱度以下の場合には、前記膨脹弁の開度は前記上限開度よりも小さい所定開度となるように算出することを特徴とする空気調和機。
In the air conditioning apparatus according to claim 1,
The calculating means sets the rotation speed of the pump to a predetermined rotation speed when the outlet-side superheat degree of the evaporator is equal to or lower than a second set superheat degree that is lower than the first set superheat degree. When the side superheat degree can be the second set superheat degree, the opening degree of the expansion valve is calculated as the upper limit opening degree,
When the outlet-side superheat degree of the evaporator is equal to or lower than the second set superheat degree, and when the outlet-side superheat degree of the evaporator is equal to or lower than the second set superheat degree even if the rotation speed of the pump is set to the lower limit rotational speed. Is calculated so that the opening degree of the expansion valve becomes a predetermined opening degree smaller than the upper limit opening degree.
請求項1又は2に記載の空気調和装置において、
前記蒸発器は、複数の熱交換器が並列に並べられることにより構成され、
該複数の熱交換器の入口側にはそれぞれ膨張弁が設置され、
前記算出手段は、
前記蒸発器の出口側過熱度が前記第1設定過熱度以上の場合に前記複数の膨張弁のうち、前記熱交換器の出口側過熱度が該熱交換器の設定過熱度以上となっているものの開度を所定開度とすることで前記蒸発器の出口側過熱度を前記第1設定過熱度とすることができる場合には、前記ポンプの回転数は前記下限回転数として算出し、
前記蒸発器の出口側過熱度が前記第1設定過熱度以上の場合に前記複数の膨張弁の開度を前記上限開度としても前記蒸発器の出口側過熱度が前記第1設定過熱度以上の場合には、前記ポンプの回転数は前記下限回転数よりも大きい所定回転数となるように算出することを特徴とする空気調和装置。
In the air conditioning apparatus according to claim 1 or 2,
The evaporator is configured by arranging a plurality of heat exchangers in parallel,
Expansion valves are respectively installed on the inlet sides of the plurality of heat exchangers,
The calculating means includes
When the outlet side superheat degree of the evaporator is equal to or higher than the first set superheat degree, among the plurality of expansion valves, the outlet side superheat degree of the heat exchanger is equal to or higher than the set superheat degree of the heat exchanger. When the opening degree of the thing can be set to the predetermined opening degree, the superheat degree on the outlet side of the evaporator can be set to the first set superheat degree, and the rotational speed of the pump is calculated as the lower limit rotational speed,
When the outlet-side superheat degree of the evaporator is equal to or greater than the first set superheat degree, the outlet-side superheat degree of the evaporator is equal to or greater than the first set superheat degree even if the opening degree of the plurality of expansion valves is set to the upper limit opening degree. In this case, the air conditioner is calculated so that the rotation speed of the pump is a predetermined rotation speed larger than the lower limit rotation speed.
請求項2に記載の空気調和装置において、
前記蒸発器は、複数の熱交換器が並列に並べられることにより構成され、
該複数の熱交換器の入口側にはそれぞれ膨張弁が設置され、
前記算出手段は、
前記蒸発器の出口側過熱度が前記第2設定過熱度以下の場合に前記ポンプの回転数を所定回転数とすることで前記蒸発器の出口側過熱度を前記第2設定過熱度とすることができる場合には、前記複数の膨張弁の開度を前記上限開度として算出し、
前記ポンプの回転数を前記下限回転数としても前記蒸発器の出口側過熱度が前記第2設定過熱度以下の場合には、前記複数の膨張弁のうち、前記熱交換器の出口側過熱度が該熱交換器の設定過熱度以下となっているものの開度を所定開度となるように算出することを特徴とする空気調和装置。
In the air conditioning apparatus according to claim 2,
The evaporator is configured by arranging a plurality of heat exchangers in parallel,
Expansion valves are respectively installed on the inlet sides of the plurality of heat exchangers,
The calculating means includes
When the outlet-side superheat degree of the evaporator is equal to or lower than the second set superheat degree, the pump-side superheat degree is set to the predetermined rotation speed so that the evaporator outlet-side superheat degree is set to the second set superheat degree. If it is possible to calculate the opening of the plurality of expansion valves as the upper limit opening,
If the outlet side superheat degree of the evaporator is equal to or lower than the second set superheat degree even when the rotation speed of the pump is set to the lower limit speed, among the plurality of expansion valves, the outlet side superheat degree of the heat exchanger. Is calculated so that the opening degree of the heat exchanger not exceeding the set superheat degree of the heat exchanger is a predetermined opening degree.
JP2012215455A 2012-09-28 2012-09-28 Air conditioner Active JP5927670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012215455A JP5927670B2 (en) 2012-09-28 2012-09-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012215455A JP5927670B2 (en) 2012-09-28 2012-09-28 Air conditioner

Publications (2)

Publication Number Publication Date
JP2014070753A true JP2014070753A (en) 2014-04-21
JP5927670B2 JP5927670B2 (en) 2016-06-01

Family

ID=50746141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012215455A Active JP5927670B2 (en) 2012-09-28 2012-09-28 Air conditioner

Country Status (1)

Country Link
JP (1) JP5927670B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050738A (en) * 2014-09-01 2016-04-11 株式会社大気社 Compressor/pump switching type cooling device
EP3228954A2 (en) 2016-04-06 2017-10-11 Hitachi-Johnson Controls Air Conditioning, Inc. Cooling apparatus
CN111448434A (en) * 2017-12-11 2020-07-24 维谛公司 Air conditioning system and method for cooling capacity adjustment by fixed pump operation and variable condenser fan operation
WO2023199500A1 (en) * 2022-04-15 2023-10-19 三菱電機株式会社 Air conditioning apparatus and control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210325095A1 (en) * 2016-12-15 2021-10-21 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322322A (en) * 1992-05-27 1993-12-07 Mitsubishi Heavy Ind Ltd Freezer device
JPH09210475A (en) * 1996-02-08 1997-08-12 N T T Facilities:Kk Heat transport device
JPH10185342A (en) * 1996-12-19 1998-07-14 Matsushita Refrig Co Ltd Heat pump type air conditioner
JP2000193327A (en) * 1998-12-25 2000-07-14 Mitsubishi Electric Corp Air conditioner equipment and control method thereof
JP2002106986A (en) * 2000-09-29 2002-04-10 Mitsubishi Electric Corp Air conditioner and control method therefor
JP2006322617A (en) * 2005-05-17 2006-11-30 Hitachi Ltd Multiple type air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322322A (en) * 1992-05-27 1993-12-07 Mitsubishi Heavy Ind Ltd Freezer device
JPH09210475A (en) * 1996-02-08 1997-08-12 N T T Facilities:Kk Heat transport device
JPH10185342A (en) * 1996-12-19 1998-07-14 Matsushita Refrig Co Ltd Heat pump type air conditioner
JP2000193327A (en) * 1998-12-25 2000-07-14 Mitsubishi Electric Corp Air conditioner equipment and control method thereof
JP2002106986A (en) * 2000-09-29 2002-04-10 Mitsubishi Electric Corp Air conditioner and control method therefor
JP2006322617A (en) * 2005-05-17 2006-11-30 Hitachi Ltd Multiple type air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050738A (en) * 2014-09-01 2016-04-11 株式会社大気社 Compressor/pump switching type cooling device
EP3228954A2 (en) 2016-04-06 2017-10-11 Hitachi-Johnson Controls Air Conditioning, Inc. Cooling apparatus
JP2017187227A (en) * 2016-04-06 2017-10-12 日立ジョンソンコントロールズ空調株式会社 Cooling device
CN111448434A (en) * 2017-12-11 2020-07-24 维谛公司 Air conditioning system and method for cooling capacity adjustment by fixed pump operation and variable condenser fan operation
CN111448434B (en) * 2017-12-11 2022-06-17 维谛公司 Air conditioning system and method for cooling capacity adjustment by fixed pump operation and variable condenser fan operation
WO2023199500A1 (en) * 2022-04-15 2023-10-19 三菱電機株式会社 Air conditioning apparatus and control method

Also Published As

Publication number Publication date
JP5927670B2 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
US11774154B2 (en) Systems and methods for controlling a refrigeration system
US10739045B2 (en) Systems and methods for controlling a refrigeration system
JP5639984B2 (en) Air conditioner
JP5927670B2 (en) Air conditioner
CN111928419B (en) Control method and system for multi-split air conditioning unit
JP6647406B2 (en) Refrigeration cycle device
WO2013145844A1 (en) Heat source system, device for controlling same, and method for controlling same
JP2012067985A (en) Refrigerating machine, refrigerating device, and air conditioning device
EP2751499B1 (en) Refrigeration system and refrigeration method providing heat recovery
JP2010164270A (en) Multiple chamber type air conditioner
KR102507362B1 (en) Data center local cooling system with pre-cooling chiller
JP2013167368A (en) Air conditioner
US20230332850A1 (en) Fluid control for a variable flow fluid circuit in an hvacr system
JP6180165B2 (en) Air conditioner
JP5496161B2 (en) Refrigeration cycle system
GB2595378A (en) Chilling unit and cold/warm water system
JP5627564B2 (en) Refrigeration cycle system
JP2013083382A (en) Air conditioner
KR20150133966A (en) Cooling system
WO2016024504A1 (en) Load distribution system
US20220074632A1 (en) Outdoor unit of air conditioner
US20210180839A1 (en) Heating, ventilation, air-conditioning, and refrigeration system
JP6252636B2 (en) Load distribution system
JP6169363B2 (en) Heat medium control device, cooling / heating system, temperature adjusting device, and method for adding cooling / heating system
JP2007147133A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150820

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150902

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160406

R150 Certificate of patent or registration of utility model

Ref document number: 5927670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250